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Abstract

We examine the accuracy and contribution of the default forecasting model based on Merton’s
(1974) bond pricing model and developed by the KMV corporation. Comparing the KMV-
Merton model to a similar but much simpler alternative, we find that it performs slightly
worse as a predictor in hazard models and in out of sample forecasts. Moreover, several other
forecasting variables are also important predictors, and fitted hazard model values outperform
KMV-Merton default probabilities out of sample. Implied default probabilities from credit
default swaps and corporate bond yield spreads are only weakly correlated with KMV-Merton
default probabilities after adjusting for agency ratings, bond characteristics, and our alternative
predictor. We conclude that the KMV-Merton model does not produce a sufficient statistic for
the probability of default, and it appears to be possible to construct such a sufficient statistic
without solving the simultaneous nonlinear equations required by the KMV-Merton model.

We include the SAS code we use to calculate KMV-Merton default probabilities in an ap-
pendix.
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Due to the advent of innovative corporate debt products and credit derivatives, academics

and practitioners have recently shown renewed interest in models that forecast corporate defaults.

One innovative forecasting model which has been widely applied in both practice and academic

research1 is a particular application of Merton’s model (Merton, 1974) that was developed by the

KMV corporation, which we refer to as the KMV-Merton model2. This paper assesses the accuracy

and the contribution of the KMV-Merton model.

The KMV-Merton model applies the framework of Merton (1974), in which the equity of the firm

is a call option on the underlying value of the firm with a strike price equal to the face value of the

firm’s debt. The model recognizes that neither the underlying value of the firm nor its volatility are

directly observable. Under the model’s assumptions both can be inferred from the value of equity,

the volatility of equity and several other observable variables by solving two nonlinear simultaneous

equations. After inferring these values, the model specifies that the probability of default is the

normal cumulative density function of a z-score depending on the firm’s underlying value, the firm’s

volatility and the face value of the firm’s debt.

The KMV-Merton model is a clever application of classic finance theory, but how well it performs

in forecasting depends on how realistic its assumptions are. The model is a somewhat stylized

structural model that requires a number of assumptions. Among other things, the model assumes

that the underlying value of each firm follows geometric Browninan motion and that each firm has

issued just one zero-coupon bond. If the model’s strong assumptions are violated, it should be

possible to construct a reduced form model with more accuracy.

We examine two hypotheses in this paper. First, we ask whether the probability of default

implied by the Merton model is a sufficient statistic for forecasting bankruptcy. If the Merton

model is literally true, it should be impossible to improve on the model’s implied probability for

forecasting. If it is possible to construct a reduced form model with better predictive properties, we

can conclude that the KMV-Merton probability (πKMV) is not a sufficient statistic for forecasting

default.
1The model is discussed in Duffie and Singleton (2003) and Saunders and Allen (2002). It is applied by Vassalou

and Xing (2003), among others.
2While others refer to this model simply as a Merton model, we prefer to call it the KMV-Merton model because

(1) deriving the KMV-Merton default probability from observed equity data is a nontrivial extension of the ideas in
the classic Merton model and (2) the proprietors of KMV developed this clever extension of the Merton model and
we believe they deserve some credit for its development. We do not intend to imply that we are using exactly the
same algorithm that Moody’s KMV uses to calculate distance to default. Differences between our method and that
of Moody’s KMV are discussed in Section I B and in Table 2.
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Our second hypothesis is that the Merton model is an important quantity to consider when

predicting default. We hypothesize that the information in πKMV cannot be completely replaced

by a reasonable set of simple variables, or that a sufficient statistic for default probabiltity cannot

neglect πKMV. We actually separate the KMV-Merton technique into two potentially important

components: the functional form for default probability implied by the Merton model and the

solution of two simultaneous nonlinear equations required by the model. It is possible that one of

these components is important while the other is not.

We test these two hypotheses in five ways. First, we incorporate πKMV into a hazard model

that forecasts defaults from 1980 through 2003. With the hazard model, we compare πKMV to a

naive alternative (πNaive) which is much simpler to calculate, but retains some of the functional

form of πKMV. We also compare it to several other default forecasting variables. Second, we

compare the short term, out of sample forecasting ability of πKMV to that of πNaive. Third, we

examine the forecasting ability of several alternative predictors, each of which calculates KMV-

Merton probabilities in a slightly different way. Fourth, we examine the ability of KMV-Merton

probabilities to explain the probability of default implied by credit default swaps, and fifth we

regress corporate bond yield spreads on πKMV, πNaive and other variables.

Assessing the KMV-Merton model’s value is of importance for two reasons. Perhaps the most

important reason is that many researchers and practitioners are applying the model without know-

ing very much about its statistical properties. For example, Vassalou and Xing (2003) use πKMV to

examine whether default risk is priced in equity returns. As a second example, the Basel Commit-

tee on Banking Supervision (1999) considers exploiting the KMV-Merton model a viable practice

currently employed by numerous banks. To have confidence in both the risk management of the

banking sector and the accuracy of academic research, the power of the KMV-Merton model must

be examined.

A second reason to assess the KMV-Merton model is to test the Merton (1974) model in a new

way. If the Merton model is literally true, πKMV should be the best default predictor available.

The Merton model has been rejected previously for failing to fit observed bond yield spreads.3

Comparing the model to reduced form alternatives gives us a fresh perspective about how realistic

the model’s assumptions are.

Over the past several years, a number of reserchers have examined the contribution of the KMV-
3see Jones et al. (1984).
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Merton Model. The first authors to examine the model carefully were practitioners employed by

either KMV or Moody’s. A couple of years ago, several papers addressing the accuracy of the

KMV-Merton model were available on the internet. Some papers, including Stein (2000), Sobehart

and Stein (2000) and Sobehart and Keenan (1999) argued that KMV-Merton models can easily be

improved upon. Other papers, including Kealhofer and Kurbat (2001), argued that KMV-Merton

models capture all of the information in traditional agency ratings and well known accounting

variables. Curiously, while some practitioner papers can now be found in print, including Sobehart

and Keenan (2002a) and (2002b) and Falkenstein and Boral (2001), it has become very difficult

to find electronic copies of some of the papers cited above since Moody’s acquired KMV in April

2002.

Perhaps in response, an academic literature has recently developed that critically assesses the

model. Both Hillegeist, Keating, Cram and Lundstedt (2004) and Du and Suo (2004) examine

the model’s predictive power in ways that are similar to some of our analyses. Duffie and Wang

(2004) show that KMV-Merton probabilities have significant predictive power in a model of default

probabilties over time, which can generate a term structure of default probabilities. Campbell,

Hilscher and Szilagyi (2004) estimate hazard models that incorporate both πKMV and other variables

for bankruptcy, finding that πKMV seems to have relatively little forecasting power after conditioning

on other variables. While our findings are consistent with the findings of all of these papers, we

analyze the performance of πKMV in several novel ways. In particular, we introduce and assess

our naive predictor and we examine the ability of πKMV to explain credit default swap premia and

bond yield spreads. Like all of these researchers, we have no particular interest in finding evidence

for or against the KMV-Merton model. Therefore, we hope to help resolve confusion about some

of the issues raised in the practitioner literature described above.

We find that it is fairly easy to reject hypothesis one, or that πKMV is not a sufficient statistic

for default probability. We also find that after conditioning on πNaive, it appears to be possible to

construct a reduced form model that does not benefit by conditioning on πKMV (or in which πKMV

is not statistically significant). We therefore conclude that while πKMV has some predictive power

for default, most of the marginal benefit of πKMV comes from its functional form rather than from

the solution of the two nonlinear equations on which it is based. The contribution of πKMV to a

well-specified reduced form model is fairly low.

The paper proceeds as follows. The next section details the KMV-Merton model, our naive
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alternative default probability, and the hazard models that we use to build reduced form models.

Section I also lists several ways in which our KMV-Merton model differs from the model that

Moodys KMV actually sells. Section II discusses the data that we use for our tests and Section III

outlines our results. We conclude in Section IV.

I. Default Forecasting Models

As discussed above, we examine our hypotheses by examining the statistical and economic signif-

icance of the KMV-Merton default probabilities (πKMV) and a simple, naive alternative (πNaive).

Before examining the empirical value of these variables, we need to describe them carefully. The

KMV-Merton model was developed by the KMV corporation in the late 1980s. It was successfully

marketed by KMV until KMV was acquired by Moodys in April 2002. The model is now sold to

subscribers by Moody’s KMV.

A. The KMV-Merton Model

The KMV-Merton default forecasting model produces a probability of default for each firm in the

sample at any given point in time. To calculate the probability, the model subtracts the face value

of the firm’s debt from from an estimate of the market value of the firm and then divides this

difference by an estimate of the volatility of the firm (scaled to reflect the horizon of the forecast).

The resulting z-score, which is referred to as the distance to default, is then substituted into a

cumulative density function to calculate the probability that the value of the firm will be less

than the face value of debt at the forecasting horizon. The market value of the firm is simply the

sum of the market values of the firm’s debt and the value of its equity. If both these quantities

were readily observable, calculating default probabilities would be simple. While equity values are

readily available, reliable data on the market value of firm debt is generally unavailable.

The KMV-Merton model estimates the market value of debt by applying the Merton (1974)

bond pricing model. The Merton model makes two particularly important assumptions. The first

is that the total value of a firm is assumed to follow geometric Brownian motion,

dV = µV dt + σV V dW (1)
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where V is the total value of the firm, µ is the expected continuously compounded return on V , σV

is the volatility of firm value and dW is a standard Weiner process. The second critical assumption

of the Merton model is that the firm has issued just one discount bond maturing in T periods.

Under these assumptions, the equity of the firm is a call option on the underlying value of the

firm with a strike price equal to the face value of the firm’s debt and a time-to-maturity of T .

Moreover, the value of equity as a function of the total value of the firm can be described by the

Black-Scholes-Merton Formula. By put-call parity, the value of the firm’s debt is equal to the value

of a risk-free discount bond minus the value of a put option written on the firm, again with a strike

price equal to the face value of debt and a time-to-maturity of T .

Symbolically, the Merton model stipulates that the equity value of a firm satisfies

E = V N (d1)− e−rT FN (d2), (2)

where E is the market value of the firm’s equity, F is the face value of the firm’s debt, r is the

instantaneous risk-free rate, N (·) is the cumulative standard normal distribution function, d1 is

given by

d1 =
ln(V/F ) + (r + 0.5σ2

V )T
σV

√
T

, (3)

and d2 is just d2 = d1−σV

√
T . While this is a fairly complicated equation, most financial economists

are familiar with this formula as the Black-Scholes-Merton option valuation equation.

The KMV-Merton model makes use of two important equations. The first is the Black-Scholes-

Merton equation (2), expressing the value of a firm’s equity as a function of the value of the firm.

The second relates the volatility of the firm’s value to the volatility of its equity. Under Merton’s

assumptions the value of equity is a function of the value of the firm and time, so it follows directly

from Ito’s lemma that

σE =
(

V

E

)
∂E

∂V
σV . (4)

In the Black-Scholes-Merton model, it can be shown that ∂E
∂V = N (d1), so that under the Merton

model’s assumptions, the volatilities of the firm and its equity are related by

σE =
(

V

E

)
N (d1)σV , (5)

where d1 is defined in equation (3).
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The KMV-Merton model basically uses these two nonlinear equations, (2) and (5), to translate

the value and volatility of a firm’s equity into an implied probability of default. In most applications,

the Black-Scholes-Merton model describes the unobserved value of an option as a function of four

variables that are easily observed (strike price, time-to-maturity, underlying asset price, and the

risk-free rate) and one variable that can be estimated (volatility).4 In the KMV-Merton model,

however, the value of the option is observed as the total value of the firm’s equity, while the value

of the underlying asset (the value of the firm) is not directly observable. Thus, while V must be

inferred, E is easy to observe in the marketplace by multiplying the firm’s shares outstanding by

its current stock price. Similarly, in the KMV-Merton model, the volatility of equity, σE , can be

estimated but the volatility of the underlying firm, σV must be inferred.

The first step in implementing the KMV-Merton model is to estimate σE from either historical

stock returns data or from option implied volatility data. The second step is to choose a forecasting

horizon and a measure of the face value of the firm’s debt. For example, it is common to use

historical returns data to estimate σE, assume a forecasting horizon of one year (T = 1), and take

the book value of the firm’s total liabilities to be the face value of the firm’s debt. The third step

is to collect values of the risk-free rate and the market equity of the firm. After performing these

three steps, we have values for each of the variables in equations (2) and (5) except for V and σV ,

the total value of the firm and the volatility of firm value respectively.

The fourth, and perhaps most significant step in implementing the model is to simultaneously

solve equations (2) and (5) numerically for values of V and σV . Once this numerical solution is

obtained, the distance to default can be calculated as

DD =
ln(V/F ) + (µ − 0.5σ2

V )T
σV

√
T

, (6)

where µ is an estimate of the expected annual return of the firm’s assets. The corresponding implied

probability of default, sometimes called the expected default frequency (or EDF), is

πKMV = N (−(
ln(V/F ) + (µ − 0.5σ2

V )T
σV

√
T

)) = N (−DD). (7)

If the assumptions of the Merton model really hold, the KMV-Merton model should give very

accurate default forecasts. In fact, if the Merton model holds completely, the implied probability
4Of course, it is common to infer an implied volatility from an observed option price.
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of default defined above, πKMV, should be a sufficient statistic for default forecasts. Testing this

hypothesis is one of the central task of this paper.

Simultaneously solving equations (2) and (5) is a reasonably straightforward thing to do. How-

ever, KMV does not simply solve these equations numerically. Crosbie and Bohn (2001) explain

that “In practice the market leverage moves around far too much for [equation (5)] to provide

reasonable results.” To resolve this problem, we follow KMV by implementing a complicated iter-

ative procedure. First, we propose an initial value of σV = σE [E/(E + F )] and we use this value

of σV and equation (2) to infer the market value of each firm’s assets every day for the previous

year. We then calculate the implied log return on assets each day and use that returns series to

generate new estimates of σV and µ. We iterate on σV in this manner until it converges (so the

absolute difference in adjacent σV s is less than 10−3). Unless specified otherwise, in the rest of

the paper values of πKMV are calculated by following this iterative procedure and calculating the

corresponding implied default probability using equation (7).

Before describing alternative models, it is useful to interpret the KMV-Merton model a little.

The most critical inputs to the model are clearly the market value of equity, the face value of

debt, and the volatility of equity. As the market value of equity declines, the probablity of default

increases. This is both a strength and weakness of the model. For the model to work well, both

the Merton model assumptions must be met and markets must be efficient and well informed.

In its promotional material, KMV points to the Enron case as an example of how their method

is superior to that of traditional agency ratings. When Enron’s stock price began to fall, its distance

to default immediately decreased. The ratings agencies took several days to downgrade Enron’s

debt. Clearly, using equity values to infer default probabilities allows the KMV-Merton model to

reflect information faster than traditional agency ratings. However, when Enron’s stock price was

unsustainably high, KMV’s expected default frequency for Enron was actually significantly lower

than the default probability assigned to Enron by standard ratings. If markets are not perfectly

efficient, then conditioning on information not captured by πKMV probably makes sense.

B. Our Method versus Moody’s KMV

We should point out that there a number of things which differentiate the KMV-Merton model

which we test from that actually employed by Moody’s KMV. One important difference is that we

use Merton’s model while Moody’s KMV uses a proprietary model that they call the KV model.
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Apparently the KV model is a generalization of the Merton model that allows for various classes

and maturities of debt. Another difference is that we use the cumulative normal distribution

to convert distances to default into default probabilities. Moody’s KMV uses its large historical

database to estimate the empirical distribution of changes in distances to default and it calculates

default probabilities based on that distribution. The distribution of distances to default is an

important input to default probabilities, but it is not required for ranking firms by their relative

probability. Therefore, several of our results will emphasize the model’s ability to rank firms by

default risk rather than its ability to calculate accurate probabilities5. Finally, KMV may also make

proprietary adjustments to the accounting information that they use to calculate the face value of

debt. We cannot perfectly replicate the methods of Moody’s KMV because several of the modeling

choices made by Moody’s KMV are proprietary information, and subscribing to their database is

prohibitively expensive for us.

While our method does not match that of Moody’s KMV exactly, it is the same method em-

ployed by Vassalou and Xing (2003) and other researchers. Our results can be considered relevant

for a “feasible” KMV-Merton model, which can be estimated and implemented by academic re-

searchers or practitioners that do not want to subscribe to Moody’s KMV. We should note that it

is entirely possible that the proprietary features of KMV’s model make its performance superior to

what we document here. In order to compare our method with that of Moody’s KMV, in Section

III we compare our estimates with the estimates produced by Moody’s KMV for a sample of large

firms in the US.

C. A Naive Alternative

To test whether πKMV adds value to reduced form models, we construct a simple alternative “prob-

ability” that does not require simultaneously solving equations (2) and (5) or implementing the

iterative procedure described above. We construct our naive predictor with two objectives. First,

we want our naive predictor to have a reasonable chance of performing as well as the KMV-Merton

predictor, so we want it to capture the same information that the KMV-Merton predictor uses. We

also want our naive probability to approximate the functional form of the KMV-Merton probabil-

ity. Second, we want our naive probability to be simple, so we avoid simultaneously solving any
5If the model ranks firms accurately then using historical data to map relative rankings into accurate probabilities

is a straightforward task.
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equations or estimating any difficult quantities in its construction. We wrote down the form for our

naive probability after studying the KMV-Merton model for a little while. None of the numerical

choices below is the result of any type of estimation or optimization.

To begin constructing our naive probability, we approximate the market value of each firm’s

debt with the face value of its debt,

Naive D = F, (8)

Since firms that are close to default have very risky debt, and the risk of their debt is correlated

with their equity risk, we approximate the volatility of each firm’s debt as

Naive σD = 0.05 + 0.25 ∗ σE . (9)

We include the five percentage points in this term to represent term structure volatility, and we

include the twenty-five percent times equity volatility to allow for volatility associated with default

risk. This gives us an approximation to the total volatility of the firm of

Naive σV =
E

E + Naive D
σE+

Naive D

E + Naive D
Naive σD =

E

E + F
σE+

F

E + F
(0.05+0.25∗σE). (10)

Next, We set the expected return on the firm’s assets equal to the firm’s stock return over the

previous year,

Naive µ = rit−1. (11)

This allows us to capture some of the same information that is captured by the KMV-Merton

iterative procedure described above. The iterative procedure is able to condition on an entire year

of equity return data. By allowing our naive estimate of µ to depend on past returns, we incorporate

the same information. The naive distance to default is then

Naive DD =
ln[(E + F )/F ] + (rit−1 − 0.5 Naive σ2

V )T
Naive σV

√
T

. (12)

This naive alternative model is easy to compute – it does not require solving the equations simul-

taneously. However, it retains the structure of the KMV-Merton distance to default and expected

default frequency. It also captures approximately the same quantity of information as the KMV-

Merton probability. Thus, examining the forecasting ability of this quantity will help us separate
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the value of simultaneously solving the equations and the value of the functional form of πKMV.

We define our naive probability estimate as

πNaive = N (−Naive DD). (13)

It is fairly easy to criticize our naive probability. Our choices for modeling firm volatility are not

particularly well motivated and our decision to use past returns for µ is arbitrary at best. However,

to quibble with our naive probability is to miss the point of our exercise. We have constructed a

predictor that is extremely easy to calculate, and it may have significant predictive power. If the

predictive power of our naive probability is comparable to that of πKMV, then presumably a more

carefully constructed probability that captures the same information should have superior power.

D. Alternative Predictors

One purpose of our paper is to examine the relative importance of several of the components of the

KMV-Merton calculation. Comparing the predictive perfomance of our naive probability to that

of πKMV is one way to accomplish this purpose. Another way we accomplish this purpose is by

examining the predictive performance of several alternative predictors, or predictors that calculate

KMV-Merton default probabilities in alternative, somewhat simpler ways.

One predictor, πµ=r
KMV, is calculated in exactly the same manner as πKMV, except that the ex-

pected return on assets used for πKMV is replaced by the risk-free rate, r. Considering this predictor

helps us gauge the importance of estimating the expected return on assets for the distance to default.

A second alternative predictor, πsimul
KMV , is calculated by simultaneously solving equations (2) and

(5). This predictor avoids the iterative procedure in the text, estimating equity volatility with one

year of historical returns data and using r as the expected return on assets. The third alternative

predictor, πimpσ
KMV, uses the option-implied volatility of firm equity (implied σE) to simultaneously

solve equations (2) and (5).

E. Hazard Models

In order to assess the KMV-Merton model’s accuracy, we need a method to compare πKMV to

alternative predictor variables. We employ a Cox proportional hazard model to test our two

hypotheses. Hazard models have recently been applied by a number of authors and probably
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represent the state of the art in default forecasting with reduced form models6. Proportional

hazard models make the assumption that the hazard rate, λ(t), or the probability of default at

time t conditional on survival (lack of default) until time t is,

λ(t) = φ(t)[exp(x(t)
′
β)], (14)

where φ(t) is referred to as the “baseline” hazard rate and the term exp(x(t)
′
β) allows the expected

time to default to vary across firms according to their covariates, x(t). The baseline hazard rate

is common to all firms. Note that in this model the covariates may vary with time. Most of our

default predictors, including the KMV-Merton probability, vary with time. The Cox proportional

hazard model does not impose any structure on the baseline hazard φ(t). Cox’s partial likelihood

estimator provides a way of estimating β without requiring estimates of φ(t). It can also handle

censoring of observations, which is one of the features of the data. Details about estimating the

proportional hazard model can be found in many places, including in Cox and Oakes (1984).

Our first hypothesis, that the KMV-Merton probability is a sufficient statistic for forecasting

default, implies that no other variable in a hazard model should be a stastically significant covariate.

Our second hypothesis, that the KMV-Merton probability is a useful quantity, implies that no other

set of variables should be able to make the probability insignificant. As a robustness check, we will

also sort firms each year by their probabilities from each model and find the number of defaults in

several bins.

F. Implied Probabilities of Default

Besides examining the default prediction ability of the KMV-Merton model, we examine its ability

to explain the variation in two market-based default probability variables. We regress both the

implied probability of default from credit default swaps (CDS) and the yield spread on corporate

bonds on πKMV and πNaive. While there is a large literature on explaining bond yield spreads,

using CDS data to assess default probabilities is relatively new. Other recent papers that use CDS

data include Longstaff, Mithay and Neis (2004) and Berndt, Douglas, Duffie, Ferguson and Schranz

(2004).

Credit default swaps are one example of credit derivatives, and credit derivative markets have
6Shumway (2001) and Chava and Jarrow (2004) argue that hazard models are superior to other types of models.
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experienced explosive growth in recent years. According to the British Bankers’ Association the

total notional principal for outstanding credit derivatives increased from $180 billion in 1997 to

more than $2 trillion by the end of 2002 and it is expected to reach $4.8 trillion by the end of 2004.

Popular credit derivatives such as the credit default swap allow market participants to trade credit

risks with each other. We use the information in credit default swap premia to extract a direct

measure of default probabilities and compare it with the estimates obtained from our methods.

In a credit default swap, the party buying credit protection pays the seller a fixed premium

until either default occurs or the swap contract matures. In the event of a default, because these

payments are made in arrears, a final accrual payment by the buyer is required. In return, if the

underlying firm (the reference entity) defaults on its debt, the protection seller is obligated to buy

back from the buyer the defaulted bond at its par value. The pay off from a credit default swap

is simply one minus the recovery rate, which is the loss given default for every dollar of notional

principal. Thus a CDS is similar to an insurance contract compensating the buyer for losses arising

from a default.

Let s be the CDS spread, which is the amount paid per year as a percentage of the notional

principal. Most CDS contracts have a maturity of five years. Let T determine the life of the

CDS contract. Further assume that the probability of a reference entity defaulting during a year

conditional on no earlier default is πCDS. For simplicity we assume that defaults always happen

halfway through the year and the payments on the CDS are made once a year, at the end of each

year. Thus the final accrual payment will be made halfway through the year and will be equal to

0.5 s. We also assume that the risk-free (LIBOR) rate is r with continuous compounding and the

recovery is δ.

Thus the expected present value of the payments made on the CDS (assuming a notional

principal of $1) is given by

t=T∑
t=1

(1 − πCDS)te−rts + (1 − πCDS)t−1πCDSe−r(t−0.5)0.5s (15)

The first term represents the discounted present value of the expected payments made at the

end of each year provided the reference entity survives until period t and the second term represents

the present value of the accrual payments made in the case of a default assuming default happens

midway through the year.
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Similarly the expected present value of the payoff is given by

t=T∑
t=1

(1 − πCDS)t−1πCDS(1− δ)e−r(t−0.5) (16)

We need an implied estimate of recovery rate δ in order to value the payoff. The same recovery

rate is typically used to (a) estimate implied default probabilities and (b) value the CDS. The net

result of this is that the value of a CDS (or the estimate of a CDS spread) is not very sensitive to

the recovery rate. This is because implied probabilities of default are approximately proportional

to 1/(1-δ) and the payoffs from a CDS are proportional to (1-δ), so that the expected payoff is

almost independent of δ (Hull, Predescu and White (2004)).

Setting the present value of the expected payments equal to the expected payoffs we can solve

for πCDS from the resulting non linear equation. We know the CDS maturity T , the CDS spread s,

the risk free rate r, and the recovery rate δ. As described above, we solve for πCDS for a sample of

CDS spreads, and regress πCDS on πKMV, πNaive, and other variables. The results of our regressions

are described in Section III E and Table 6.

II. Data

We begin by examining all firms in the intersection of the Compustat Industrial file - Quarterly

data and CRSP daily stock return for NYSE, AMEX and NASDAQ stocks between 1980 and 2003.

We exclude financial firms (SIC codes 6021,6022,6029,6035,6036) from the sample.

We obtain default data for the period 1980-2000 from the data base of firm defaults maintained

by Edward Altman (The Altman default database). We supplement this information for 2001

through 2003 by using the list of defaults published by Moody’s at their website www.moodys.com.

In all we obtain a total of 1,449 firm defaults covering the period 1980-2003.

The inputs to the KMV-Merton model include σE the volatility of stock returns, F the face

value of debt, r the risk free rate and T the time period. σE is the annualized percent standard

deviation of returns and is estimated from the prior year stock return data for each month. For r,

the risk free rate, we use the 1-Year Treasury Constant Maturity Rate obtained from the Board of

Governors of the Federal Reserve system7. E, the market value of each firm’s equity (in millions of

dollars), is calculated from the CRSP database as the product of share price at the end of the month
7Available at http://research.stlouisfed.org/fred/data/irates/gs1 (H.15 Release)
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and the number of shares outstanding. Following Vassalou and Xing (2003), we take F , the face

value of debt, to be debt in current liabilities (COMPUSTAT data item 45) plus one half of long

term debt (COMPUSTAT data item 51). In addition to the above variables, following Shumway

(2001), we measure each firm’s past excess return in year t as the return of the firm in year t-1

minus the value-weighted CRSP NYSE/AMEX index return in year t-1 (rit−1−rmt−1). Each firm’s

annual returns are calculated by cumulating monthly returns. We also collect each firm’s ratio of

net income to total assets. These variables, though not required for the KMV-Merton model, will

augment the information set for the alternative models we consider later in the paper.

There are a number of extreme values among the observations of each variable constructed from

raw COMPUSTAT data. To ensure that statistical results are not heavily influenced by outliers,

we set all observations higher than the 99th percentile of each variable to that value. All values

lower than the first percentile of each variable are winsorized in the same manner. The minimum

and maximum numbers reported in Table 1 are calculated after winsorization.8 Table 1 provides

summary statistics for all the variables described above.

Looking at the summary statistics in Table 1, it is slightly odd that the average firm’s past

excess return is -8.7 percent. This value is negative because of the winsorization of the upper tail

extreme values at the 99th percentile level. More significantly, the distribution of the expected

default frequency obtained from the Merton model, πKMV, is very similar to the naive alternative,

πNaive. Our point estimate of 10.95% for the mean value of πKMV in 1980-2003 is a bit higher

than the estimate of 4.21% for the period 1971-1999 reported in Vassalou and Xing (2003). The

correlation between the naive and Merton model expected default frequencies is very high at 86

percent, and it is significant at the 1% level. The similarity in distributions is also evident between

the naive and Merton model estimates of asset volatility. The correlation between the 2 asset

volatilities is 87 percent, and it is also significant at the 1% level.

Given that the naive counterparts (πNaive and Naive σV ) of the output from the Merton model

(πKMV and σV ) are quite similar, what is the incremental value of solving the KMV-Merton model?

The next section addresses this question.
8We do not winsorize the expected default frequency measures from the Merton Model and the naive alternative,

since these are naturally bounded between 0 and 1.
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III. Results

We present a number of empirical results, including correlations of our probability estimates with

those published by Moody’s KMV, estimates of hazard models for time to default, out of sample

forecast assessments, CDS implied default probability regressions and bond yield spread regressions.

We discuss each type of result in turn.

A. Comparing Moody’s KMV Probabilities to Ours

As mentioned above, our method for calculating πKMV and that employed by Moody’s KMV differ

in several potentialy important respects. In order to gauge how close our methods are, we would like

to compare our probability estimates to those calculated by Moody’s KMV. It would be natural to

acquire data directly from Moody’s KMV for this purpose, but Moody’s KMV data are prohibitively

expensive for us. Fortunately, in November of 2003, Ronald Fink of Moody’s KMV published an

article in CFO Magazine titled “Ranking America’s top debt issuers by Moody’s KMV Expected

Default Frequency.” This magazine article included a table with Moody’s KMV EDF data for one

hundred firms. We are able to calculate default probabilities for eighty of the firms listed in the

article. We include a comparison of our probability estimates and those of Moody’s KMV in Table

2. Each default probability is computed as of August 2000.

Among the 80 firms for which we have data, the rank correlation between our calculated πKMV

and that calculated by Moody’s KMV is 79 percent. The rank correlation between our naive

probability and the Moody’s KMV probability is also 79 percent. These high correlations indicate

that both of our probability measures do a good job of capturing the information in the probability

estimates published by Moody’s KMV. Table 2 also shows that the rank correlation between our

(iterated) estimate of firm volatility and that of Moody’s KMV is only 57 percent, while the rank

correlation of our naive estimate of firm volatility and the firm volatility published by Moody’s

KMV is much higher, at 85 percent. Given the nature of our naive probability estimate, this

high correlation is remarkable. Again, this demonstrates that we are able to capture much of the

information in Moody’s KMV estimates with our measures.
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B. Hazard Model Results

Table 3 contains the results of estimating several Cox proportional hazard models. Models 1 through

3 are univariate hazard models, which explain time-to-default as a function of the KMV-Merton

probability, the naive probability, and the log of market equity. While these are relatively simple

univariate models, the fact that their explanatory variables vary with time means they are more

complicated than they might at first appear. Models 1 through 3 confirm that the KMV-Merton

probability, the naive probability and market equity are all extremely significant default predictors.

Interestingly, the naive predictor and the KMV-Merton probability, which have similar magnitudes,

also have similar coefficients and standard errors. The market value of equity is less significant than

either the naive or the KMV-Merton probability. Unreported models that use the log of KMV-

Merton distance to default rather than the KMV-Merton probability perform uniformly worse than

the results reported.

Model 4 in Table 3 combines the KMV-Merton and the naive probability in one hazard model.

Both covariates are very statistically significant, allowing us to conclude that the KMV-Merton is

not a sufficient statistic for default probability, or allowing us to reject hypothesis one. Interestingly,

both coefficients have similar magnitudes and similar statistical significance, but their significance

and magnitude is much smaller in Model 4 than in Models 1 and 2. This reflects the fact that the

KMV-Merton and naive probabilities are highly correlated. In fact, in our sample, their correlation

coefficient is 0.86. Model 5 similarly combines the KMV-Merton probability and market equity,

showing again that we can reject hypothesis one.

Models 6 and 7 include a number of other covariates: the firm’s returns over the past year,

the log of the firm’s debt, the inverse of the firm’s equity volatility, and the firm’s ratio of net

income to total assets. Each of these predictors is statistically significant, making our rejection

of hypothesis one quite robust. Interestingly, with all of these predictors included in the hazard

model, the KMV-Merton probability is no longer statistically significant, implying that we can

reject hypothesis two. The magnitude of the KMV-Merton coefficient is much smaller in Model 6

than it is in Model 4, while its standard error is quite similar. The naive probability retains its

statistical significance even though its coefficient drops by approximately one half.
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C. Out of Sample Results

Table 4 contains our assessment of the out of sample predictive ability of several variables. To create

the table, firms are sorted into deciles each quarter based on a particular forecasting variable. Then

the number of defaults that occur in each of the decile groups is tabulated, with the percentage of

defaults in the highest probability deciles reported in the table. One advantage of this approach

is that the rankings of firms into default probability deciles can be done without estimating actual

default probabilities. If our model for translating distances into default into default probabilities is

slightly misspecified (in particular, if the normal CDF is not the most appropriate choice), our out

of sample results will be unaffected.9

Panel A compares the predictions of the KMV-Merton model to the naive model, market equity,

and past returns. While the KMV-Merton model probability is able to classify almost 65 percent

of defaulting firms in the highest probability decile at the beginning of the quarter in which they

default, the naive model is able to classify 65.8 percent of defaulting firms in the top decile. Fully

80.0 percent of defaults occur in the highest πKMV quintile, while 80.1 percent occur in the highest

πNaive quintile. It is remarkable that the out of sample performance of πKMV is marginally worse

than that of πNaive.

The out of sample performance of both πKMV and πNaive is quite a bit better than simply

sorting firms on their market equity. This is consistent with the results of Vassalou and Xing

(2003) and indicates that the success of πKMV is not simply reflecting the predictive value of

market equity. Apparently, it is quite useful to form a probability measure, by creating a z-

score and using a cumulative distribution to calculate the corresponding probability. Given that

πKMV does not perform better than πNaive in either hazard models or out of sample forecasts, the

probability measure idea behind the KMV-Merton model may be a more valuable innovation than

the simultaneous solution of equations (2) and (5).

Simply sorting firms on their excess equity return over the last year has surprisingly good

forecasting power, as does sorting firms by their value of net income over total assets. This is

consistent with the economic and statistical significance of both of these variables in the hazard

model results reported in Table 3. Since the KMV-Merton model has no simple way to capture
9A rough calibration of probabilities associated with distance to default rankings can be inferred from the data in

Table 4. For example, the probability that firms in the top decile of πKMV will default in the next quarter is equal to
the number of defaults occurring in the top decile (1449 * 0.649) divided by one tenth of the number of firm-quarter
observations used to create the table (350,662 * 0.1), giving a probability of 2.7 percent.

17



innovations in past returns or income, it is difficult to believe that πKMV can be a sufficient statistic

for default. Any reasonable default prediction model probably needs to include some measure of

past returns and net income.

Panel B reports similar forecasting assessments for a shorter time period, from 1991 to 2003.

Looking at defaults in this shorter period allows us to examine the out of sample performance of

the hazard models reported in Table 3. We estimate Models 6 and 7 from Table 3 each quarter,

using data available in that quarter, to define our decile groups. For example, we sort firms in

the second quarter of 1995 based on the fitted values of a hazard model estimated with data from

1980 through the first quarter of 1995. The forecasting success of hazard Models 6 and 7 appear

in Columns 4 and 5 of the table.

The hazard models assessed in Panel B clearly outperform both πKMV and πNaive. This is not

surprising, given that they employ more information in making their forecasts. This again implies

that we can easily reject hypothesis one – πKMV is not a sufficient statistic to forecast default.

Interestingly, the hazard model that does not include πKMV as a covariate (Model 7) performs

substantially better than πKMV, categorizing 76.8 percent of defaults in the highest hazard decile

when they default versus 68.8 percent for πKMV. However, the hazard model that includes πKMV

(Model 6) performs slightly better than Model 7, categorizing 77.1 percent of defaulting firms

in the top hazard decile versus 76.8 percent. While πKMV appears to be making only a marginal

contribution to a well-specified hazard model, it appears to be making a small positive contribution.

This makes it more difficult to unambiguously reject hypothesis two.

D. Alternative Predictors

In order to assess the importance of various calculations required to generate the KMV-Merton

probabilities, we examine the forecasting performance of three alternative probabilities in Table

5. The first of our three measures is a KMV-Merton probability that is calculated under the

assumption that the expected return of each firm is the risk-free rate. We examine this predictor,

which we denote πµ=r
KMV, to determine how important the calculation of µ is for the distance to

default in equation (6). Our second predictor, which we denote πsimul
KMV , is a KMV-Merton probability

that is calculated by simultaneously solving equations (2) and (5) rather than following the more

complicated iterative procedure described in the text. Our third alternative predictor is a KMV-

Merton probability that is calculated with option implied volatility rather than historical equity
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volatility. The implied volatility predictor, which we denote πimpσ
KMV, simultaneously solves equations

(2) and (5) instead of using the iterative procedure. Each of our three alternative predictors

can be thought of as KMV-Merton probabilities that are calculated with some strong simplifying

assumptions. If these predictors perform as well as πKMV then we can conclude that the simplifying

assumptions are valid.

It is important to point out that while our sample for πµ=r
KMV and πsimul

KMV is the same as the samples

described in the rest of the paper, our sample for πimpσ
KMV is much smaller, spanning 1996 through 2003

and containing 101,201 firm-months with complete data. We obtain the implied volatility of 30-day

at-the-money call options from the IVY Database of Optionmetrics LLC. IVY is a comprehensive

database of historical price, implied volatility and sensitivity information for the entire U.S. listed

index and equity options market and contains historical data beginning in January 1996. The

implied volatilities are calculated by Optionmetrics in accordance with the standard conventions

used by participants in the equity option market, using a Cox-Ross-Rubinstein binomial tree model

which is iterated until convergence of the model price to the market price of the option.

Table 5 reports summary statistics for each variable, correlations between each of the variables

and πKMV, and measures of out of sample prediction accuracy that correspond to those in Table 4.

Looking at the correlations in Panel B, each of our alternative predictors is highly correlated with

πKMV and with the other predictors in the table. Interestingly, the simultaneously solved πsimul
KMV is

more correlated with πNaive than πKMV. The probability calculated with implied volatility is less

correlated with πKMV than most of the other probabilities.

The out of sample forecast accuracy in Panel C allows us to gauge the relative importance of

the iterative procedure, the estimation of µ, and the estimation of equity volatility. As in Table 4,

Panel C sorts all firm-quarters by each predictor and then counts the number of defaults that occur

among firms in each decile of the predictor. In Panel C, the results for πµ=r
KMV and πsimul

KMV in the

second and third columns are directly comparable to the results in Panel A of Table 4. However,

because of the different sample size, the result for πimpσ
KMV are not comparable to any results in Table

4. To provide a performance benchmark for the πimpσ
KMV results, the fifth and sixth columns of Table

5 report on the success of πKMV and πNaive using the subset of firms for which implied volatility is

available.

The estimation of µ for distance to default (equation 6) is apparently quite important. The

probability that sets µ equal to the risk free rate performs substantially worse than πKMV out
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of sample, classifying only 60 percent of defaulting firms in the highest probability decile at the

beginning of the quarter in which the firms default. πKMV is able to classify almost 65 percent

of defaulting firms in the highest decile. Calculating KMV-Merton probabilities with the iterative

procedure described in the text is apparently less important. The simultaneously solved πsimul
KMV

actually has better out of sample predictive performance than the iteratively solved πKMV. This

is consistent with the relative success of our naive probability in Tables 3 and 4. Finally, using

implied equity volatility rather than estimated equity volatility in our probability improves out of

sample performance substantially. However, given that there are only 88 defaults to forecast in

our sample of firms with corresponding options contracts, it is difficult to apply this finding to the

broader sample of firms.

E. CDS Spread Regressions

Our previous results demonstrate that while πKMV appears to be a useful quantity for forecasting

defaults, it is not a sufficient statistic for the purpose of forecasting. Our next two sets of results

examine whether πKMV is an important explanatory variable for pricing credit-sensitive securities.

First we examine regressions of the implied probability of default from credit default swaps on

πKMV and several alternatives. Bond yield spread regressions are our final set of results.

CDS default probability regressions are reported in Table 6. We obtain the data on CDS spreads

from www.credittrade.com for the period December 1998 to July 2003. From this source, we are

able to collect 3833 firm-months of CDS spread observations. We calculate the probability that a

firm defaults in the next year, πCDS, according to the algorithm described in section I.F. We then

regress πCDS on πKMV, πNaive and all the other variables in the hazard models described in Table

3. If πKMV is a well-calibrated and accurate probability of default, then the coefficient on πKMV in

these regressions should be one.

Looking first at the correlations between πCDS and our probability measures, we see that πNaive

is much more correlated with πCDS (at 51 percent) than πKMV (at 32 percent). Turning to the

regressions, the coefficient on πKMV in the univariate regression of Model 1 is just 0.05, much lower

than the predicted value of one. The same univariate regression with πNaive replacing πKMV yields

a slightly more reasonable coefficient of 0.13. Combining πKMV and πNaive in one model (Model

3) results in πKMV losing all significance and the coefficient and significance of πNaive changing

very little. Including all the other predictive variables makes πKMV statistically significant again,
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thought the coefficient on πKMV remains much smaller than either one or the coefficient on πNaive.

The CDS spread regression results in Table 6 show that, for the purpose of pricing credit-sensitive

securities, the naive probability estimate performs at least as well as the KMV-Merton probability.

F. Bond Spread Results

Our final set of results are regressions of bond yields on our default probabililties. Before discussing

our regression results, we describe the sample used to estimate the regressions. Summary statistics

for the bond yield sample appear in Panel A of Table 7.

Our bond data are extracted from the Lehman Brothers Fixed Income Database distributed

by Warga (1998). This database contains monthly price, accrued interest, and return data on all

corporate and government bonds from 1971-1997. We use the data from the 1980-1997 period to be

consistent with the default prediction sample. This is the same database used by Elton et al.(2001)

to explain the rate spread on corporate bonds. In addition, the database contains descriptive data

on bonds, including coupons, ratings, and callability. A subset of the data in the Warga database is

used in this study. First, all bonds that were matrix priced rather than trader priced are eliminated

from the sample10. Employing matrix prices might mean that all our analysis uncovers is the rule

used to matrix-price bonds rather than the economic influences at work in the market. Eliminating

matrix-priced bonds leaves us with a set of prices based on dealer quotes. This is the same type

of data as that contained in the standard academic source of government bond data: the CRSP

government bond file. Next, we eliminate all bonds with special features that would result in

their being priced differently. This means we eliminate all bonds with options (e.g. callable bonds

or bonds with a sinking fund), all corporate floating rate debt, bonds with an odd frequency of

coupon payments, and inflation-indexed bonds. In addition, we eliminate all bonds not included

in the Lehman Brothers bond indexes, because researchers in charge of the database at Lehman

Brothers indicate that the care in preparing the data was much less for bonds not included in their

indexes. This also results in eliminating data for all bonds with a maturity of less than one year.

This exclusion is also consistent with our estimates of πKMV and πNaive, which are based on a one

year forecasting horizon. Finally, we also remove AAA (Moody’s rating Aaa) bonds because the
10For actively traded bonds, dealers quote a price based on recent trades of the bond. Bonds for which a dealer

did not supply a price have prices determined by a rule of thumb relating the characteristics of the bond to dealer-
priced bonds. These rules of thumb tend to change very slowly over time and do not respond to changes in market
conditions.
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data for these bonds appear problematic. Both Elton et al. (2001) and Campbell and Taksler

(2003) exclude AAA bonds from their analysis for this reason. We are finally left with 62,584

bond-months with complete data in our sample.

There are a number of extreme values among the observations of each variable constructed from

the Warga data. To ensure that statistical results are not heavily influenced by outliers, we set

all observations higher than the 99th percentile of each variable to that value. All values lower

than the first percentile of each variable are winsorized in the same manner. The minimum and

maximum numbers reported in Panel A for the bond are calculated after winsorization.11

We compute the spread on the corporate bond as the difference between the yield to maturity

on a corporate bond in that particular month and the yield to maturity on a government bond

of the closest maturity in the same month. For the benchmark treasuries, we use the CRSP fixed

term indices, which provide monthly yield data on notes and bonds of 1, 2, 5, 6, 10, 20 and 30

target years to maturity. We assume that each quoted price in the Warga data is at the end of the

month when the CRSP indices are published, but this should have little impact on the measured

spreads. As can be seen from Panel A, the average spread is about 108 basis points over this sample

period (1980-1997), similar in magnitude to spreads reported in the other studies. We find that

the magnitude of πKMV and πNaive are smaller than the values reported in Table 1, suggesting

that firms that have issuances in the bond market are better credit risks. The average maturity

outstanding for the bonds in our sample is about 10 years and the Coupon rate is around 8.3%.

In Panel B of Table 7 we report the results of regressing bond yield spreads on a number of

explanatory variables. Looking at the results, it appears that both πKMV and πNaive are significantly

related to bond yield spreads. However, looking again at the results it quickly becomes clear

that while spreads are correlated with both πKMV and πNaive, the coefficients on these default

probabilities are too low. For example, given the coefficient of 0.5 for πNaive in Model 1, if πNaive

increased from zero to five percent, the expected bond yield would increase by just 2.5 basis points.

The magnitude of the coefficients can be explained by the fact that bond rating dummies are

included in these regressions, and bond ratings capture a large fraction of the variation in spreads.

The regression coefficients must be interpreted as capturing the explanatory power of our probability

measures conditional on being in a particular ratings class.
11As in the summary statistics in Table 1, we do not winsorize the expected default frequency measures from the

Merton Model and the naive alternative, since these are naturally bounded between 0 and 1.
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In univariate regressions, the magnitude and statistical significance of πKMV is much smaller

than that of πNaive. Combining both πKMV and πNaive in one spread regression makes the coefficient

of πKMV become insignificant. When other explanatory variables are included in the regression,

the coefficient on πNaive loses some of its significance but remains statistically distinguishable from

zero. πKMV is less signficant, both statistically and economically.

Overall, the regressions indicate that πKMV is not strongly related to bond yield spreads after

conditioning on bond ratings. This is consistent with the hazard model and out of sample results

discussed previously.

IV. Conclusion

We examine the accuracy and the contribution of the KMV-Merton default forecasting model.

Looking at hazard models that forecast default, the KMV-Merton model does not appear to be a

sufficient statistic for default. It appears to be possible to construct an accurate default forecasting

model without considering the iterated KMV-Merton default probability. The naive probability

that we propose, which captures both the functional form and the same basic inputs of the KMV-

Merton probability, performs surprisingly well. Looking at out of sample forecasting ability, it is

fairly simple to construct a model that outperforms the KMV-Merton model without using the

KMV-Merton default probability as an explanatory variable. However, hazard models that use

the KMV-Merton probability with other covariates have slightly better out of sample performance

than models which omit the KMV-Merton probability. Looking at CDS implied default probability

regressions and bond yield spread regressions, the KMV-Merton probability does not appear to

be a significant predictor of either quantity when our naive probability, agency ratings and other

explanatory variables are accounted for. We conclude that the KMV-Merton probability is a

marginally useful default forecaster, but it is not a sufficient statistic for default.

We acknowledge that our implementation of the KMV-Merton model is different from that of

Moody’s KMV, and therefore the forecasts of Moody’s KMV might be better than those tested in

this paper.
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Table 1: Summary Statistics

Table 1 reports summary statistics for all the variables used in the KMV-Merton Model and the hazard
models. E is the market value of equity in millions of dollars and is taken from CRSP as the product of
share price at the end of the month and the number of shares outstanding. F is the face value of debt in
millions of dollars (computed as Compustat item 45 + 0.5 * Compustat item 51). r is the risk-free rate
measured as the 3 month Treasury-bill rate. The past returns variable, rit−1 − rmt−1, is the difference
between the prior year return of the firm and the return on the CRSP value weighted index during the same
period, and NI/TA is the firm’s ratio of net income to total assets. V is the market value of firm assets in
millions of dollars, σV is the asset volatility measured in percentage per annum, and µ is the expected return
on the firm’s assets. All three of these variables are generated as the result of solving the KMV-Merton model
for each firm-month in the sample using the iterative procedure described in the text. πKMV is the expected
default frequency in percent and is given by equation (7). Naive σV is calculated by equation (10), and the
firm’s equity return from the previous year, rit−1, is used as a proxy for the firm’s expected asset return
to calculate the naive probability of default, πNaive. Our naive probability, πNaive, is calculated according
to equation (13). All variables except the default probabilities are winsorized at the first and ninety-nineth
percentiles. Our sample spans 1980 through 2003, containing 1,016,552 firm-months with complete data.

Panel A: Means, Standard Deviations, and Quartiles
Quantiles

Variable Mean Std.Dev. Min 0.25 Mdn 0.75 Max
E 808.80 2453.15 1.21 18.56 76.52 394.83 17534.72
F 229.92 729.66 0.02 2.67 15.56 96.65 5175.50
r (%) 6.46 2.82 1.01 4.85 5.85 7.89 16.72
rit−1 − rmt−1 (%) -8.69 63.02 -99.89 -46.79 -14.21 16.94 272.00
NI/TS -1.08 6.99 -41.13 -0.94 0.73 1.85 7.83
V 1072.33 3228.60 1.52 26.43 105.24 530.12 22949.32
σV (%) 56.00 36.83 10.03 30.41 46.32 70.61 230.19
µ (%) 3.25 57.17 -253.58 -21.72 4.36 29.34 210.37
πKMV (%) 10.95 23.32 0.00 0.00 0.01 6.41 100.00
Naive σV (%) 50.67 30.97 10.48 28.17 42.29 64.70 162.70
rit−1 (%) 13.75 82.07 -85.45 -27.01 2.27 34.13 294.94
πNaive (%) 8.95 20.57 0.00 0.00 0.00 3.46 100.00

Panel B: Correlations
Corr (σV , Naive σV ) = 0.8748
Corr (πKMV,πNaive) = 0.8642
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Table 2: Comparison with Moody’s KMV EDF

Table 2 compares the expected default frequency computed by Moody’s KMV corporation and the methods
used in this paper. We obtain the data for Moody’s KMV EDF and asset volatility for 80 firms for August
2000 from the article ‘Ranking America’s top debt issuers by Moody’s KMV Expected Default Frequency’,
by Ronald Fink, in CFO Magazine, November 2003. The second column of the table provides the rank
correlations between the various measures listed in the first column. All correlations are significant at the
0.1% level or lower.

Correlation Estimate
Rank Corr(Moody’s πKMV, Our πKMV) 0.788
Rank Corr(Moody’s πKMV, Our πNaive) 0.786
Rank Corr(Moody’s σV , Our σV ) 0.574
Rank Corr(Moody’s σV , Our Naive σV ) 0.853
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Table 3: Hazard Model Estimates

Table 3 reports the estimates of several Cox proportional hazard models with time-varying covariates. There
are 15,018 firms and 1,449 defaults in the sample. πKMV is the KMV-Merton probability of default, πNaive

is our naive alternative, ln(E) and ln(F ) are the natural logarithms of market equity and face value of
debt respectively. 1/σE is the inverse of equity volatility, measured with daily data over the previous year,
rit−1 − rmt−1 is the stock’s return over the previous year minus the market’s return over the same period,
and NI/TA is the firm’s ratio of net income to total assets. A positive coefficient on a particular variable
implies that the hazard rate is increasing in that variable, or that the expected time to default is decreasing
in that variable. This table shows that the KMV-Merton default probability is not a sufficient statistic for
forecasting default and that the naive default probability measure is at least as important as the KMV-
Merton measure. Standard errors are in parentheses (*** Significant at one percent level, ** Significant at
five percent level ,* Significant at 10 percent level).

Dependent Variable: Time to Default
Variable Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7
πKMV 3.635*** 1.697*** 3.272*** 0.230

(0.068) (0.142) (0.077) (0.164)
πNaive 4.011*** 2.472*** 1.366*** 1.526***

(0.067) (0.147) (0.178) (0.138)
ln(E) -0.472*** -0.164*** -0.247*** -0.255***

(0.014) (0.015) (0.024) (0.023)
ln(F ) 0.263*** 0.269***

(0.020) (0.020)
1/σE -0.506*** -0.518***

(0.047) (0.046)
rit−1 − rmt−1 -0.819*** -0.834***

(0.081) (0.080)
NI/TA -0.044*** -0.044***

(0.002) (0.002)
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Table 4: Out of Sample Forecasts

Table 4 reports on the success of various forecasting quantities by sorting firms each quarter by forecast and
counting the fraction of defaults that correspond with each decile of the forecast variable. Panel A examines
accuracy over the entire period for which we have data, from 1980 to 2003. There are 350,662 firm-quarters
in our sample, with 1449 defaults. πKMV is the KMV-Merton probability of default, πNaive is our naive
alternative, E is market equity, rit−1− rmt−1 is the stock’s return over the previous year minus the market’s
return over the same period, and NI/TA is the firm’s ratio of net income to total assets. Panel B only
considers defaults from 1991 to 2003, and it includes the fitted values of two hazard models (models 6 and
7 from Table 3) as predictors. These models are estimated each quarter using all available data in each
quarter, and the resulting coefficients are used to form the predictors assessed in columns 4 and 5 of Panel
B. Again, this table shows that the naive variable works slightly better than the KMV-Merton quantity. It
also shows that a reduced form model that neglects to consider the KMV-Merton probability can perform
better than πKMV out of sample.

Panel A: 1980 - 2003
350,662 firm-quarters, 1449 defaults

Decile πKMV πNaive E rit−1 − rmt−1 NI/TA

1 64.9 65.8 35.7 44.4 46.8
2 15.1 14.3 17.5 25.1 23.8
3 6.0 6.7 14.3 9.2 10.6
4 4.6 4.1 9.1 5.4 5.9
5 2.9 2.4 6.1 2.9 4.2
6 - 10 6.5 6.7 17.3 13.0 8.7

Panel B: 1991 - 2003
226,604 firm-quarters, 842 defaults

Decile πKMV πNaive Model 6 Model 7
1 68.8 70.3 77.1 76.8
2 15.3 12.6 10.5 10.5
3 5.1 6.2 4.9 4.9
4 3.0 3.4 1.8 2.1
5 1.9 1.8 1.2 1.0
6 - 10 5.9 5.7 4.5 4.7
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Table 5: Alternative Predictors

Table 5 reports on the success of three alternative predictors, or predictors that calculate KMV-Merton
default probabilities in alternative ways. One predictor, πµ=r

KMV, is calculated in exactly the same manner as
πKMV, except that the expected return on assets used for πKMV is replaced by the risk-free rate, r. A second
alternative predictor, πsimul

KMV , is calculated by simultaneously solving equations (2) and (5). This predictor
avoids the iterative procedure in the text, estimating equity volatility with one year of historical returns data
and using r as the expected return on assets. The third alternative predictor, πimpσ

KMV, uses the option-implied
volatility of firm equity (implied σE) to simultaneously solve equations (2) and (5). Our sample for πµ=r

KMV and
πsimul

KMV is the same as the samples described in Table 1, including 1,016,552 firm-months from 1980 through
2003. Our sample for πimpσ

KMV spans 1996 through 2003, containing 101,201 firm-months with complete data.
Panel A reports summary statistics on our alternative predictors, Panel B reports correlations between all
of our predictors, and Panel C reports on the out of sample predictive success of our alternatives. As in
Table 4, Panel C sorts all firm-quarters by each predictor and then counts the number of defaults that occur
among firms in each decile of the predictor. In Panel C, the results for πµ=r

KMV and πsimul
KMV in the second and

third columns are directly comparable to the results in Panel A of Table 4. However, because of the different
sample size, the result for πimpσ

KMV are not comparable to any results in Table 4. To provide a performance
benchmark for the πimpσ

KMV results, the fifth and sixth columns of Table 5 report on the success of πKMV and
πNaive using the subset of firms for which implied volatility is available.

Panel A: Summary Statistics (in percent)
Quantiles

Variable Mean Std.Dev. Min 0.25 Mdn 0.75 Max
πµ=r

KMV 7.71 17.97 0.00 0.00 0.01 3.77 100.00
πsimul

KMV 8.13 20.76 0.00 0.00 0.00 1.48 100.00
Implied σE 58.47 26.54 4.01 39.25 52.48 72.27 500.00
πimpσ

KMV 4.11 14.70 0.00 0.00 0.00 0.10 100.00

Panel B: Correlation Matrix
πKMV πNaive πµ=r

KMV πsimul
KMV

πNaive 0.8642
πµ=r

KMV 0.8575 0.7486
πsimul

KMV 0.8338 0.9755 0.7220
πimpσ

KMV 0.6858 0.9624 0.4102 0.6259

Panel C: Out of Sample Forecasts
Decile πµ=r

KMV πsimul
KMV πimpσ

KMV πKMV πNaive

1 60.0 65.1 84.1 80.7 83.0
2 17.7 15.0 8.0 9.1 9.1
3 8.0 7.7 4.6 3.4 5.7
4 4.1 3.4 0.0 5.7 1.1
5 3.4 3.2 1.1 0.0 0.0
6 - 10 6.8 5.6 2.2 1.1 1.1
Defaults 1,449 1,449 88 88 88
Firm-Quarters 350,662 350,662 36,274 36,274 36,274
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Table 6: CDS Spread Regressions

Table 6 reports on a comparison of the probability of default implied by credit default swap (CDS) spreads
with πKMV and πNaive. We obtain the data on CDS spreads from www.credittrade.com for the period
December 1998 to July 2003. CDS spread is the credit default swap spread in basis points. πCDS is is the
probability of default backed out from the CDS spread. All other measures are described in table 1 of the
paper. The total number of firm-month observations is 3,833. Panel A reports summary statistics, Panel
B reports correlations, and Panel C reports the results of regressing the default probability implied by the
CDS spread on πKMV, πNaive and several other predictive variables. In Panel C, standard errors are shown
in parentheses (*** Significant at one percent level, ** Significant at five percent level ,* Significant at 10
percent level).

Panel A: Summary Statistics (in percent)
Quantiles

Variable Mean Std.Dev. Min 0.25 Mdn 0.75 Max
CDS Spread 165.89 170.49 9.50 60.83 100.00 204.30 1650.00
πCDS 3.36 3.33 0.20 1.26 2.08 4.19 29.59
πKMV 8.39 20.98 0.01 0.01 0.02 2.75 100.00
πNaive 4.55 13.54 0.01 0.01 0.01 0.73 99.79

Panel B: Correlations
Corr(πCDS, πKMV) 0.3150
Corr(πCDS, πNaive) 0.5090

Panel C: Regressions
Dependent Variable: πCDS

Variable Model 1 Model 2 Model 3 Model 4
Const. .03∗∗∗ .03∗∗∗ .03∗∗∗ .16∗∗∗

(.0005) (.0004) (.0004) (.007)

πKMV .05∗∗∗ -0.001 .009∗∗
(.004) (.003) (.004)

πnaive .13∗∗∗ .13∗∗∗ .06∗∗∗
(.007) (.008) (.008)

ln(E) -.007∗∗∗
(.0005)

ln(F ) .003∗∗∗
(.0006)

1/σE -0.014∗∗∗
(.0007)

rit−1 -0.0012
(.001)

Obs. 3833 3833 3833 3833
R2 0.10 0.26 0.26 0.40
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Table 7: Bond Yield Spread Regressions

Table 7 reports the results of bond yield spread regressions. Spread is the difference between the yield to
maturity on the bond and the yield of the closest maturity treasury in basis points. σE is the standard
deviation of equity returns. Maturity is the remaining time to maturity in years of the bonds. Coupon is
the coupon rate on the bond issue. r is the risk free rate measured as the 3 month t-bill rate. Amount is the
dollar amount of the bond issue. πKMV is the expected default frequency in percent, given by equation (7),
and πNaive is the corresponding naive default probability measure given by equation (13). All observations
except the default frequency measures are winsorized at the first and ninety-nineth percentiles. The data
span 1980 through 1997 and there are 61,776 bond-months with complete data in our sample. Panel A re-
ports summary statistics for the sample used in the regressions and Panel B reports the regression results. In
addition to the variables described in Panel A, all regressions have year, rating and 1 digit sic code dummies.
Heteroscedasticity consistent standard errors are shown in parentheses (*** Significant at one percent level,
** Significant at five percent level ,* Significant at 10 percent level). This table shows that the naive default
probability can replace the KMV-Merton probability in explaining bond yields.

Panel A: Summary Statistics
Quantiles

Variable Mean Std.Dev. Min 0.25 Mdn 0.75 Max
Spread (bp) 108.09 69.43 28.11 67.53 90.31 121.75 605.91
σE (%) 27.67 8.73 6.60 22.34 26.36 31.06 250.38
Maturity 10.32 8.20 1.00 4.59 7.79 12.63 39.25
Amount 190,000 120,000 15,700 100,000 150,000 250,000 750,000
r (%) 5.50 1.39 3.18 4.94 5.54 5.87 16.72
Coupon (%) 8.36 1.46 4.50 7.25 8.38 9.38 14.25
πKMV (%) 9.42 27.49 0.00 0.00 0.00 0.00 100.00
πNaive (%) 2.02 10.71 0.00 0.00 0.00 0.00 99.49
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Table 7: Bond Yield Spread Regressions (continued)

Panel B: Regressions
Dependent Variable: Bond Yield Spread

Variable Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
Const. 125.77∗∗∗ 118.27∗∗∗ 126.2∗∗∗ 153.11∗∗∗ 147.28∗∗∗ 153.8∗∗∗

(16.55) (16.59) (16.59) (17.43) (17.36) (17.46)

σE .86∗∗∗ .95∗∗∗ .86∗∗∗ .79∗∗∗ .87∗∗∗ .75∗∗∗
(.05) (.05) (.05) (.06) (.06) (.06)

Maturity 1.49∗∗∗ 1.5∗∗∗ 1.49∗∗∗ 1.5∗∗∗ 1.51∗∗∗ 1.5∗∗∗
(.02) (.02) (.02) (.02) (.02) (.02)

Ln(Amount) -5.78∗∗∗ -5.92∗∗∗ -5.81∗∗∗ -8.13∗∗∗ -8.27∗∗∗ -8.01∗∗∗
(.38) (.39) (.39) (.49) (.49) (.49)

r -.46 .23 -.46 -.61∗ .07 -.60
(.34) (.34) (.34) (.37) (.37) (.37)

Coupon 3.31∗∗∗ 3.31∗∗∗ 3.31∗∗∗ 3.49∗∗∗ 3.53∗∗∗ 3.51∗∗∗
(.2) (.21) (.2) (.22) (.22) (.22)

Coverage < 5 -1.4∗ -3.1∗∗∗ -2.12∗∗
(.85) (.91) (.89)

5 <= Coverage < 10 -6.37∗∗∗ -7.37∗∗∗ -6.65∗∗∗
(.71) (.73) (.73)

10 <= Coverage < 20 -1.79∗∗∗ -2.13∗∗∗ -1.87∗∗∗
(.68) (.69) (.68)

Operating Income to Sales -36.11∗∗∗ -40.93∗∗∗ -38.78∗∗∗
(4.46) (4.87) (4.85)

Long Term Debt to Assets 12.11∗∗∗ 20.08∗∗∗ 16.29∗∗∗
(2.57) (2.83) (2.78)

Total Debt to Capitalization 8.88∗∗∗ 5.82∗∗∗ 4.26∗∗∗
(1.62) (1.59) (1.57)

πNaive .5∗∗∗ .49∗∗∗ .63∗∗∗ .6∗∗∗
(.03) (.03) (.04) (.04)

πKMV .08∗∗∗ .007 .19∗∗∗ .1∗∗∗
(.008) (.007) (.02) (.01)

Rating Dummies Yes Yes Yes Yes Yes Yes
Year Dummies Yes Yes Yes Yes Yes Yes
Industry Dummies Yes Yes Yes Yes Yes Yes
Obs. 61776 61776 61776 51831 51831 51831
R2 0.70 0.70 0.70 0.72 0.71 0.72
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/* This SAS program calculates the distance to default using the KMV-Merton model                 
   with the iterated estimate of the volatility of firm value.  Many of the results               
   of Bharath and Shumway (2004) are generated by this program.  The program                      
   requires the data described below, and it generates a permanent sas data file                  
   called ssd.kmv which contains distances to default.  The program calculates                    
   monthly distances to default every year from 1980 to 1990 as it is currently written*/         
                                                                                                  
/* This program requires two datasets:                                                            
                                                                                                  
    ssd.comp,  which contains monthly observations taken from the quarterly compustat             
               data file for compustat items 45 and 51 (data45 and data51, respectively),         
               the crsp permno firm identifier, the calendar year and the calendar month          
               (calyr and calmnth, respectively) and the risk-free rate of return (r,             
               taken from some source other than compustat).                                      
                                                                                                  
    ssd.dailycrsp, which has daily observations of crsp permno, current shares outstanding        
               (shrout), the current date in sas format (date), and the price (prc).              
 */                                                                                               
                                                                                                  
libname ssd 'c:\kmv.dir';                                                                         
data sampl;  set ssd.comp;                                                                        
   cdt = 100*calyr + calmnth;                                                                     
   f = 1000*(data45 + 0.5 * data51);                                                              
   if data45 < 0 or data51 < 0 then delete;                                                       
   drop data45 data51 calyr calmnth;                                                              
                                                                                                  
proc sort;  by permno cdt;                                                                        
                                                                                                  
data ssd.kmv99; curdat = 0;                                                                       
                                                                                                  
%macro itera(yyy,mmm);                                                                            
  data one;                                                                                       
   set ssd.dailycrsp;                                                                             
    if (100*(&yyy-1) + &mmm) <= (100*year(date) + month(date)) <= (100*&yyy + &mmm);              
    e = abs(prc)*shrout;                                                                          
    cdt = 100*year(date) + month(date);                                                           
    keep permno date cdt e;                                                                       
                                                                                                  
  proc sort;    by permno cdt;                                                                    
                                                                                                  
  data one;                                                                                       
   merge one sampl;                                                                               
    by permno cdt;                                                                                
    if e ne . and f > 0;                                                                          
    a = e + f;                                                                                    
    if a = . or permno = . or e = 0 then delete;                                                  
                                                                                                  
  proc sort;    by permno date;                                                                   
                                                                                                  
* get volatility of total asset returns and look for large values;                                
                                                                                                  
   data one;   set one;   l1p = lag1(permno);   l1a = lag1(a);                                    
   data one;   set one;   if l1p = permno then ra = log(a/l1a);                                   
   proc means noprint data = one;   var ra f e;   by permno;   output out = bob;                  
   data bob1;   set bob;   if _stat_ = 'STD'; if _freq_ < 50 then delete;                         
        va = sqrt(252)*RA;  if va < .01 then va = .01;    keep permno va;                         
   data bob2; set bob; if _stat_ = 'MEAN'; if f > 100000 and e > 100000 then largev = 1;          
        else largev = 0; keep largev permno;                                                      



                                                                                                  
  data one;   merge one bob1 bob2;   by permno;     if va = . then delete;                        
   if largev = 1 then do; f = f/10000; e = e/10000; a = a/10000; end;                             
  drop ra l1a l1p;                                                                                
                                                                                                  
  data conv;   permno = 0;                                                                        
                                                                                                  
*iteration;                                                                                       
                                                                                                  
 %do j = 1 %to 15;                                                                                
   proc model noprint data = one;  endogenous a;  exogenous r f VA e;                             
      e = a*probnorm((log(a/f) + (r+va*va/2))/VA) -                                               
      f*exp(-r)*probnorm((log(a/f) + (r-va*va/2))/VA);  solve a/out=two;                          
   data two;   set two;   num = _n_;   keep a num;                                                
   data one;   set one;   num = _n_;   drop a;                                                    
   data two;   merge one two;   by num;  l1p = lag1(permno);   l1a = lag1(a);                     
   data two;   set two; if l1p = permno then ra = log(a/l1a);                                     
   proc means noprint data = two;   var ra;   by permno;   output out = bob;                      
   data bar;   set bob; if _stat_ = 'MEAN';  mu = 252*ra;   keep permno mu;                       
   data bob;   set bob; if _stat_ = 'STD'; va1 = sqrt(252)*RA;                                    
               if va1 < 0.01 then va1 = 0.01; keep permno va1;                                    
   data one;   merge two bob bar; by permno; vdif = va1 - va;                                     
               if abs(vdif) < 0.001 and vdif ne . then conv = 1;                                  
   data fin;   set one; if conv = 1;   assetvol = va1; proc sort; by permno descending date;      
   data fin;   set fin; if permno ne lag1(permno);   curdat = 100*&yyy + &mmm;  iter = &j;        
   data conv;   merge conv fin;   by permno;  drop va ra l1p l1a conv cdt num;                    
   data one;   set one; if conv ne 1;   va = va1;   drop va1;                                     
 %end;                                                                                            
                                                                                                  
  data ssd.kmv;                                                                                   
   merge ssd.kmv conv;                                                                            
    by curdat;                                                                                    
    if permno = 0 or curdat = 0 then delete;  drop va1;                                           
    edf = probnorm(-((log(a/f) + (mu-(assetvol**2)/2))/assetvol));                                
    label edf = 'expected default frequency';                                                     
    label curdat = 'date in yyyymm format';                                                       
    label e = 'market equity';                                                                    
    label iter = 'iterations required';                                                           
    label assetvol = 'volatility of a';                                                           
    label f = 'current debt + 0.5LTD';                                                            
    label vdif = 'assetvol - penultimate VA';                                                     
    label a = 'total firm value';                                                                 
    label r = 'risk-free rate';                                                                   
    label largev = 'one if assets, equity and f deflated';                                        
    label mu = 'expected asset return';                                                           
%mend;                                                                                            
                                                                                                  
%macro bob;                                                                                       
    %do i = 1980 %to 2003;                                                                        
        %do m = 1 %to 12;                                                                         
            %itera(&i,&m);                                                                        
        %end;                                                                                     
    %end;                                                                                         
%mend;                                                                                            
%bob;                                                                                             


