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Abstract

We propose a method, alternative to that by Estrella (2003, Econometric Theory, 19, 1128–

1143), of obtaining exact asymptotic p-values and critical values for the popular Andrews

(1993, Econometrica, 61, 821–856) test for structural stability. The method is based on

inverting an integral equation that determines the intensity of crossing a boundary by the

asymptotic process underlying the test statistic. Further integration of the crossing intensity

yields a p-value. The proposed method can potentially be applied to other stability tests

that employ the supremum functional.
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1 Introduction

The Andrews (1993) sup-test for a structural break whose date is unknown has become by

now very popular, and is even advocated as a portmanteau testing tool (e.g., Hansen, 1999).

The asymptotic distribution of the test statistic is nonstandard, and researchers typically

employ critical values tabulated in Andrews (1993 or 2003). These are obtained using a

big number of simulations for various combinations of a test level, degrees of freedom, and

truncation parameter.

Estrella (2003) points out that the critical values may be obtained exactly using a result

in DeLong (1981) on parabolic boundary crossing probabilities for the Bessel process. The

crossing probability, however, does not have a closed form formula but instead is represented

as an infinite series whose summands involve roots of a certain polynomial of infinite order.

These complications lead to quite involved numerical computations. Having coped with all

of them Estrella (2003) gives a more precise version of the tables in Andrews (1993, 2003)

and makes comparisons with what various existing approximate methods deliver.

We here show that the exact critical values can be alternatively obtained using a re-

lationship between the stochastic properties of the asymptotic process underlying the test

statistic, and the intensity of crossing a boundary by this process. This relationship has a

form of an integral equation, and it is documented in the statistical literature, in particular

in Fortet (1943) and Durbin (1971), quite a while ago. We adapt this idea to the more

special setting of the Andrews test. Then we develop the numerical algorithm that inverts

the integral equation and returns the crossing intensity which is then used to obtain p-values

of the test. The critical values computed via our numerical method coincide with those in

Estrella (2003). As the method is based on a universal statistical relationship, it potentially

can be used for tabulating asymptotic distributions of other stability tests that employ the

supremum functional.

2 Boundary crossing intensity

Let r and s index time on [0, τ ], and consider a non-negative continuous Markov stochastic

process Q (r) on [0, τ ] starting off from the origin, Q (0) = 0. Denote by pr (y) the uncon-
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ditional density of Q (r) , and by pr|s (y|x) the conditional density of Q (r) given that Q (s)

takes value x.

Consider also a boundary Ψ(r), a deterministic positive function of time possessing a

finite derivative on [0, τ ]. We are interested in counting all crossings (from below) of Ψ(r) by

Q(r) for the first time (also called first passages in the statistical literature). Let us denote

the intensity of such crossings by α(r). More formally,

α(r) = lim
δ↓0

Pr {Q (s) < Ψ(s) for all s ∈ [0, r] and Q (s) ≥ Ψ(s) for some s ∈ [r, r + δ]}
δ

.

The statistical literature, in particular Fortet (1943) and Durbin (1971), provides the

following relationship between the conditional density of the process Q (r) and the intensity

α(r) of crossing the boundary Ψ(r):

pr (Ψ(r)) =

∫ r

0

pr|s (Ψ(r)|Ψ(s))α(s)ds (1)

that should hold for all r ∈ [0, τ ] . The conditions that the process Q (r) should meet for (1)

to be valid are spelled out in Feller (1974, p. 114, equation 1) and Fortet (1943, p. 178,

conditions α through γ). Intuitively, the meaning of the equality in (1) is the following: the

unconditional density of Q (r) at the boundary Ψ(r) can be alternatively obtained via the

law of total probability by counting, along the boundary from 0 to r, the total measure for

those trajectories that pass through Ψ(r) for the first time.

For given Q (r) and Ψ(r) the integral equation (1) allows one to find α(r). Given the

intensity α(r), the total probability of crossing the boundary on [0, τ ] can be found by

integration:

Pr {Q (r) ≥ Ψ(r) for some r ∈ [0, τ ]} =

∫ τ

0

α(r)dr. (2)

3 Adaptation to Andrews test

The Andrews (1993) test for structural stability in parametric models is a class of tests where

the alternative hypothesis is that of a single structural break that occurred at unknown

time. The test is based on a supremum (over time) of a certain sequential (i.e. indexed by

time) statistic that is a Wald, likelihood ratio or Lagrange multiplier statistic for equality

of parameters before and after a possible break. The asymptotic distribution of the test is
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non-standard. In case the sup-statistic exceeds a critical value the null of structural stability

is rejected.

The asymptotic distribution of any of the three Andrews test statistics, before the supre-

mum functional is taken, is
Bp(r)

′Bp(r)

r (1− r)
(3)

on [0, 1] , where Bp(r) = Wp (r)− rWp (1) is the p-dimensional Brownian bridge, and Wp (r)

is the p-dimensional Wiener process on [0, 1]. The supremum of (3) is taken over [π1, π2],

where 0 < π1 < π2 < 1, and the resulting value is compared to the asymptotic critical

value cα corresponding to the test level α. The critical values obtained via simulations are

tabulated in Andrews (1993, Table 1 and 2003, Table 1) for most often used α, several values

of π0 ≡ π1 = 1 − π2 and a range of p. These critical values can also be utilized for some of

the tests for multiple breaks of Bai and Perron (1998).

It is clear that the decision rule of the test is equivalent to checking if the p-dimensional

squared Bessel bridge process Q (r) = Bp(r)
′Bp(r) visits the epigraph of the boundary

Ψ(r) = cαr (1− r)

at least once on [π1, π2] . Thus, the theory outlined in the previous section can be applied in

order to find the probability value α of the test for given cα, π1, π2, and p.

The implementation of this idea is not straightforward though. First, conditional densi-

ties should be tractable. Fortunately, in the case of squared Bessel bridge they can be easily

derived. Note that, due to normality of Bp(r), the conditional distribution of Bp(r) given

Bp(s), where s < r, is conditionally homoskedastic normal:

Bp(r)|Bp(s) ∼ N

(
1− r
1− s

Bp(s),
(1− r) (r − s)

1− s
Ip

)
,

and hence

Q (r) |Q (s) ∼ ωs,r χ
2

(
p, ωs,r

Q (s)

(r − s)2

)
,

where

ωs,r =
(1− r) (r − s)

1− s
,
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and χ2 (p, λ) denotes a non-central chi-squared distribution with degrees of freedom p and

non-centrality parameter λ. The unconditional distribution is then

Q (r) ∼ ω0,r χ
2 (p, 0) .

Therefore, the unconditional and conditional densities entering (1) are

pr (y) = (2r (1− r))−p/2 Γ
(p

2

)−1

yp/2−1 exp

(
− y

2r (1− r)

)
and

pr|s (y|x) =
1

ωs,r
fχ2(p,ωs,rx/(r−s)2)

(
y

ωs,r

)
,

where fχ2(p,λ) (z) denotes a density evaluated at z of a random variable distributed as

χ2 (p, λ). This density is inconveniently represented analytically as a certain infinite sum-

mation, but can be numerically evaluated in statistical packages.

Second, note that the supremum is taken over an interval whose left end, in contrast to

the theory, is not zero, which requires corrections of the formulas in the previous section.

Take arbitrary ordinate y such that 0 ≤ y < Ψ(π1), and consider only those trajectories

that start off from y at r = π1. Using the continuity and markovianity of Q (r) , one can

formulate the version of (1) conditional on passing through the point (π1, y) as

pr|π1 (Ψ(r)|y) =

∫ r

π1

pr|s (Ψ(r)|Ψ(s))α(s|y)ds (4)

for all r ∈ (π1, π2] , where α(s|y) is the crossing intensity conditional on the trajectories

under consideration. Take an arbitrary small ε > 0, and integrate both sides of (4) with

respect to the measure pπ1 (y) on the interval from 0 to Ψ(π1)− ε to obtain after rearranging∫ Ψ(π1)−ε

0

pπ1 (y) pr|π1 (Ψ(r)|y) dy =

∫ r

π1

pr|s (Ψ(r)|Ψ(s))

(∫ Ψ(π1)−ε

0

α(s|y)pπ1 (y) dy

)
ds

for all r ∈ (π1, π2] . Now, because pπ1 (y) pr|π1 (Ψ(r)|y) is Lebesgue integrable and bounded

on [0,Ψ(π1)] , one can take a limit as ε ↓ 0 to obtain∫ Ψ(π1)

0

pπ1 (y) pr|π1 (Ψ(r)|y) dy =

∫ r

π1

pr|s (Ψ(r)|Ψ(s))α(s)ds (5)

for all r ∈ (π1, π2] , because
∫ Ψ(π1)

0
α(s|y)pπ1 (y) dy = α(s) by the law of total probability.

The total probability of visiting the epigraph of the boundary on [π1, π2] can be found by
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integration:

α = Pr {Q (r) ≥ Ψ(r) for some r ∈ [π1, π2]} =

∫ +∞

Ψ(π1)

pπ1 (y) dy +

∫ π2

π1

α(r)dr. (6)

The first term on the right side of (6) accounts for those trajectories that are already above

the boundary prior to π1, and the second terms account for the trajectories crossing the

boundary from below after π1.

Note that the expression pr|s (Ψ(r)|Ψ(s)) under the integral sign on the right side of (5)

diverges to infinity as s gets close to r, which indicates the presence of singularities making

the problem ill posed. The integral equation (5) thus belongs to the class of so called Volterra

equations of the first kind with a weak singularity of Abel type.

4 Numerical implementation

In this section we outline the numerical procedures we run to calculate the p-values. Often

these procedures are standard and can be found in sources familiar to economists (e.g., Judd,

1998), but in some instances additional measures are taken to increase the speed and account

for specific features of the problem. The integral at the left side of (5) is not problematic. We

numerically evaluate it for any r by the very efficient Clenshaw–Curtis quadrature (Clenshaw

and Curtis, 1960) based on exact integration of a polynomial approximation of the integrand

over intervals on a grid formed by roots of Chebychev polynomials of a certain degree. We

use the degree equaling 100, which gives a wittingly high accuracy of order 10−12. In what

follows, we no longer discuss evaluation of the left side of (5).

Our purpose is to obtain a good numerical approximation of α(r) from the integral

equation (5), and then integrate it using the equality (6). For a very small ε, we split the

interval [π1, π2] into a union of segment [π1, π1 + ε] and N segments of equal size ∆ that

form the grid {ri = π1 + ε+ i∆}Ni=0. Also, when r > π1 + ε we split the integral at the right

side of (5) into two: one is

Iε(r) ≡
∫ π1+ε

π1

pr|s (Ψ(r)|Ψ(s))α(s)ds,

and the other is

Jε(r) ≡
∫ r

π1+ε

pr|s (Ψ(r)|Ψ(s))α(s)ds.
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Note that both integrals have singularities in pr|s (Ψ(r)|Ψ(s)) , but the former one also has

a singularity in α(s) at π1. Accordingly, our numerical approximation of α(r) is obtained

differently on (π1, π1 + ε] and on (π1 + ε, π2]. On (π1, π1 + ε] , we use a series expansion for

α(s) and pr|s (Ψ(r)|Ψ(s)) under the integral sign of the right side of (5) to derive an analytical

approximation for α(r). On (π1 + ε, π2] , we approximate the true α(r) by a piecewise linear

function with values (say) {ᾱi}Ni=0 at the gridpoints {ri}Ni=0. Some details on this algorithm

follow.

Using the findings from Pötzelberger and Wang (2001) adapted to the squared Bessel

process, we expand α(s) in the vicinity of π1 in the following way:

α(s) =
a−1√
s− π1

+ a0 + a1

√
s− π1 + a2(

√
s− π1)2 + a3(

√
s− π1)3 +O

(
(
√
s− π1)4

)
,

where a−1, a0, a1, a2, a3 are unknown coefficients. At the same time, from its explicit form

the asymptotics of pr|s (Ψ(r)|Ψ(s)) in the vicinity of π1 is

pr|s (Ψ(r)|Ψ(s)) =
b−1(r)√
r − s

+ b1(r)
√
r − s+O

(
(
√
r − s)3

)
,

where b−1(r) and b1(r) are certain known functions of r. For any sufficiently close to π1

value of r one can plug the two expansions without the remainder terms into the right side

integral in (5) to obtain an approximation for the coefficients a−1, a0, a1, a2, a3. Specifically,

we use five values for r from the set {π1 + (j/5) ε}5
j=1 to obtain five linear equations for

those five unknowns. This gives us an analytical approximation for α(r) in the vicinity

of π1. As a by-product, we compute the value ᾱ0, an approximation for α(π1 + ε), as

ᾱ0 = a−1/
√
ε + a0 + a1

√
ε + a2(

√
ε)2 + a3(

√
ε)3. In addition, we derive an approximate

analytical representation of the integral Iε(r) for r > π1 + ε to be used later. To that end,

we use the asymptotic expansion for α(s) in the vicinity of π1, and the trapezoid rule to

approximate pr|s (Ψ(r)|Ψ(s)).

Now the aim is to obtain a piecewise linear approximation on (π1 + ε, π2] represented by

values {ᾱi}Ni=0 at gridpoints {ri}Ni=0 (note that ᾱ0 is already available). We solve the inte-

gral equation (5) numerically at r ∈ {ri}Ni=1 by applying the trapezoidal product integration

method of Weiss (1972) that is designed to handle our type of singularities. Denote the seg-

ments between the gridpoints by Si ≡ [sil, s
i
r], where sil = π1+ε+(i−1)∆ and sir = π1+ε+i∆,
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i = 1, ..., N. For given i and r ≥ sir, we approximate
√
r − s · pr|s (Ψ(r)|Ψ(s))α(s) as a func-

tion of s within Si by a straight line g(r, s) connecting its endpoints in Si, i.e. by

g(r, s) =
sir − s

∆

√
r − sil · pr|s

(
Ψ(r)|Ψ(sil)

)
α(sil) +

s− sil
∆

√
r − sir · pr|s

(
Ψ(r)|Ψ(sir)

)
α(sir)

for all s ∈ Si. The purpose of multiplication by
√
r − s is to work with a function with no

singularities. So, the integral Jε(r) is analytically approximated by∫ r

π1+ε

g(r, s)√
r − s

ds.

Now, for any r ∈ {ri}Ni=1, the approximated right side of (5), Iε(r) + Jε(r), has an analytical

representation as a function of {ᾱj}ij=0. Thus we obtain, as i increases from 1 to N, a lower

triangular system of N linear equations for N unknowns {ᾱi}Ni=1 (note that it also involves ᾱ0

computed before). This system is easily solved for {ᾱi}Ni=1 in the way it is done in Gaussian

elimination.

When the approximation for α(r) is computed, the p-value is numerically evaluated from

the following version of (6), taking into account that the unconditional distribution is χ2
p:

α = (1− Fχ2
p
(cα)) +

∫ π1+ε

π1

α(r)dr +

∫ π2

π1+ε

α(r)dr. (7)

Here the first integral is evaluated using the explicit series representation of α(r) in the

vicinity of π1, while the second integral is approximated by applying the trapezoid rule to

the collection {ᾱi}Ni=0 computed before.

By Brunner (1974), the accuracy in approximating α(r) on (π1, π1 + ε] is of order O(ε2)

due to the remainders in expansions in the vicinity of π1. As the integration interval has

length ε, the approximation error for the first integral in (7) is no larger than O(ε3). By

Weiss (1972), the accuracy in approximating α(r) on (π1 + ε, π2] is uniformly of order O(ε2)+

O(1/N2), where the first term is an effect of an approximation error in ᾱ0 and Iε(r), and

the second term is an effect of approximations by trapezoidal product integration on the N

point grid. As the integration interval is bounded, the approximation error for the second

integral in (7) is of order O(ε2) + O(1/N2). Summarizing, the accuracy in evaluating the

p-value α is, too, of order O(ε2) +O(1/N2).

After numerical experimentation, we set ε = 0.001 and N = 500 which proves to be

sufficient to evaluate p-values with a relative error of 0.01%. A GAUSS code with this setup
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computes a p-value for a maximum of 17 seconds.1 The critical values computed via our

numerical method are the same as those tabulated in Estrella (2003) in all cases.

5 Concluding remarks

Among other things, the proposed method highlights the hidden potential of some statistical

results documented in the literature but underused in contexts different from those they

were initially intended for. We illustrate this here for the theory of first passage probabilities

represented by Fortet (1943) and Durbin (1971) which in econometrics is used only in the

context of sequential testing.

There are potentially other stability tests whose critical values may be tabulated likewise.

Still, for this to happen there are several prerequisites. First of all, the aggregation of

the sequential statistic must be made using the supremum functional which only allows

for association of rejection with crossing a boundary. Another requirement is tractability

of conditional densities for the asymptotic process which includes markovianity and easy

computability.
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