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Abstract

We propose an adjustment to the variance estimator of Cattaneo, Jansson, and Newey

(2018) when there are many covariates. The �nite-sample correction in the spirit

of Horn, Horn and Duncan (1975) makes the estimator exactly unbiased under ho-

moskedasticity. Simulations show that the adjustment reduces test size distortions,

especially with skewed regressors. We also verify whether further degrees-of-freedom

adjustments in the spirit of Bell and McCa¤rey (2002) bring improvements to the

control over test size.
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1 Introduction and setup

Consider the standard linear regression model under random sampling

Y = X� +W + U;

where we are interested in inference about the d� 1 parameter vector � when facing many
covariates inW: That is, while d is asymptotically �xed, the dimensionality p of the nuisance

parameter vector  asymptotically grows, possibly with the same rate, as the sample size n

grows. The regression assumption is supposed to hold: E [U jX;W ] = 0; the data are IID.
Denote M = In � W (W 0W )�1W 0: Let V̂ = MX be the �partialled out�regressors of

interest, v̂i being the ith column of V̂ , and let

P̂ = V̂ (V̂ 0V̂ )�1V̂ 0;

be the associated projection matrix. Denote

�̂ =
V̂ 0V̂

n
:

The OLS asymptotic variance estimate is computed as


̂ = �̂�1�̂�̂�1;

where �̂ is an estimate of

� = var

 
1p
n

nX
i=1

v̂iui

!
:

Cattaneo, Jansson, and Newey (2018) (sometimes abbreviated as CJN) show that the

traditional Eicker�White variance estimator is inconsistent under the many covariate as-

ymptotics, and propose a variance estimator HC that takes into account numerosity of

covariates. We construct an adjustment to this variance estimator, in the spirit of almost

unbiased variance estimator of Horn, Horn and Duncan (1975) and termed HC2 in the sub-

sequent literature (see, e.g., MacKinnon, 2012 and Imbens and Kolesár, 2016).1 We too call

the adjusted estimator almost unbiased.

Furthermore, we verify whether further degrees-of-freedom adjustments in the spirit of

Bell and McCa¤rey (2002) bring improvements to the control over test size. The idea of

the adjustment is to use critical values from the Student�s distribution with the degrees of

freedom parameter such that, under homoskedasticity, the �rst two moments of the variance

estimator are matched to ones of the associated chi-squared distribution.
1The adjusted estimator is sharply di¤erent from theHC2 estimator considered and deemed inappropriate

in Cattaneo, Jansson, and Newey (2018), the one that does not take into account numerosity of covariates.
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2 Almost unbiased variance estimator

The general variance estimator is

�̂ =
1

n

nX
i=1

nX
j=1

�ijv̂iv̂
0
iû
2
j ;

where ûj are OLS residuals, elements of the vector (M � P̂ )U: The conditional expectation
of �̂ is

E
h
�̂jX;W

i
=

1

n

nX
i=1

nX
j=1

�ijv̂iv̂
0
iE
�
û2j jX;W

�
=

1

n

nX
i=1

nX
j=1

nX
k=1

�ikM
2
kjv̂iv̂

0
iE
�
u2j jX;W

�
+ o(1) (1)

almost surely. Cattaneo, Jansson, and Newey (2018) set

�HC = (M �M)�1 (2)

to match the leading term with the target conditional expectation

1

n

nX
i=1

v̂iv̂
0
iE
�
u2i jX;W

�
: (3)

Cattaneo, Jansson, and Newey (2018) show that the su¢ cient condition for positive de�-

niteness of M �M is that min1�i�nf2Mii � 1g > 0.
We take into consideration the higher-order term in (1) that includes estimation noise in

�̂: Let em;j stand for the jth column of them�m identity matrix. Under the homoskedasticity
restriction, for observation j the expectation E

�
û2j jX;W

�
accounting for this noise is equal

to

E
h
((M � P̂ )U)2j jX;W

i
HO

= E[e0n;j(M � P̂ )UU 0(M � P̂ )en;jjX;W ]HO

= e0n;j(M � P̂ )E [UU 0jX;W ]HO (M � P̂ )en;j
= �2e0n;j(M � P̂ )en;j
= �2(Mjj � P̂jj);

where �2 = E [u2i ] : Hence, the leading term in (1) evaluated under the homoskedasticity

restriction yields that

E
h
�̂jX;W

i
HO

=
1

n

nX
i=1

nX
k=1

�ik(Mkk � P̂kk)v̂iv̂0i�2

=
1

n

nX
i=1

nX
j=1

nX
k=1

�ik(M
2
kj � P̂ 2kj)v̂iv̂0i�2;
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because Mkk =
Pn

j=1M
2
kj and P̂kk =

Pn
j=1 P̂

2
kj: Hence, the expectation will exactly match

the target conditional expectation (3) under homoskedasticity if, instead of (2), one sets2

�AU =
�
M �M � P̂ � P̂

��1
: (4)

Note that this �AU is also symmetric by construction. The su¢ cient condition for positive

de�niteness is strengthened to min1�i�nfMii(2Mii � 1) � P̂iig > 0. The Appendix demon-
strates that the estimator �̂AU based on �AU is consistent for � under the same conditions

when the estimator �̂HC based on �HC is consistent when an additional condition is placed

on diagonal elements of M and P̂ .

3 Degrees of freedom adjustment

We also verify whether the use of the Student�s distribution instead of normal can further

improve size control. The idea of the Bell and McCa¤rey (2002) adjustment is to use critical

values from the Student�s distribution with the degrees of freedom parameter such that,

under homoskedasticity, the �rst two moments of the variance estimator are matched to

ones of the associated chi-squared distribution.

We are interested in the decomposition of the pth diagonal element of 
̂AU :


̂AUpp =
�
�̂�1�̂AU �̂�1

�
pp
= e0d;p�̂

�1

 
1

n

nX
i=1

nX
j=1

�AUij v̂iv̂
0
iû
2
j

!
�̂�1ed;p =

nX
j=1

�AUp;j

�
(M � P̂ )U

�2
j
;

where

�AUp;j = e
0
d;p�̂

�1

 
1

n

nX
i=1

�AUij v̂iv̂
0
i

!
�̂�1ed;p:

Under homoskedastic normal errors U ,


̂AUpp = �
2

nX
j=1

�AUp;j Zj;

2An alternative and more straightforward estimator would result upon noticing that

E
h
�̂jX;W

i
=
1

n

nX
i=1

nX
j=1

nX
k=1

�ik(Mkj � P̂kj)2v̂iv̂0iE
�
u2j jX;W

�
;

which, when matched to (3), leads to the solution

� =
�
(M � P̂ )� (M � P̂ )

��1
:

However, as simulations show, this results in worsening the performance in small samples: the rejection

rates experience even higher distortions.
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with fZjgnj=1 � IID�2(1) and
�
�AUp;j

	n
j=1

eigenvalues of the matrix

nX
j=1

�AUp;j (Mj � P̂j)(Mj � P̂j)0:

The degrees of freedom parameter is computed as (Imbens and Kolesár, 2016)

�AU =

�Pn
j=1 �

AU
p;j

�2
Pn

j=1

�
�AUp;j

�2 :
4 Simulation evidence

We borrow the simulation setup from MacKinnon (2012) and adapt it to the case of many

covariates. The model is

yi = �1 +
dX
k=2

�kxik +

pX
k=1

kwik + ui;

where �k = 1 for 1 � k � d � 1; �d = 0; and k = 0 for 1 � k � p; the regular regressors
xik are IID standard lognormal, the nuisance covariates wik are IID uniform on [�1; 1]; the
errors are potentially heteroskedastic: ui = �i"i; with "i IID standard normal and

�i = z�

0@1 + �����
dX
k=2

log xik +

pX
k=1

�
jwikj � 1

2

������
�
1A ;

where the multiplier z� ensures that the variance of ui is unity. The parameter � indexes the

strength of heteroskedasticity: � = 0 (homoskedasticity), � = 1 (moderate), or � = 2 (se-

vere). As long as � 6= 0, the conditional variance depends on all regressors and exhibits high
variability across i.3 Note that the presence of skewed and thus of high leverage regressors

lends support to both the correction for leverage (MacKinnon, 2012) and the Bell�McCa¤rey

degrees of freedom adjustment (Imbens and Kolesár, 2016). The coe¢ cient of interest is �d,

and we track rejection rates of the null H0 : �d = 0: We set d = 5 as in MacKinnon (2012).

The sample size is n = 500 throughout. We set p = 25 � 2m; where m 2 f0; 1; 2; 3g.
In Table 1 we present rejection rates for 10%; 5% and 1% size two-sided tests based on

5,000 Monte�Carlo replications. The �rst test uses weights �HC in the variance estimate

3For example, with p = 200; the cross-sectional mean and standard deviation of �i are equal to 0:86 and

0:53 when � = 1 and to 0:65 and 0:79 when � = 2:

5



and normal critical values, the second test uses weights �AU and normal critical values, and

the third uses weights �AU and critical values of Student�s with �AU degrees of freedom.4

Clearly, the HC estimator in all cases experiences overrejection which is pretty stable

for di¤erent degrees of covariate numerosity. The distortions go slightly down or slightly

up with severity of heteroskedasticity depending on the nominal size. The AU estimator

reduces the size distortions in all cases, sometimes a fewfold, more so under strong het-

eroskedasticity. The tests based on the AU variance estimator and Student�s distribution

exhibits slight underrejection, but usually of a smaller degree than that of overrejection by

the AU estimator. The underrejection is a bit stronger when heteroskedasticity is stronger,

but not signi�cantly.

Finally, we take a closer look at possible sources of distortions and compare the cases

of skewed (lognormal) and symmetrically distributed (normal) regressors. Within the same

simulation setup, we change the distribution of xik to IID standard normal, set p = 1; and

shut heteroskedasticity down. Table 2 reports means and standard deviations of the two

estimates of �, as well as actual rejection rates. One can see that with the skewed regressors

the HC estimator is signi�cantly downward biased while the AU is almost unbiased, though

its standard deviation is smaller.5 The situation straightens in the case of normal regressors

� the HC is almost unbiased, the AU is unbiased, and both have equal variability. This

results in actual rejection rates being close to the nominal.

5 Conclusion

We have proposed and analyzed a �nite-sample adjustment to the variance estimator of

Cattaneo, Jansson, and Newey (2018) in the spirit of Horn, Horn and Duncan (1975). The

almost unbiased estimator is constructed to be exactly unbiased under homoskedasticity.

Simulations show that overrejection is reduced by the adjustment when regressors are skewed.

We also �nd out that a degrees-of-freedom adjustment in the spirit of Bell and McCa¤rey

(2002) can bring further improvements to the control over test size, though it may lead to

slight underrejection.

4In case any variance estimate turns out negative, we set it equal to 10�5; essentially forcing rejection

of the null; this is a reasonable adjustment as a negative variance estimate signals of a very small positive

population variance. This never happens with n = 500; while in additional experiments with n = 100 such

occurrences are extremely rare tending to be higher for HC than for AU .
5In this design, the straightforward estimator described in footnote 2 has mean 7.43 and very big variance.
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Appendix

We show that under the conditions set forth in CJN, jj�̂AU � �̂HC jj � op(1); which im-

plies that �̂AU is consistent for � if �̂HC is consistent. In particular, we too impose that

max1�i�n kv̂ik =
p
n = op(1); see Section 4.2 of the supplemental appendix to CJN for its

discussion. In addition, we impose that P � min1�i�nfMii(2Mii � 1) � P̂iig > 0 and

P�1 = Op(1): Then, along the lines of the supplemental appendix to CJN (section 3),

�min(M �M � P̂ � P̂ ) � min
1�i�n

fM2
ii � P̂ 2ii �

P
1�j�n;j 6=i

jM2
ij � P̂ 2ijjg

� min
1�i�n

fM2
ii � P̂ 2ii �

P
1�j�n;j 6=i

M2
ij �

P
1�j�n;j 6=i

P̂ 2ijg

= min
1�i�n

fM2
ii � P̂ 2ii � (Mii �M2

ii)� (P̂ii � P̂ 2ij)g

= min
1�i�n

fMii(2Mii � 1)� P̂iig > 0;

and, also using Theorem 1 of Varah (1975),

�AU1 <
 
min
1�i�n

(
M2
ii � P̂ 2ii �

P
1�j�n;j 6=i

jM2
ij � P̂ 2ijj

)!�1
� P�1 = Op(1):

Under the conditions speci�ed in CJN, we have that (CJN, Theorem 3)

�̂HC =
1

n

nX
i=1

nX
j=1

nX
k=1

�HCik M
2
kjv̂iv̂

0
iE
�
u2j jX;W

�
+ op(1)

and

�̂AU =
1

n

nX
i=1

nX
j=1

nX
k=1

�AUik M
2
kjv̂iv̂

0
iE
�
u2j jX;W

�
+ op(1):

Because �AU de�ned by (4) solves
Pn

k=1 �
AU
ik (M

2
kj � P̂ 2kj) = Ifi=jg; and �HC de�ned by (2)

solves
Pn

k=1 �
HC
ik M

2
kj = Ifi=jg; we have

Pn
k=1

�
�AUik � �HCik

�
M2
kj =

Pn
k=1 �

AU
ik P̂

2
kj: Then,

�̂AU � �̂HC = 1

n

nX
i=1

nX
j=1

nX
k=1

�AUik P̂
2
kjv̂iv̂

0
iE
�
u2j jX;W

�
+ op(1):

Denote C�2 = max1�i�nE [u2i jX;W ] which is Op(1) under the conditions speci�ed in CJN.
Without loss of generality, following CJN we let d = 1: Using that

Pn
k=1 P̂kk = d, we obtain����̂AU � �̂HC��� � C�2

n

�
max
1�i�n

v̂2i

� nX
i=1

nX
k=1

���AUik �� nX
j=1

P̂ 2kj + op(1)

� C�2

�
max1�i�n jv̂ijp

n

�2 �AU1 nX
k=1

P̂kk + op(1)

= Op(1)op(1)
2Op(1) + op(1) = op(1):
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based on �HC based on �AU based on �AU & t�AU

index � 10% 5% 1% 10% 5% 1% 10% 5% 1%

p = 25

0 13:4% 8:1% 2:6% 11:9% 6:6% 1:9% 9:7% 4:8% 0:9%

1 13:9% 7:9% 2:6% 12:3% 6:7% 1:7% 10:4% 5:1% 0:9%

2 13:1% 7:5% 2:2% 11:1% 5:9% 1:5% 9:5% 4:3% 0:8%

p = 50

0 13:0% 7:3% 2:2% 11:4% 6:1% 1:5% 9:5% 4:5% 0:5%

1 13:7% 8:0% 2:1% 12:2% 6:7% 1:5% 10:1% 4:8% 0:6%

2 13:4% 7:3% 1:7% 11:7% 5:8% 1:1% 9:9% 4:1% 0:5%

p = 100

0 12:9% 7:2% 2:1% 11:1% 5:7% 1:5% 8:9% 4:2% 0:9%

1 13:3% 7:2% 1:7% 11:2% 5:7% 1:2% 9:1% 4:1% 0:6%

2 12:5% 6:7% 1:8% 10:7% 5:3% 1:2% 8:8% 3:9% 0:5%

p = 200

0 13:2% 8:1% 2:6% 11:7% 6:4% 1:9% 9:9% 4:6% 0:9%

1 13:4% 7:7% 2:7% 11:5% 6:3% 1:9% 9:5% 4:5% 0:8%

2 13:6% 7:8% 2:0% 11:5% 6:0% 1:6% 9:6% 4:5% 0:5%

Table 1. Actual rejection rates, from simulations.
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based on �HC based on �AU

Lognormal regressors, true variance equals 7:39

mean 6:77 7:36

standard deviation 2:43 3:35

10% rejection rate 13:5% 12:0%

5% rejection rate 7:5% 6:4%

1% rejection rate 2:1% 1:5%

Normal regressors, true variance equals 1:00

mean 0:98 1:00

standard deviation 0:12 0:12

10% rejection rate 10:2% 9:9%

5% rejection rate 5:2% 5:1%

1% rejection rate 1:2% 1:1%

Table 2. Actual rejection rates and other performance measures, from simulations.
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