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Abstract

The trading game invariance hypothesis of Kyle and Obizhaeva (2011a) is tested
using the Trades and Quotes (“TAQ”) dataset. Over the period 1993-2001, the es-
timated monthly regression coefficients of the log of trade arrival rate on the log of
trading activity has an almost constant value of 0.690, slightly higher than the value
of 2/3 predicted by the invariance hypotheses. Over the period 2001-2008, the coeffi-
cient estimates rise almost linearly, with an average value of 0.787. Average trade size,
normalized for trading activity, falls dramatically over the period 1993-2008. The dis-
tribution of trade size adjusted for trading activity resembles a log-normal more closely
in 1993 than in 2001 or 2008, with truncation below the 100-share odd-lot boundary
becoming a more prominent feature over time. These results suggests that the 2001
reduction in minimum tick size to one cent and the subsequent increase in algorithmic
trading have resulted in more intense order shredding in actively traded stocks than
inactively traded stocks. The invariance hypothesis explains 91% of the cross-sectional
variation in print arrival rates and average print size.

∗We are grateful to Peter Bossaerts, Elena Asparouhova, and Stewart Mayhew for very helpful comments
on an earlier draft of this paper. The views expressed herein are those of the authors and do not necessarily
reflect the views of the Board of Governors or the staff of the Federal Reserve System.



1 Introduction

The trading game invariance hypothesis of Kyle and Obizhaeva (2011a) makes precise pre-
dictions concerning how arrival rates and the size distributions of intended orders vary across
stocks with different levels of trading activity. We use these predictions as a lens to examine
the frequency and size of trades printed in the Trades and Quotes (“TAQ”) dataset for the
period 1993-2008.

The invariance hypothesis is based on the intuition that trading in securities markets can
be modeled as games played at different speeds or over different horizons for different stocks.
In actively traded stocks, trading takes place at fast speeds over short horizons, perhaps only
a few minutes. In inactively traded stocks, trading takes place slowly over longer horizons,
perhaps a few months. Letting P denote price per share and V denote expected daily share
volume, Kyle and Obizhaeva (2011) define “trading activity,” denoted W , as the product
of expected daily dollar volume P · V (“dollar volume”) and the expected daily percentage
standard deviation of returns σ (“volatility”). The product of dollar volume and volatility
is a better measure of the risk transfer taking place in the market than the dollar volume
alone.

The size of an intended order, which Kyle and Obizhaeva (2011a) call a “bet,” is defined
as the product of stock price P , signed trade size in shares Q̃, and volatility σ. The expected
number of bets per day is denoted by γ. The hypothesis of trading game invariance predicts
that when the expected number of bets is normalized by W−2/3, the normalized bet arrival
rate γ · W−2/3 is constant across stocks and across time. The invariance hypothesis also
predicts that when intended order size as a fraction of daily volume is normalized by W 2/3,
the distribution of normalized intended order size (Q̃/V ) ·W 2/3 is invariant as well. In terms
of the log-linear regressions ln(|Q̃|/V ) = µQ+ aQ · ln(W )+ ϵ̃ and ln(γ) = µγ + aγ · ln(W )+ ϵ̃,
the invariance hypothesis nests several distinct predictions:

• The regression coefficients aQ and aγ are predicted to be −2/3 and 2/3, respectively.
A one percent increase in trading activity can be decomposed into an increase in the
arrival rate of intended orders of 2/3 of one percent and an increase in the size of
intended orders of 1/3 of one percent, implying that intended order size as a fraction
of average daily volume decreases by 2/3 of one percent.

• The shape of the distribution of the error term in the first regression is the same
across stocks and across time and does not vary with other stock characteristics. This
implies that the coefficients aQ and aγ are equal to −2/3 and 2/3 not only for a mean-
regression, but also for any quantile regression. Using portfolio transition data, Kyle
and Obizhaeva (2011b) find that the distribution of ϵ̃ is close to a normal with variance
2.50. This suggests that a one standard deviation change in intended order size is a
factor of exp(2.501/2) = 4.86.

• The constant terms µQ and µγ do not vary across stocks or across time (adjusting for
inflation), implying that the log-means and log-percentiles of normalized trade size and
normalized number of trades do not vary across stocks or across time.

• If individual stock characteristics—such as stock price or stock volatility—are added
to the regression, the R2 is predicted not to increase much.
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The TAQ dataset reports “prints” of tick-by-tick transactions prices and share quan-
tities for all listed U.S. stocks from 1993 to present. For each stock and each month, we
construct a frequency distribution of TAQ print sizes (in shares). We describe the distri-
bution of TAQ print sizes by a list of statistical attributes, including the trade-weighted
and volume-weighted mean print size and ten equally-spaced trade-weighted and volume-
weighted percentiles. The volume-weighted deciles put more weight on larger and more
economically significant trades than trade-weighted deciles, thus allowing us to examine the
right tail of distributions of TAQ print sizes in more detail. Our goal is to use the invariance
hypothesis to interpret time series and cross-sectional variation in TAQ print frequency and
print size during the period 1993-2008.

The invariance hypothesis makes predictions about intended orders rather than actual
TAQ prints resulting from order execution strategies. As a result of the important distinction
between an intended order and a TAQ print, we do not expect estimates based on TAQ prints
to match precisely the predictions of the invariance hypothesis for intended orders, even if the
invariance hypothesis describes intended orders perfectly. To interpret empirical results, we
make the identifying assumption that each intended order is reported as a constant number
ξ of TAQ prints, where the order shredding factor ξ does not vary across intended order size,
ticker symbol, or time.

Executions of bets are intermediated by market makers, high frequency traders, and
other arbitragers. This intermediation results in additional non-bet volume. To interpret
our results, we make the identifying assumption that trading volume increases by a factor
ζ as a result of intermediation trades, i.e., each intended order generates extra expected
non-bet trading of ζ − 1 times the size of the intended order, where the volume multiplier
ζ ≥ 1 does not vary across intended order size, ticker symbol, or time.

For example, if each intended order is executed against single market maker with no
order shredding, we have ξ = 1 and ζ = 2.

We do not expect these benchmark assumptions of a constant order-shredding factor ξ and
a constant intermediation factor ζ to describe markets correctly. Electronic order handling
and regulatory changes have likely encouraged the splitting of intended orders into more
TAQ prints with more intermediation over time, relative to our benchmark assumptions. As
a result, we expect that our empirical results have the best correspondence with predictions
at the beginning of the period, when traditional upstairs markets accounted for a large share
of order execution, order shredding was less common, and the intermediation scheme was
simpler. We conjecture that during the period 1993-2008, the normalized mean TAQ print
size has declined and the normalized mean number of prints has correspondingly increased,
reflecting ever increasing order shredding and intermediation. Due to the interaction between
order execution strategies and microstructure effects such as minimum tick size and 100-share
minimum round lot size, we hypothesize that relatively large intended orders in more active
stocks tend to generate more prints per intended order and perhaps more intermediation
trades than relatively small intended orders in inactive stocks. We expect therefore the
estimated exponents aQ and aγ to be higher in absolute values than the benchmark prediction
of 2/3 and increase in absolute values over time.

Our empirical results are broadly consistent with these predictions.
A time series of separate month-by-month regression coefficients of the log of TAQ print

arrival rates on the log of trading activity shows that the estimated coefficients aγ remained
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virtually constant over the subperiod 1993-2001. Over this subperiod, the estimated coeffi-
cient of 0.690 is only slightly higher than the benchmark prediction of 2/3, but this difference
is statistically significant due to the low standard errors of the estimated coefficient. Under
the invariance hypothesis, the fact that 0.690 is only slightly large than 2/3 is consistent
with the hypothesis that orders for actively traded stocks generate only slightly more TAQ
prints than orders for inactively traded stocks during the period 1993-2001. After 2001, the
estimated monthly coefficients increase almost linearly, from about 0.690 in 2001 to about
0.850 in 2008. This increase is statistically highly significant.

Under the invariance hypothesis, the pattern of steadily increasing coefficients is consis-
tent with the interpretation that something happened in 2001 which resulted in intended
orders in active stocks being shredded into far more TAQ prints over time than intended
orders in inactive stocks. This result is clearly consistent with the interpretation that the
reduction in tick size from 1/16 of a dollar to one cent, which occurred in 2001, has led to
more and more order shredding over time, especially in large orders for active stocks. The
result is also consistent with the interpretation that there has been a larger increase in small
intermediation trades as a fraction of total volume in more actively traded stocks than less
actively traded stocks, especially after 2001. These interpretations are consistent with our
finding that the estimated exponents aQ in our log-linear regressions for percentiles of trade-
weighted and volume-based distributions of TAQ print sizes have increased in absolute values
during the period 1993-2008, and these changes are more pronounced for trade-weighted and
volume-weighted percentiles representing large prints than small prints.

We examine empirical distributions of logs of normalized TAQ print sizes for ticker sym-
bols sorted into ten dollar volume groups and four price volatility groups in years 1993, 2001,
and 2008 (see figures 3-7). In 1993, all forty empirical distributions resemble a bell-shaped
normal density function with common mean and variance across the forty subgroups. In 2001
and 2008, the shape of the distributions look much less like a normal than in 1993. Fur-
thermore, average print size decreases during the period 1993-2008 by a factor of about ten.
The estimated variances of 1.98 in 1993, 1.75 in 2001, and 1.33 in 2008 for trade-weighted
distributions of TAQ print sizes are lower than the variance of 2.50 for distributions of port-
folio transition trades, reported in Kyle and Obizhaeva (2011); furthermore, these variances
decrease over time, consistent with our hypothesis that larger orders generate relatively more
prints than smaller orders over time.

Statistical tests clearly reject the hypothesis that normalized TAQ print sizes are dis-
tributed as a common log-normal random variable. We conjecture that the rejection may
arise due to microstructure effects such as the one-cent tick size and clustering of trades at
round lot sizes such as 100, 1000, and 5000 shares. In particular, the following three issues
may be relevant:

First, the distribution of normalized TAQ prints is truncated by a 100-share odd-lot
boundary, consistent with the fact that odd-lot trades are not reported on the TAQ tape, as
discussed in O’Hara, Yao, and Ye (2011).

Second, TAQ print sizes tend to cluster at “even” quantity levels, as studied in Alexander
and Peterson (2007) and Moulton (2005). For example, there are more trades of 5,000 shares
than 4,000 or 6,000 shares, and far more than 4,900 and 5,100 shares. As a result of clustering,
our empirical distributions of normalized TAQ prints have spikes at “even” quantity levels.
The biggest spike corresponds to TAQ prints of 100 shares. The 100-share prints account for
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about 16% of all trades before 2001 and 50% of trades after 2001; prints of 100 shares made up
to 70% of all TAQ prints in 2008. Empirical distributions of TAQ prints for NASDAQ stocks
also have another large spike that corresponds to a 1,000-share print size. The frequency of
1,000-share prints is much more pronounced in 1993, than in 2001 or in 2008 (see figure 5).
After 1988, NASDAQ dealers often had obligations to make binding bid and ask quotes for
1,000 shares for trades with market participants, as a result of which prints for exactly 1,000
shares were common. This restriction was gradually removed beginning in 1997.

Third, the minimum tick size was reduced from 1/8 of a dollar (12.5 cents) to 1/16 of
a dollar (6.25 cents) in 1997, and to one cent in 2001. Changes in tick size affect trading
decisions by changing incentives to provide liquidity and shred orders, as discussed in Harris
(1994). When volatility is high and stock price is high, the tick size is small relative to
typical days trading range, and thus there are better opportunities for order shredding and
making intermediation trades. Although firms can implement stocks splits to adjust relative
tick sizes, these adjustments occur infrequently and with long time lags, as noted in Angel
(1997). The invariance hypothesis suggests that the tick size of one cent is effectively greater
when the trading game is played faster. This implies that “effective” tick size is lower for
stocks with high price and high volatility. Low effective relative tick size is likely to encourage
traders to split their orders into smaller trades placed at finer adjacent price points as a
strategy to avoid front-running. When effective relative tick size is low, the effective round
lot size constraint of 100-shares is more binding, with more odd-lot orders not recorded on
the tape and more small trades rounded up to precisely 100 shares.

When we impose restrictions aQ = −2/3 and aγ = 2/3, implied by the invariance hypoth-
esis, and estimate only intercepts µQ and µγ in separate month-by-month regressions, the
time series of R-squares fluctuates around 0.91. This implies that the invariance hypothesis
explains 91% of the variation across stocks in TAQ print arrival rates and average print sizes.
During the two periods 1993-2000 and 2001-2008, we show that an additional 3% and 4%
of the variation, respectively, can be attributed to variation across stocks in “effective price
volatility,” which scales price volatility P · σ for the time units implied by trading game
invariance. An interesting topic for the further research is to examine the extent to which
other microstructure effects explain the remaining variation.

Previous studies have analyzed average print sizes as well. Glosten and Harris (1988)
find that average print size (in shares) is negatively related to market depth. Brennan
and Subrahmanyam (1998) document that print sizes (in dollars) are also related to return
volatility, standard deviation of trading volume, market capitalization, number of analysts
following stocks, number of institutional investors holding stocks, and proportion of shares
they hold. The fact that an R-square of 0.92 in their cross-sectional regressions is only slightly
larger than the average R-square of 0.91 in our restricted regressions suggests that other
variables offer limited improvement in explanatory power over the invariance hypothesis.

Our results supplement those of Kyle and Obizhaeva (2011b), which provides evidence in
favor of the invariance hypothesis using a sample of portfolio transitions. Transition trades
represent a subset of transactions well-suited for testing of the invariance hypothesis because
of the correspondence between intended orders and actual trades. While this study of TAQ
data involves a much broader sample of trades, this advantage comes at the expense of having
to deal with data affected by order shredding and intermediation trades.

The remainder of this paper states the implications of the invariance hypothesis, discusses
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the design of our empirical tests, and presents our results.

2 Testable Implications of the Invariance Hypothesis.

Kyle and Obizhaeva (2011a) think of trading activity as the outcome of traders playing
trading games. Innovations in the order flow, called “bets,” are assumed approximately to
follow a compound Poisson process with an expected arrival rate of γ bets per day. A bet is a
random variable B̃ that measures the risk transferred during one transaction. It is defined as
the product of dollar share price P , share quantity Q̃, and daily percentage returns volatility
σ,

B̃ = Q̃ · P · σ. (1)

The random variable Q̃ has a zero mean; positive values represent buying; and negative
values represent selling. In a similar spirit, “trading activity” is defined as the product of
expected daily share volume V , share price P , and daily volatility σ,

W = V · P · σ. (2)

In theory, the product of dollar volume and volatility is a better measure of the risk transfer
taking place in the market than dollar volume alone. Empirically, there is so much more
cross-sectional variation in dollar volume than volatility across stocks that results are similar
if dollar volume alone is used as the measure of trading activity.

Expected daily share volume V is the product of the expected arrival rate of bets and
their expected size,

V =
ζ

2
· γ · E|Q̃|, (3)

augmented by non-bet volume. The parameter ζ is a “volume multiplier,” which measures
the factor by which non-bet “intermediation” trades increase trading volume. The parameter
ζ is divided by 2 because each unit of trading volume has both a buy side and a sell side. Non-
bet volume includes trading by market makers, high frequency traders, and other arbitragers
who intermediate among long-term bets. If each bet is intermediate by a single market maker,
similar to an NYSE specialist, this is consistent with ζ = 2. If bets are intermediated by
many market makers, who lay off positions trading with each other, similar to NASDAQ in
the early 1990’s, this is consistent with ζ = 3. Plugging equation (3) into equation (2), we
find that trading activity W is the product of the volume multiplier ζ, bet arrival rate γ,
and expected bet size E|B̃|:

W =
ζ

2
· γ · E|B̃|. (4)

The invariance hypothesis describes how market microstructure characteristics such as bet
arrival rates and bet sizes vary across securities with different levels of trading activity.

The invariance hypothesis is based on the intuition that trading games are the same
across securities and across time, up to some Modigliani-Miller transformation, except for
the speed with which they are being played. In actively traded stocks, trading takes place at
fast speeds over short horizons. In inactively traded stocks, trading takes place slowly over
long horizons. Trading game invariance is derived from the following invariance assumption:
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If units of time are rescaled proportionally to match the arrival rate of bets γ, so that one
bet is expected to arrive per tick on the rescaled clock, then the dollar distribution of gains
and losses on a bet between one tick on the clock and the next is invariant across different
trading games in different stocks. Equivalently, trading game invariance is equivalent to the
hypothesis that the random variable Ĩ, called a “trading game invariant,” and defined by

Ĩ =
B̃

γ1/2
, (5)

has a probability distribution which is invariant across stocks and time. In the above equa-
tion, the denominator is γ1/2 instead of γ because bet size B̃ is proportional to the standard
deviation of returns while the time units which are rescaled by bet arrival rate γ are propor-
tional to the variance of returns.

Kyle and Obizhaeva (2011a) show that the trading game invariance hypothesis leads to
the following testable predictions concerning how bet arrival rate γ and bet size Q̃ change
with trading activity:

γ = E
[ζ
2
· |Ĩ|

]−2/3

·W 2/3, (6)

˜|Q|
V

≈ E
[ζ
2
· |Ĩ|

]−1/3

·W−2/3 · Ĩ . (7)

Under the identifying assumption that the volume multiplier ζ is constant, equation (6) and
equation (7) imply that the normalized bet arrival rate W−2/3 · γ and distributions of the

normalized bet sizes W 2/3 · ˜|Q|/V are invariant across trading games in different stocks.
Under the identifying assumption that portfolio transition trades are typical bets, Kyle and
Obizhaeva (2011) find that the distribution of logs of normalized bet sizes, 2/3 · ln(W ) +
ln(|Q|/V ), is close to a normal with variance of 2.50.

The invariance hypothesis implies that changes in daily trading activity come from both
changes in bet size and changes in bet arrival rate. A one percent increase in trading activity
W is associated with an increase of 2/3 of one percent in the bet arrival rate γ and an upward
shift by 1/3 of one percent of the entire distribution of bet size |B̃|, which is equivalent to
a downward shift by 2/3 of one percent in the distribution of bet sizes |Q̃| as a fraction of
trading volume V .

As discussed by Kyle and Obizhaeva (2011a), market microstructure invariance includes
not only the hypothesis of trading game invariance but also the additional hypotheses of
market impact invariance and bid-ask spread invariance. This paper focusses only on the
predictions of trading game invariance concerning the arrival rate and size distribution of
intended orders. Testing the implications market impact invariance and bid-ask spread
invariance for TAQ data are left as interesting topics for future research.

Alternative Models. As in Kyle and Obizhaeva (2011a), we consider two alternative
models: the model of invariant bet frequency and the model of invariant bet size.

The model of invariant bet frequency assumes that variation in trading activity comes
entirely from variation in bet sizes B̃, while the expected number of bets γ over a calendar
day is invariant. In this model, the bet arrival rate γ ·W 0 and the distribution of bet sizes
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˜|Q|
V

·W 0 are invariant across stocks and across time, even if no adjustments for differences in
trading activity are made (as represented by zero exponents).

The model of invariant bet size assumes that variation in trading activity comes entirely
from variation in the number of bets γ placed over a calendar day, while the distribution of
bet size B̃ over a calendar day remains the same across stocks. In this model, the normalized

bet arrival rate γ · W−1 and the distribution of normalized bet size
˜|Q|
V

· W 1 are invariant
across stocks and across time.

All three models make specific nested predictions concerning how the expected number
of bets γ and the distribution of bet sizes B̃ per calendar day are related to the measure of
trading activity W on the other side. The only differences among these predictions are the
implied exponents on trading activity. We discuss next how to test the three models using
the TAQ dataset.

Testing Invariance Models Using TAQ Print Data. The TAQ dataset reports “prints”
of tick-by-tick transaction prices and share quantities for all listed U.S. stocks from 1993 to
present. We test implications of the invariance hypothesis using data on TAQ prints sizes and
number of TAQ prints recorded per day. TAQ prints are different from bets. In actual trad-
ing, one independent trading decision often generates multiple reports of order executions,
since orders may be broken down into smaller pieces for execution and traded with several
different counter-parties and at several different prices. Rather than representing bets, some
TAQ prints may represent trades by intermediaries who bear risks of bets temporarily, until
they find their place in the portfolios of long-term investors.

Let X denote the unsigned number of shares representing a single “print” in the TAQ
dataset. We assume that each bet is shredded into ξ trades, and the distribution of TAQ
print sizes X̃ differs from the distribution of bets Q̃ by a factor ξ. We can express this
assumption as,

|Q̃| ≈ ξ−1 ·X. (8)

Let N denote the number of trades printed per day. We assume that each bet Q̃ is shred-
ded into ξ trades and generates ζ · Q̃ of non-bet volume by intermediaries who endogenously
respond to bets. Therefore, we assume that the expected number of bets γ differs from the
average number of TAQ prints N̄ by a factor of ξ · ζ/2, where division by 2 is necessary
because each transaction is a match between a buyer and a seller. We can express thus
assumption as,

γ = (ξ · ζ/2)−1 · N̄ . (9)

As a benchmark for interpreting our empirical results, we make two identifying assump-
tions. First, we assume that the order-shredding factor ξ is constant across securities and
across time. Second, we assume that the volume multiplier ζ is constant across securities
and across time.

For simplicity of exposition, we interpret our results under the identifying assumptions
ξ = 1 and ζ = 2. This corresponds to the hypothesis that each intended trade is executed as
one print against a single intermediary, such as a designated market maker like the NYSE
specialist of the mid-1990’s. In actual markets, ξ may deviate from the assumed value ξ = 1
because order shredding algorithms may vary across securities in a complex and systematic
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manner, for example, as a function of trade size and stock price (based on tick size). In
actual markets, ζ may deviate from the assumed value ζ = 2; the amount of intermediation
may potentially depend on various stock characteristics, such as price volatility and trading
volume.

Institutional Details Related to the Microstructure of TAQ DAta. We make the
benchmark assumptions for the purpose of interpreting our results, but we do not expect
these assumptions to describe TAQ prints correctly.

We do not expect that the order-shredding parameter ξ is constant across intended order
size, ticker symbol, and time. We hypothesize that large intended orders may result in more
TAQ prints than small intended orders. Several factors may have contributed to this pattern:

• Although traders have increasingly shredded orders into “odd lots” of less than 100
shares, some traders probably resist shredding orders into numerous odd lots.

• Under NYSE Rule 411(b), broker-dealer member firms have an obligation to consoli-
date a customer’s odd-lot orders if the share amount of such orders exceeds 100 shares;
other exchanges have similar provisions and have brought enforcement cases against
member firms that did not comply with those rules.

• During the period under investigation, odd-lot transactions were executed through a
separate odd-lot trading system, and these small trades were not reported for dissem-
ination on the Consolidated Tap, as discussed in O’Hara, Yao, and Ye (2011).

• “Tape shredding” affects trading patterns, as suggested by Caglio and Mayhew (2007);
large orders can be broken up into more trades than small order to generate additional
revenue from sales of consolidated trade and quote data.

• Large intended orders are likely to be matched against multiple intended orders of
smaller size, also resulting in more TAQ prints for larger intended orders than for
smaller ones. According to the Consolidated Tape Association (CTA), the exchanges
are required to collect and report last sale data (CTA Plan (1992) Section VII). At the
NYSE, for example, it is the duty of the member representing the seller to ensure that
a trade has been reported. Since the rules required reporting of “sales” not “trades,”
intrinsic order splitting may be more important for intended buy orders than intended
sell orders.

Furthermore, we expect technological progress in computing and various regulatory changes
to have made the relationship between the predictions of the invariance hypothesis and em-
pirical results for TAQ prints vary during the period 1993-2008. We expect that prints are
more similar to intended orders in the first half of the sample rather than in the second one.
For example, in the early 1990s, prior to the common use of electronic interfaces, traders
more frequently executed intended orders as block trades in the “upstairs” market, in which
case at least one side of the reported block trade might correspond precisely to an intended
order. Prior to the changes in order handling rules in 1997, NASDAQ dealers often took the
other side of entire intended orders because customers could not place their own orders into
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a central limit order book and NASDAQ dealers might be unhappy if customers “bagged”
them by dumping large quantities of stock on many separate dealers at the same time.

Over the entire time period, traders have often broken intended orders into pieces for
execution, as documented in Keim and Madhavan (1995), in which case an intended order has
shown up as multiple TAQ prints spread out over the time. As the use of the NYSE’s Direct
Order Transfer system (“DOT” system) became more commonly used by professional traders
in the 1990s, the use of electronic order submission strategies and order shredding became
more common. For NASDAQ stocks, this practice accelerated after new order handling rules
were implemented in the late 1990s.

In 2001, the minimum tick size was cut from 6.25 cents to one cent, as a result of which
quoted spreads decreased and fewer shares were shown at the best bid and offer. Traders
could use electronic interfaces to place scaled limit orders of small size at adjacent price
points separated by one cent, resulting in smaller TAQ print sizes for the same intended
order size. Adoption of Regulation NMS in 2005 resulted in market fragmentation, which also
fragmented TAQ print sizes over multiple trading venues. Regulation NMS also encouraged
competition based on speed and efficiency of electronic interfaces, which further encouraged
order shredding. In the last decade, continued improvements in computer technology have
widened use of electronic order handling systems, making it practical for traders to shred
intended orders for many thousands of shares into tiny pieces of 100 shares or less.

We do not expect that the volume multiplier ζ is constant across intended order size,
ticker symbol, and time. In the beginning of our sample, for example, the volume multiplier
was probably bigger for orders traded on NASDAQ than orders traded on NYSE. Atkins and
Dyl (1997) report that since NASDAQ dealers were either buyers or sellers in almost every
trade at the NASDAQ, the NASDAQ trading volume was inflated at least by a factor of two,
relative to the number of trades actually occurring between investors. Over time, this pattern
may have changed, as dealers’ participation rate in facilitation of trading has decreased
and trades from other trading systems have begun to be reported on the consolidated tape
through the NASDAQ system. Recent technological developments have most likely increased
the amount of intermediation in securities markets in the second half of the sample. The
number of TAQ prints has soared due to intermediation by high frequency traders, which
now accounts for a significant share of volume, as described in Chordia et al. (2011) and
Hendershott et al. (2011). For example, Kirilenko et al. (2011) find that high frequency
traders account for more than 30% of stock index futures trading volume but hold inventories
for only a few minutes. We hypothesize that high frequency trading is more prevalent in
stocks with a lower relative tick size, i.e. higher prices and higher volatilities, where these
strategies are more profitable.

3 Data.

3.1 Data Description

The NYSE TAQ database contains trades and quotes reported on the consolidated tape
by each participant in the Consolidated Tape Association (“CTA”) for all stocks listed on
exchanges starting from year 1993. Since we examine the distribution of unsigned trades,
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our analysis employs only data on trades, not quotes. For each trade, the TAQ data records
the time, exchange, ticker symbol, number of shares traded, execution price, trade condition,
and other parameters. The dataset contains over 19 billion records with the number of data
entries steadily increasing over time from over 5 million records per month in 1993 to over
500 million records per month in 2008.

We transform the very large raw TAQ data files into another smaller dataset, convenient
for our subsequent analysis. We first remove bad records from the trades data using standard
filters. The TAQ database provides information about the quality of recorded trades in their
condition and correction codes. We eliminate trades with condition codes of 8, 9, A, C, D, G,
L, N, O, R, X, Z or with correction codes greater than 1. The correction code of 8 indicates,
for example, that the trade was canceled.

The remaining TAQ prints are aggregated in a specific way to reduce the size of the
dataset while preserving information about the distributions of monthly trade sizes. For
each ticker symbol and each day, each TAQ print is placed into one of 54 bins constructed
based on the number of shares traded. Letting X denote the size of a TAQ print in shares,
“even” bins correspond to TAQ prints of the following exact “even” sizes of X = 100,
X = 200, X = 300, X = 400, X = 500, X = 1000, X = 2000, X = 3000, X = 4000,
X = 5000, X = 10000, X = 15000, X = 20000, X = 25000, X = 30000, X = 40000,
X = 50000, X = 60000, X = 70000, X = 75000, X = 80000, X = 90000, X = 100000,
X = 200000, X = 300000, X = 400000, and X = 500000 shares. “Odd” bins correspond
to TAQ prints with trade sizes X between adjacent even bins, i.e., 100 < X < 200, . . .,
400000 < X < 500000, 500000 < X. Note that the size of bins grows approximately at
a log-rate. We consider TAQ prints with even sizes separately, because they are unusually
frequent in the data.

For each day and each symbol, we store the number of TAQ prints in each size bin.
To simplify the analysis below, once we assign a given print to a bin, we assume its size (in
shares) is equal to a midpoint of that bin. If print size is larger than 500,000 shares, we assign
it to the 54th bin and assume its size to be 1,000,000 shares. This aggregation allows us to
capture the most important properties of TAQ print size distributions and implement our
analysis in an efficient way. The convenience comes, however, at the expense of introducing
some additional noise into our analysis, which may affect our results.

For each day and each ticker symbol, we also store the open price, the close price, the
number of trades per day, the dollar volume per day, the share volume per day, the close-
to-close return, and the volatility defined as the daily standard deviation of returns over the
past 20 trading days from the TAQ data.

We sum the number of prints within each bin over a month for each stock to calculate
the frequency of trade sizes in each bin for each stock and each month. Later we average
the frequency distributions of normalized print sizes to construct an empirical distribution
of TAQ print sizes (in shares) for each stock and each month in the sample. Aggregation
by month is done because many stocks do not have enough transactions per day to build a
good empirical approximation for theoretical distributions.

In addition to calculating the average number of TAQ prints per day, we calculate several
statistics describing the possibly complicated shape of the distribution of TAQ print sizes.
We consider the average print size and various percentiles of trade-size distributions. We re-
fer to these percentiles as “trade-weighted percentiles.” For example, the xth trade-weighted
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percentile corresponds to a print size such that prints with sizes below this threshold con-
stitute x% of all TAQ prints for a given stock in a given month. Note that trade-weighted
percentiles effectively put the same weight onto prints of different sizes. This tends to em-
phasize small trades. For example, if there are 99 prints of 100-shares lot and one print
of 100,000 shares, then the distribution of print sizes is mostly concentrated at a 100-share
level. All trade-weighted percentiles below the 99th percentile are equal to 100 shares. The
total trading volume and average print size, however, are largely determined by one big print
of 100,000 shares.

Since large trades are economically more important than small trades, we also investigate
the right tail of print size distributions in more detail by examining “volume-weighted”
percentiles based on trades’ contributions to total volume. The contribution to the total
volume by trades from a given print size bin is calculated based on its midpoint. The
volume-weighted distributions give the percentage of trading volume resulting from prints
of different sizes. The xth volume-weighted percentile corresponds to a trade size such that
trades with sizes below this threshold constitute x% of total trading volume. In the previous
example, percentile 1-9 are 100 shares and percentiles 10-99 are 100,000 shares.

We report empirical results for both trade-weighted and volume-weighted distributions.
Of course, if we know a trade-weighted distribution of print sizes, then we can easily calculate
a volume-weighted distribution as well. For the purpose of comparing trade-weighted and
volume-weighted distributions, the log-normal is a useful benchmark. It is a straightforward
exercise (involving a change in probability measure) to show that that if the log of trade-
weighted print size is distributed N(µ, σ2), then the log of volume-weighted print size is
distributed N(µ + σ2, σ2). The only difference between the two distributions is the shift in
mean.

The monthly data is matched with CRSP data to acquire share and exchange codes for
stocks in the sample. Only common stocks listed on the NYSE (New York Stock Exchange),
AMEX (American Stock Exchange) and NASDAQ from year 1993 through year 2008 are
included in our study. Stocks that had splits in a given month are eliminated from the sample
for that month. For each stock and each month, the data is also augmented by adding average
daily volume (in dollars and in shares), average price, and the historical volatility. Our final
sample includes 1,107,990 stock-month observations. For each 191 months between February
1993 and December 2008, there are, on average, observations for about 5,800 stocks.

3.2 Descriptive Statistics

Table 1 describes the data. Panel A reports statistics for the subperiod 1993-2000. Panel
B reports statistics for the subperiod 2001-2008. We report these statistics separately, be-
cause the properties of the data have changed substantially following decimalization in 2001.
Statistics are calculated for all securities in aggregate as well as separately for ten groups
of stocks sorted by average dollar volume. Instead of dividing the securities into ten deciles
with the same number of securities, volume break points are set at the 30th, 50th, 60th, 70th,
75th, 80th, 85th, 90th and 95th percentiles of dollar volume for the universe of stocks listed
in NYSE with CRSP share codes of 10 and 11. Group 1 contains stocks in the bottom 30th

percentile. Group 10 contains stocks in the top 5th percentile. Group 10 approximately
corresponds to the universe of S&P100 stocks. The top five groups approximately cover the
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universe of S&P 500 stocks. Smaller percentiles for the more active stocks make it possible
to focus on the stocks which are economically the most important. For each month, the
thresholds are recalculated and stocks are reshuffled across groups.

Panel A of Table 1 reports statistical properties of securities and TAQ prints in the
sample before 2001. For the entire sample of stocks, the average trading volume is $6.28
million per day, ranging from $0.14 million for the lowest volume decile to $181.98 million
for the highest volume decile. The average volatility for the entire sample is equal 4.1%
per day. The volatility tends to be higher for smaller stocks. The volatility is 4.6% for the
lowest volume decile and 3.3% for the highest volume group. Thus, the measure of trading
activity, equal to the product of dollar volume and volatility, increases from 0.14 · 0.046 to
181.98 · 0.033, i.e., by a factor of 913.

The average print size is equal to $23,598 before 2001, ranging from $11,428 for low-
volume stocks to $88,450 for high-volume stocks, corresponding to a decrease from 8% to
0.05% of daily volume from lowest to highest volume group. The median is much lower
than the mean, as large prints make the distribution of print sizes positively skewed. The
trade-weighted median ranges from $5,706 for low-volume stocks to $28,440 for high-volume
stocks, corresponding to a decrease from 4% to 0.02% of daily volume. Note that the
invariance hypothesis predicts that the shape of the distributions of trade sizes as a fraction
of daily volume should be similar across stocks, with the only difference that their log-means
are shifted downwards by two-thirds of an increase in a log-trading activity. Since from
lowest to highest deciles, trading activity increases by a factor of 913, a back-of-the-envelope
calculation suggests that the distributions of trade sizes as a fraction of volume should be
shifted downward by a factor of 9132/3 ≈ 100. This is more than the observed differences in
means of 8%/0.05% ≈ 16 and medians of 4%/0.02% ≈ 20 between two volume groups.

In the subperiod 1993-2001, the average number of TAQ prints recorded per day is 143
for the entire sample, increasing monotonically from 16 to 2,951 from the first to the tenth
volume group. The number of prints increases by a factor of 2951/16 ≈ 184. The invariance
hypothesis predicts that the expected number of bets should increase by two-thirds of the
increase in trading activity, i.e., 9132/3 ≈ 100. While this back-of-the envelope calculation
suggests that number of TAQ prints increases more than predicted, potentially reflecting
a more intensive order shredding in high-volume groups, further investigation is certainly
warranted.

Some print sizes are unusually common in the TAQ data. Before 2001, even-sized trades
account for over 60% of volume traded and 80% of trades executed. The fraction of even-
prints is stable across volume groups. The prevalence of these prints validates our choice of
bins with even-share bins considered separately. About 16% of all transactions and 2% of
volume traded are executed in 100-share prints. These trades represent 14% of transactions
for low-volume stocks and 25% of transactions for high-volume stocks. There is also a signif-
icant number of 1,000-share prints. The large fraction of 1,000-share prints for low-volume
stocks relative to high-volume stocks, 18% versus 13%, probably reflects the regulatory rule
according to which the NASDAQ market makers had to post quotes for at least 1,000 shares
prior to 1997.

Panel B of Table 1 describes statistical properties of the sample after 2001. Daily volume
has more than tripled from $6.28 million before 2001 to over $19 million after 2001. Volatility
has decreased from 4.1% to 3.4% per day. These numbers imply that the trading activity has
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doubled between the subperiod 1993-2001 and 2001-2008. The average number of TAQ prints
has increased by a factor of 12 from 143 to 1761, and the average print size has decreased
by a factor of 3 from $23,598 to $7,945. Back-of-the-envelope calculations implied by the
invariance hypothesis suggests that the changes in print arrival rates and print sizes cannot
be explained only by differences in levels of trading activity between the two subperiods,
but have to be attributed to other factors. One of them is the order shredding that has
been becoming increasingly prevalent over time, especially after the reduction in tick size
to one cent on January 29, 2001 for NYSE stocks and on April 9, 2001, for NASDAQ
stocks. During the subperiod 2001-2008, for example, 100-share trades account for about
50% of all transactions and 18% of volume traded, with these numbers reaching 70% and
35 %, respectively, in 2008. The 1,000-share trades have become less important in the latter
subperiod. We expect that order shredding will make it difficult to test the invariance
hypothesis using TAQ data after 2001.

Frequency and Sizes of TAQ Prints During 1993-2008. For the 16-year period 1993-
2008, figure 9 plots the 191 monthly values of the normalized mean of the number of TAQ
prints per month, calculated as N̄m · W−2/3, where N̄m is the number of TAQ prints per
month and W is trading activity. The figure also plots the averages of the 20th, 50th and
80th percentiles of the trade-weighted and volume-weighted distributions of logs of normalized
TAQ print sizes, calculated as ln(|X̃|/V ·W 2/3), where |X̃| is the TAQ print size. To facilitate
comparison across stocks and and across time, all variables are scaled by W−2/3 and W 2/3 as
implied by the invariance hypothesis. The left panel shows the normalized variables averaged
across low-volume stocks (group 1). The right panel shows the normalized variables averaged
across high-volume stocks (groups 9 and 10).

The trading patterns differ significantly during the two subperiods of 1993-2000 and 2001-
2008. For high-volume stocks, the percentiles of print sizes and print rates do not change
much prior to the beginning of decimalization in 2001; afterwards, percentiles of print size
decreases steadily and the average number of prints correspondingly increases. For low-
volume stocks, similar changes started to occur even before 2001. Since most of low-volume
stocks are NASDAQ stocks, the pre-2001 decrease in print sizes and increase in print arrival
rates may be explained by reduction in tick size from 1/8 of a dollar to 1/60 of a dollar
announced at NASDAQ in 1997. With an exception of the largest print sizes in high-volume
stocks, the downward trend in normalized print size and the upward trend in number of
prints seems to stop in 2007. A similar pattern is seen in figures in Hendershot et al. (2011).
In the following sections, we will examine these patterns in more detail.

4 Empirical Results

All three models make distinctively different predictions concerning the differences in the
distributions of trade sizes and their frequencies across stocks. We run our tests based on
both the number of TAQ prints and distributions of their sizes to determine which of the
models provides a more reasonable description of the data.
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4.1 Tests Based on Trading Frequency

Comparison of Three Models. According to each model, the average number of prints
N̄ per day is constant across stocks, if normalized by multiplying by a model-dependent power
of trading activity W . The three models differ only in the power of W used to normalize the
average number of prints. The invariance hypothesis implies that ln(N̄ ·W−2/3) is constant,
the model of invariant bet size implies that ln(N̄ ·W 0) is constant, and the model of invariant
bet rate implies that ln(N̄ ·W−1) is constant.

The three columns of figure 8 contain plots of the log of the average number of TAQ
prints per day N̄ , normalized according to each of the three models, against the log of
trading activity W . We present results for April 1993, April 2001, and April 2008, because
trading has changed dramatically during the period 1993-2008. For April 1993, we examine
separately the NYSE-listed and Nasdaq-listed stocks, because these securities may exhibit
different patterns due to a significant difference in regulatory rules across exchanges during
that time. We choose the month of April to avoid seasonality, as trades tend to cluster much
less before the end of calendar quarter, as showed by Moulten (2005). Each observation
corresponds to the average number of TAQ prints per day for a given stock in a given month.
There are about 5,800 observations on each subplot. If the model is correctly specified, the
points are expected to line up along a horizontal line.

In subplots for the invariance hypothesis, observations are scattered around horizontal
lines for each of the three years. The invariance hypothesis explains the data very well,
especially for the NYSE stocks traded in April 1993. The levels of the horizontal lines move
up, showing that the average number of TAQ prints has increased over time. For April 1993,
the average number of TAQ prints is slightly higher for the NYSE stocks than the NASDAQ
ones. Some of NASDAQ stocks with low trading activity seem to have too small a number
of TAQ prints. A few of the most inactive NASDAQ stocks have too high a number of prints
in April 1993.

In subplots for the model of invariant bet frequency, observations are lined up across
a line with a positive slope. The model assumes that differences in trading activity come
entirely from differences in trade sizes. Since in actual data changes in trading activity
are partially explained by changes in trading rates, the model tends to underestimate the
number of trades for high-volume stocks and overestimate it for low-volume stocks.

In subplots for the model of invariant bet size, observations are lined up along a line
with a negative slope. The model attributes all differences in trading activity entirely to
differences in trading rates. Since some part of these differences is explained in actual data
by differences in trade sizes, the model tends to overestimate the number of trades for high-
volume stocks and underestimate it for low-volume stocks.

OLS Estimates of Number of TAQ prints. The three models make distinctly different
predictions concerning how arrival rates of TAQ prints vary with the level of trading activity.
The predictions of the models can be nested into a simple linear regression,

ln
[
N̄i

]
= µγ + aγ · ln

[Wi

W∗

]
+ ϵ̃. (10)
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The equation relates the log of the mean number of TAQ prints N̄i per month for stock
i to the level of trading activity Wi. The scaling constant W∗ = (40)(106)(0.02) measures
trading activity for an arbitrary benchmark stock with price $40 per share, trading volume
of one million shares per day, and daily volatility of 2% per day. The model of trading game
invariance predicts aγ = 2/3, the model of invariant bet frequency predicts aγ = 0, and the
model of invariant bet size predicts aγ = 1. For each month, we estimate of the parameters
a and aγ using an OLS regression in which there is one observation for each stock with TAQ
data for that month.

Panel A of figure 9 shows a time series of 191 month-by-month regression coefficients
aγ from regression equations (10) over the period 1993-2008. We superimpose a horizontal
line representing aγ = 2/3, the value predicted by the invariance hypothesis. The figure
shows that there are two distinctive periods, 1993-2000 and 2001-2008. Over the subperiod
1993-2000, all estimated coefficients aγ remained virtually constant. The average value of
0.690 is only slightly higher than the predicted values of 2/3. Over the subperiod 2001-2008,
the estimates clearly begin to diverge from the values implied by the invariance hypothesis,
steadily increasing from about 0.690 to about 0.850 by the end of 2008. We suspect that
the breakpoint in 2001 most likely results from decimalization and improving electronic
interfaces encouraging the use of order shredding strategies and intermediation more strongly
for actively traded stocks than inactively traded stocks. The constant term a is scaled to
represent the log of expected number of bets for the benchmark stock with trading activity
W∗. Both the constant term a and the coefficient aγ are changing over time and may have
linear time trends which are different over the two subperiods 1993-2000 and 2001-2008.

Table 2 presents the results of the regression (10) pooled over time. The six columns
show the results for all stocks, the subsets of NYSE/AMEX-listed stocks, and the subset of
NASDAQ-listed stock during the two subperiods 1993-2000 and 2001-2008. The table reports
Fama-MacBeth estimates of the coefficients. Newey-West standard errors are calculated with
three lags relative to a linear time trend estimated by OLS regressions from the estimated
coefficients µ̂γ,T and âγ,T for each month: µ̂γ,T = µγ,0 + µγ,t · (T − T̄ )/12 + ϵ̃T and âγ,T =
aγ,0 + aγ,t · (T − T̄ )/12 + ϵ̃T , where T is the number of months from the beginning of the
subsample, and T̄ is the mean month in the subsample. For the subperiod February 1993 to
December 2000, T = 1 for February 1993, T = 95 for December 2000, and T̄ = 48. For the
subperiod January 2001 to December 2008, T = 1 for January 1993, T = 96 for December
2008, and T̄ = 48.5.

The point estimate of aγ,0 is equal to 0.690 for the subperiod 1993-2001 and 0.787 for
the subperiod 2001-2008. The standard errors of these estimates are 0.001 and 0.003, re-
spectively. Clearly, the first estimate is much closer to the predicted value of 2/3 than the
second estimate. This is consistent with the interpretation that after 2001, order shredding
in high-volume stocks has increased more than in low-volume stocks, most likely because of
intensive order shredding in high-volume stocks after 2001. Note also that the alternative
models predicting aγ,0 = 0 and aγ,0 = 1 are clearly rejected. For the period 1993-2000,
the estimated time trend aγ,t of -0.002 per year is statistically insignificant. For the time
period 2001-2008, the estimated time trend aγ,t of 0.017 per year is statistically significant,
consistent with the steady increase in aγ by 0.16 from about 0.690 to about 0.850 over the
eight-year period.

Across the two periods 1993-2000, and 2001-2008, the three estimates of 0.639 and 0.758
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for NYSE stocks are closer to the benchmark prediction of 2/3 and than the greater estimates
of 0.705 and 0.827 for NASDAQ stocks. This pattern is consistent with figure 8, which
reveals that there are fewer trades than predicted in some inactive NASDAQ stocks, even
after normalizing for trading activity.

The point estimate of µγ,0 is equal to 6.154 for the subperiod 1993-2000 and 8.043 for the
subperiod of 2001-2008. This indicates that the average number of TAQ prints has increased
over time. The constant terms µγ,t of 0.078 and 0.242 also show a statistically significant
downward time trend for both periods, especially for the second one. The time trends for
the coefficient aγ and the the constant term µγ are further examined in section 4.3 below.

4.2 Tests Based on TAQ Print Sizes

Comparison of Three Models. We examine the trade-weighted and volume-weighted
distributions of TAQ print sizes normalized for differences in trading activity as suggested
by the three models. The three models predict that the distributions of W a · |X̃|/V are
constant across stocks and across time, but the models make different assumptions about
the exponent a. The invariance model predicts a = 2/3, the model of invariant bet frequency
predicts a = 0, and the model of invariant bet size predicts a = 1.

To approximate the distribution, we calculate print size |X| based on the mid-point
of its print-size bin. For each month and for each volume group, the empirical stock-level
distributions of normalized print sizes are combined by averaging across stocks in each volume
group the frequency distributions of the number of trades in each bin. The results are plotted
on figure 1 and figure 2. For illustrative purposes, we present results only for April 1993,
but we will closely examine the data for the entire period 1993-2008 later in the paper.

Figure 1 shows empirical distributions of logs of normalized print sizes for the NYSE
stocks. The figure has three rows and six columns. The three rows contain plots for low-
volume stocks in volume group 1, medium-volume stocks in volume groups 2 through 8, and
high-volume stocks in volume group 10, respectively. The first three columns contain plots
of the trade-weighted distributions with the density of logs of normalized print sizes on the
vertical axis. The second three columns contain plots of the volume-weighted distributions
with the volume contribution of these trades on the vertical axis. In each of the three
columns, print sizes are normalized according to the three models. If one of the three models
is correct, then the corresponding distributions should be stable across the three rows.

To make it easier to interpret results, we superimpose the bell-shaped densities of a normal
distribution with the common means and variances equal to the means and variances of trade-
weighted and volume-weighted distributions of normalized print sizes based on the entire
sample. As discussed above, if trade-weighted distributions are log-normally distributed,
then volume-weighted distributions are log-normally distributed as well. If normalized TAQ
print sizes are distributed as a log-normal, then the three plots in each column of plots are
expected to coincide with the common superimposed density.

In the first column, the three trade-weighted distributions implied by the invariance
hypothesis can be seen by visual inspection to have similar means, variance, and supports.
The shapes of empirical distributions bear some resemblance to the superimposed normal
density, but the fit is by no means exact. The low-volume group 1 matches the superimposed
normal better than the medium- and high-volume groups. In the fourth column, the volume-
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weighted distributions are more similar to the superimposed common normal density. This
suggests that the invariance hypothesis explains a big part of variation in the distribution of
TAQ prints sizes and especially in the distribution of economically important large trades.
Furthermore, the print sizes are distributed similarly to a log-normal.

For the model of invariant bet frequency, the trade-weighted densities in the second
column and the volume-based densities in the fifth column are much less stable across volume
groups. In both columns, the distributions shift to the left as trading volume increases. This
suggests that the first alternative model understates sizes of TAQ prints for high-volume
stocks and overestimates them for low-volume stocks. The models fails to account for the
fact that some variation in trading activity is explained by variation in the number of prints.

For the model of invariant bet size, the trade-weighted densities in the third column and
the volume-based densities in the sixth column are unstable across volume groups as well.
In both columns, the distributions shift to the right as trading volume increases. The second
alternative model overstates sizes of TAQ prints for high-volume stocks and underestimates
them for low-volume stocks.

The alternative models clearly provide worse explanations for the observed variations in
TAQ print sizes than the invariance hypothesis.

Figure 2 shows results for the NASDAQ stocks. Similarly to the NYSE stocks, the
distributions of TAQ print sizes are more stable across volume groups, when print sizes
are adjusted according to the invariance hypothesis rather than alternative models. The
NASDAQ distributions are less smooth and have more spikes than the NYSE distributions,
especially the trade-based ones. We attribute these patterns to a regulatory rule that required
NASDAQ dealers to quote prices for at least 1,000 shares, leading to a disproportionably
large number of 1,000-share NASDAQ trades recorded on the consolidated tape before 1997.

Implications of Log-normal Distributions. As discussed above, if the log of trade-
weighted normalized print sizes is distributed N(µ, σ2), then the log of volume-weighted
normalized print size is distributed N(µ + σ2, σ2). It is interesting to examine how closely
the means and variances of the distributions superimposed in figure 1 and figure 2 for the
invariance hypothesis come to satisfying this constraint.

For NYSE stocks, the constraint implies that the volume-weighted mean of 0.97 should
be the same as the sum of the trade weighted mean of -1.01 and its variance 1.78. Since
−1.01+1.78 = 0.77 ̸= 0.97, we see that the constraint fails to hold by a margin of only about
20%. The log-variance of 2.69 for the volume-based distribution is much larger than the log-
variance of 1.78 for the trade-weighted distribution. This is inconsistent with log-normality,
which implies that these log-variances should be be the same. For NASDAQ stocks, the
volume-weighted mean of 1.19 should be the same as the sum of the trade-weighted mean of
-0.18 and its variance of 1.85. Since −0.18 + 1.85 = 1.67 ̸= 1.19, we see that this constraint
fails to hold by a margin of 0.48. The log-variance of 1.87 for the volume-based distribution
is similar to the log-variance of 1.85 for the trade-weighted distribution, consistent with the
predictions of log-normality. Since these moment restrictions are not perfectly satisfied in the
data, the hypothesis of log-normality can be valid only as a very rough approximation at best.
Deviations from log-normality include clustering of trades in even lot sizes (especially trades
of 1,000 shares on NASDAQ), censoring and rounding of odd lots, clustering of 100 share
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trades, and the possibility that very large trades follow a fatter-tailed power-law distribution
rather than a log-normal.

OLS Regression Estimates of TAQ Print Sizes, February 1993 - December 2008.
We test implications of the invariance hypothesis for TAQ print sizes using OLS regressions
in which the left-side variable is either a mean or quantile of the trade-weighted or volume-
weighted distribution of logs of TAQ print sizes. For each stock in a given month, we
construct the empirical trade-weighted and volume-weighted distributions of logs of TAQ
print sizes. Letting f(.) denote an functional which calculates either the mean or the pth
percentiles (20th, 50th, 80th) of these distributions, we regress these variables on logs of
trading activity,

f
(
ln
[X̃i

Vi

])
= µQ + aQ · ln

[Wi

W∗

]
+ ϵ̃i, (11)

Since expected trading volume V is the product of the expected number of prints N̄ and ex-
pected print size E{X̃}, the left-hand-side variable in equation (11) is similar to the result of
reversing the sign on the left-hand-side variable in the regression equation (10). Specifically,
V = N̄ · E{X̃} implies that the left-side of equation (10) is log N̄ = − log(E{X̃}/V ). This
is different in absolute value from the left-hand-side of equation (11) because the concavity
of the log function implies by Jensen’s inequality that the log of the expectation is less than
the expectation of the log: log(E{X̃/V }) < E{log(X̃/V )}. If X̃i/Vi were distributed log-
normally with the same variance across stocks, then the coefficient estimates for aγ and aQ
would be the same in absolute value but opposite in sign in all of the regressions in equations
(11) and (10), but the constant terms would be different. In fact, we show below that X̃i/Vi

deviates from a log-normal sufficiently to make the coefficients aγ and aQ vary across the
different regression equations using means and quantiles as the left-side variable.

We run the regressions for each month between February 1993 and December 2008. Figure
9 shows the time series of 191 month-by-month regression coefficients aQ from regression
equations (11) for the 20th, 50th and 80th percentiles of TAQ print sizes over the period
1993-2008. Panel B presents results for trade-weighted distributions. Panel C presents
results for volume-weighted distributions. We superimpose horizontal lines representing the
levels of -2/3, as benchmarks predicted by the invariance hypothesis.

The figure shows that there are two distinctive subperiods. Over the subperiod 1993-
2001, all estimated coefficients remained virtually constant. The estimates of aQ were slightly
lower than the predicted value of -2/3 for the 20th, 50th and 80th percentiles of trade-
weighted distributions, fluctuating between -0.800 and -0.700 and implying that small print
sizes as a fraction of volume decreased faster with trading activity than predicted. For the
50th and 80th percentiles of volume-weighted distributions, the estimates of aQ fluctuated
between -0.700 and -0.480, somewhat higher than predicted by the invariance hypothesis,
while all estimates for the 20th volume-weighted percentiles were very close to -2/3. Over
the subperiod 2001-2008, the estimates began to diverge from initial levels. For the volume-
weighted percentiles, the estimates of aQ decreased from about -0.500 to -1.000 for the 80th
percentile, from about -0.650 to -1.000 for the 50th percentile, and from -0.670 to -0.870 for
the 20th percentile. For the trade-weighted percentiles, the estimates for the 20th and 50th
percentiles do not exhibit any definite patterns, but the estimates for the 80th percentile are
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gradually decreasing from about -0.670 to -0.850. Most changes occur in the distributions
of large TAQ print sizes (right tails) rather than small print sizes (left tails).

Table 3 reports the estimates from regressions (11) pooled over the period 1993-2000.
The first four columns show estimates for the means and percentiles of the trade-weighted
distributions. The last four columns show estimates for the means and percentiles of the
volume-weighted distributions. Since the monthly estimates of âT and âQ,T for each month
T are changing over time, we choose to add a linear time trend. The table reports Fama-
MacBeth estimates of the coefficients, with Newey-West standard errors calculated with
three lags relative to a linear time trend estimated by OLS regressions from the estimated
coefficients µ̂Q,T and âQ,T for each month: µ̂Q,T = µQ,0 + µQ,t · (T − T̄ )/12 + ϵ̃T and âQ,T =
aQ,0 + aQ,t · (T − T̄ )/12 + ϵ̃T , where T is the number of months from the beginning of the
subsample, and T̄ is the median month in the subsample.

For the trade-weighted distributions, the estimate of aQ,0 is equal to -0.759 for the means.
This estimate is larger in absolute value by 0.069 than the estimate of 0.690 for the number
of TAQ prints in table 2. For the trade-weighted percentiles, the estimated coefficients range
from -0.797 for the 20th percentile to -0.742 for the 80th percentile. All of these estimates are
slightly bigger in absolute value than the value of -2/3 predicted by the invariance hypothesis.
This implies that TAQ print sizes as a faction of volume tend to decrease with trading activity
faster than the invariance hypothesis implies. For the volume-weighted distributions, the
estimated coefficient aQ is equal to -0.591 for the means; the estimates range from -0.688
for the 20th percentile to -0.514 for the 80th percentile. During the subperiod 1993-2000, the
volume-weighted print size as a fraction of volume does not decrease with trading activity
as fast as trade-weighted print sizes. Across means and percentiles, the standard errors of
estimates aQ,0 range from 0.001 to 0.003; these values are similar in magnitude to the averages
of standard errors of aQ from the cross-sectional monthly regressions (11), whose values range
from 0.003 to 0.005. The data suggests that the invariance hypothesis aQ,0 = −2/3 explains
the data much better than the alternatives aQ,0 = 0 and aQ,0 = −1.

The estimated time trend aQ,t ranging from 0.006 to 0.012 for the trade-weighted distri-
butions per year is statistically significant. The time trend is either statistically insignificant
or negative for the volume-weighted distributions. This implies that aQ has increased for
small prints and increased for large prints over that subperiod.

The estimated intercept µQ,0 of -7.219 in the regression based on the trade-weighted means
implies that the median print size for the benchmark stock is equal to exp(−7.219), or 0.07
percent of daily volume. The estimated intercepts of -8.470 and -6.240 in the regressions for
the 20th and 80th percentiles suggest that the average 20th and 80th print-size percentiles are
equal to 0.02 percent and 0.20 percent of daily volume for the benchmark stock, respectively.
Under the assumption of log-normality, Kyle and Obizhaeva (2011a) note that the fraction
of volume generated by trades larger than z standard deviations above the log-mean (which
equals the median) is given by 1 − N(z − σ), where σ is the standard deviation for the
distribution of the log of trade sizes. Based on the trade-weighted variance of 1.78 in figure
1, log-normality would imply that about 91% of volume occurs in print sizes larger than 0.07%
of daily volume (median trade). The standard errors of µQ,0 in cross-sectional regressions
are similar in magnitude and range between 0.013 to 0.030, across means and percentiles.
The negative and statistically significant estimates of time trend µQ,t indicate that the TAQ
print sizes have been gradually decreasing in size during the subperiod of 1993-2000, with a
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greater downward drift for the right tails of distributions than the left tails.
The R-square is lower in regressions based on trade-weighted distributions than regres-

sions based on volume-weighted distributions. For the means, the R-squares are 0.93 and
0.86, respectively. The difference in R-square increases monotonically from a difference be-
tween 0.90 and 0.91 for the 20th percentiles to a difference between 0.93 and 0.77 for the
80th percentiles. These numbers show that there is more unexplained variation in large print
sizes than in small print sizes. Some of this variation may result from the rounding of large
odd-size trades to the mid-point of bins or from the small number of observations in the
largest bins.

Table 4 reports the estimates for regressions in equation (11) for the subperiod 2001-2008.
For the means, the estimates of aQ,0 are -0.793 for trade-weighted distributions and -0.743
for volume-weighted distributions. These estimates are larger in absolute value than the
corresponding estimates of -0.759 and -0.591 for the subperiod 1993-2001 in table 3. All but
one estimates of -0.787, -0.793, and -0.805 for the 20th, 50th, and 80th trade-weighted per-
centiles and -0.799, -0.800, -0.720 for the 20th, 50th, and 80th volume-weighted percentiles are
also higher in absolute values than the estimates of -0.797, -0.765, -0.742, -0.688, -0.611, and
-0.514 for the earlier subperiod. The biggest changes occur in the estimates for the 80th per-
centile of trade-weighted distributions and the 50th and 80th percentiles of volume-weighted
distributions. This suggests that recent technological and regulatory changes had the largest
effect on the the right tail of TAQ print-size distributions. The standard errors of aQ,0 are
between 0.003 and 0.004, as the averages of standard errors of aQ in monthly regressions
(11). This validates the adjustment for time trend in the Fama-McBeth procedure, because
without inclusion of a time trend, the standard errors would range from 0.004 to 0.030.

The estimates of the intercept µQ,0 for the subperiod 1993-2001 are lower than for the
subperiod 2001-2008, for the means and all percentiles. For the pooled sample, for example,
the estimate of -8.692 in table 4 is lower than the corresponding estimate of -7.219 in table
3, i.e., the typical print size for the benchmark stock fell from 0.07 to 0.02 percent of daily
volume over the period 1993-2001. The estimated time trend µQ,t is negative and statistically
significant in all columns, except for 20th percentile of trade-weighted distributions, also
implying that the distributions of TAQ print sizes has been shifting downwards.

4.3 Other Microstructure Effects Over Time

In this section, we focus exclusively on the relationship between the invariance hypothesis
and microstructure effects related to the minimum tick size of one cent and the minimum
round lot size of 100 shares. Our goal is to better understand how various market frictions
and regulatory rules affect the observed number and size distribution of TAQ prints.

Effective Price Volatility, Effective Relative Tick Size, and Effective Relative Lot
Size. For the purpose of comparing price volatility with minimum tick size and the round
lot size of 100 shares, it is better to begin the analysis with daily dollar price volatility P · σ
than daily percentage returns volatility σ. The invariance hypothesis suggests that it is
better to measure volatility defined over a period proportional to the average arrival time
between intended orders rather than over a period of one calendar day. Since (W/W∗)

−2/3 is
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proportional to the average arrival time between intended orders, we use its square root to
scale daily dollar volatility. This results in a definition of effective price volatility given by

Effective Price Volatility := P · σ ·
(W

W∗

)−1/3

, (12)

In comparison with calendar day volatility, this definition makes effective price volatility
lower for active stocks and higher for inactive stocks. We expect this variable to be related
to several microstructure effects associated with minimum tick size and minimum lot size.

Traders often measure daily price volatility in units of minimum tick size. For example,
if a $40 stock has a volatility of 2% per day, the minimum tick size is 1/80 of the daily
dollar price volatility of $0.80 when the minimum tick size is one cent. Rather than defining
effective relative tick size as a fraction of daily dollar price volatility, the invariance hypothesis
makes it natural to measure effective relative tick size as a fraction of effective price volatility.
Assuming a minimum tick size of one cent, the definition is

Effective Relative Tick Size :=
$0.01

P ·σ
P∗·σ∗

·
(

W
W∗

)−1/3
. (13)

The presence of P∗ · σ∗ in the denominator scales the definition of relative tick size so that
relative tick size is one cent for the benchmark stock. For traders who trade different securi-
ties over different horizons in trading games operating at different speeds, defining effective
relative tick size using effective volatility better reflects the manner in which minimum tick
size restricts trading than a definition based on calendar day price volatility. Higher effective
price volatility makes the effective relative tick size lower. We conjecture that lower effective
relative tick size encourages traders to shred intended orders into a larger number of smaller
pieces for execution and may also induce a larger number of intermediation trades.

Median bet size is proportional to V ·W−2/3. We define effective relative lot size as the
ratio of the 100-share round-lot size to median bet size:

Effective Relative Lot Size :=
100

V
V∗

·
(

W
W∗

)−2/3
. (14)

The presence of V∗ in the denominator scales the definition of effective relative lot size so
that effective relative lot size is 100 shares for the benchmark stock. Since W = V · P · σ,
the product of effective relative tick size and effective relative lot size is a constant equal to
exactly one dollar, the dollar value of one tick on a trade of minimum round-lot size.

Effective relative lot size is proportional to effective price volatility and inversely propor-
tional to effective relative tick size. Higher effective volatility therefore makes the 100-share
round-lot boundary more binding, in the sense that more intended orders begin to fall below
that boundary. Some of these small intended orders may be executed as odd lots which are
not recorded on the consolidated tape, some may not be executed at all, and others may be
rounded to precisely 100 shares. We expect the amount of such censoring and rounding to
be more pronounced for stocks with large effective relative lot size.

To summarize, increases in effective price volatility are expected to have two opposite
kinds of effects on the number of TAQ prints and the distribution of their sizes. The effect
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operating through effective relative tick size encourages more order shredding and perhaps
more intermediation trades. The effect operating through effective relative lot size encourages
more censoring of odd lots and more rounding of odd lot trades to precisely 100 shares.

Trade-Weighted Distributions for NYSE-listed Stocks, April 1993. After sorting
stocks into ten volume groups and four effective price volatility groups, we analyze distribu-
tions of the logs of normalized print sizes ln(X

V
·W 2/3) with the scaling factor W 2/3 implied

by the invariance hypothesis. The invariance hypothesis predicts these 40 distributions to be
the same. To examine how these distributions change over the period 1993-2008, we examine
the shape of the distributions for three months: April 1993, April 2001, and April 2008.

Figure 3 shows the trade-weighted distributions of logs of normalized print sizes for 5 of
the 10 volume groups and all 4 effective prince volatility groups for the NYSE-listed stocks
in April 1993. We highlight 100-share trades in light grey and 1,000-share trades in dark
grey. We also report the number of stocks in each subgroup and the average number of
trades per day for these stocks. On each subplot, we superimpose a density of a normal
distribution with the mean of -1.01 and variance of 1.78, calculated for the pooled sample in
April 1993. If the invariance hypothesis holds, identification assumptions are valid, and bet
sizes are distributed as a log-normal, then all distributions are expected to be invariant across
forty subplots and coincide with a superimposed density of a normal. For most subgroups,
distributions are indeed close to a superimposed normal.

There is, however, a clear truncation below the 100-share odd-lot boundary with clus-
tering of 100-share trades, shown in light grey, in the left tails of the distributions. Because
variation in levels of dollar volume within groups is small, the 100-share trades usually fall
into the same bin or into two adjacent bins. The only exception is the first volume group,
where large variation in trading activity makes the 100-share trades spread over more than
four bins.

The empirical distributions have spikes due to clustering of trades at round-lot levels.
There are visible spikes at the 100-share level and the 1,000-share level, marked by clustering
of light grey and dark grey columns, as well as two spikes in-between, corresponding to the
200-share and 500-share levels. For the subsample of stocks with low volume and low price
volatility, large variation in trading activity smoothes out spikes in the distribution of print
sizes.

A visual inspection suggests that holding effective price volatility fixed, the supports of
distributions stay relatively constant across volume groups, but their shapes become more
skewed to the right as volume increases, especially when price volatility is low, consistent
with large orders being shredded into smaller trades.

Holding the dollar volume fixed, the distributions vary across effective price volatility
groups in a systematic way as well. When effective price volatility increases, the 100-share
boundary becomes more binding, the truncation threshold shifts to the right, and the effects
of censoring and rounding to the 100-share boundary become more pronounced. At the
same time, the relative tick size decreases, thus encouraging more order shredding. The
first effect seems to dominate, because the average number of TAQ prints decreases with
price volatility. For high-volume stocks, for example, the average number of prints decreases
monotonically from 938 prints recorded per day for low-volatility stocks to only 307 prints
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for high-volatility stocks. In the absence of any market frictions, the number of trades is
expected to be relatively constant within a given volume group, because volatility does not
vary much.

Volume-Weighted Distributions for NYSE-listed Stocks, April 1993. Figure 4
shows the volume-weighted distributions of logs of normalized print sizes for the NYSE
stocks in April 1993. In comparison with the trade-weighted distributions in figure 3, the
volume-weighted distributions put more weight onto larger trades and allow us to see more
clearly the distribution of large print sizes.

Compared with the trade-weighted distributions in figure 3, the volume-weighted dis-
tributions are more stable across subgroups and more closely resemble the superimposed
normal distribution. On most plots, the space below a bell-shaped density function is filled
up. The truncation at the odd-lot boundary is almost invisible, because the numerous 100-
share trades almost “disappear” from the left tail of the distribution, as they contribute little
to overall volume.

Small gaps in the distributions relative to a log-normal can be seen in mid-range print sizes
between 1,000 shares and 10,000 shares. Perhaps these represent intended orders shredded
into smaller trades. The strong visual resemblance of the graphs to a log-normal, as in
Kyle and Obizhaeve (2011b), are consistent with the interpretation that most of the largest
orders in 1993 appear to have been executed in the upstairs market, generating large print
sizes. An exception is the low-volume group, for which the largest orders appear to be
shredded, because the distributions are skewed to the right. Although the volume-weighted
distributions are much smoother than the trade-weighted distributions, small spikes are still
detectable. These spikes, which likely correspond to clusters of trades at the levels of 1,000
shares, 5,000 shares and 10,000 shares, are clearly visible, for example, in distributions for
stocks with high volume and high effective price volatility. There are also a few spikes in
far-right tails of several distributions, suggesting that a few very large prints occur in the
data more often than explained by log-normality.

Trade-Weighted Distributions for NASDAQ-listed Stocks, April 1993. Figure 5
shows the trade-weighted distributions of logs of normalized print sizes for the NASDAQ
stocks in April 1993. The biggest difference between the trade-weighted distributions of the
NASDAQ stocks and the NYSE stocks is the very large fraction of 1,000-share trades, shown
as dark grey spikes, typically in the middle of the NASDAQ distributions. These spikes can
be explained by the 1988 Securities and Exchange Commission requirement for NASDAQ
market makers to have a quotation size of at least 1,000 shares for most stocks. The rule
mostly affected large stocks, and indeed we observe larger spikes in subplots for high-volume
stocks. For small stocks, the rule was slightly different. For example, orders smaller than
1,000 shares could be executed through the small-order execution system (SOES) in stocks
that were trading at prices lower than $250 per share. After 1996, the minimum quote size
restriction was gradually removed. Under the Actual Size Rule, the minimum quote size was
reduced from 1,000 to 100 shares, first for 50 pilot stocks in January 1997, then for additional
104 stocks in November 1997, and finally for all others. We do not observe the clustering at
the 1,000-share level after 2001 (unreported). Apart from the clustering in the 1,000-share
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level and truncation at the 100-share level, the distributions bear some resemblance to the
superimposed normal distribution.

Trade-Weighted Distributions for All Stocks, April 2001 and 2008. Figure 6
and figure 7 show the trade-weighted distributions of logs of normalized print sizes for all
stocks traded in April 2001 and April 2008, respectively. In 2001, decimalization and more
widespread use of electronic interfaces led to a significant increase in order shredding, the
effect of which is clearly seen in both figures.

The frequency of trades has increased significantly over time. For high-volume and low-
volatility stocks, for example, there were, on average, only 938 trades per day in April 1993,
increasing to 11,154 trades per day in April 2001 and 74,420 trades per day in April 2008.
The distributions of normalized print sizes has shifted substantially to the left during the
period 1993-2008. Based on the means of superimposed normals, for example, we conclude
that median print size drops from 0.36% of daily volume for the NYSE stocks in April
1993 and 0.84% for the NASDAQ stocks to 0.27% in 2001, and only 0.07% in 2008. The
block-order market seems almost to have disappeared, and the trading is now dominated by
transactions of 100 shares. Trades of 100 shares constitute about 70% of trades executed
and 35% of volume traded in 2008.

Regressions With Effective Price Volatility. Table 5 presents the Fama-MacBeth
estimates µγ and aσ from monthly regressions

ln
[
N̄i

]
= µγ +

2

3
· ln

[Wi

W∗

]
+ aσ · ln

[ Pi · σi

P∗ · σ∗
·
(Wi

W∗

)−1/3]
+ ϵ̃i. (15)

The regression effectively imposes the invariance restriction of aQ = 2/3 in regression (10) and
adds effective price volatility as an additional explanatory variable. The table reports Fama-
MacBeth estimates of the coefficients, with Newey-West standard errors calculated with
three lags relative to a linear time trend estimated by OLS regressions from the estimated
monthly coefficients µ̂γ,T and âσ,T for each month: µ̂γ,T = µγ,0 + µγ,t · (T − T̄ )/12 + ϵ̃T and
âσ,T = aσ,0 + aσ,t · (T − T̄ )/12 + ϵ̃T , where T is the number of months from the beginning
of the subsample, and T̄ is the mean month in the subsample. The six columns show the
results for all sample, the subsets of NYSE/AMEX-listed stocks and the NASDAQ-listed
stock during the two subperiods 1993-2000 and 2001-2008.

The point estimates for aσ,0 are negative and statistically significant for all subsamples.
The estimates of -0.447, -0.315, and -0.472 for the subperiod 1993-2000 are smaller in absolute
terms than the corresponding estimates of -0.546, -0.378, and -0.647 for the subperiod 2001-
2008. The standard errors range from 0.003 to 0.008. The point estimates of aσ,t are equal
to -0.009, -0.038, -0.008, -0.036, -0.026, and -0.039, with standard errors between 0.001
and 0.004. There is an inverse relation between effective price volatility and the number
of TAQ prints. The higher effective volatility implies fewer TAQ prints in the context of
the invariance hypothesis. The estimates of µγ,0 and µγ,t are not too different from the
corresponding estimates in table 2.

The comparison of R-squares in regressions (15) with R-squares in regression (10) con-
strained with aγ = 2/3 shows what variations in the number of TAQ prints, unexplained
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by the invariance hypothesis, can be attributed to differences in effective price volatility.
Addition of effective price volatility as an explanatory variable significantly improves the
R-square. For the entire sample, adding effective price volatility as an explanatory variable
increases the R-square from 0.906 to 0.938 and from 0.915 to 0.956 for the subperiods 1993-
2000 and 2001-2008, respectively. For NYSE stocks, the R-square increases from 0.924 and
0.937 to 0.936 and 0.955; for NASDAQ stocks, the R-square increases from 0.901 and 0.899
to 0.941 and 0.963 during the two subperiods.

Finally, we analyze the R-square in the regression which imposes the invariance restriction
aQ = 2/3 in regression (10), but allows the coefficients on the three components of trading
activity Wi (volume Vi, price Pi, and volatility σi) to vary freely,

ln
[
N̄i

]
= µγ +

2

3
ln
[Wi

W∗

]
+ b1 · ln

[ Vi

(106)

]
+ b2 · ln

[ Pi

(40)

]
+ b3 · ln

[ σi

(0.02)

]
+ ϵ̃. (16)

For the entire period 1993-2008, the estimates are b̂1 = 0.18 for the coefficient on volume
Vi, b̂2 = −0.3 for the coefficient on price Pi, and b̂3 = −0.41 for the coefficient on volatility
σi (not reported). All coefficients are statistically different from zero. Similar patters are
observed for other subperiods and subsamples of the NYSE stocks and the NASDAQ stocks.
The exponents for volatility behave similarly to the exponents for price and differently from
the exponents for volume. This implies that the rejection of the invariance hypothesis might
depend in a subtle manner on how effective price-volatility influences incentives to shred
orders and make intermediation trades. Note that for the pooled sample, the increased
R-square from 0.906 to 0.943 for the subperiod 1993-2000 and from 0.915 to 0.965 for the
subperiod 2001-2008. The R-square of 0.943 and 0.965 are only slightly bigger than the
R-square of 0.938 and 0.956 in regressions (15), respectively. While statistically significant,
the addition of two extra degrees of freedom beyond the effective price volatility improves
the R-square by only a small amount.

5 Conclusion.

We find that the distributions of print sizes (adjusted for trading activity) resemble a
log-normal, with truncation below the 100-share odd-lot boundary. The resemblance was
stronger during the earlier period 1993-2001 than the later period 2001-2008, and it shows
up more clearly in volume-weighted distributions than trade-weighted distributions.

The invariance hypothesis explains about 91% of variation across stocks in number of
TAQ prints. The other unexplained 9% can be most likely attributed to other microstructure
effects such as order shredding, intermediation activity, and various market frictions like
minimum lot size and tick size. For example, subtle effects of effective price volatility explain
additional 3% and 4% of variations during periods 1993-2000 and 2001-2008, respectively.
An interesting topic for the future research is to analyze these effects at a deeper level by
designing econometric tests that model these issues more carefully.
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Table 2: OLS Estimates of Number of TAQ Prints.

All Stocks NYSE/AMEX NASDAQ

1993–2000 2001–2008 1993–2000 2001–2008 1993–2000 2001–2008

µγ,0 6.154 8.043 6.067 7.814 6.170 8.300
(0.017) (0.034) (0.012) (0.027) (0.019) (0.050)

µγ,t 0.078 0.242 0.037 0.268 0.123 0.225
(0.007) (0.019) (0.005) (0.014) (0.007) (0.026)

aγ,0 0.690 0.787 0.639 0.758 0.705 0.827
(0.001) (0.003) (0.001) (0.003) (0.002) (0.005)

aγ,t -0.002 0.017 0.002 0.018 0.000 0.016
(0.001) (0.001) (0.001) (0.001) (0.001) (0.002)

Adj-R2 0.91 0.94 0.93 0.95 0.90 0.94
# Obs 6,698 4,914 2,199 1,904 4,499 3,010

This table presents Fama-MacBeth estimates µγ and aγ from monthly regressions

ln
[
N̄i

]
= µγ + aγ · ln

[Wi

W∗

]
+ ϵ̃i.

For each month, there is one observation for each stock i. The value of N̄i is the average
number of TAQ prints per day. Trading activity Wi is the product of average daily
dollar volume Vi · Pi and the percentage standard deviation σi of daily returns in a
given month. The scaling constant W∗ = (40)(106)(0.02) corresponds to the measure
of trading activity for a benchmark stock with price $40 per share, trading volume of
one million shares per day, and daily volatility of 0.02. Newey-West standard errors are
calculated with three lags relative to a linear time trend estimated by OLS regressions
from the estimated coefficients µ̂γ,T and âγ,T for each month: µ̂γ,T = µγ,0 + µγ,t ·
(T − T̄ )/12 + ϵ̃T and âγ,T = aγ,0 + aγ,t · (T − T̄ )/12 + ˜ϵT t, where T is the number
of months from the beginning of the sample and T̄ is the mean month. “Adj-R2”
denotes the adjusted R2 averaged over monthly regressions, and “# Obs” denotes the
number of stocks averaged over monthly regressions. The estimates are reported for
two subperiods 1993-2000 and 2001-2008.
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Table 3: Regression Estimates of TAQ Print Sizes, February 1993 - December 2000.

Trade-Weighted Distribution Volume-Weighted Distribution

Mean 20th 50th 80th Mean 20th 50th 80th

µQ,0 -7.219 -8.470 -7.258 -6.240 -4.717 -6.388 -4.933 -3.376
(0.020) (0.027) (0.030) (0.013) (0.018) (0.015) (0.017) (0.023)

µQ,t -0.037 -0.031 -0.039 -0.054 -0.114 -0.081 -0.134 -0.134
(0.008) (0.011) (0.012) (0.006) (0.007) (0.006) (0.007) (0.010)

aQ,0 -0.759 -0.797 -0.765 -0.742 -0.591 -0.688 -0.611 -0.514
(0.002) (0.003) (0.002) (0.003) (0.002) (0.001) (0.002) (0.003)

aQ,t 0.009 0.012 0.008 0.006 -0.003 0.002 -0.005 -0.008
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Adj-R2 0.93 0.90 0.91 0.91 0.75 0.87 0.75 0.61
#Obs 6,698 6,698 6,698 6,698 6,698 6,698 6,698 6,698

This table presents Fama-MacBeth estimates µQ and aQ from the monthly regressions
of the mean and percentiles of TAQ print size on trading activityW for the sample from
February 1993 to December 2000. The coefficients µQ and aQ are based on monthly
regressions

ln
[ |Xi|
Vi

]
= µQ + aQ · ln

[Wi

W∗

]
+ ϵ̃i,

where the left-hand side is either the mean or the pth (20th, 50th and 80th) percentile of
the distribution of logarithms of (unsigned) TAQ print sizes |Xi|, expressed as a fraction
of daily volume Vi in a given month. The means and percentiles are calculated based
on both trade-weighted and volume-weighted distributions. For each month, there is
one observation for each stock i, with trading activity Wi defined as the product of
the average daily dollar volume Vi · Pi and the percentage standard deviation σi of
daily returns. The scaling constant W∗ = (40)(106)(0.02) corresponds to the trading
activity of the benchmark stock with price $40 per share, trading volume of one million
shares per day, and volatility of 2% per day. Newey-West standard errors are calculated
with three lags relative to a linear time trend estimated by OLS regressions from the
estimated coefficients µ̂Q,T and âQ,T for each month: µ̂Q,T = µQ,0+µQ,t ·(T−T̄ )/12+ϵ̃T
and âQ,T = aQ,0 + aQ,t · (T − T̄ )/12 + ˜ϵT t, where T is the number of months from the
beginning of the sample and T̄ is the mean month. “Adj-R2” denotes the adjusted R2

averaged over monthly regressions, and “#Obs” denotes the number of stocks averaged
over monthly regressions.
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Table 4: Regression Estimates of TAQ Print Sizes, January 2001 - December 2008.

Trade-Weighted Distribution Volume-Weighted Distribution

Mean 20th 50th 80th Mean 20th 50th 80th

µQ,0 -8.692 -9.417 -8.977 -8.072 -6.824 -8.549 -7.355 -5.558
(0.035) (0.032) (0.038) (0.032) (0.032) (0.047) (0.035) (0.032)

µQ,t -0.149 -0.025 -0.162 -0.255 -0.326 -0.289 -0.388 -0.382
(0.021) (0.017) (0.022) (0.018) (0.015) (0.026) (0.018) (0.015)

aQ,0 -0.793 -0.787 -0.793 -0.805 -0.743 -0.799 -0.800 -0.720
(0.003) (0.005) (0.003) (0.002) (0.003) (0.002) (0.003) (0.004)

aQ,t -0.003 0.005 0.001 -0.012 -0.034 -0.020 -0.041 -0.050
(0.002) (0.002) (0.001) (0.001) (0.001) (0.001) (0.001) (0.002)

Adj-R2 0.93 0.90 0.92 0.93 0.86 0.91 0.87 0.77
# Obs 4,914 4,914 4,914 4,914 4,914 4,914 4,914 4,914

This table presents Fama-MacBeth estimates µQ and aQ from the monthly regressions
of the mean and percentiles of TAQ print size on trading activityW for the sample from
January 2001 to December 2008. The coefficients µQ and aQ are based on monthly
regressions

ln
[ |Xi|
Vi

]
= µQ + aQ · ln

[Wi

W∗

]
+ ϵ̃i,

where the left-hand side is either the mean or the pth (20th, 50th and 80th) percentile of
the distribution of logarithms of (unsigned) TAQ print sizes |Xi|, expressed as a fraction
of daily volume Vi in a given month. The means and percentiles are calculated based
on both trade-weighted and volume-weighted distributions. For each month, there is
one observation for each stock i, with trading activity Wi defined as the product of
the average daily dollar volume Vi · Pi and the percentage standard deviation σi of
daily returns. The scaling constant W∗ = (40)(106)(0.02) corresponds to the trading
activity of the benchmark stock with price $40 per share, trading volume of one million
shares per day, and volatility of 2% per day. Newey-West standard errors are calculated
with three lags relative to a linear time trend estimated by OLS regressions from the
estimated coefficients µ̂Q,T and âQ,T for each month: µ̂Q,T = µQ,0+µQ,t ·(T−T̄ )/12+ϵ̃T
and âQ,T = aQ,0 + aQ,t · (T − T̄ )/12 + ˜ϵT t, where T is the number of months from the
beginning of the sample and T̄ is the mean month. “Adj-R2” denotes the adjusted R2

averaged over monthly regressions, and “#Obs” denotes the number of stocks averaged
over monthly regressions.
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Table 5: OLS Estimates of Number of TAQ Prints with Effective Volatility.

All Stocks NYSE/AMEX NASDAQ

1993–2000 2001–2008 1993–2000 2001–2008 1993–2000 2001–2008

µγ,0 6.212 7.595 6.247 7.508 6.190 7.673
(0.016) (0.018) (0.009) (0.016) (0.019) (0.027)

µγ,t 0.088 0.184 0.024 0.219 0.129 0.167
(0.007) (0.010) (0.004) (0.007) (0.009) (0.014)

aσ,0 -0.447 -0.546 -0.315 -0.378 -0.472 -0.647
(0.003) (0.007) (0.005) (0.008) (0.003) (0.008)

aσ,t -0.009 -0.038 -0.008 -0.036 -0.026 -0.039
(0.001) (0.003) (0.002) (0.004) (0.001) (0.003)

Adj-R2 0.938 0.956 0.936 0.955 0.941 0.963
# Obs 6,698 4,914 2,199 1,904 4,499 3,010

Regression With Coefficient on Effective Price Volatility aσ = 0.

Adj-R2 0.906 0.915 0.924 0.937 0.901 0.899

Regression With Separate Coefficients for Price, Volume, and Volatility.

Adj-R2 0.943 0.965 0.946 0.971 0.942 0.975

This table presents Fama-MacBeth estimates µγ and aσ from monthly regressions

ln
[
N̄i

]
= µγ +

2

3
· ln

[Wi

W∗

]
+ aσ · ln

[ Pi · σi
P∗ · σ∗

·
(Wi

W∗

)−1/3]
+ ϵ̃i.

For each month, there is one observation for each stock i, with trading activity Wi

defined as the product of the average daily dollar volume Vi · Pi and the percentage
standard deviation σi of daily returns. Effective price volatility is defined as Pi ·
σi ·

(
Wi
W∗

)−1/3
, with the effective price volatility of the benchmark stocks equal to

40 · 0.02. The value of N̄i is the average number of TAQ prints per day. The scaling
constant W∗ = (40)(106)(0.02) corresponds to the measure of trading activity for the
benchmark stock with price $40 per share, trading volume of one million shares per
day, and daily volatility of 0.02. Newey-West standard errors are calculated with three
lags relative to a linear time trend estimated by OLS regressions from the estimated
coefficients µ̂γ,T and âσ,T for each month: µ̂γ,T = µγ,0 + µγ,t · (T − T̄ )/12 + ϵ̃T and
âσ,T = aσ,0+aσ,t ·(T−T̄ )/12+ ˜ϵT t, where T is the number of months from the beginning
of the sample and T̄ is the mean month. “Adj-R2” denotes the adjusted R2 averaged
over monthly regressions. The table also reports the average R2 from the restricted
regressions with aσ = 0 as well as the average R2 from unconstrained regressions

ln
[
N̄
]
= µγ +

2

3
ln

[Wi

W∗

]
+ b1 · ln

[ Vi

(106)

]
+ b2 · ln

[ Pi

(40)

]
+ b3 · ln

[ σi
(0.02)

]
+ ϵ̃. (17)

“# Obs” is the number of stocks averaged over monthly regressions. The estimates are
reported for two subperiods 1993-2000 and 2001-2008.
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Figure 8: The Normalized Number of TAQ Prints Relative to Trading Activity for Three
Models.
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The figure shows the logarithm of the normalized number of TAQ prints across
different levels of the logarithm of trading activity W . The normalize number
of TAQ prints is defined by N̄/Wα, with α = 2/3 for the model of trading
game invariance, α = 0 for the model of invariant bet frequency, and α = 1 for
the model of invariant bet size. Four subsamples are considered: NYSE-listed
stocks in April of 1993, Nasdaq-listed stocks in April of 1993, both NYSE and
Nasdaq stocks in April of 2001 and both Nasdaq and NYSE stocks in April of
2008. Trading activity W is calculated as the product of average daily dollar
P · V volume and the percentage standard deviation of daily returns for a given
month.
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Figure 9: Time Series of Average Percentiles of Normalized TAQ Print Size and Mean
Number of Prints, 1993-2008.
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The figure shows the dynamics of the sample means of the 20th, 50th and 80th
percentiles for logarithms of the normalized print sizes as well as the means of
the normalized number of prints per month from 1993 to 2008. Volume groups
are based on average dollar trading volume with thresholds corresponding to
30th, 50th, 60th, 70th, 75th, 80th, 85th, 90th, and 95th percentiles of the dollar
volume for common NYSE-listed stocks. Trade-weighted percentiles and volume-
weighted percentiles are shown for stocks in volume group 1 (low volume) and
volume groups 9 and 10 (high volume). For each print, the logarithm of normal-
ized print size is calculated based on the midpoint of the print size bin, normalized
according to the model of trading game invariance, i.e. ln(W 2/3 · |X|/V ), where
|X| is a midpoint of a print size bin in shares, V is the average daily volume in
shares, and W is the measure of trading activity equal to the product of dollar
volume and returns standard deviation. The normalized number of TAQ prints
per month is calculated as N̄m · W−2/3, where N̄m is the number of trades per
month. The stock-level distributions of normalized print sizes are averaged across
stocks for volume groups 1 and 9-10 in a given month. The trade-weighted and
volume-weighted percentiles are plotted on this figure.
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Figure 10: Time Series of Monthly OLS Coefficient Estimates for Number of Trades, Trade-
Weighted Percentiles, and Volume-Weighted Percentiles, 2003-2008.
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The figure shows the dynamics of coefficients from regressions of number of prints
and various percentiles on the measure of trading activity W from 1993 to 2008.
Panel A shows the coefficient aγ from monthly regressions

ln
[
N̄i

]
= a+ aγ · ln

[Wi

W∗

]
+ ϵ̃i,

where N̄i is the average number of TAQ prints per day in a given month. The
model of trading game invariance predicts aγ = 2/3 and alternative models pre-
dict that aγ = 0 or aγ = 1. Panel B shows the coefficient aQ from monthly
regressions

ln
[X̃i

Vi

]
= a+ aQ · ln

[Wi

W∗

]
+ ϵ̃i,

where the left-hand side is the pth (20th, 50th and 80th) percentiles of the dis-
tribution of logarithms of print sizes X̃i. The model of trading game invariance
predicts aQ = −2/3 and alternative models predict that aQ = 0 or aQ = −1.
Panel C shows the coefficient aQ from similar monthly regressions but these re-
gressions are based on percentiles Qp

i , where percentiles are calculated based on
the contribution to total trading volume. The model of trading game invariance
predicts aQ = −2/3 and alternative models predict that aQ = 0 or aQ = −1.
Trading activity W is defined as the product of dollar volume and daily percent-
age standard deviation of returns, and W∗ measures of trading activity of the
benchmark stock.
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