[Return to Master Index]

 
-------- spatial Durbin model estimation functions -------- 
 
f2_sdm       : evaluates llike for the spatial durbin model 
f_sdm        : evaluates concentrated log-likelihood for the 
prt_sdm      : Prints output using sdm results structures
sdm          : computes spatial durbin model estimates
sdm_compare  : An example of using sdm_gc() and sdm_g Gibbs sampling
sdm_d        : An example of using sdm() max likelihood
sdm_d2       : An example of using sdm() on a large data set
sdm_g        : Bayesian estimates of the heteroscedastic spatial durbin model
sdm_gc       : Bayesian estimates of the heteroscedastic spatial durbin model C-MEX version
sdm_gcd      : An example of using sdm_gc() Gibbs sampling
sdm_gcd2     : An example of using sdm_gc() on a large data set
sdm_gd       : An example of using sdm_g() Gibbs sampling
sdm_gd2      : An example of using sdm_g() on a large data set
sdm_gseed    : An example of using sdm_gc() Gibbs sampling
sdmp_g       : Bayesian estimates of the heteroscedastic spatial durbin probit model
sdmp_gd      : An example of using sdmp_g() Gibbs sampling
sdmp_gd2     : An example of using sdmp_g() on a large data set   
sdmt_g       : Bayesian estimates of the heteroscedastic spatial durbin tobit model
sdmt_gd      : An example of using sdmt_g() Gibbs sampling
sdmt_gd2     : An example of using sdmt_g() on a large data set