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ABSTRACT
Recent research has suggested that forecast evaluation on the basis of stan-
dard statistical loss functions could prefer models which are sub-optimal
when used in a practical setting. This paper explores a number of statis-
tical models for predicting the daily volatility of several key UK financial
time series. The out-of-sample forecasting performance of various linear and
GARCH-type models of volatility are compared with forecasts derived from
a multivariate approach. The forecasts are evaluated using traditional met-
rics, such as mean squared error, and also by how adequately they perform
in a modern risk management setting. We find that the relative accuracies
of the various methods are highly sensitive to the measure used to eval-
uate them. Such results have implications for any econometric time series
forecasts which are subsequently employed in financial decision making.
Copyright  2003 John Wiley & Sons, Ltd.
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INTRODUCTION

Modelling and forecasting stock market volatility has been the subject of a great deal of debate over
the past fifteen years or so. Volatility, usually measured by the standard deviation of portfolio returns,
is uniquely important in financial markets, for it is often taken to represent the portfolio’s risk.
Consequently, the literature on forecasting volatility is sizeable and still growing. Akgiray (1989),
for example, finds the GARCH model superior to ARCH, exponentially weighted moving average,
and historical mean models for forecasting monthly US stock index volatility. A similar result
concerning the apparent superiority of GARCH is observed by West and Cho (1995) using one-
step-ahead forecasts of dollar exchange rate volatility, evaluated using root-mean squared prediction
errors. However, for longer horizons, the model behaves no better than their alternatives.1 Also using

* Correspondence to: Chris Brooks, ISMA Centre, PO Box 242, University of Reading, Whiteknights, Reading RG6 6BA, UK. E-
mail: c.brooks@rdg.ac.uk
1 The alternative models are the long-term mean, IGARCH, autoregressive models, and a non-parametric model based on the Gaussian
kernel.
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the same models and data, West et al. (1993) use asymmetric, utility-based criteria for evaluating
the conditional variance forecasts, finding that GARCH models tend to yield the highest utilities.
Pagan and Schwert (1990) compare GARCH, EGARCH, Markov switching regime and three non-
parametric models for forecasting monthly US stock return volatilities. The EGARCH followed
by the GARCH models perform moderately; the remaining models produce very poor predictions.
Franses and van Dijk (1996) compare three members of the GARCH family (standard GARCH,
QGARCH and the GJR model) for forecasting the weekly volatility of various European stock
market indices. They find that the non-linear GARCH models were unable to beat the standard
GARCH model. Brailsford and Faff (1996) find GJR and GARCH models slightly superior to
various simpler models2 for predicting Australian monthly stock index volatility. The conclusion
arising from this growing body of research is that forecasting volatility is a ‘notoriously difficult
task’ (Brailsford and Faff, 1996, p. 419), although it appears that conditional heteroscedasticity
models are among the best that are currently available. In particular, more complex non-linear and
non-parametric models are inferior in prediction to simpler models, a result echoed in an earlier
paper by Dimson and Marsh (1990) in the context of relatively complex versus parsimonious linear
models. Finally Brooks (1998) uses a measure of market volume in volatility forecasting models,
but observes no increase in forecasting power.

Recent papers have also sought to compare the predictive ability of volatility forecasts derived
from the market prices of traded options, with those generated using econometric models (see, for
example, Heynen and Kat, 1994 or Day and Lewis, 1992). The general consensus appears to be that
implied volatility forecasts are more accurate than those derived using pure time series analysis,
but also that the latter still contain additional information not embedded in the implied values.

Also over the past decade, there has been rapid development of techniques for measuring and
managing financial risk, partially motivated by a spate of recent financial disasters involving deriva-
tive securities. One of the most popular approaches to risk measurement is by calculating what is
known as an institution’s ‘Value at Risk’ (VaR). Broadly speaking, Value at Risk is an estimation
of likely losses which could arise from changes in market prices. More precisely, it is defined as
the money-loss in a portfolio that is expected to occur over a pre-determined horizon and with a
pre-determined degree of confidence. The roots of VaR’s popularity stem from the simplicity of its
calculation, its ease of interpretation, and from the fact that VaR can be suitably aggregated across
an entire firm to produce a single number which broadly encompasses the risk of the positions of the
firm as a whole. Jorion (1996) or Dowd (1998) provide thorough introductions to VaR, and Brooks
and Persand (2000a,b) present recent discussions of VaR model estimation issues. The value at risk
estimate is also often known as the position risk requirement or minimum capital risk requirement
(MCRR); we shall use the three terms interchangeably in the exposition below.

Although the academic literature has thus far failed to keep pace with this expansion, evi-
denced by the relatively few academic studies that address this topic, one exception is the study
by Jackson et al. (1998), which assesses the empirical performance of various models for VaR
using historical returns from the actual portfolio of a large investment bank. They find that non-
parametric, simulation-based techniques yield more accurate measures of the tail probabilities than
parametric models. Alexander and Leigh (1997) offer an analysis of the relative performance of
equally weighted, exponentially weighted moving average (EWMA), and GARCH model forecasts
of volatility, evaluated using traditional statistical and operational adequacy criteria. The GARCH

2 The other models employed are the random walk, the historical mean, a short- and a long-term moving average, exponential smoothing,
an exponentially weighted moving average model, and a linear regression.
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model is found to be preferable to EWMA in terms of minimizing the number of exceedences
in a backtest, although the simple unweighted average is superior to both. Brooks et al. (2002)
investigate the effectiveness of various hedging models when assessed according to their ability to
minimize VaR, finding that there is a large role for time-varying volatilities and correlations, but a
very minor role for asymmetries.

This paper seeks to combine and advance the two literatures in volatility forecasting and financial
risk management in a number of ways. First, the volatility forecasting debate is re-opened, and the
forecasts from the various models evaluated on the basis of how well they perform in a modern
risk management setting, as well as by traditional statistical loss functions. This is important for
Dacco and Satchell (1999) demonstrate that the evaluation of forecasts from non-linear models
using statistical measures can be misleading, and they propose the use of alternative economic
loss functions. Here, the relative performances of the forecasting models are evaluated using both
statistical and economic loss functions, so that a comparison can be drawn between the two. Second,
we also directly compare the forecasting performance of univariate and multivariate forecasting
models for financial asset return volatility. Multivariate GARCH models permit the estimation
of the conditional covariances between assets’ returns, and explicit modelling of this interaction
may improve the accuracy of forecasts of volatility for a portfolio comprising these components.
Finally, we evaluate forecasts over the 1- 5-, 10- and 20-day horizons. Although many volatility
forecasting papers compare accuracies at daily horizons, it is often the case that financial market
practitioners require predictions of much lower frequency. For example, the Basle Committee on
Banking Supervision rules for the use of VaR models (see, for example, Basle Committee on
Banking Supervision, 1998) require the use of a 10-day holding period, which allows reasonable
time for investors to unwind a position, and fund managers typically re-balance their portfolios on
a monthly (20 trading days) basis.

The remainder of the paper is organized as follows. The next section presents the data employed in
the study, while the forecasting models are described briefly in the third section. Forecast evaluation
methods are outlined and discussed in the fourth section with results given in the fifth section. The
final section summarises the paper, and offers some concluding remarks.

THE DATA

In this study we calculate the VaRs for three different assets—the FTSE All Share Total Return
Index, the FTA British Government Bond (over 15 years) Index and the Reuters Commodities
Price Index, as well as an equally weighted portfolio containing these three assets.3, 4 The data
were collected from Datastream International, and spans the period 1 January 1980 to 25 March
1999. Observations corresponding to UK public holidays were deleted from the data set to avoid
the incorporation of spurious zero returns, leaving 4865 observations, or trading days in the sample.
In the empirical work below, we use the daily log return of the original indices. Summary statistics
for the data are given in Table I. It is evident that the FTSE returns series is the most volatile,

3 Our analysis assumes that we are long all the three assets—both individually and in the portfolio. A similar analysis could be undertaken
for short or netted positions, but we would not expect our conclusions to be markedly altered.
4 This portfolio is deliberately highly simplistic relative to a genuine bank’s book, as well as being entirely linear in nature. The use of
a simple portfolio enables us to more easily unravel the various estimation issues and broad aspects of the methodologies. Additionally,
the three series that we consider are all fundamental or ‘benchmark’ factor series, to which other series are mapped under the JP Morgan
approach.
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Table I. Summary statistics

Long Govt Bond FTSE All Share Reuters Commodities Portfolio

Mean 0.000233 0.000301 �0.000219 0.000171
Variance 6.50 ð 10�6 1.410 ð 10�5 6.210 ð 10�6 3.691 ð 10�6

Skewness 0.0132 �1.063ŁŁ �0.5663ŁŁ �0.291ŁŁ
Kurtosis 3.37ŁŁ 14.654ŁŁ 18.369ŁŁ 4.446ŁŁ
Bera–Jarque Statistic 2300ŁŁ 44400ŁŁ 68700ŁŁ 4080ŁŁ

Notes : The Bera–Jarque statistic is distributed asymptotically as a �2(2) under the null of normality. Ł and ŁŁ indicate significance at the
5% and 1% levels respectively.

while the government bond index returns is the least. The benefits from diversification, in terms of
a substantial reduction in variability, are clear, since the variance for the equally weighted portfolio
returns is almost half that of the least volatile component. Also, as one might anticipate, the series
are all strongly non-normal. All are leptokurtic, while the FTSE All-Share and commodities series
are also significantly skewed to the left.

FORECASTING VOLATILITY

Construction of forecasts and notation
The total sample of 4865 observations is split into two parts: the first 1250 observations (approx-
imately 5 years of daily trading data) are used for estimation of the parameters of the model, and
then one-, two-,. . ., twenty-step-ahead forecasts are calculated. The multi-step-ahead forecasts are
then aggregated to form forecasts of volatility over the next 5, 10, and 20 days. We can thus write5

�2
t,N D

N∑
nD1

�2
t,tCn �1�

where �2
t,N denotes the time t aggregated forecast for the next N steps, and �2

t,tCn denotes the
n-step-ahead forecast made at time t.

In contrast to much previous research in this area, these are not one-, two-, three-. . . twenty-step-
ahead forecasts, but rather we aggregate the forecasts for the next 5, 10, and 20 days. Aggregated
forecasts will be the ones of interest to financial market practitioners and risk managers, when they
have investment horizons longer than one day; they will not be particularly interested in multi-step-
ahead one-day volatility forecasts, such as the volatility forecast for day t C 20 made on day t. The
sample is then rolled forward by removing the first observation of the sample and adding one to
the end, and another set of forecasts of the next twenty days’ volatilities is made, and aggregated.
This ‘recursive’ modelling and forecasting procedure is repeated until a forecast for observation
4865 has been made using data available at time 4845. Computation of forecasts using a rolling
window of data should ensure that the forecasts are made using models whose parameters have

5 This step is permissible since the variances are additive over time. Another possibility would be to multiply the one-step-ahead forecast by
the desired horizon using an equivalent of the ‘square root of time’ rule, so that, for example, the volatility forecast over the next 20 days
is 20 times the forecast for tomorrow. However, our approach is likely to be superior, since it employs more information while implicit
extrapolation of one-step forecasts could be inappropriate for a mean-reverting series.

Copyright  2003 John Wiley & Sons, Ltd. J. Forecast. 22, 1–22 (2003)



Volatility Forecasting for Risk Management 5

been estimated using a sufficient span of time, while not incorporating such old vintages that the
data may no longer relevant in the context of an evolving financial market.

Forecasting models
Almost all of the forecasting models employed in this study are not new, rather it is the evaluation
of the models which is novel. Hence the model descriptions are brief and presented in Table II,
with �2

f,tCnj�t denoting the n-step-ahead (n D 1, 2, . . . , 20) forecast for the conditional variance
upon information available at time t, where t runs from observation 1250 to 4845. With one
possible exception, the model equations in Table II are self-explanatory, and readers are referred to
Bollerslev et al. (1992), Brailsford and Faff (1996), or Brooks (1998), and the references therein,
for a more detailed treatment.

The only model which perhaps requires further explanation is the multivariate GARCH model,
which has not been employed in previous studies of volatility forecast performance. The particular
parameterization used here is of the diagonal VEC form due to Bollerslev, Engle, and Wooldridge
(1988), where each element of the conditional variance covariance matrix hjk,t depends on past
values of itself and past values of εj,tε0

j,t, which may be written

vec�HtC1� D htC1 D C0 C A1vec�εtε
0
t� C B1ht �2�

where vec denotes the column stacking operator, A1 and B1 are restricted to be diagonal. The
parameterization for HtC1 conditional upon the information set allows each element of the condi-
tional variance–covariance matrix to depend on lags of the squares and of the cross products of
the elements of εtC1 as well as lags of the elements of HtC1.

EVALUATING VOLATILITY FORECASTS

Standard loss functions
Three criteria are used here to evaluate the accuracy of the forecasts: mean squared error (MSE),
mean absolute error (MAE), and proportion of over-predictions. Mean squared error provides a
quadratic loss function which disproportionately weights large forecast errors more heavily relative
to mean absolute error, and hence the former may be particularly useful in forecasting situations
when large forecast errors are disproportionately more serious than small errors. The proportion
of over-predictions should give a rough indication of the average direction of the forecast error
(compared with the two previous measures which only give some measure of the average size) and
whether the models are persistently over- or under-predicting the ‘true’ value of volatility. Hence
this measure gives an approximate guide as to whether the forecasts are biased.

But what is volatility?
Unlike financial asset returns, volatilities are not directly observable from the market. Consequently,
when attempting to benchmark the accuracy of volatility forecasting models, researchers are nec-
essarily required to make an auxiliary assumption about how the ex post or realized volatilities are
calculated. The vast majority of existing studies, including those listed in the introduction to this
paper, use squared returns of the frequency of the data and analysis, as the measure of realized
volatility. For example, studies using daily data would assume that the ‘correct’ volatility number
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6 C. Brooks and G. Persand

Table II. Description of models used for forecasting

Model Acronym Equations for model Equation

1. Random walk in volatility RW �2
f,tCn D �2

t (2)

2. Long-term mean LTM �2
f,tCn D 1

1250

t∑
jDt�1249

�2
t�j (3)

3. Short-term moving average MA5 �2
f,tCn D 1

5

4∑
jD0

�2
t�j (4)

4. Long-term moving average MA100 �2
f,tCn D 1

100

99∑
jD0

�2
t�j (5)

5. Linear regression with one lag AR1 �2
f,tCn D ˛0 C ˛1�

2
t C εt (6)

6. Linear regression with AIC lags ARAIC �2
f,tCn D ˇ0 C

p�1∑
jD0

ˇj�
2
t�j C εt (7)

7. GARCH(1,1) GAR rtC1 D � C εtC1, εtC1 ¾ N�0, �2
tC1�, (8)

�2
f,tCn D �0 C ϕ1ε

2
t C �2�

2
t

8. GJR(1,1) GJR �2
f,tCn D υ0 C υ1ε

2
t C υ2�

2
t C υ3S

�
t ε2

t (9)
S�

t D 1 for εt � 0 and 0 otherwise

9. EGARCH(1,1) EGAR log��2
f,tCn� D ω1 C ω2 log��2

t � C ω3
εt√
�2

t

(10)

Cω4


 j εt j√

�2
t

�
√

2

�




10. Long exponentially weighted
moving average

EMA5 �2
f,tCn D �1 � 1�

5∑
tD1

t�1
1 �rt � r� (11)

11. Short exponentially weighted
moving average

EMA100 �2
f,tCn D �1 � 1�

100∑
tD1

t�1
1 �rt � r� (12)

12. GARCH with t-distributed errors GART rtC1 D � C εtC1, εtC1 ¾ tk�0, �2
tC1�, (13)

�2
f,tCn D �0 C ϕ1ε

2
t C �2�

2
t

13. Multivariate GARCH MGAR See text for model description —

Notes : Forecast equations are given for n D 1 step ahead, and recursions can easily be computed from these for the 2, 3, . . . , 20 step-ahead
forecasts. The model order p for ARAIC is determined individually for each forecast iteration by the minimization of Akaike’s information
criterion, with maximal lag 5. All model parameters are estimated using quasi-maximum likelihood. The exponentially weighted moving
average coefficients (i) are chosen to produce the best fit by minimizing the sum of the squared in-sample forecast errors.

on day t is r2
t , and it is this value that would be used as an input to the mean squared error calcu-

lation, or as the dependent variable in a Fair–Schiller (1990)-type regression of actual volatilities
on their forecasted values.

Whilst this method is simple and intuitively plausible, Andersen and Bollerslev (1998, hereafter
AB) suggest that ‘same-frequency’ squared returns are an unbiased but extremely noisy measure
of the latent volatility factor which underlies financial asset return movements. AB show that a
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much better approximation to the latent volatility factor can be obtained by summing the squares of
higher frequency returns. For example, a superior estimate of volatility on day t to r2

t is given by

r2Ł
t D

m∑
jD1

r2
t�1C�j/m� �3�

where m is an intra-day sampling frequency, such as 8 for hourly data.6

Unfortunately, for many applications, the usefulness of this method is limited by the lack of
availability of a sufficiently long span of higher-frequency returns. In the present paper, however,
our analysis focuses upon daily, weekly, bi-weekly, and monthly forecasts. For the latter three
horizons, two methods of calculating ex post volatility are available, both of which are employed
in this study. The first of these ex post measures, which may usefully be termed the traditional
measure, is to use weekly, bi-weekly or monthly squared returns.7 The second method, would be to
take the daily returns, square them, and sum them over the relevant (5-, 10-, or 20-day) horizon.8

As AB note, it is not necessarily the case that the two ex post measures will give the same model
rankings, let alone the same values of the error measures. Thus a comparison of model rankings
under the two approaches is a relevant question for research, which this paper makes the first
attempt to address.

Value at Risk calculation
Given the voluminous literature which almost unquestioningly evaluates volatility forecasts using
standard loss functions, three sensible questions to ask are first, what are volatility forecasts
useful for, second, what is an appropriate loss function given this usage, and finally, will alter-
native loss functions lead to approval of the same or similar models? Some answers to the first
of these questions are provided in the introduction to this paper. One use of volatility predic-
tions, which has grown substantially in importance over recent years, is as an input to financial
risk management. In this paper, we thus employ a relevant ‘risk management’ loss function,
which is based upon the calculation of an institution’s value at risk, as defined above in the
first section. Specifically, we calculate VaR for three individual assets by calculating the follow-
ing quantity:

VARi
t�N, ˛� D [Fi

t,N]�1
( ˛

100

)
�4�

where VARi
t is the Value at Risk for a given asset at time t, determined from model i (where

i D 1, 13 are the models as defined above), N is the investment horizon, [Fi
t,N]�1 is a cumulative

distribution function (cdf) and ˛ is a percentage significance level. The cdf employed in this paper
is that of a normal distribution.

A limiting assumption of the analysis in many empirical papers in risk management is the stan-
dard assumption of normality, for it is well known that asset returns are not Gaussian. However,
the normal approximation is extremely widely used in the risk management field. Fat-tailed return
distributions will lead the delta-normal model to understate the true value at risk (see Jorion, 1996
or Huisman et al., 1998). For example, a 5% daily loss is observed to occur approximately once

6 Assuming, of course, that 8 hourly observations are available from the financial market concerned.
7 So, for example, the volatility for weekly returns would be given by r2

t D [ln�Pt/Pt�5�]2.
8 Obviously for the 1-day horizon, both methods will yield the same ex post measure.
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every two years, while if returns were normally distributed, such a change would be expected
only once every 1000 years (Johansen and Sornette, 1999). A number of methods to incorpo-
rate the fat tails have been proposed, most importantly the use of extreme value distributions for
returns (e.g. Embrechts et al., 1999). However, we continue to employ the normality assumption
since other distributional approaches usually do not directly employ a volatility estimate. There-
fore our purpose of comparing between volatility forecasts when used for risk management would
be lost.

We employ both the 1% and 5% levels of significance. The former level has been selected by
the Basle Committee (1996) as the focus of attention, although the first percentile of a distribution
is more difficult to estimate than the fifth, and thus the latter is the quantity which many securities
firms wish to employ (see JP Morgan, 1996). The VaR corresponding to 5% may be defined as
that amount of capital, expressed as a percentage of the initial value of the position, which will be
required to cover 95% of probable losses. In the case of the normal distribution, this quantity may
be calculated as

VARi
t�N, 5%� D 1.645�i

t,N �5�

where �i
t,N is the square root of the conditional variance forecast, made at time t for forecast horizon

N (N D 1, 5, 10, 20). We thus forecast volatility for some future period (t, N) and hence we calculate
the amount of capital required to cover expected losses on 95% or 99% of the investment horizons.
The 95% confidence level is employed by the popular RiskMetrics risk measurement software,
while the regulators require capital to cover 99% of losses.9

The calculation of the value at risk estimates for the individual assets is achieved by following
the steps outlined above. In the case of the portfolio, however, for all forecasting models except the
multivariate GARCH (that is, models 1–12 in Table II), we employ a method known as the ‘full
valuation approach’. This simply involves the aggregation of the components and the calculation
of the portfolio return at each point in time. In this case, the resulting portfolio return series is
modelled in the same way as the individual component assets.

An alternative approach is known as the ‘volatilities and correlations’ method, which has been
popularized by JP Morgan (1996). Here, the portfolio value at risk is estimated using the volatilities
of the individual assets which form the MCRR, and the correlations between their returns. The
portfolio value at risk may be written

MCRRP D

√√√√√√
a2MCRR2

A C b2MCRR2
B C c2MCRR2

C
C2ab�ABMCRRAMCRRB

C2ac�ACMCRRAMCRRC

C2bc�BCMCRRBMCRRC

�6�

where A, B, and C denote the bond, stock and commodities series respectively, and a D b D c D
1/3. We adopt this approach when using the multivariate GARCH model, but instead of using
the time-invariant volatility and correlation estimates, we instead use the relevant forecasts of the
conditional variances and covariances from the MGARCH model in (6) to derive the VaR.

9 In fact, the 99% VaR is multiplied by a ‘scaling factor’, which is usually 3, so that the actual coverage rate is considerably higher than
99%. We do not employ the regulatory scaling factor in our analysis, so as to focus upon forecast adequacy. Multiplying the estimated VaR
by 3 has the effect of rendering the forecasted VaRs virtually indistinguishable from one another, since the implied coverage rate is now
more than 99.99%.

Copyright  2003 John Wiley & Sons, Ltd. J. Forecast. 22, 1–22 (2003)
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Risk management-based forecast evaluations
In this paper, we employ three methods for determining the adequacy of the volatility forecasts
that are used as an input to the value at risk calculation. All methods essentially require the
calculation of VaR, and then assuming that the securities firm had employed this much capital, the
methods track the actual realized losses during an out-of-sample period. The simplest approach to
determining model adequacy in the risk management framework is to calculate the time until first
failure (TUFF), defined as the first observation in the hold-out sample where the capital held is
insufficient to absorb that period’s loss, and derived as follows. Following Kupiec (1995), let p
denote the realized probability of observing the first failure of the model in period V, and letting
QR be a random variable that denotes the number of observations until the first failure is recorded,
then we may write

Pr� QR D V� D p�1 � p�V�1 �7�

Then QR has a geometric distribution with an expected value of 1/p. This quantity can be interpreted
as the expected number of observations until the first failure is observed. In the cases of interest
in this paper, if the actual proportion of failures were 5% and 1% respectively, then the time until
first failure would be 100 and 20 steps respectively. If we now let p* denote the probability of
failure under the null hypothesis, then the following likelihood ratio test can be established:

TUFF �V, pŁ� D �2 log[p Ł �1 � pŁ�V�1] C 2 log

[
1

V

(
1 � 1

V

)V�1
]

�8�

which is �2(1) under the null. Given the appropriate critical value, it is possible to derive a 95%
confidence interval for TUFF of (6,439) for the 1% VaR and (�,87) for the 5% VaR.10 The
confidence intervals can be interpreted as follows. If VaR determined using a 1% significance level
fails before the 6th observation, we can reject at the 5% level the null hypothesis that the model is
adequate to cover losses on 99% of occasions. On the other hand, if the actual TUFF is greater than
439, then we would conclude that the model was leading to too high a value at risk, and therefore
that the model was not failing as quickly as would be expected given the nominal 1% probability
of failure.

It is perhaps worth noting that it is desirable from the point of view of the bank or securities
firm concerned, for the calculated value at risk to be neither too large nor too small. A value at
risk set too low could imply that the bank does not have sufficient capital to cover future losses,
leading at best to regulatory scrutiny, and an increase in the scaling factor (resulting in a substantial
increase in the capital requirement), and at worst to financial distress and possible company failure.
Conversely, a VaR set too high, so that it covers more than the nominal percentage of horizons
(e.g. an estimated 5% daily VaR which is actually sufficient to cover 99.9% of the out of sample
periods), probably implies that the firm is tying up too much of its capital unnecessarily in an
unprofitable fashion.11

Whilst intuitive and simple to calculate, TUFF has obvious flaws as an evaluation metric. First,
it is clearly not using much information from the sample, since all observations after the first
failure are ignored, resulting in the test being over-sized. Thus, if the start of the out-of-sample

10 It is not possible to establish a lower limit for the 5% VaR interval.
11 Particularly in view of the regulatory scaling factor, which multiplies the firm’s own VaR estimate by at least 3.
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period occurs at a time of exceptional market turbulence, a model which may have been perfectly
adequate for the rest of the sample and incurring no further failures, would be rejected. Second,
the TUFF statistic consequently has low power to reject models which are not adequate—this
is clearly evidenced by the wide confidence intervals for TUFF presented above. For example, a
99% nominal coverage rate is expected to result in first failure at observation 100, but even if an
exceedence of the VaR is recorded as early as observation 7, we cannot reject the underlying model
at the 1% level; thus TUFF will have low ability to discriminate between volatility forecasts from
different models.

Another simple method for determining model adequacy within the risk management framework
is simply to calculate the percentage of times that the calculated VaR is insufficient to cover
the actual losses, during the rolling out-of-sample period. A good model would be one whose
proportion of out-of-sample exceedences is close to the nominal value of (one minus coverage
probability)% assumed (5% or 1%). We can also formulate a likelihood ratio test for the proportion
of failures, in similar vein to (19) above. The probability of observing x failures in an actual sample
of independent observations of size K will be distributed binomially, leading to the following test
statistic distributed �2(1) under the null:

UCF�K, x, pŁ� D �2 log[�1 � pŁ�K�x�pŁ�x] C 2 log
[(

1 �
( x

K

))K�x ( x

K

)x
]

�9�

with notation as above. For ease of interpretation of the results, models are also ranked in the
following way. We assume that any model which has a percentage of exceedences in the rolling hold-
out sample which is greater than the nominal threshold should be rejected as inadequate. Therefore,
the lowest ranking models (classified as worst) are those which have the highest percentage of
failures greater than the nominal value.

When these models have been exhausted, we assume further that any model which generates far
fewer exceedencess than the expected number is less desirable than a model which generates closer
to the nominal number. Thus the best models under this loss function are those which generate less
than, but closest to, the assumed coverage rate.12

RESULTS

Statistical evaluation criteria
The results for the volatility forecasts under standard statistical evaluation methods (percentage of
over-predictions, mean squared error, and mean absolute error) are presented in Tables III to VI
for the government bond, FTA All-Share, commodities and portfolio series respectively.

Considering first the one-step-ahead (1-day) forecast horizon, a number of important features
emerge. As one might anticipate, the random walk in volatility model produces roughly equal
numbers of over-and under-predictions of realized volatility measured by the squared daily returns.
On the other hand, all models over-predict volatility on average 70% of the time, except for the
two EWMAs which over-predict more frequently than they under-predict. In all other respects, the
random walk in volatility produces uniformly poor forecasts.

12 Of course, this could be replaced by a simpler symmetric or any other loss function if the user desired.

Copyright  2003 John Wiley & Sons, Ltd. J. Forecast. 22, 1–22 (2003)
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No clear ‘winners’ emerge at the 1-day horizon, with different models being preferred for each
series. MSE is clearly not a good discriminator at the top end, with many models ranked equally
as the best. MAE, on the other hand, selects EWMA models for the bond and portfolio series,
while for the share and commodity series, the GJR and autoregressive volatility models are pre-
ferred. In terms of the least accurate next-day forecasting models, the random walk in volatility
and EGARCH models emerge as the worst performers, followed by the EWMAs for commodities
and shares, although the latter proved the most accurate for the other two series.

An extension of the forecast and investment horizon to the one (trading) week, two-week, and one-
month range does not markedly alter the relative model rankings, although the broad disagreement
between criteria for a given series and model is still apparent. For example, the autoregressive
model, which ranks only seventh by MSE for the equities series at the one-day horizon, ranks first
when the investment horizon is extended to one month.

However, as Andersen and Bollerslev (1998) have shown, the use of low-frequency squared
returns is often not a useful way to evaluate volatility forecasts, and it is quite possible that when
sums of higher-frequency squared returns are used instead as the ex post volatility measure, not
only the values of the error measures but also the model rankings could change substantially.
Thus for the 5-, 10-, and 20-day periods we also evaluate the forecast accuracies using the sum of
squared daily returns. Results are presented for the bond, share, commodities, and portfolio series in
Tables VII to X respectively.13 Comparing the results for the low-frequency squared returns versus
the high-frequency sums of squared returns, we note first that the values of the error measures are
as expected reduced considerably.14

The GARCH model with t-distributed errors now emerges as the clear winner, producing the
most accurate forecasts according to MAE, for three of the four series (bonds, stocks, and the
portfolio). Only for the commodities return series does GARCH-t perform poorly. For the latter
series, the long-term mean and autoregressive volatility models prove to be the best under both
squared and absolute error measures. Interestingly, the worst models seem invariant to both the use
of a same-frequency or higher-frequency ex post measure, and to whether the errors are squared
or the absolute values taken; a bad model appears to be a bad model whatever. Models which fit
into this category are the random walk in volatility, the exponential GARCH, and the exponentially
weighted moving average model.

Risk management evaluation criteria
The corresponding evaluations for the forecasts when used in a risk management context are given
in Tables XI to XVIII. Volatility forecasts can be employed for the production of 99% and 95%
nominal coverage rates for the value at risk estimates. In other words, forecasts are generated
in respect of the amount of capital required to cover expected losses on 99% and 95% of days
respectively. The results for these two sets of nominal coverage rates are provided in Tables XI to
XIV and XV to XVIII respectively for the 1-day, 1-week, 2-week and 1-month horizons. Three
statistics are presented in each table—the time until first failure (TUFF), the proportion of failures
(FT), and the test statistic associated with whether this proportion of failures is significantly higher
than the nominal rate (UCF). Also given are the model rankings according to FT and UCF15 as
described above.

13 Of course, the results for the one-step-ahead evaluations will be identical to those of Tables III to VI.
14 Mean squared errors are reduced by roughly an order equivalent to the forecasting horizon, while absolute errors are reduced by a factor
of around two for all horizons.
15 The rankings according to FT and UCF will, of course, by definition be identical.
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The first point to note is that if the objective is to cover 99% of future losses, then almost none of
the models are adequate. The proportion of exceedences for the bond, share and commodity assets
is always considerably in excess of 1%—typically 1.4–2%. Thus for example, even the best model
at the 1-day horizon for the commodities data, which is the long term mean, has nearly 70% more
violations of value at risk in the hold-out sample than would be expected under the null. Also for
this series, the majority of models have a TUFF statistic that takes on a value of one—that is, they
fail at the first observation! Almost none of the models for any of the four asset classes makes it
to the hundredth observation, the expected time until first failure. Consequently, the UCF statistic
rejects all models for all individual asset series at all horizons.

Matters are improved somewhat for the portfolio of assets, presumably as a result of the benefits
of diversification in reducing the number of extreme observations that lead to an exceedence of
the VaR. The typical proportion of exceedences is reduced to around 1.2%, and although only
the multivariate GARCH model has fewer than 1% exceedences, several models are acceptable
according to the UCF test statistic. Similar patterns are revealed at the 1-day and longer horizons.
The models fare much better when only 95% coverage is desired; more than half of the models
achieve their nominal rate. In terms of model rankings, the long-term mean and the linear regression
in volatility models seem preferable, although again, there is no uniformly most accurate model.
The GARCH model seems to provide reasonably accurate VaR estimates, evidenced by its actual
coverage rate being close to the nominal rate, although there is a tendency to over-estimate the
VaR, a result also observed by Brooks, Clare and Persand (2000).

CONCLUSIONS

This paper has sought to re-examine the volatility forecasting literature in the context of a relatively
new use of volatility forecasts—for financial (market) risk assessment. A number of our results
are worthy of further note. First, the gain from using a multivariate GARCH model for forecasting
volatility, which has not been previously investigated, is minimal. This result is true both under
standard statistical and risk management evaluation measures. Given the complexity, estimation
difficulties, and computer-intensive nature of MGARCH modelling, we conjecture that unless the
conditional covariances are required, the estimation of multivariate GARCH models is not worth
while. In the context of portfolio volatility, more accurate results can be obtained by aggregating the
portfolio constituents into a single series, and forecasting that, rather than modelling the individual
component volatilities and the correlations between the returns.

Second, it appears that some models are poor performers irrespective of both the series on which
they are estimated and the loss function used to evaluate their forecasts. The random walk in
volatility, the EGARCH and to a lesser extent the EWMA models, fall into this category.

When it comes to selecting the ‘best’ model for forecasting, however, the particular evaluation
measure employed plays a predominant role. Whilst there seems to be little difference in the model
rankings when the ex post measure is changed from low-frequency to high-frequency squared
returns, the differences between rankings under statistical and risk management procedures are
substantial. Although generalizing across data series (asset classes) and investment horizons is
difficult, overall the statistical measures preferred the GARCH(1,1) model over simpler techniques
and over its extensions and variants. On the other hand, when evaluated in the context of VaR
estimates which achieve an appropriate out-of-sample coverage rate, the simplest models, such as
the long-term mean (historical average) or the autoregressive volatility model, are preferred. We
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thus concur with Dacco and Satchell (1999) in arguing that the choice of loss function can have
an over-riding effect upon volatility forecasting accuracies; thus the debate on superior volatility
forecasting models should be considered far from resolved.
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