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Abstract

We construct optimal portfolios of equity funds by combining historical returns on funds

and passive indexes with prior views about asset pricing and skill. By including both

benchmark and nonbenchmark indexes, we distinguish pricing-model inaccuracy from

managerial skill. Modest confidence in a pricing model helps construct portfolios with high

Sharpe ratios. Investing in active mutual funds can be optimal even for investors who believe

managers cannot outperform passive indexes. Optimal portfolios exclude hot-hand funds even

for investors who believe momentum is priced. Our large universe of funds offers no close
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1. Introduction

Selecting a portfolio of mutual funds involves a combination of data and
judgment. Relying solely on historical fund returns risks overinvesting in funds that
have been lucky, especially when funds have short track records. An investor seeking
the highest Sharpe ratio can take another extreme and simply combine a riskless
investment with a market index fund, accepting completely the CAPM’s investment
implication. That approach might also be viewed as unappealing because it
ignores any information in the data about the inevitable shortcomings of any
pricing model, be it the CAPM or another, and it avoids any consideration of
evidence that some managers might possess stock-picking skill. How can an
investor combine information in the returns data about pricing-model error and
managerial skill with his prior judgment about how important those considerations
could be?
We develop and implement a framework in which prior views and empirical

evidence about pricing models and managerial skill can be formally incorporated
into the investment decision. Our framework relies on a set of passive indexes or
‘‘assets’’, consisting of nonbenchmark assets as well as the benchmark assets
prescribed by a pricing model. A common interpretation of alpha, the intercept in a
regression of the fund’s excess return on the benchmarks, is that it represents the skill
of the fund’s manager in selecting mispriced securities. That interpretation is subject
to a number of pitfalls, including a concern that the benchmarks used to define alpha
might not price all passive investments. We allow an investor to have prior beliefs
about a skill measure that is instead defined as the intercept in a regression of the
fund’s return on our entire set of passive assets. At the same time, we allow the
investor to have prior beliefs about the potential mispricing of the nonbenchmark
assets with respect to the benchmarks. In other words, an investor can have prior
beliefs that distinguish managerial skill from pricing-model inaccuracy.
Evaluating mutual fund performance is a topic of long-standing interest in the

academic literature, but few if any studies have addressed the selection of an optimal
portfolio of funds. Instead of using the historical data to estimate performance
measures or produce fund rankings, this study uses the data to explore the mutual-
fund investment decision. Specifically, from an investment universe of over 500 no-
load equity funds, we construct portfolios having the ex ante maximum Sharpe ratio
based on a Bayesian predictive distribution that combines the information in
historical returns with an investor’s prior beliefs, accounting for parameter
uncertainty. We entertain priors representing a range of beliefs about managerial
skill as well as the accuracy of each of three pricing models: the CAPM, the three-
factor Fama-French model, and the four-factor model of Carhart (1997). The last
model supplements the three Fama-French benchmarks with a ‘‘momentum’’ factor,
the current month’s difference in returns between the previous year’s best- and
worst-performing stocks. Unlike the actual returns on mutual funds, a pricing
model’s benchmark returns are generally computed without deducting any of
the costs associated with implementing the underlying investment strategies.
Therefore, while the zero-cost (hypothetical) returns on the passive benchmark
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and nonbenchmark indexes are used in the modeling and estimation, only mutual
funds are assumed eligible for investment.
We find that when the hypothetical benchmarks are recognized as being

unavailable for investment, there need not exist close substitutes for them in the
universe of mutual funds. For an investor who believes completely in the accuracy of
the Fama-French model and precludes managerial skill, the perceived maximum
Sharpe ratio is only 66% of what could be achieved by direct investment in that
model’s benchmarks. For a believer in the Carhart four-factor model, the
corresponding value is 54%. Moreover, actively managed funds can be better
substitutes for the benchmarks than existing passive funds, so active funds can be
selected even by investors who admit no possibility of managerial skill. On the other
hand, we find that a ‘‘hot-hand’’ portfolio of the previous year’s best-performing
mutual funds does not enter the optimal portfolio under any set of prior beliefs
about skill or mispricing we consider, even if the investor has complete confidence in
the four-factor model that includes a momentum factor as a benchmark.
We also demonstrate that optimal portfolios of mutual funds are influenced

substantially by prior beliefs about both managerial skill and pricing models. For
example, consider two investors who both rule out managerial skill but believe
strongly in different models: one believes in the CAPM while the other embraces a
four-factor model. If either investor is forced to hold the portfolio of funds chosen
by the other, the resulting ex ante loss is about 60 basis points per month in certainty
equivalent return.1 A possibly flawed pricing model is still useful in identifying
optimal portfolios because it allows the model’s benchmark assets to supply
information about the funds’ expected returns. Consider, for example, an investor
who rules out skill and whose prior 95% confidence interval for the difference
between a fund’s expected return and the CAPM-implied value is plus or minus 4%
per annum. If that investor is forced to hold the portfolio of funds chosen by an
investor who makes no use of a pricing model whatsoever, the certainty equivalent
loss is 26 basis points per month. Even for a ‘‘completely skeptical’’ investor who
rules out the usefulness of pricing models as well as skill by fund managers, the
longer histories of returns on the passive assets provide information about funds’
return moments that is valuable in the investment decision. The importance of prior
beliefs is demonstrated in ex post out-of-sample results as well. Over the past 20
years, two investors with different prior beliefs about either pricing models or
potential managerial skill would have experienced substantially different returns on
their portfolios of mutual funds selected each year from the available universe.
This study, given its Bayesian approach, is related to the recent article by Baks

et al. (2001), who estimate funds’ alphas using informative prior beliefs about alpha.
They investigate the degree to which informative priors can preclude an investor
from inferring that at least one actively managed fund has a positive alpha. This
inference relates to an investment problem of a mutual fund investor who can also
earn the hypothetical costless returns on the benchmark indexes. In that setting, if a

1The level of risk aversion is set to that of an investor who allocates 100% to a market index if the

investment universe contains only that index plus a riskless asset.
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given fund’s alpha is greater than zero, then combining that fund with a position in
the benchmarks produces a higher Sharpe ratio than an investment in the
benchmarks alone. Our study differs from the important contribution of Baks
et al. (2001) in a number of ways, including that we (i) construct portfolios of funds
from the available universe, (ii) do not treat the benchmark returns as directly
available for investment, and (iii) distinguish beliefs about the ability of the
benchmarks to price passive assets from beliefs about the potential skill of fund
managers.
The remainder of the study proceeds as follows. Section 2 discusses the

econometric framework, Section 3 presents the results of the investment problem,
and Section 4 briefly reviews our conclusions.

2. Framework and methodology

Prior beliefs about pricing models can be useful to someone investing in mutual
funds. A pricing model implies that a combination of the model’s benchmark assets
provides the highest Sharpe ratio within a passive universe. That implication is useful
to an investor seeking a high Sharpe ratio, even if the investor has less than complete
confidence in the model’s pricing accuracy and cannot invest directly in
the benchmarks. Prior beliefs about managerial skill are also important in the
investment decision. One investor might believe completely in a model’s accuracy in
pricing passive assets but believe active managers could well possess stock-picking
skill. Another investor might be skeptical about the ability of fund managers to pick
stocks as well as the ability of academics to build accurate pricing models.
This section develops an econometric framework that allows an investor to

combine information in the data with prior beliefs about both pricing and skill.
Nonbenchmark assets allow us to distinguish between pricing and skill, and they
supply additional information about funds’ expected returns. In addition, nonbench-
mark assets help account for common variation in funds’ returns, making the
investment problem feasible using a large universe of funds. The Bayesian
econometric framework here is very similar to that in P!astor and Stambaugh
(2002), who address performance estimation rather than investment decision
making. Consequently, they specify noninformative prior beliefs about the degree
of skill a fund manager might possess.

2.1. Mispricing versus skill

Let rN ;t denote the m � 1 vector of returns in month t on m nonbenchmark passive
assets, and let rB;t denote the vector of returns on the k benchmark assets relevant to
a given pricing model. We use ‘‘returns’’ to denote rates of return in excess of a
riskless interest rate or payoffs on zero-investment spread positions. Define the
multivariate regression

rN ;t ¼ aN þ BNrB;t þ eN ;t; ð1Þ
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where the variance–covariance matrix of eN ;t is denoted by S: Also define the
regression of a given fund’s return on all p ð¼ m þ kÞ passive assets,

rA;t ¼ dA þ c0ANrN;t þ c0ABrB;t þ uA;t; ð2Þ

where the variance of uA;t is denoted by s2u: All regression disturbances are assumed
to be normally distributed, independently and identically across t; and uncorrelated
across funds. In other words, we assume that the nonbenchmark assets account for
covariance in fund returns that is not captured fully by the benchmarks.
In both commercial and academic settings, much interest attaches to a fund’s

alpha, defined as the intercept aA in the regression

rA;t ¼ aA þ bArB;t þ eA;t: ð3Þ

Alpha is often interpreted as skill displayed by the fund’s manager in selecting
mispriced securities, but a nonzero alpha need not reflect skill if some passive assets
can also have nonzero alphas. In that scenario, a manager could achieve a positive
alpha in the absence of any skill simply by starting a new fund that invests in
nonbenchmark passive assets with historically positive alphas. To address such
concerns, one can expand the set of benchmarks to include more passive assets, even
to the point of including all assets available to the manager. Indeed, as observed by
Grinblatt and Titman (1989, p. 412), ‘‘ythe unconditional mean–variance efficient
portfolio of assets that are considered tradable by the evaluated investor provides
correct inferences about the investor’s performancey links between performance
measures and particular equilibrium models are not necessary’’. Chen and Knez
(1996) adopt a similar approach in a conditional setting, in that they evaluate funds
with respect to a set of passive benchmarks selected without regard to a pricing
model: ‘‘ywe argue that for application purposes, one does not need to rely on asset
pricing models to define an admissible performance measure’’ (p. 515).
In practice, the number of passive assets must be limited in some fashion. Our

empirical design includes p passive assets, consisting of k benchmarks and m

nonbenchmark assets, and the benchmarks are associated with popular asset pricing
models. Suppose one admits the possibility that the benchmarks do not price the
nonbenchmark assets exactly, that is aNa0: Then dA; the intercept in Eq. (2), is a
better measure of skill, in that it is defined with respect to the more inclusive set of
passive assets. Of course, that measure might still be nonzero for passive assets
omitted from the set of p: The point is simply that inadequacy of dA as a skill
measure implies inadequacy of aA; whereas dA can be adequate when aA is not.
The skill measure dA is defined with respect to the overall set of p assets, but the

investor nevertheless finds it useful to partition that set into k benchmark and m

nonbenchmark assets. Even though the investor is unwilling to assume that the k

benchmarks price the nonbenchmark assets exactly, he might nevertheless believe
that the benchmarks possess some pricing ability. That pricing ability, albeit
imperfect, helps the investor identify portfolios with high Sharpe ratios, as illustrated
in Section 3.
The prior distributions for the parameters of the regressions in Eqs. (1) and (2) are

the same as in P!astor and Stambaugh (2002), with the exception of the prior about
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managerial skill. The prior for BN is diffuse, the prior for S is inverted Wishart, the
prior for s2u is inverted gamma, and the prior for cA ¼ ðc0ANc0ABÞ

0; conditional on s2u; is
normal. The values for the parameters of the prior distributions are specified using
an empirical Bayes procedure described in P!astor and Stambaugh (2002).
Prior beliefs about pricing are specified as follows. Conditional on S; the prior for

aN is normal,

aN jSBN 0;s2aN

1

s2
S

� �� �
; ð4Þ

where EðSÞ ¼ s2Im: P!astor and Stambaugh (1999) introduce the same type of prior
for a single element of aN ; and P!astor (2000) and P!astor and Stambaugh (2000) apply
the multivariate version in Eq. (4) to portfolio-choice problems. The investor’s
beliefs about pricing are characterized by saN

; the marginal prior standard deviation
of each element in aN : Specifying saN

¼ 0 is equivalent to setting aN ¼ 0;
corresponding to perfect confidence in the benchmarks’ pricing ability. A diffuse
prior for aN corresponds to saN

¼ N:With a nonzero finite value of saN
; prior beliefs

are centered on the pricing restriction, but some degree of mispricing is entertained.
We refer to saN

as mispricing uncertainty.
Prior beliefs about managerial skill are specified in a similar manner. Conditional

on s2u; the prior for dA is normal,

dAjs2uBN d0;
s2u

Eðs2uÞ

� �
s2d

� �
: ð5Þ

The conditional prior variance of dA is positively related to s2u for a reason similar to
that given for the corresponding assumption in Eq. (4). If the variation in the fund’s
return is explained well by that of the benchmarks, so that s2u is low, then it is less
likely that the fund’s manager can achieve a large value for dA:
We assume that an investor selecting a portfolio of mutual funds generally has

informative prior beliefs about the fund managers’ ability to achieve a nonzero dA:
Therefore, we set s2d; the marginal prior variance of dA; to finite values and specify d0
as a function of the fund’s costs. If a fund manager possesses no skill, then dA should
simply reflect costs, since the returns on the p passive assets used to define dA have no
costs deducted. To represent a prior belief that precludes skill, we set sd ¼ 0 and
specify

d0 ¼ � 1
12
ðexpense þ 0:01� turnoverÞ; ð6Þ

where expense is the fund’s average annual expense ratio and turnover is the fund’s
average annual reported turnover. Multiplying the latter quantity by 0.01 is
equivalent to assuming a round-trip cost per transaction of one percent,
approximately the 95 basis points estimated by Carhart (1997) for the average fund
in his sample.2

2Carhart obtains that estimate as the average slope coefficient in monthly cross-sectional regressions of

fund return on ‘‘modified’’ turnover, which includes transactions arising from contributions and

withdrawals. In forecasting future transactions, it seems reasonable to abstract from growth or shrinkage

of the fund and instead view a fund with either no sales or no purchases as a low-turnover fund. Thus, for
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When one admits some possibility of skill, the link between turnover and prior
expected performance becomes less clear. If the manager does possess skill, then high
turnover is likely to be accompanied by positive performance. On the other hand, if
the manager possesses no skill, then high turnover can only hurt expected
performance. If the investor is uncertain about whether the manager has skill, that
is if sd > 0; then the relation between expected turnover and expected performance is
ambiguous. A similar ambiguity arises with expense ratios. We follow an empirical
Bayes approach in specifying how prior expected performance depends on expense

and turnover when sd > 0:3 Specifically, we estimate a cross-sectional regression of
estimated dA on 1

12
expense and 1

12
turnover, where the estimate of dA is the posterior

mean obtained with sd ¼ N: Across a number of alternative methods for including
funds (e.g., minimum history length) and estimating the coefficients (OLS or
weighted least squares), we find that the coefficient on 1

12
expense is consistently about

�1 and is at least twice its standard error. In contrast, the coefficient on 1
12

turnover

fluctuates within an interval roughly between �0:005 and 0.005 and is generally less
than its standard error.4 Guided by this result, we specify

d0 ¼ � 1
12

expense ð7Þ

as the prior mean of dA when sd > 0:
Our framework assumes that funds’ sensitivities to passive assets are constant over

time. One way of relaxing this assumption is to model these coefficients as linear
functions of state variables, as for example in Ferson and Schadt (1996) and Shanken
(1990). In such a modification, passive-asset returns scaled by the state variables can
be viewed as returns on additional passive assets (dynamic passive strategies), and
the approach developed here could be extended to such a setting. Another approach
to dealing with temporal variation in parameters could employ data on fund
holdings. Daniel et al. (1997) and Wermers (2000), for example, use such data in
characteristic-based studies of fund performance.

2.2. Data and the investment problem

The mutual fund data come from the 1998 CRSP Survivor Bias Free Mutual Fund
Database.5,6 Our initial sample contains 2,609 domestic equity mutual funds. We
exclude multiple share classes for the same fund as well as funds with only a year or
less of available returns. The initial sample is used to obtain the values of the prior

(footnote continued)

the value of turnover in Eq. (6) we use reported turnover, defined as the minimum of the fund’s purchases

and sales divided by its average total net assets.
3An alternative approach, proposed by Baks et al. (2001), is to specify a prior for performance that is

truncated below at a point that reflects expenses as well as an estimate of transaction costs.
4Wermers (2000) finds that turnover does not exhibit a significant relation to net performance after

adjusting for risk and asset characteristics.
5CRSP, Center for Research in Security Prices, Graduate School of Business, The University of

Chicago 1999, crsp.com. Used with permission. All rights reserved.
6We are grateful to Thomas Knox and the authors of Baks et al. (2001) for providing us with a number

of corrections to the CRSP Mutual Fund Database.
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parameters in the empirical Bayes procedure mentioned previously. To form the
investment universe, we reduce the initial sample of 2,609 funds to the 503 funds that
(i) charge no load fee, (ii) exist at the end of 1998, (iii) have at least 36 months of
return history under the most recent manager, and (iv) have data on expense ratios
and turnover rates. We exclude funds that charge load fees simply because it is not
clear how to treat the payment of such fees within the single-period setting implicit in
maximizing the Sharpe ratio. For each fund we compute the monthly return in excess
of that on a one-month Treasury bill.
Our set of benchmark and nonbenchmark passive assets consists of the eight

portfolios used in P!astor and Stambaugh (2002). Monthly returns on all passive
assets are available over the period of July 1963 through December 1998. We specify
up to four benchmark series. The first three consist of the factors constructed by
Fama and French (1993), updated through 1998: MKT, the excess return on a broad
market index, and SMB and HML, payoffs on long-short spreads constructed by
sorting stocks according to market capitalization and book-to-market ratio.7 The
fourth series, denoted as MOM, is the momentum factor constructed by Carhart
(1997). When pricing-model beliefs are centered on the CAPM, then SMB, HML,
and MOM become three of the nonbenchmark series. Similarly, when beliefs are
centered on the Fama-French model, MOM is then one of the nonbenchmark series.
Four additional series are used as nonbenchmark returns with all three pricing
models. The first of these, denoted as CMS, is the payoff on a characteristic-matched
spread in which the long position contains stocks with low HML betas and the short
position contains stocks with high HML betas. The remaining three series are
industry portfolios, denoted as IP1, IP2, and IP3. Details on the construction of the
passive assets, as well as the reasoning behind choosing this particular set, are
provided in P!astor and Stambaugh (2002).
Under various prior beliefs about skill and pricing, we construct portfolios with

the highest Sharpe ratio, defined as expected excess return divided by the standard
deviation of return. The p passive assets used to define dA are included in the
econometric specification, but since returns on those assets do not include any
implementation costs, only the 503 no-load mutual funds are assumed eligible for
investment. In addition, short positions in funds are precluded.
Let R denote the sample data, consisting of returns on passive assets and funds

through month T ; and let rTþ1 denote the vector of returns on the funds in month
T þ 1: In solving the investment problem, Sharpe ratios are computed using
moments of the predictive distribution of the funds’ returns,

pðrTþ1jRÞ ¼
Z
y

pðrTþ1jR; yÞpðyjRÞ dy; ð8Þ

where pðyjRÞ is the posterior distribution of the parameter vector, y:8 The first two
moments of this predictive distribution are derived in the appendix. The fund’s

7We are grateful to Ken French for supplying these data.
8Early applications of Bayesian methods to portfolio choice, using diffuse prior beliefs, include Zellner

and Chetty (1965), Klein and Bawa (1976), and Brown (1979). Recent examples, using informative priors,

include P!astor (2000) and P!astor and Stambaugh (2000).
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history is used only back to the month beginning the most recent manager’s tenure,
whereas the return histories of the p passive assets begin in July 1963.
A meaningful investment universe can include only those funds that exist at the

end of the sample period, December 1998, but this selection criterion raises the issue
of survival bias. In particular, under prior beliefs that admit the possibility of skill
ðsd > 0Þ; one might be concerned that the posterior mean of a manager’s skill measure
dA is overstated by a failure to condition on the fund’s having survived. Baks et al.
(2001) make the interesting observation that, if the priors for skill are independent
across funds (as we assume), and if a fund’s survival depends only on realized return
histories, then the posterior distribution of the parameters for the surviving funds is
unaffected by conditioning on their survival. In essence, the Bayesian posterior for
the parameters conditions on the return histories in any event, and those return
histories subsume the information in knowing the fund survived, if survival depends
only on realized returns. Like Baks, Metrick, and Wachter, we find the latter view of
survival to be plausible, and thus we proceed under that assumption. (For additional
discussion of this issue, see also P!astor and Stambaugh, 2002.)

3. Investment results

Table 1 reports weights in the optimal portfolio for investors with various beliefs
about managerial skill and mispricing of passive assets under the CAPM. (The
weights in each column of Panel A add to 100%.) For convenience, we refer
throughout to a portfolio having the highest ex ante Sharpe ratio within a given
universe as ‘‘optimal’’. Mispricing uncertainty, saN

; is assigned values of zero, 1%,
and 2% (per annum), while skill uncertainty, sd; is assigned values of zero, 1%, 3%,
and infinity. Tables 2 and 3 report corresponding results for two other pricing
models, the Fama-French three-factor model (Table 2) and the Carhart four-factor
model (Table 3). Table 4 reports optimal weights for saN

¼N; in which case the
investor makes no use of the pricing models.

3.1. How unique are the selected funds?

In each of Tables 1–4, Panel B compares the optimal portfolios in Panel A to the
optimal portfolios constructed from universes of funds that exclude those in the
original portfolios. In other words, for each sa and sd; the same optimization
problem is solved a second time, but the funds selected for the original portfolio are
excluded from consideration. From the perspective of an investor with a given set of
prior beliefs, this comparison reveals the extent to which there exist close substitutes
for the funds selected originally. Panel B reports the correlation between the original
and alternative portfolio as well as the difference in certainty equivalent returns. The
certainty-equivalent difference is computed for an investor who maximizes the
mean–variance objective,

Cp ¼ Ep � 1
2
As2p; ð9Þ
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where Ep and s2p denote the mean and variance of the excess return on the investor’s
overall portfolio (including unrestricted riskless borrowing and lending). Risk-
aversion, A; is set to 2.75, which is the level at which an investor would allocate
100% to the benchmark index MKT if the investment universe contained just that
single risky position in addition to the riskless asset. The correlation and certainty
equivalents are computed using the same predictive distribution used in the portfolio
optimization.

Table 1

Portfolios with the highest Sharpe ratio under priors for CAPM mispricing and skill of fund managers

The investment universe consists of 503 no-load equity mutual funds with at least three years of return

history through December 1998. The benchmark index return MKT is the excess return on the value-

weighted stock market. The correlations and certainty-equivalent differences in Panels B and C are

computed with respect to the same predictive distribution used to obtain the optimal fund portfolio in the

same column. The certainty-equivalent differences are computed with relative risk aversion equal to 2.75.

Mispricing uncertainty (saN
) in percent per year: 0 0 0 0 1 1 1 1 2 2 2 2

Skill uncertainty (sd) in percent per year: 0 1 3 N 0 1 3 N 0 1 3 N

Panel A. Portfolio weights ð�100Þ
Ameristock Mutual Fund F F 22 F F F 22 F F F 20 F
BT Institutional:Equity 500 Index Fund 23 41 F F 16 23 F F F F F F
California Investment S&P 500 Index Fund 53 F F F 44 F F F 8 F F F
Cohen & Steers Realty Shares F F F F F F F F 3 5 F F
Century Shares Trust F F F F F F F F 11 F F F
DFA AEW Real Estate Securities Portfolio F F F F F F F F 18 4 F F
Elfun Trusts F F F F F 5 F F F F F F
First American Investment:Real Est Sec/Y F F F F F F F F 11 5 F F
First Funds:Growth and Income Portfolio/I F 6 F F F 5 F F F F F F
Gabelli Asset Fund F F F F F F F F F F 5 F
Galaxy Funds II:Utility Index Fund F F F F 8 F F F 32 18 F F
IDS Utilities Income Fund/Y F F F F F F F F F 2 F F
Legg Mason Eq Tr:Value Fund/Navigator F F 23 71 F F 17 67 F F 4 59

MassMutual Instl Funds:Small Cap Value Eqty/S F F F F F F F F 5 F F F
Oakmark Fund F F 1 F F F 4 F F F 8 F
Robertson Stephens Inv Tr:Information Age/A F F F 15 F F F 11 F F F 5

T. Rowe Price Dividend Growth Fund F F F F F F F F F 4 F F
T. Rowe Price Equity Income Fund F 30 F F F 59 F F F 57 F F
UAM Fds Tr:Heitman Real Estate Portfolio/Inst F F F F F F F F F 3 F F
Vanguard Index Tr:Extended Market Port/Inv 24 F F F 32 F F F 12 F F F
Vanguard PrimeCap Fund F 23 4 F F 9 F F F F F F
Weitz Series Fund:Hickory Portfolio F F F F F F 3 2 F F 6 8

Weitz Series Fund:Value Portfolio F F 51 14 F F 54 20 F 1 57 28

Panel B. Comparison to the portfolio that is optimal for the universe that excludes the funds in the above

portfolio

Correlation (�100) 99 98 93 91 99 98 93 91 95 95 91 92

Certainty-equivalent difference (basis pts./mo.) 0 1 12 43 1 2 12 40 4 5 12 32

Panel C. Comparison to the benchmark index MKT

Correlation (�100) 100 99 95 93 100 98 94 94 89 92 93 94
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In some cases there are close substitutes for the original funds. For example, when
an investor believes completely in the CAPM and rules out managerial skill, the
optimal portfolio is a combination of market-index funds (Table 1, first column).
Not surprisingly, our fund universe contains other index funds in addition to those
selected, and thus the alternative portfolio is highly correlated with the original and
achieves a virtually identical certainty equivalent.
In many other cases the funds originally selected are more unique. For example,

an investor with A ¼ 2:75 who believes completely in the four-factor model and rules
out skill loses 25 basis points per month if forced to hold the alternative portfolio

Table 2

Portfolios with the highest Sharpe ratio under priors for Fama-French-model mispricing and skill of fund

managers

The investment universe consists of 503 no-load equity mutual funds with at least three years of return

history through December 1998. The benchmark factors are MKT, the excess return on the value-weighted

stock market, SMB, the difference between returns on small and large stocks, and HML, the difference

between returns on high and low book-to-market stocks. The correlations and certainty-equivalent

differences in Panels B and C are computed with respect to the same predictive distribution used to obtain

the optimal fund portfolio in the same column. The certainty-equivalent differences are computed with

relative risk aversion equal to 2.75.

Mispricing uncertainty (saN
) in percent per year: 0 0 0 0 1 1 1 1 2 2 2 2

Skill uncertainty (sd) in percent per year: 0 1 3 N 0 1 3 N 0 1 3 N

Panel A. Portfolio weights ð�100Þ
Ameristock Mutual Fund F F 10 F F F 9 F F F 6 F
CGM Realty Fund F 3 F F F 4 F F F 4 F F
Cohen & Steers Realty Shares F F F F F F F F 6 5 F F
Columbia Real Estate Equity Fund F F F F F F F F 3 3 F F
DFA AEW Real Estate Securities Portfolio 13 1 F F 17 4 F F 21 8 F F
DFA Invest Grp:US Large Cap Value Port 2 F F F F F F F F F F F
First American Investment:Real Est Sec/Y 19 13 F F 20 15 F F 21 15 F F
Galaxy Funds II:Utility Index Fund 8 5 F F 13 11 F F 22 18 F F
Legg Mason Eq Tr:Total Return Fund/Navigator 40 10 F F 34 6 F F 21 F F F
Legg Mason Eq Tr:Value Fund/Navigator F F F 44 F F F 43 F F F 41

Mutual Discovery Fund/Z 18 39 37 26 15 35 34 24 6 25 28 18

Oakmark Fund F F 2 F F F 3 F F F 4 F
T. Rowe Price Equity Income Fund F 29 7 F F 25 8 F F 17 12 F
UAM Fds Tr:Heitman Real Estate Portfolio/Inst F F F F F F F F F 3 F F
Weitz Series Fund:Hickory Portfolio F F F 1 F F F 3 F F F 6

Weitz Series Fund:Value Portfolio F F 45 29 F F 47 31 F F 50 35

Panel B. Comparison to the portfolio that is optimal for the universe that excludes the funds in the above

portfolio

Correlation (�100) 95 95 92 93 94 95 92 93 93 94 91 93

Certainty-equivalent difference (basis pts./mo.) 9 11 19 25 8 11 18 24 11 10 15 23

Panel C. Comparison to the combination of the benchmark indexes MKT, SMB, and HML having the highest

Sharpe ratio

Correlation (�100) 75 74 66 55 75 75 65 55 73 74 64 54
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that excludes the funds originally selected (Table 3, first column). The correlation of
that alternative portfolio with the original is only 0.87. As will be discussed later, the
original portfolio in that case is heavily invested in real estate funds. An investor who
believes completely in the Fama-French model and rules out skill would select a
portfolio that contains value-oriented funds as well as some real estate funds (Table
2, first column). If forced to choose an alternative portfolio, that investor loses nine
basis points per month in certainty equivalent, and the alternative portfolio has a
correlation of 0.95 with the original. For larger values of sd; or when no pricing

Table 3

Portfolios with the highest Sharpe ratio under priors for four-factor-model mispricing and skill of fund

managers

The investment universe consists of 503 no-load equity mutual funds with at least three years of return

history through December 1998. The benchmark factors are MKT, the excess return on the value-weighted

stock market, SMB, the difference between returns on small and large stocks, HML, the difference

between returns on high and low book-to-market stocks, and MOM, the difference between returns on

stocks with high and low returns over the previous year (excluding the most recent month). The

correlations and certainty-equivalent differences in Panels B and C are computed with respect to the same

predictive distribution used to obtain the optimal fund portfolio in the same column. The certainty-

equivalent differences are computed with relative risk aversion equal to 2.75.

Mispricing uncertainty (saN
) in percent per year: 0 0 0 0 1 1 1 1 2 2 2 2

Skill uncertainty (sd) in percent per year: 0 1 3 N 0 1 3 N 0 1 3 N

Panel A. Portfolio weights ð�100Þ
Alpine US Real Estate Equity Fund/Y F 1 F F F 1 F F F 1 F F
CGM Realty Fund 1 10 6 F F 9 6 F F 8 5 F
Cohen & Steers Realty Shares 14 14 9 F 14 14 9 F 14 14 10 F
Columbia Real Estate Equity Fund 11 12 6 F 10 12 6 F 9 11 7 F
DFA AEW Real Estate Securities Portfolio 28 19 F F 27 19 F F 26 18 F F
First American Investment:Real Est Sec/Y 20 16 4 F 19 16 5 F 18 15 5 F
Gabelli Asset Fund F F 8 F F F 6 F F F 1 F
Galaxy Funds II:Utility Index Fund 14 11 F F 17 13 F F 21 18 F F
Legg Mason Eq Tr:Value Fund/Navigator F F F 48 F F F 46 F F F 44

Lindner/Ryback Small Cap Fund/Investor F F F 2 F F F 2 F F F 1

Morgan Stanley Dean Witter Ist:US Real Est/A F F 2 F F F 2 F F F 3 F
Mutual Discovery Fund/Z F F 4 7 F F 3 6 F F 2 5

T. Rowe Price Dividend Growth Fund F F 14 F F F 15 F F F 16 F
UAM Fds Tr:Heitman Real Estate Portfolio/Inst 13 16 9 F 12 16 9 F 11 15 9 F
Weitz Series Fund:Hickory Portfolio F F F 10 F F F 11 F F 1 12

Weitz Series Fund:Value Portfolio F F 38 34 F F 39 35 F F 40 37

Panel B. Comparison to the portfolio that is optimal for the universe that excludes the funds in the above

portfolio

Correlation (�100) 87 89 93 92 87 89 93 92 88 89 93 92

Certainty-equivalent difference (basis pts./mo.) 25 24 19 23 26 24 19 22 24 24 20 24

Panel C. Comparison to the combination of the benchmark indexes MKT, SMB, HML, and MOM having

the highest Sharpe ratio

Correlation (�100) 61 62 50 30 61 62 50 30 61 62 50 30
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Table 4

Portfolios with the highest Sharpe ratio under priors for skill of fund managers and no use of a pricing

model ðsaN
¼ NÞ

The investment universe consists of 503 no-load equity mutual funds with at least three years of return

history through December 1998. The benchmark factors are MKT, the excess return on the value-weighted

stock market, SMB, the difference between returns on small and large stocks, HML, the difference

between returns on high and low book-to-market stocks, and MOM, the difference between returns on

stocks with high and low returns over the previous year (excluding the most recent month). The

correlations and certainty-equivalent differences in Panels B–E are computed with respect to the same

predictive distribution used to obtain the optimal fund portfolio in the same column. The certainty-

equivalent differences are computed with relative risk aversion equal to 2.75.

Skill uncertainty ðsdÞ in percent per year: 0 1 2 3 N

Panel A. Portfolio weights ð�100Þ
CGM Realty Fund F 2 2 1 F
Cohen & Steers Realty Shares 13 14 13 11 F
Cappiello-Rushmore Trust:Utility Income Fund F 1 F F F
Columbia Real Estate Equity Fund 7 9 9 7 F
DFA AEW Real Estate Securities Portfolio 20 14 2 F F
First American Investment:Real Est Sec/Y 14 12 11 6 F
Galaxy Funds II:Utility Index Fund 37 32 21 8 F
IDS Utilities Income Fund/Y F 5 5 F F
Legg Mason Eq Tr:Value Fund/Navigator F F F F 32

Morgan Stanley Dean Witter Ist:US Real Est/A F F 2 5 3

Oakmark Fund F F F F 2

T. Rowe Price Dividend Growth Fund F F F 6 F
UAM Fds Tr:Heitman Real Estate Portfolio/Inst 9 12 11 8 F
Weitz Partners Value Fund F F F F 2

Weitz Series Fund:Hickory Portfolio F F F 6 18

Weitz Series Fund:Value Portfolio F F 24 42 43

Panel B. Comparison to the portfolio that is optimal for the universe that excludes the funds in the above

portfolio

Correlation ð�100Þ 89 89 90 92 92

Certainty-equivalent difference (basis pts./mo.) 27 27 22 21 24

Panel C. Correlation ð�100Þ with the portfolio having the highest Sharpe ratio that combines the benchmark

factors shown

MKT 74 76 82 87 94

MKT, SMB, HML 66 66 66 64 51

MKT, SMB, HML, MOM 59 60 57 50 31

Panel D. Comparison to the portfolio that is optimal under sd ¼ 0

Correlation ð�100Þ 100 100 97 89 71

Certainty-equivalent difference (basis pts./mo.) 0 1 6 23 133

Panel E. Comparison to the portfolio that is optimal when expected returns equal sample means

Correlation ð�100Þ 68 69 75 80 91

Certainty-equivalent difference (basis pts./mo.) 477 440 367 310 187
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model is used, the certainty-equivalent differences from the original portfolios are
typically at least 20 basis points per month, and the correlations are about 0.93 or
less.

3.2. How important are beliefs about pricing models and skill?

We stated earlier that a pricing model, even if not believed completely, helps an
investor identify portfolios with high Sharpe ratios. Consider the CAPM, for
example. For an investor who believes completely in the CAPM and rules out skill,
the ideal investment’s return is perfectly correlated with the benchmark index return
MKT. Indeed, as shown in Panel C of Table 1, the portfolio of funds in the first
column essentially possesses that feature. A value of saN

¼ 1% means that, before
examining the data, the investor assigns about a 5% probability to the prospect that
the expected return on a given nonbenchmark passive asset violates its CAPM
prediction by more than 200 basis points per annum in either direction. With that
degree of mispricing uncertainty but the same belief about skill, the optimal portfolio
is still essentially composed of market index funds and has a correlation with MKT
that rounds to 1.00. With twice as much mispricing uncertainty ðsaN

¼ 2%Þ; the
correlation with MKT is 0.89, which is still considerably higher than the value of
0.74 obtained when no pricing model is used (Table 4, Panel C, first entry).
The CAPM continues to influence portfolio choice when the investor admits the

possibility of managerial skill. A value of sd ¼ 1% means that, before examining a
given fund’s track record, the investor assigns about a 2.5% probability to the
prospect that the fund’s manager generates a positive skill measure gross of expenses
of at least 200 basis points per year. (Of course, given the symmetry of our prior, the
investor assigns the same probability to a negative skill measure of that magnitude,
but the left tail is unimportant with short sales precluded.) With that amount of skill
uncertainty, the CAPM can still help the investor construct the portfolio with the
highest Sharpe ratio, even with some uncertainty about the CAPM’s ability to price
passive assets. When sd ¼ 1%; the optimal portfolio has a correlation of 0.92 with
MKT when saN

¼ 2% (Table 1), as compared to a correlation of only 0.76 when no
model is used. With three times as much skill uncertainty ðsd ¼ 3%Þ; the optimal
portfolio’s correlation with MKT is 0.93 when saN

¼ 2% and 0.87 when the model is
not used. That is, even with a substantial degree of willingness to accept the
possibility of managerial skill and only modest confidence in the CAPM, the
investor’s portfolio selection is still influenced by the pricing model.
Note that, holding saN

constant, the correlation of the optimal fund portfolio with
MKT can increase or decrease as a function of sd: When sd ¼ 0; funds are chosen
primarily for their exposures to passive assets. As sd increases, more weight is put on
the funds with high realized returns, and those funds can be more or less correlated
with MKT than the funds chosen for sd ¼ 0: Panel C of Table 1 provides examples
of both possibilities: the correlations go up with sd when saN

¼ 2%; but they go
down with sd when saN

¼ 0:
Portfolio choice is influenced by beliefs in the other pricing models in similar ways

as noted above for the CAPM. For an investor who believes completely in the Fama-
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French model and rules out skill, the ideal investment, if available, would have a
return perfectly correlated with the combination of MKT, SMB, and HML having
the highest Sharpe ratio. As will be discussed below, a close substitute for such an
investment is not available within our fund universe, but a belief in that pricing
model nevertheless plays a role in the selection of funds. For example, the correlation
between the portfolio in the first column of Table 2 and the ideal combination of the
three Fama-French factors is 0.75, whereas the portfolio chosen with the same beliefs
about skill but no use of a pricing model has a correlation of only 0.66 with that
same combination of the three factors (Table 4, Panel C). As before, the pricing
model continues to play a role in portfolio choice as one’s belief in it becomes less
than dogmatic (sa > 0) and the possibility of skill is entertained ðsd > 0Þ:
Panel A of Table 5 compares portfolios formed with the same saN

and sd but
under different pricing models. In comparing portfolios obtained under different
specifications, one portfolio is designated as optimal and the other as suboptimal,
where the suboptimal portfolio is optimal under the alternative specification. We
compare the certainty equivalent for the optimal portfolio, Co; to the certainty
equivalent for a suboptimal portfolio, Cs: Both certainty equivalents are computed
using the predictive moments obtained under the prior beliefs associated with the
optimal portfolio. The difference between any two models ranges between one and
61 basis points per month, depending on the prior uncertainty about mispricing and
skill.9 In general, sample averages receive more weight in estimating expected returns
when one’s prior beliefs about pricing and skill become less informative. As
mispricing uncertainty increases, the portfolios formed with beliefs centered on
different pricing models become more alike: the certainty-equivalent difference drops
and the correlation increases. An increase in skill uncertainty also tends to make the
cross-model difference less important, although not monotonically. The largest
certainty-equivalent differences tend to occur between the CAPM and the four-
factor model when saN

and sd are small. The smallest differences occur between the
Fama-French and four-factor models when sd is large. When saN

and sd are both
1% or less, however, the certainty-equivalent difference between those two models is
at least 19 basis points per month.
In Panel B of Table 5, the optimal portfolio under a given set of beliefs about skill

and mispricing is compared to the portfolio selected by an investor who rules out any
ability of academics to build models and any skill of portfolio managers to pick
stocks. The portfolio of this ‘‘completely skeptical’’ investor, for whom saN

¼N and
sd¼0; is designated as the suboptimal portfolio in computing the pairwise
comparisons described previously. (Its weights are given in the first column of
Table 4.) Suppose one forces that portfolio to be held by an investor who has a
modest degree of confidence in the CAPM, say saN

¼2%; and who admits some

9The reported certainty-equivalent difference is actually the average of two differences, one for each of

the two pricing models designated as producing the optimal portfolio. The correlation reported in Panel A

is similarly the average of two values, one for the predictive distribution associated with each model.

Averaging in this fashion treats the pricing models symmetrically, although generally the two values being

averaged are close to each other.
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possibility of managerial skill, say sd¼1%: Then that investor suffers a certainty-
equivalent loss of 29 basis points per month, or about 3.5% per year. With beliefs
centered around the Fama-French model but again with saN

¼2% and sd¼1%; the
certainty-equivalent loss falls to 15 basis points per month. When skill uncertainty is
1% or less, complete belief in the four-factor model produces a portfolio quite close

Table 5

Comparisons of portfolios of no-load funds formed under various prior beliefs about manager skill and

pricing models

All portfolios being compared are formed from an investment universe of 503 no-load equity mutual

funds with at least three years of return history through December 1998. The pricing models considered

are the Capital Asset Pricing Model of Sharpe (1964) and Lintner (1965), the three-factor Fama-French

(1993) model, and the four-factor model of Carhart (1997), which adds a momentum factor to the Fama-

French model. All of the reported correlations and certainty-equivalent differences are computed using the

predictive distribution formed under the prior mispricing uncertainty ðsaN
Þ and skill uncertainty ðsdÞ in the

column heading. The certainty-equivalent difference is computed with relative risk aversion equal to 2.75.

Mispricing uncertainty ðsaN
Þ in percent per year: 0 0 0 0 1 1 1 1 2 2 2 2

Skill uncertainty ðsdÞ in percent per year: 0 1 3 N 0 1 3 N 0 1 3 N

Panel A. Comparison of the portfolios formed with the same saN
and sd under different pricing models

Certainty-equivalent difference (basis points per month)

CAPM versus Fama-French 26 25 19 28 23 19 14 21 9 8 8 10

CAPM versus four-factor 59 61 34 18 50 51 28 13 24 27 19 5

Fama-French versus four-factor 24 29 19 3 19 23 17 2 10 13 13 1

Correlation ð�100Þ
CAPM versus Fama-French 87 89 93 94 87 91 95 96 97 96 97 98

CAPM versus four-factor 73 71 91 96 76 75 92 97 94 89 93 99

Fama-French versus four-factor 89 84 94 99 92 88 94 99 97 94 94 100

Panel B. Comparison of the optimal portfolio to the portfolio of a ‘‘completely skeptical’’ investor ðsaN
¼ N

and sd ¼ 0Þ
Certainty-equivalent difference (basis points per month)

CAPM 71 74 138 299 53 57 121 275 26 29 89 232

Fama-French 28 35 94 227 22 27 85 217 11 15 67 196

Four-factor 4 6 35 153 3 5 34 151 2 3 31 147

Correlation ð�100Þ
CAPM 73 71 70 60 77 74 71 62 95 90 73 65

Fama-French 87 82 73 69 91 86 73 69 96 93 73 70

Four-factor 98 97 87 69 98 97 87 69 99 98 88 69

Panel C. Comparison of the optimal portfolio to the portfolio that is optimal when expected returns equal

sample means

Certainty-equivalent difference (basis points per month)

CAPM 393 356 259 172 395 358 262 171 404 367 270 171

Fama-French 414 380 281 171 417 383 282 172 426 390 285 174

Four-factor 465 428 302 185 466 429 303 185 468 431 305 185

Correlation ð�100Þ
CAPM 95 95 94 94 94 94 93 95 83 87 89 95

Fama-French 81 82 84 93 80 82 84 93 77 79 84 93

Four-factor 67 67 82 94 67 68 82 94 68 68 81 93
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to that obtained with no use of the model at all, with a certainty-equivalent
difference of six basis points or less and a correlation of at least 0.97. As an investor’s
willingness to accept the prospect of managerial skill increases, so does the
certainty-equivalent loss if forced to hold the portfolio of the completely skeptical
investor. With sd ¼ 3%; for example, the loss is between 31 and 89 basis
points per month with modest confidence ðsaN

¼2%Þ in one of the three pricing
models. With no use of a pricing model, the loss is 23 basis points, as reported in
Panel D of Table 4.
Even with no belief in a pricing model and no preconceived limit on the magnitude

of likely managerial skill, that is when both saN
and sd are infinitely large, the

investor is generally ill-advised in using a fund’s historical average return as the input
for its expected return. A number of papers, including Jobson and Korkie (1980),
show that using sample averages in mean–variance portfolio optimization typically
results in portfolios with poor out-of-sample behavior. If the fund’s history is shorter
than those of the passive assets, then the histories of the passive assets provide
additional information about the fund’s expected return (essentially as in
Stambaugh, 1997). Under the above prior beliefs, the certainty-equivalent loss of
holding the portfolio constructed using sample averages instead of holding the
portfolio constructed using that additional information about expected returns is 187
basis points per month, or more than 22% annually (Panel E of Table 4). The
predictive covariance matrix obtained when saN

¼N and sd¼N is used to construct
both portfolios. As prior beliefs about pricing or skill become informative, the loss
incurred by holding the portfolio based on sample averages becomes even greater, as
is apparent in Panel C of Table 5. The magnitude of the loss is amplified by a
leverage effect. Unlike the portfolio of our Bayesian investor, the portfolio of an
investor who uses sample means is highly levered, since the latter investor borrows
heavily to invest in the funds with high realized returns. Note that while the
differences in leverage affect the certainty equivalent loss, they have no effect on the
correlation between the two portfolios.
Recall that prior beliefs about skill are centered at a value reflecting a fund’s costs.

The results appear to be fairly insensitive to this specification, in that setting d0 to
zero instead of the negative values in Eq. (6) or (7) produces optimal portfolios
(unreported) that are generally very similar to those in Tables 1–4. A notable
exception occurs with dogmatic beliefs in the CAPM and no skill ðsa¼sd¼0Þ; where
the investor essentially constructs the portfolio of funds that best mimics the market
portfolio. In that case, the optimal portfolio with d0 as specified in Eq. (6) includes
only three market index funds (Table 1, first column), whereas the optimal portfolio
with d0¼0 contains over 40 funds. This difference is easily explained. Suppose the
portfolio already includes a fund that is a good proxy for the market. With d0¼0;
there is no penalty for adding more funds that reduce tracking error a bit further,
whatever those funds’ expenses. With d0o0; the small reduction in tracking error
from adding funds is more than offset by the penalty arising from those funds’
somewhat higher expenses. Therefore, the optimal portfolio in the latter case has
fewer funds and a slightly larger tracking error, but the optimal portfolio in either
case has a correlation with the market that rounds to 100%.
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3.3. Who should buy actively managed funds?

One might presume that actively managed funds should be purchased only by
those investors who admit some possibility that active fund managers possess stock-
picking skill. For investors presented with our universe of 503 no-load funds, that
need not be the answer. An investor who believes completely in the CAPM and
admits no possibility of managerial skill does indeed invest only in market-index
funds (Table 1). As the investor’s beliefs depart from complete confidence in the
CAPM, however, actively managed funds enter the optimal portfolio even if the
investor still adheres to a belief that managerial skill is impossible. If one can invest
directly and costlessly in the p passive assets used to define the skill measure dA; then
indeed long positions in funds arise only when positive dA’s are thought possible.
With positive dA’s precluded, one simply combines the passive assets to obtain the
highest Sharpe ratio. Baks et al. (2001) essentially pose their active management
question in that context. If instead the p passive assets are not available for
investment, as in our setup, perfect substitutes for them need not exist in the mutual
fund universe, let alone in its passively managed subset. As a result, some actively
managed funds can become attractive even to investors who admit no chance of
managerial skill.
A striking example of the above possibility occurs in the first column of Table 2.

The investor in that case believes completely in the Fama-French model and in no
chance of managerial skill. Nevertheless, the bulk of that investor’s optimal portfolio
is allocated to actively managed value funds and real estate specialty funds: Legg
Mason Total Return, Mutual Discovery, First American Investment Real Estate
Securities and DFA AEW Real Estate Securities. Table 6 reports posterior means of
the intercept and selected slopes in Eq. (2) for all funds that receive at least a 10%
allocation in any of the porfolios in Tables 1–4. The selection of the above funds has
nothing to do with their having superior historical performance. In fact, three of the
four funds listed above have negative #dA’s. With saN

¼ sd ¼ 0; the expected returns
on these funds, gross of costs, are assumed to conform exactly to the Fama-French
model. The presence of these funds in the optimal portfolio is instead driven by their
risk characteristics. Note, for example, that all four funds have significantly positive
slopes on HML.

3.4. Hot hands?

To the universe of 503 no-load funds, we also add a portfolio of funds with high
recent returns, motivated by previous research indicating short-run persistence in
fund performance.10 At the end of each year, starting with December 1962, we sort
all no-load equity funds by their total returns over the previous 12 months (including
only funds with returns reported for those months) and form the equally weighted
‘‘hot-hand’’ portfolio of the top 10%. As Carhart (1997) observes, such a portfolio

10See, for example, Grinblatt and Titman (1992), Hendricks et al. (1993), and Brown and Goetzmann

(1995).
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has a positive sensitivity to the momentum factor MOM, which is confirmed by the
results in Table 6. The hot-hand portfolio appears in the last row, and the posterior
mean of its coefficient on MOM is 0.15 (with a ‘‘t-statistic’’ of 8.7, calculated as the
posterior mean divided by posterior standard deviation). This portfolio does not
enter any of the optimal portfolios reported in Tables 1–4. When the hot-hand
portfolio is formed from the universe of all funds, as opposed to just the no-load
subset, the posterior mean of its coefficient on MOM is 0.21 with a t-statistic of 12.4.
That version of the hot-hand portfolio also does not enter any of the optimal
portfolios in Tables 1–4.

Table 6

Coefficients in regressions of fund returns on the passive-asset returns

The table reports posterior means (multiplied by 100) of the intercept ðdAÞ and selected slope coefficients in
a regression of the fund’s return on the returns of eight passive assets. The passive assets are CMS, a

spread between stocks with high and low HML betas but with both legs matched in terms of market

capitalization (size) and book-to-market ratios, IP1–IP3, three portfolios formed by applying principal-

component analysis to a set of 20 industry portfolios, MOM, the difference between returns on stocks with

high and low returns over the previous year (excluding the most recent month), SMB, the difference

between returns on small and large stocks, HML, the difference between returns on high and low book-to-

market stocks, and MKT, the excess return on the value-weighted stock market. The ‘‘t-statistics’’ used to

determine significance are calculated by dividing the coefficient’s posterior mean by its posterior standard

deviation.

d MOM SMB HML MKT

Ameristock Mutual Fund 0.39n �6 �34nn 8 90nn

BT Institutional:Equity 500 Index Fund 0.09 �2 �25nn �2 96nn

CGM Realty Fund �0.14 19n 58nn 63nn 109nn

California Investment S&P 500 Index Fund 0.07 �2 �24nn �2 96nn

Century Shares Trust �0.45 9 8 43nn 132nn

Cohen & Steers Realty Shares �0.22 28nn 69nn 53nn 102nn

Columbia Real Estate Equity Fund �0.26 22nn 46nn 61nn 94nn

DFA AEW Real Estate Securities Portfolio �0.59n 23nn 57nn 64nn 99nn

First American Investment:Real Est Sec/Y �0.29 16n 47nn 71nn 106nn

Galaxy Funds II:Utility Index Fund �0.57n 13nn 13 63nn 140nn

Legg Mason Eq Tr:Total Return Fund/Navigator �0.16 �6 10 67nn 91nn

Legg Mason Eq Tr:Value Fund/Navigator 0.84nn �5 �24n �14 82nn

Mutual Discovery Fund/Z 0.34 �10 39nn 57nn 64nn

Robertson Stephens Inv Tr:Information Age/A 1.13 8 32 �133nn 75n

T. Rowe Price Dividend Growth Fund 0.21n 4 �3 20nn 78nn

T. Rowe Price Equity Income Fund 0.16n �6nn 0 36nn 70nn

UAM Fds Tr:Heitman Real Estate Portfolio/Inst �0.32 31nn 70nn 52nn 107nn

Vanguard Index Tr:Extended Market Port/Inv �0.08 6nn 54nn �3 103nn

Vanguard PrimeCap Fund 0.44nn �3 9 �32nn 68nn

Weitz Series Fund:Hickory Portfolio 0.56 0 61nn 18 108nn

Weitz Series Fund:Value Portfolio 0.41n �4 19nn 18n 72nn

Hot-Hand Portfolio �0.00 15nn 48nn �8n 93nn

nThe coefficients are statistically significant at the 5% level.
nnThe coefficients are statistically significant at the 1% level.
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As Carhart (1997) points out, the hot-hand portfolio is a kind of momentum play.
Even a strong belief in momentum, which in our setting amounts to a strong belief in
Carhart’s four-factor model, does not result in an allocation to the hot-hand
strategy. As we discover, one reason for this outcome is the existence of other funds
that apparently offer even stronger momentum plays, at least in the sense that they
have higher coefficients on MOM. The first column of Table 3 displays the portfolio
selected by an investor who rules out skill and has complete confidence in the four-
factor model. Note that the bulk of this portfolio is invested in real estate funds. The
regression results in Table 6 reveal that the posterior means of the MOM coefficients
for many of these funds are higher than that for the hot-hand portfolio. Perhaps as
importantly, the coefficients on SMB, HML, and MKT for these funds are also
positive and relatively large. This is consistent with the evidence in Sanders (1997),
who reports significantly positive SMB, HML, and MKT betas for real estate
investment trust indices between 1978 and 1996. The highest-Sharpe-ratio portfolio
of the benchmarks in the four-factor model contains those three factors and MOM
in positive amounts. In our sample, real estate funds offer exposures to all four
factors, and that feature makes them attractive to investors who believe in that
model. When prior beliefs admit the possibility of skill, funds enter the optimal
portfolio due to their average realized returns as well as their risk characteristics.
This does not help the hot-hand portfolio, since the posterior mean of its dA is less
than a basis point from zero.11

3.5. What if the benchmarks were available for investment?

In constructing the optimal portfolios analyzed in Tables 1–5, we preclude
investment directly in the benchmark indexes, due to the fact that their returns omit
any costs of implementing the underlying hypothetical investment strategies. The
results discussed earlier reveal that perfect confidence in either the Fama-French or
Carhart four-factor model does not result in an optimal portfolio of funds that
closely mimics the optimal combination of the model’s benchmark indexes. For an
investor who has complete confidence in the Fama-French model and rules out skill
ðsaN

¼sd¼0Þ; the correlation between the portfolio of funds and the optimal
benchmark combination is only 0.75 (Table 2, Panel C). Moreover, such an investor
judges the highest Sharpe ratio obtainable within the fund universe to be only 0.66
times that of the highest Sharpe ratio obtainable by combining the benchmarks.12

11The hot-hand porfolio has a positive alpha with respect to the Fama-French benchmarks and receives

a substantial positive allocation when the investment universe contains only those three benchmarks and

the hot-hand portfolio. Knox (1999) provides a treatment of this case in a Bayesian portfolio-choice

setting.
12The latter number is not reported in the tables. If d0 were set to zero for each fund, the correlation

between the two portfolios would equal the Sharpe ratio of the fund portfolio divided by the Sharpe ratio

of the benchmark portfolio. In that case, the second portfolio would have the highest possible Sharpe ratio

for the overall universe of funds and passive assets with investment weights unconstrained (i.e., short sales

permitted), and an exact relation between correlations and Sharpe ratios applies (e.g., Kandel and

Stambaugh, 1987; Shanken, 1987).
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Under the Carhart model, the correlation between the optimal fund portfolio and
the optimal combination of the four benchmarks is only 0.61 (Table 3, Panel C), and
the Sharpe ratio of the first portfolio is only 0.54 times that of the second.13

Clearly, restricting the benchmark indexes to be unavailable for direct investment
is not innocuous. To calibrate further the importance of that restriction, Table 7
compares the original funds-only portfolio with optimal portfolios computed under
alternative scenarios that allow unrestricted long or short positions in one or more of
the benchmarks. For example, the rows labeled ‘‘MKT’’ compare the original funds-
only portfolio to the portfolio constructed from a universe that also allows long or
short positions in that market index. As before, short fund positions are precluded.
Recall that the fund universe offers close substitutes for a long position in MKT, so
the principal difference here is the ability to short that index. Not surprisingly, for an
investor who believes dogmatically in the CAPM and rules out skill, the ability to
take a short position in MKT isn’t valuable (worth only two basis points per month
in certainty equivalent return with risk aversion again set to A ¼ 2:75).
To an investor who centers his beliefs on the Fama-French model and rules out

the possibility of skill, the ability to short MKT is worth a nontrivial 14 basis points
per month (Panel B). Evidently, the ability to short MKT helps compensate to some
degree for the inability otherwise to take the short positions inherent in SMB and
HML. That compensation is only partial, however, since the ability to take positions
directly in the latter two indexes is worth 66 basis points per month to that same
investor, as indicated by the first entry in the second row of Panel B. (Recall that the
optimal portfolio in the latter case has a correlation of only 0.75 with the original
portfolio, as confirmed in Panel B.) To an investor who precludes skill and believes
completely in the Carhart model, the ability to take positions directly in that model’s
four benchmarks is quite valuable – nearly 200 basis points per month beyond the
value provided by the funds-only portfolio (Panel C).
The ability to take long or short positions in the benchmarks generally becomes

more valuable as the investor admits some possibility of managerial skill. In essence,
as the funds’ track records lead to the inference that some of their dA’s are positive,
the ability to short MKT against such funds allows the investor to take large
offsetting positions in the funds and MKT and thereby achieve high Sharpe ratios.
As indicated by the results in Table 7, most of the enormous potential gains in such
cases are indeed achieved by simply allowing short positions in MKT. That is, the
increments to the certainty-equivalent return produced by allowing positions in the
remaining benchmarks are relatively modest when sd is 2% or more.
The main reason for the lack of benchmark substitutes is our precluding short

sales of mutual funds. When the short-sale constraint is removed, the Sharpe ratio of
the optimal fund portfolio increases to 0.99 times the Sharpe ratio of the efficient
benchmark combination under the Fama-French model and to 0.94 times the

13The optimal combination of the Fama-French benchmarks is 32% in MKT, 4% in SMB, and 64% in

HML, and the optimal combination of the four factors is 16% in MKT, 15% in SMB, 40% in HML, and

29% in MOM. Since the factors are constructed as long-short spreads, an x% weight in a given factor is

interpreted as going x cents long and x cents short in the factor’s legs for each $1 invested in cash.

$L. P !astor, R.F. Stambaugh / Journal of Financial Economics 63 (2002) 351–380 371



Table 7

Comparisons of portfolios of no-load funds with and without the benchmark indexes available for

investment

Portfolios formed from an investment universe of 503 no-load equity mutual funds with at least three

years of return history through December 1998 are compared to portfolios formed from a universe of the

same 503 funds plus one or more passive benchmark indexes. The latter indexes have returns denoted by

MKT, the excess return on the value-weighted stock market, SMB, the difference between returns on small

and large stocks, HML, the difference between returns on high and low book-to-market stocks, and

MOM, the difference between returns on stocks with high and low returns over the previous year

(excluding the most recent month). The pricing models considered are the Capital Asset Pricing Model of

Sharpe (1964) and Lintner (1965), the three-factor Fama-French (1993) model, and the four-factor model

of Carhart (1997), which adds a momentum factor to the Fama-French model. All reported correlations

and certainty-equivalent differences are computed using the predictive distribution formed under the prior

mispricing uncertainty ðsaN
Þ and skill uncertainty ðsdÞ in the column heading. The certainty-equivalent

difference is computed with relative risk aversion of 2.75. Each row compares the funds-only portfolio to

the portfolio that can contain the funds as well as the benchmarks indicated in the left-hand row heading.

The benchmarks can enter with either long or short positions, whereas short positions in the funds are

precluded throughout.

Mispricing uncertainty ðsaN
Þ in percent per year: 0 0 0 0 0 2 2 2 2 2

Skill uncertainty ðsdÞ in percent per year: 0 1 2 3 N 0 1 2 3 N

Panel A. Pricing-model beliefs centered on the CAPM

Certainty-equivalent difference (basis points per month)

MKT 2 2 245 908 4,788 1 4 279 959 4,859

MKT, SMB, HML 2 5 298 997 4,937 8 14 322 1,036 5,039

MKT, SMB, HML, MOM 2 6 299 1,020 5,384 26 30 324 1,044 5,407

Correlation ð�100Þ
MKT 100 97 39 25 17 99 94 39 25 16

MKT, SMB, HML 100 92 36 24 17 92 86 36 24 16

MKT, SMB, HML, MOM 100 91 36 24 16 80 75 36 24 16

Panel B. Pricing-model beliefs centered on the Fama-French three-factor model

Certainty-equivalent difference (basis points per month)

MKT 14 34 297 959 4,817 10 32 320 998 4,876

MKT, SMB, HML 66 66 361 1,062 5,022 61 65 377 1,091 5,095

MKT, SMB, HML, MOM 66 67 361 1,085 5,471 75 79 378 1,100 5,474

Correlation ð�100Þ
MKT 88 79 44 29 17 92 81 42 28 17

MKT, SMB, HML 75 72 41 27 17 74 73 40 27 16

MKT, SMB, HML, MOM 75 72 41 27 16 73 71 40 26 16

Panel C. Pricing-model beliefs centered on the Carhart four-factor model

Certainty-equivalent difference (basis points per month)

MKT 9 56 428 1,161 5,108 10 55 425 1,157 5,100

MKT, SMB, HML 73 123 488 1,249 5,395 71 120 485 1,244 5,381

MKT, SMB, HML, MOM 197 202 515 1,250 5,651 194 200 513 1,245 5,631

Correlation ð�100Þ
MKT 95 77 40 26 16 94 78 40 26 16

MKT, SMB, HML 73 64 37 25 15 74 65 38 25 15

MKT, SMB, HML, MOM 61 59 37 25 15 61 60 38 25 15
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maximum under the Carhart model (with sa¼sd¼0 in both cases). Since only a
relatively small subset of funds can be shorted in practice, precluding short sales in
our fund universe seems reasonable. We also redid the analysis with an expanded
investment universe of 919 funds that includes funds with load fees. The
improvement from including the load funds is surprisingly small, despite the fact
that we ignore their load fees. With complete belief in the four-factor model and skill
precluded, the Sharpe ratio rises to only 0.55 times the maximum achievable using
the benchmarks, as compared to a multiple of 0.54 in the original no-load setting.
Under the Fama-French model, the Sharpe ratio rises so little that it rounds, as
before, to only 0.66 times the maximum achievable with the benchmarks. Thus, the
universe of all equity mutual funds with at least three years of history as of
December 1998, including the load funds, provides no close substitutes for the
Fama-French and momentum benchmarks.
A positive value for a fund’s alpha, the intercept in Eq. (3), indicates that adding

the fund to a universe containing only the benchmarks raises the maximum Sharpe
ratio. Baks et al. (2001) explore the role of informative prior beliefs about alpha in
forming an inference that the posterior mean of a fund’s alpha is positive. Their
fund-by-fund analysis addresses the question of whether any funds would be
attractive to an investor who can already invest directly in the benchmarks, but it
does not address the overall value to such an investor of the ability to select one or
more mutual funds from the available universe. That value is computed in Table 8,
which compares portfolios containing only benchmarks to portfolios containing
both benchmarks and funds.
The results in Table 8 confirm, not surprisingly, that if all of a pricing model’s

benchmark indexes are available for investment, then mutual funds have no value to
an investor who believes completely in the pricing model and rules out skill. If that
investor maintains a belief in the model’s ability to price passive assets but admits
some possibility of managerial skill, then funds become valuable. When sd is 2%, the
ability to add funds to a portfolio containing only the model’s benchmarks is worth
at least 263 basis points per month to an investor who believes completely in any of
the three pricing models. As in the comparisons presented in Table 7, the ability to
take short positions in the benchmarks, especially MKT, makes the opportunity to
take long fund positions quite valuable as skill uncertainty increases. The results in
Table 8 also show that mispricing uncertainty has only minor effects on the value of
having mutual funds available to an investor who can invest directly in the
benchmarks. That is, to an investor who can earn the hypothetical costless returns
on the benchmark indexes, the incremental value of mutual funds lies primarily in
the potential skill of fund managers, as opposed to allowing the investor to exploit
the inability of the benchmarks to price other passive assets.

3.6. How have the strategies performed?

The portfolios analyzed previously are selected using data through the end of our
sample period, so the portfolios are optimal at that point in time under the various
prior beliefs about pricing and skill. To investigate the effects that differences in
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Table 8

Comparisons of portfolios of the benchmark indexes with and without the no-load funds available for

investment

Portfolios containing one or more passive benchmark indexes are compared to portfolios that combine

those indexes with any of the 503 no-load equity mutual funds with at least three years of return history

through December 1998. The benchmark indexes have returns denoted by MKT, the excess return on the

value-weighted stock market, SMB, the difference between returns on small and large stocks, HML, the

difference between returns on high and low book-to-market stocks, and MOM, the difference between

returns on stocks with high and low returns over the previous year (excluding the most recent month). The

pricing models considered are the Capital Asset Pricing Model of Sharpe (1964) and Lintner (1965), the

three-factor Fama-French (1993) model, and the four-factor model of Carhart (1997), which adds a

momentum factor to the Fama-French model. All of the reported correlations and certainty-equivalent

differences are computed using the predictive distribution formed under the prior mispricing uncertainty

(saN
) and skill uncertainty (sd) in the column heading. The certainty-equivalent difference is computed

with relative risk aversion equal to 2.75. Each row compares the portfolio containing only the benchmarks

in the left-hand row heading to the portfolio that can contain the funds as well as those benchmarks. The

benchmarks can enter with either long or short positions, whereas short positions in the funds are

precluded throughout.

Mispricing uncertainty (saN
) in percent per year: 0 0 0 0 0 2 2 2 2 2

Skill uncertainty (sd) in percent per year: 0 1 2 3 N 0 1 2 3 N

Panel A. Pricing-model beliefs centered on the CAPM

Certainty-equivalent difference (basis points per month)

MKT 0 4 263 943 4,908 5 12 301 997 4,966

MKT, SMB, HML 0 7 316 1,032 5,056 1 11 333 1,064 5,135

MKT, SMB, HML, MOM 0 8 316 1,056 5,503 0 8 317 1,052 5,484

Correlation ð�100Þ
MKT 100 93 30 17 7 92 83 29 16 7

MKT, SMB, HML 100 89 28 16 7 99 88 32 19 9

MKT, SMB, HML, MOM 100 88 28 16 7 100 93 39 23 10

Panel B. Pricing-model beliefs centered on the Fama-French three-factor model

Certainty-equivalent difference (basis points per month)

MKT 38 65 342 1,019 4,936 39 66 363 1,054 4,989

MKT, SMB, HML 0 7 316 1,031 5,051 0 9 329 1,057 5,118

MKT, SMB, HML, MOM 0 8 316 1,055 5,500 0 8 316 1,052 5,481

Correlation ð�100Þ
MKT 64 54 27 16 7 63 54 26 16 7

MKT, SMB, HML 100 97 52 32 15 100 96 51 32 15

MKT, SMB, HML, MOM 100 97 52 32 14 100 97 54 33 15

Panel C. Pricing-model beliefs centered on the Carhart four-factor model

Certainty-equivalent difference (basis points per month)

MKT 64 114 480 1,218 5,212 68 115 480 1,215 5,203

MKT, SMB, HML 38 91 451 1,217 5,409 39 91 450 1,213 5,395

MKT, SMB, HML, MOM 0 8 316 1,055 5,503 0 8 316 1,051 5,483

Correlation ð�100Þ
MKT 54 43 23 15 7 53 43 23 15 7

MKT, SMB, HML 87 75 45 30 15 87 75 45 30 15

MKT, SMB, HML, MOM 100 99 68 46 22 100 99 68 46 22
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prior beliefs can have on actual performance, we examine the out-of-sample returns
on portfolios formed at earlier points in time, beginning 20 years before the end of
our full sample. Since our methodology relies on long histories of passive asset
returns, and these histories go back only to July 1963 in our sample, beginning the
out-of-sample exercise earlier in the sample would introduce very noisy estimates of
the passive-asset moments. Each month we construct ex ante-optimal portfolios by
combining the different prior beliefs about skill and pricing with historical asset
returns up through that month. The portfolios are rebalanced each month to
incorporate the additional return history as well as changes in the fund universe,
which consists of all no-load funds with at least three years of available data.
Table 9 reports the Sharpe ratios of the strategies for the last 20 years, January

1979 through December 1998, as well as for the first and second 10-year subperiods.
For the 20-year period, the annualized ex post Sharpe ratios range from 0.42 to 0.66,
depending on prior beliefs about pricing and skill. Not surprisingly, the differences
across strategies are even more substantial within the shorter subperiods. Thus, not
only do the various priors lead to important differences in ex ante performance (as in
Table 5), they would have also produced some nontrivial differences ex post. For
comparison, we also report the Sharpe ratios of the value-weighted market portfolio,
the hot-hand strategy described in the previous section, and a ‘‘five-diamond’’
strategy. To implement the latter strategy, we sort all funds each month by their
sample Sharpe ratios over the previous ten years (or less, if ten years of data are not
available) and then equally weight the funds in the top decile – the five-diamond
funds.14 The Sharpe ratios of these three alternative strategies generally fall
somewhere within the range of Sharpe ratios produced by the different beliefs about
skill and pricing.
For a given belief about pricing, investors with no prejudice against managerial

skill ðsd¼NÞ generally did somewhat better than investors who precluded it ðsd¼0Þ
over this particular sample period. The reader is cautioned from reading too much
into such results, since 20 years is still a fairly short period over which to judge
differences in ex post performance of equity strategies. In other words, such results
are unlikely to tell any but the most indifferent investor the ‘‘correct’’ prior to use in
going forward. (Note, for example, that an investor who picked his strategy using ex
post performance through 1988 would not have experienced the highest subsequent
performance.) Based on the 20-year performance, believing dogmatically in the
CAPM and ruling out skill would seem as good a set of beliefs as any, but clearly
many investors with other views about pricing and skill would not be so easily
deterred. Our intention here is simply to provide some additional historical
perspective on the important role of prior beliefs in the mutual-fund investment
decision.

14This ranking is similar in spirit to the five-star ranking by Morningstar, Inc., a leading provider of

mutual fund information. Morningstar ranks funds into five categories (one to five stars) based on a risk-

adjusted rating in which a measure of the fund’s downside volatility is subtracted from a measure of the

fund’s average excess return. Although the Sharpe ratio and the Morningstar rating are defined differently,

they share the same basic risk-adjustment concept and often provide similar rankings of funds, as

demonstrated by Sharpe (1997, 1998).
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4. Conclusions

This study develops and applies a framework in which beliefs about pricing
models and managerial skill are combined with information in the data to select
portfolios of mutual funds. Nonbenchmark passive assets provide additional

Table 9

Out-of-sample performance of various investment strategies

Sample Sharpe ratios are computed for investment strategies corresponding to various prior beliefs about

pricing and skill. Prior mispricing uncertainty, sa; corresponds to the pricing model given in the same row.
Prior skill uncertainty (sd) as well as sa are reported in percent per year. All strategies are rebalanced

monthly and rely only on information available up to that month. The investment universe in any given

month consists of all no-load equity mutual funds with at least three years of return history. Every month,

the funds are sorted according to their sample Sharpe ratios over the last ten years (or less, if ten years of

data are not available), and the funds in the top decile are assigned ‘‘five diamonds’’. The five-diamond

strategy buys an equally-weighted portfolio of all five-diamond funds. The hot-hand strategy buys an

equally-weighted portfolio of the top decile of funds ranked on their returns over the previous calendar

year.

Sample Sharpe ratio (annual)

Investment strategy Jan 79–Dec 98 Jan 79–Dec 88 Jan 89–Dec 98

CAPM, sa ¼ 0; sd ¼ 0 0.66 0.31 0.93

CAPM, sa ¼ 0; sd ¼ 2 0.51 0.07 0.87

CAPM, sa ¼ 0; sd ¼ N 0.66 0.53 0.77

CAPM, sa ¼ 2; sd ¼ 0 0.52 0.30 0.68

CAPM, sa ¼ 2; sd ¼ 2 0.53 0.18 0.82

CAPM, sa ¼ 2; sd ¼ N 0.64 0.54 0.73

Fama-French, sa ¼ 0; sd ¼ 0 0.46 0.25 0.69

Fama-French, sa ¼ 0; sd ¼ 2 0.56 0.28 0.81

Fama-French, sa ¼ 0; sd ¼ N 0.66 0.57 0.74

Fama-French, sa ¼ 2; sd ¼ 0 0.48 0.25 0.69

Fama-French, sa ¼ 2; sd ¼ 2 0.54 0.31 0.75

Fama-French, sa ¼ 2; sd ¼ N 0.65 0.56 0.72

4-factor, sa ¼ 0; sd ¼ 0 0.46 0.44 0.48

4-factor, sa ¼ 0; sd ¼ 2 0.45 0.38 0.52

4-factor, sa ¼ 0; sd ¼ N 0.61 0.54 0.67

4-factor, sa ¼ 2; sd ¼ 0 0.48 0.43 0.53

4-factor, sa ¼ 2; sd ¼ 2 0.44 0.38 0.50

4-factor, sa ¼ 2; sd ¼ N 0.60 0.53 0.66

No model, sa ¼ N; sd ¼ 0 0.48 0.38 0.57

No model, sa ¼ N; sd ¼ 2 0.42 0.35 0.48

No model, sa ¼ N; sd ¼ N 0.58 0.52 0.63

Value-weighted market portfolio 0.65 0.45 0.91

Five-diamond strategy 0.66 0.60 0.77

Hot-hand strategy 0.63 0.50 0.80
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information about the mutual funds’ expected returns, and they allow us to specify
prior beliefs that distinguish mispricing from skill. In addition, nonbenchmark assets
help account for common variation in fund returns, making the investment problem
feasible with a large universe of funds.
We construct portfolios with maximum Sharpe ratios from a universe of 503 no-

load equity mutual funds. The optimal portfolios are substantially affected by prior
beliefs about pricing and skill as well as by including the information in
nonbenchmark assets. A pricing model is useful to an investor seeking a high
Sharpe ratio, even if the investor has less than complete confidence in the model’s
pricing accuracy and cannot invest directly in the benchmarks. With investment in
the benchmarks precluded, even investors who believe completely in a pricing model
and rule out the possibility of manager skill can include active funds in their
portfolios. The fund universe offers no close substitutes for the Fama-French and
momentum benchmarks, and active funds can be better substitutes for the
benchmarks than passive funds. We also find that the hot-hand portfolio of the
previous year’s best-performing funds does not appear in the portfolio of funds with
the highest Sharpe ratio, even when momentum is believed to be priced.
Maximizing the Sharpe ratio is only one of many investment objectives. With a

multiperiod investment objective, for example, beliefs about pricing and skill could
exhibit different effects. A multiperiod setting could also allow a meaningful
consideration of the funds that charge load fees. Incorporating changes over time in
fund betas would also be desirable. Such extensions offer challenges for future
research.

Appendix

This appendix derives the moments of the predictive distribution of the fund
returns. We first provide the predictive moments of the returns on passive assets.
Those moments are then combined with the posterior moments of the parameters in
Eqs. (1) and (2), derived in P!astor and Stambaugh (2002), to obtain the predictive
moments of the fund returns.
Define Y ¼ ðrN;1;y; rN ;T Þ

0; X ¼ ðrB;1;y; rB;T Þ
0; and Z ¼ ðiT X Þ; where iT denotes

a T-vector of ones. Also define the ðk þ 1Þ � m matrix G ¼ ðaN BN Þ
0; and let g ¼

vecðGÞ: For the T observations t ¼ 1;y;T ; the regression model in Eq. (1) can be
written as

Y ¼ ZG þ U ; vecðUÞBNð0;S#IT Þ; ðA:1Þ

where U ¼ ðeN;1;y; eN ;T Þ
0: Let EB and VBB denote the mean and covariance matrix

of the normal distribution for rB;t; let yP denote the parameters of the joint
distribution of the passive asset returns (G; S; EB; and VBB), and define the T � p

sample matrix of passive returns, RP ¼ ðX Y Þ: The appendix of P!astor and
Stambaugh (2002) reports the posterior moments of the elements of yP: Those
moments include the posterior mean and variance of g; denoted by *g and VarðgjRPÞ;
the posterior mean and variance of EB; denoted by *EB and VarðEBjRPÞ; and the
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posterior means of S and VBB; denoted by *S and *VBB: Posterior means are denoted
using tildes throughout the appendix.
The predictive moments of the passive returns are derived in P!astor and

Stambaugh (2000) in a different context. Define rP;Tþ1 ¼ ðr0N ;Tþ1r
0
B;Tþ1Þ

0: Its
predictive mean is

En

P ¼ EðrP;Tþ1jRPÞ ¼
*aN þ *BN

*EB

*EB

 !
; ðA:2Þ

where *aN and *BN are obtained using *g ¼ vecðð*aN
*BN Þ

0Þ: Partition the predictive
covariance matrix as

Vn

P ¼ VarðrP;Tþ1jRPÞ ¼
Vn

NN Vn
NB

Vn
BN Vn

BB

" #
: ðA:3Þ

Denote the ith row of BN as b0
i; the ith column of G as gi; and the ði; jÞ element of S as

si;j : The first submatrix, Vn
NN ; can be represented in terms of its ði; jÞ element:

ðVn

NNÞði;jÞ ¼ *b
0
iV

n

BB
*bj þ tr½Vn

BB Covðbi; b
0
j jRPÞ
 þ *si;j

þ ½1 *E
0
B
Covðgi; g

0
j jRPÞ½1 *E

0
B


0: ðA:4Þ

Note that Covðbi; b0
j jRPÞ and Covðgi; g0

j jRPÞ are submatrices of VarðgjRPÞ: The
remaining submatrices in Eq. (A.3) can be shown to be equal to

Vn

BB ¼ *VBB þ VarðEBjRPÞ;

Vn

NB ¼ V *
0

BN ¼ *BN
*VBB þ *BNVarðEBjRPÞ:

Let us now turn to the regression model in Eq. (2), which can be written as

rA;Tþ1 ¼ dA þ c0ArP;Tþ1 þ uTþ1 ðA:5Þ

¼ ½1 r0P;Tþ1
fA þ uTþ1; ðA:6Þ

where fA ¼ ðdA c0AÞ
0: Let R denote all of the sample returns data on funds and

passive assets through period T ; and let yA denote the set of parameters fA and s2u:
The posterior moments of the elements of yA are reported in the appendix of P!astor
and Stambaugh (2002). Those moments include the posterior mean and variance of
fA; denoted by *fA and VarðfAjRÞ; and the posterior mean of s2u; denoted by *s2u:
The derivation of the predictive moments of fund returns parallels the derivation

in P!astor and Stambaugh (2000) of the predictive moments of the nonbenchmark
returns, rN ;Tþ1: Since cA and EP (the mean of rP;t) are independent in the prior, the
predictive mean of rA;Tþ1 is

EðrA;Tþ1jRÞ ¼ EðdA þ c0AEPjRÞ ¼ *dA þ *c0A
*EP: ðA:7Þ

Note that *EP; the posterior mean of EP; is equal to the predictive mean En
P: The

predictive variance of rA;Tþ1 can be written as

VarðrA;Tþ1jRÞ ¼ EðVarðrA;Tþ1jR;fAÞjRÞ þ VarðEðrA;Tþ1jR;fAÞjRÞ: ðA:8Þ
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To compute the first term on the right-hand side of Eq. (A.8), observe using
Eq. (A.5) that

VarðrA;Tþ1jR;fAÞ ¼ c0AVn

PcA þ *s2u; ðA:9Þ

since the predictive variance of uTþ1 equals the posterior mean of s2u by the law of
iterated expectations (conditioning on s2u). Taking expectations gives

EðVarðrA;Tþ1jR;fAÞjRÞ ¼ *c0AVn

P *cA þ tr½Vn

P CovðcA; c
0
AjRÞ
 þ *s2u: ðA:10Þ

To compute the second term on the right-hand side of Eq. (A.8), observe using
Eq. (A.6) that

EðrA;Tþ1jR;fAÞ ¼ ½1 *E
0
P
fA; ðA:11Þ

so

VarðEðrA;Tþ1jR;fAÞjRÞ ¼ ½1 *E
0
P
CovðfA;f

0
AjRÞ½1 *E

0
P


0: ðA:12Þ

Note that CovðcA; c0AjRÞ is a submatrix of the posterior covariance matrix
VarðfAjRÞ � CovðfA;f

0
AjRÞ:

Computing the predictive covariance of rA;Tþ1 with the return on another fund J;
rJ;Tþ1; is simplified by the independence across funds of (i) the disturbances in
Eq. (A.5) and (ii) the posteriors for the coefficient vectors fA and fJ : Applying the
same approach as used above for the predictive variance gives

CovðrA;Tþ1; rJ ;Tþ1jRÞ ¼ *c0AVn

P *cJ : ðA:13Þ

Computing the predictive covariance of rA;Tþ1 with the vector of returns on the
passive assets, rP;Tþ1; is simplified by the independence of the posterior for fA from
that of EP and VP: Let y denote the union of yP and yA: Using the law of iterated
expectations and the variance decomposition rule gives

CovðrA;Tþ1; rP;Tþ1jRÞ ¼EðCovðrA;Tþ1; rP;Tþ1jR; yÞjRÞ

þ CovðEðrA;Tþ1jR; yÞ;EðrP;Tþ1jR; yÞjRÞ

¼EðVPcAjRÞ þ CovðdA þ c0AEP;EPjRÞ

¼ *VP *cA þ CovðEP;E
0
PjRÞ*cA

¼Vn

P *cA: ðA:14Þ
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