[Return to Master Index]
-------- spatial Durbin model estimation functions --------
f2_sdm : evaluates llike for the spatial durbin model
f_sdm : evaluates concentrated log-likelihood for the
prt_sdm : Prints output using sdm results structures
sdm : computes spatial durbin model estimates
sdm_compare : An example of using sdm_gc() and sdm_g Gibbs sampling
sdm_d : An example of using sdm() max likelihood
sdm_d2 : An example of using sdm() on a large data set
sdm_g : Bayesian estimates of the heteroscedastic spatial durbin model
sdm_gc : Bayesian estimates of the heteroscedastic spatial durbin model C-MEX version
sdm_gcd : An example of using sdm_gc() Gibbs sampling
sdm_gcd2 : An example of using sdm_gc() on a large data set
sdm_gd : An example of using sdm_g() Gibbs sampling
sdm_gd2 : An example of using sdm_g() on a large data set
sdm_gseed : An example of using sdm_gc() Gibbs sampling
sdmp_g : Bayesian estimates of the heteroscedastic spatial durbin probit model
sdmp_gd : An example of using sdmp_g() Gibbs sampling
sdmp_gd2 : An example of using sdmp_g() on a large data set
sdmt_g : Bayesian estimates of the heteroscedastic spatial durbin tobit model
sdmt_gd : An example of using sdmt_g() Gibbs sampling
sdmt_gd2 : An example of using sdmt_g() on a large data set