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Abstract

The form of the optimal instrument for general multiperiod conditional moment
restrictions is highly nonlinear and usually cannot be solved analytically. We show how
to construct instruments approximately satisfying the optimality conditions, evaluate
asymptotic variances of corresponding instrumental variables estimators in specific
examples, and verify their behavior in finite samples. The asymptotic properties of
approximately optimal instruments are favorable, and the finite sample properties of
their feasible versions are advantageous compared to competitors. We also illustrate
the proposed method with an application to ultra-high frequency data.

1 Introduction

Many time series models appear in the form of conditional moment restrictions. They are
usually estimated and tested by choosing instrumental variables (IV) from the conditioning
information set and applying GMM (Hansen 1982). To attain highest efficiency of estima-
tion, instruments should be chosen optimally from an infinite set of possible instruments.
When the moment function is a martingale difference with respect to the conditioning in-
formation so that the moment restrictions are single-period, the optimal instrument is an
explicit function of certain conditional expectations, estimation of which constitutes a fea-
sible procedure. However, a variety of intertemporal macroeconomic and financial models
give rise to multiperiod conditional moment restrictions, the ones that are characterized by
the presence of serial correlation of finite order (Hansen and West 2002). The examples are
numerous in the asset pricing (e.g., Hansen and Singleton 1982, Ferson and Constantinides
1991, Hansen and Singleton 1996) and forecasting (Hansen and Hodrick 1980, Mishkin 1990,
Rich, Raymond and Butler 1992) literatures. Other potential applications include problems
with complex decision rules (Eichenbaum, Hansen and Singleton 1988, West and Wilcox
1996) and with temporal aggregation (Grossman, Melino and Shiller 1987, Hall 1988). Re-
cent research on volatility also have led to exploitation of multiperiod restrictions (Meddahi

∗Address: Stanislav Anatolyev, New Economic School, Nakhimovsky Prospekt, 47, Moscow, 117418
Russia. E-mail: sanatoly@nes.ru. I thank Kenneth West, Bruce Hansen, Yuichi Kitamura, Russel Davidson,
Grigory Kosenok, seminar participants at various places, especially at the University of Wisconsin and
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and Renault 2002, Meddahi, Renault and Werker 2003). The GMM procedure in these cir-
cumstances does not change dramatically, but the optimality conditions become significantly
more complicated. It turns out, however, that in the special case of conditional homoskedas-
ticity it is still possible to derive an explicit expression for the optimal instrument, which is
done in Hansen (1985).

In a general case when both serial correlation and conditional heteroskedasticity are in
effect, one approach to handle the problem is to artificially restrict the space of instruments
to linear combinations of lags of initially given instruments. This leads to tractable theo-
ries that allow one to construct feasible instruments that attain the asymptotic efficiency
bound relative to the restricted space of instruments. This is done in Kuersteiner (2002)
for conditionally heteroskedastic AR models, in Kuersteiner (2001) for ARMA models with
conditionally heteroskedastic innovations, and in West, Wong and Anatolyev (2002) for more
general stationary time series models. Generally, employing the subclass of instruments de-
livers efficiency gains, often substantial, compared to the use of initially given instruments or
a finite number of their lags. However, in spite of these efficiency gains, the linear subclass is
significantly narrower than the entire class of allowable instruments, and a more appealing
idea is to approach the efficiency bound relative to the widest class of instruments.

Hansen (1985) and Hansen, Heaton and Ogaki (1988) presented a characterization of
the efficiency bound for GMM estimators that correspond to a given system of conditional
moment restrictions and exploit all information in the instruments. Anatolyev (2003) gives
a more algorithmic description of the optimal instrument. He finds that the process followed
by the optimal instrument is a recursion that generalizes Hansen’s formula (Hansen 1985,
Lemma 5.7), and is parameterized by three auxiliary processes which can be viewed as
infinite-dimensional parameters. Estimation of these would constitute a feasible procedure,
if there were not the following major difficulty: the parameter processes solve a system of
highly nonlinear functional equations rather than follow explicitly postulated dynamics. In
rare circumstances it is possible to solve this system analytically, as in Heaton and Ogaki’s
(1991) example, but this is not typical.

In order to proceed, we take an approach where the three nonlinear equations are approxi-
mated, and the solutions of the approximated versions are used to construct the instrument.
By approximation we mean the Taylor expansion around known counterparts that correspond
to the two special cases of no conditional heteroskedasticity and of no serial correlation. This
procedure results in different versions of the approximately optimal instrument according to
different orders of the Taylor expansion for the three equations that determine the auxiliary
processes. For a simple design with quadratic heteroskedasticity we compute asymptotic
variances of approximately optimal instrumental variables estimators, and determine prefer-
able orders in the Taylor expansion. On the other hand, we evaluate the efficiency losses due
to the approximation error in the Heaton–Ogaki example where it is possible to explicitly
calculate them. These losses turn out to be tiny showing that the proposed instrument is
able to nearly attain the efficiency bound.

To illustrate the implementation of the feasible version of the proposed instrument, we
run a Monte–Carlo simulation experiment. In constructing the feasible instrument, we esti-
mate auxiliary conditional expectations by a kernel regression on lagged basic instruments,
although a researcher may use alternative nonparametric methods. More concretely, we
employ the Nadaraya–Watson (NW) nonparametric estimator with a global bandwidth, us-
ing the nonparametric corrected asymptotic final prediction error criterion of Tschernig and
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Yang (2000) to select significant lags and an optimal value of the bandwidth. It turns out
that the feasible approximately optimal instrument has advantageous finite sample proper-
ties compared to likely competitors. Finally, we present an empirical application based on
a recently developed model by Meddahi, Renault and Werker (2003) using tick-by-tick data
for two stocks from the Russian stock market.

The paper is organized as follows. Section 2 presents the setup and reviews the form of
the optimal instrument, the starting point of our analysis. Section 3 shows how the approx-
imations are taken, elaborating the case of two-period conditional moment restrictions, and
also discusses the approximation method and estimation of auxiliary processes. Section 4
presents computations of asymptotic gains in a simple model with quadratic heteroskedas-
ticity, and losses in the Heaton–Ogaki example. Section 5 reports the results of simulation
experiments, while Section 6 contains the empirical application. In Section 7 we outline
what changes when the serial correlation is of higher order than the first, and conclude.

2 The optimal instrument

2.1 The single equation case

We consider the equation
f (β,xt) = et, (1)

where et is an error term, xt is a vector of observable variables, β is a k × 1 vector of
parameters to be estimated. The function f(β,xt) is Borel measurable for all β ∈B and is
continuously differentiable in the first argument for all β ∈B for all xt in its support. This
function is known up to β, which is the object of estimation, and may be nonlinear in β.
In addition, we are given vector zt of observable basic instruments (as opposed to simply
instruments that may be generated from the basic ones). Let us denote by =t the information
embedded in zt and all its history, i.e. =t ≡ σ(zt, zt−1, . . .), and use the shortcut notation
Et[·] ≡ E[·|=t]. Some of observable variables in xt, along with their lags or functions, may be
among zt, but generally they need not be measurable relative to =t. For example, in a linear
IV regression, xt contains both left and right hand variables. In a rational expectation model,
xt typically contains zt together with its several leads, although zt may include variables not
present in xt; also, not all information available to decision makers is necessarily contained
in =t. We assume that the vector (x′t, z

′
t)
′ is strictly stationary and ergodic.

The model is completed by the conditional moment restriction

Et [et] = 0. (2)

This restriction implies that all measurable functions of zt and their lags are valid instru-
ments. Note that it does not preclude correlatedness of errors with the leads of the basic
instrument as the latter typically is not strictly exogenous. Define the k×1 conditional score
vector

dt ≡ Et

[
∂f(β,xt)

∂β

]
, (3)

and let
ωt ≡ Et

[
e2
t

]
, γt ≡ Et [etet−1] (4)
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be the conditional variance and conditional first-order autocovariance of the errors. We
assume that the error is first-order conditionally serially correlated, i.e. Et[etet−j] = 0 for
j > 1, and that ess inf |γt| > 0.

We list several examples from applied econometric practice that fit in the described frame-
work.

Example 1 The Ferson and Constantinides (1991) consumption-based CAPM with habit
formation corresponds to θ = (α, δ, γ)′ , xt = (ct+2/ct+1, ct+1/ct, ct/ct−1, rt+1)′, and

f (β,xt) = δ (1 + rt+1)

((
st+1

st

)−γ
− αδ

(
st+2

st

)−γ)
−

(
1− αδ

(
st+1

st

)−γ)
,

where st = ct − αct−1, ct is a consumption, and rt is a market return; α is a habit forma-
tion/durability parameter, δ is a discount factor and γ is a coefficient of risk aversion. The
basic instrument is zt = (ct/ct−1, rt)

′ .

Example 2 The Meddahi, Renault and Werker (2003) model for ultra-high-frequency re-
turns considered in more detail in Section 6 corresponds to β =(θ, κ)′, xt = (rt, rt−1, dt, dt−1)′,
and

f (β,xt) =
(
r2
t − θ

)
−
(
r2
t−1 − θ

)
exp (−κdt−1)

c (κdt)

c (κdt−1)
,

where dt is a duration, rt is a scaled return, and c (v) ≡ (1− exp (−v)) /v. The basic instru-
ment is zt = (rt−2, dt−2)′ .

Example 3 If the AR parameter in an ARMA(1,1) model is estimated by instrumental
variables, then β = α, xt = (yt, yt−1)′, f (β,xt) = yt − αyt−1, and zt = yt−2.

Typically, the parameters in the model (1)–(2) are estimated by GMM (Hansen 1982)
after the researcher chooses an instrument vector, which is likely to include the basic in-
strument, its recent lagged values, and (more rarely) nonlinear functions thereof, using an
heteroskedasticity and autocorrelation consistent variance estimator to form a weighting
matrix. This procedure yields consistent and asymptotically normal estimates, but intrinsic
arbitrariness in forming the instrument vector leaves possibilities of increasing asymptotic
efficiency. Hansen (1985) and Hansen, Heaton and Ogaki (1988) present a characterization
of the efficiency bound for GMM estimators. Anatolyev (2003) gives a more algorithmic
description of the optimal instrument. Under suitable conditions, it has the following form:

ζt = ζt−1φt + ρtδt, (5)

where the stationary ergodic =t-measurable processes, scalar φt, k × 1 vector δt, and scalar
almost surely positive ρt, satisfy the following system:

γt + φt
(
ωt + Et

[
φt+1γt+1

])
= 0, (6)

δt = dt + Et
[
φt+1δt+1

]
, (7)

ρt(ωt − Et
[
ρt+1γ

2
t+1

]
) = 1, (8)

E [log |φt|] < 0. (9)
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The key relation is (5). It is a generalization of Hansen’s (1985) formula for the process
followed by the optimal instrument in a homoskedastic environment, which we will see in
Section 3. Here, in contrast to Hansen (1985), φt and ρt are time varying, and δt can
be viewed as a generalized projection of the discounted sum of leaded conditional scores
onto the space of instruments. The conditions (6), (7) and (8) determine φt, δt and ρt,
respectively, while (9) rules out unstable solutions of the nonlinear equation (6). The nature
of the parameter processes φt, δt and ρt suggests calling φt the discount process, δt – the
forcing process, and ρt – the weighting multiplier.

2.2 The multiple equations case

In the multiple equation case, the system of conditional moment restrictions is

Et [et] = 0, (10)

and et is s× 1, where s > 1. Define the k × s conditional score matrix

Dt ≡ Et

[
∂f(β,xt)

∂β

]
, (11)

and s× s matrices
Ωt ≡ Et[ete

′
t], Γt ≡ Et[et−1e

′
t], (12)

the conditional variance and conditional first-order autocovariance matrices of the error
vector. We again assume away higher-order conditional serial correlation in the error et, i.e.
Et[ete

′
t−j] = O for j > 1, and use the Euclidean matrix norm |A| =

√
% (A′A), where % (·) is

the spectral radius.

Example 4 The Hansen and Singleton (1996) temporal aggregation model corresponds to
β =(γ, δ, σ2)′, xt = (ct+2, ct+1, ct, qt+2, qt+1, qt)

′, and

f (β,xt) =

 ut+2

u2
t+2 − 2σ2/3

u2
t+2/4− ut+2ut+1

 ,

where ut+1 = γ (ct+1 − ct) + (qt+1 − qt) − (δ − σ2/2) , ct and qt are a consumption and as-
set price, γ and δ are preference parameters, and σ2 is a variance measure of underlying
Brownian motions. The basic instrument is zt = (ct, qt)

′ .

Under suitable conditions, the optimal instrument takes the form (Anatolyev 2003)

Ξt = Ξt−1Φt + ∆tPt, (13)

where the stationary ergodic =t-measurable processes, s × s matrix Φt, s × s symmetric
almost surely positive definite matrix Pt, and k × s matrix ∆t, satisfy the following system:

Γt + Φt(Ωt + Et[Φt+1Γ′t+1]) = 0, (14)

∆t = Dt + Et[∆t+1Φ′t+1], (15)
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Pt(Ωt − Et
[
Γt+1Pt+1Γ′t+1

]
) = Is, (16)

λ(Φ) ≡ lim
T→∞

1

T
log |ΦTΦT−1 · · ·Φ2Φ1| < 0. (17)

In the single equation case of the previous subsection, the negativity of the top Lyapounov
exponent λ(Φ) is equivalent to the negativity of E [log |φt|] . In the multiple equation case, the
condition E [log |Φt|] < 0 is too strong, because the inequality in |ΦT · · ·Φ1| ≤ |ΦT | · · · |Φ1|
may not be tight. For instance, the norm of the companion matrix Φ of a stationary ARMA
process is bigger than unity, even though lim

T→∞
|ΦT | = 0. The following Lemma may be found

useful.

Lemma 1 (Bougerol and Picard 1992) Let At be a stationary ergodic matrix process with
finite E [max (0, log |At|)] such that almost surely

lim
T→∞

|ATAT−1 · · ·A2A1| = 0.

Then λ(A) < 0.

Thus, when Φt has a triangular structure (as in the Heaton–Ogaki example of Section 4),
it is sufficient to verify that E[log |λmax(Φt)|] < 0, where λmax is maximal diagonal element
(which is the same as maximal eigenvalue). If this is not a case, one may impose existence
of matrix process St such that E[log |StΦtS

−1
t |] < 0. For more on these issues, see Pötscher

and Prucha (1997, p.70 and footnote 25).

3 The approximately optimal instrument

3.1 The single equation case

Unfortunately, the system (6)–(9) generally cannot be solved for φt, δt, and ρt. Thus,
we want to find an approximate but explicit solution to the system treating the known
instruments in the special cases of no conditional heteroskedasticity and no serial correlation
as benchmarks. We then will employ the approximations to φt, δt, and ρt to construct an
approximately optimal instrument via a recursion similar to (5).

Note first that if there were no conditional heteroskedasticity and serial correlation, the
ideal instrument would be the conditional score dt.

Consider the following instrument which would be optimal if there were no conditional
heteroskedasticity (Hansen 1985)1:

ζHt = ζHt−1θ +
1

σ2

∞∑
i=0

θiEt [dt+i] , (18)

where σ2 is a variance of the Wold innovation of et, and θ is a negative of its implied moving
average coefficient, i.e. et = εt+1 − θεt, σ2 = E[ε2

t ]. The construction of ζHt may be viewed

1An instrument of type (18) was used in empirical work, for example, by West and Wilcox (1996) in a
homoskedastic environment and by Hansen and Singleton (1996) in both homo- and heteroskedastic envi-
ronments.
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as the approximation of φt, δt, and ρt correspondingly by

φH = θ, δHt =
∞∑
i=0

θiEt [dt+i] , ρH =
1

σ2
.

What makes the instrument (18) different from the instrument dt is the nonzeroness of φH

and the dynamic structure of δHt . We will therefore treat φH and δHt as benchmarks, and
look for approximate deviations of φt and δt from φH and δHt when the error is supplemented
by conditional heteroskedasticity.

On the other hand, if the error was conditionally serially uncorrelated, the optimal instru-
ment would be2

ζCt =
dt
ωt
, (19)

The construction of ζCt may be viewed as the approximation of φt, δt, and ρt correspondingly
by

φC = 0, δCt = dt, ρCt =
1

ωt
.

What makes the instrument (19) different from the instrument dt is the time-varying weight-
ing by ρCt . We will therefore treat ρCt as a benchmark, and look for an approximate deviation
of ρt from ρCt when the error is supplemented by conditional serial correlation.

Technically, we rewrite the equation (6) that determines the discount process φt as

Et
[
Fφ
(
φt, φt+1, ωt, γt, γt+1

)]
= 0, (20)

where Fφ(φt, φt+1, ωt, γt, γt+1) ≡ γt + φt
(
ωt + φt+1γt+1

)
, and linearize it with respect to all

arguments of F around the “homoskedasticity point” H ≡
(
φH , φH , ωH , γH , γH

)
. For any

variable ut, define ∆ut ≡ ut − uH . Linearization yields the following linear equation for φt:

Et


∂Fφ
∂φt

∣∣∣∣
H

∆φt +
∂Fφ
∂φt+1

∣∣∣∣
H

∆φt+1 +
∂Fφ
∂ωt

∣∣∣∣
H

∆ωt +
∂Fφ
∂γt

∣∣∣∣
H

∆γt

+
∂Fφ
∂γt+1

∣∣∣∣
H

∆γt+1 +RF
t+1

 = 0, (21)

where RF
t+1 contains higher-order terms. Collecting linear terms together in equation (21)

and getting rid of higher-order ones, we end up with a linear stochastic difference equation
with respect to the first-order approximation φ

(1)
t for φt, with a unique stationary solution

φ
(1)
t = θ − 1

σ2

(
γt + θωt +

∞∑
i=1

θ2iEt
[
θωt+i + 2γt+i

])
. (22)

We can go further and consider the quadratic approximation to get a more refined solution
for φt. Let us expand the φt-equation in the Taylor series up to quadratic terms:

Et



∂Fφ
∂φt

∣∣∣∣
H

∆φt +
∂Fφ
∂φt+1

∣∣∣∣
H

∆φt+1 +
∂Fφ
∂ωt

∣∣∣∣
H

∆ωt +
∂Fφ
∂γt

∣∣∣∣
H

∆γt

+
∂Fφ
∂γt+1

∣∣∣∣
H

∆γt+1

∂2Fφ
∂φt∂φt+1

∣∣∣∣
H

∆φt∆φt+1 +
∂2Fφ
∂φt∂ωt

∣∣∣∣
H

∆φt∆ωt

+
∂2Fφ

∂φt∂γt+1

∣∣∣∣
H

∆φt∆γt+1 +
∂2Fφ

∂φt+1∂γt+1

∣∣∣∣
H

∆φt+1∆γt+1 +RF
t+1

 = 0, (23)

2The superscript “C” is an abbreviation of “Chamberlain”, with whom such instrument is associated,
due to the important paper Chamberlain (1987).
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where RF
t+1 contain higher-order terms. Collecting the second-order terms together yields a

stochastic difference equation with respect to the second-order approximation φ
(2)
t for φt,

with a unique stationary solution

φ
(2)
t = φ

(1)
t +

1

θ

(
1

σ2

(
φ

(1)
t − θ

) (
γt + θσ2

)
+
∞∑
i=0

θ2iEt

[(
φ

(1)
t+i − θ

)2
])

. (24)

The expansion may be continued further, but the emerging approximations are too complex
to be used in practice.

Now we consider the forcing process δt determined by (7). We approximate Fδ(δt, δt+1, φt+1)
≡ −δt+dt+φt+1δt+1 around H =

(
δHt , δ

H
t+1, φ

H
)

to end up with a linear stochastic difference

equation with respect to the first-order approximation δ
(1)
t for δt, with a unique stationary

solution

δ
(1)
t = δHt +

∞∑
i=1

θi−1Et

[(
φ

(1)
t+i − θ

)
δHt+i

]
. (25)

Similarly, we expand the δt-equation up to quadratic terms to get

δ
(2)
t = δ

(1)
t +

∞∑
i=1

θi−1Et

[(
φ

(2)
t+i − φ

(1)
t+1

)
δHt+i + φ

(1)
t+i

(
δ

(1)
t+i − δ

H
t+i

)]
. (26)

Again, the expansion may be continued further, but the emerging approximations are too
complex to be used in practice.

Finally, we consider the weighting multiplier ρt determined by (8). We approximate
Fρ(ρt, ρt+1, γt+1) ≡ 1− ρt

(
ωt − ρt+1γ

2
t+1

)
around C =

(
ρCt , ρ

C
t+1, 0

)
to find that

ρ
(1)
t =

1

ωt
, (27)

i.e. the first-order approximation ρ
(1)
t for ρt coincides with ρCt . The second-order approxima-

tion for ρt is

ρ
(2)
t =

1

ωt

(
1 +

1

ωt
Et

[
γ2
t+1

ωt+1

])
. (28)

Note that ess inf |γt| > 0 implies ess sup |ρ(1)
t | > 0 and ess sup |ρ(2)

t | > 0. Once again, the
expansion may be continued further, but the emerging approximations are too complex to
be used in practice.

The approximately optimal instrument ζ
(jkl)
t uses jth-order approximation for φt, k

th-order
for δt, and lth-order for ρt, where by 0th order we mean φH , δHt and ρCt , respectively. The
approximately optimal instrument follows

ζ
(jkl)
t = ζ

(jkl)
t−1 φ

(j)
t + ρ

(l)
t δ

(k)
t . (29)

Since we use approximations for φt, δt and ρt in place of the true processes to construct the

instrument, we have to ensure proper behavior of ζ
(jkl)
t . This means two things. First, we

require stationarity: there must exist a unique stationary solution to (29) with approximated
φt, δt and ρt. Second, we need to ensure finiteness of fourth moments of the constructed
instrument. While the former aim is relatively easily achieved, the latter is much more
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challenging, due to the time dependence of the “AR coefficient” φ
(j)
t , the absolute value of

which can take values higher than unity. To kill two birds with one stone, we deliberately
simplify the task at the expense of possible efficiency losses. The following general Lemma,
which can be easily proved using Brandt (1986) and the triangular inequality, will be helpful.

Lemma 2 Suppose that the k × s matrix process Ψt satisfies the recurrence

Ψt = Ψt−1At +Bt, (30)

where At is an s×s and Bt is a k×s matrix processes such that: (a) At and Bt are stationary
and ergodic; (b) esssup |At| < 1; (c) E[|Bt|4] < ∞. Then there exists a stationary ergodic
solution Ψt of (30) such that E[|Ψt|4] <∞.

To force |φ(j)
t | to be bounded from above by 1, we use the following trimming scheme. Fix

a generic small positive number ε, like 10−2, say. Define the trimming operator “−” by

φ− = min {1− ε,max {−1 + ε, φ}} .

That is, “−” trims large |φ| by setting φ > 1− ε to 1− ε, φ < −1 + ε to −1 + ε. Then instead
of (29) we can use the following recursion:

ζ
(jkl)
t = ζ

(jkl)
t−1 (φ

(j)
t )− + ρ

(l)
t δ

(k)
t . (31)

Then esssup(φ
(j)
t )− < 1 and E[|ρ(l)

t δ
(k)
t |4] ≤ E[|δ(k)

t |4] esssup |ρ(l)
t | <∞ if δ

(k)
t has finite fourth

moments and ρ
(l)
t is bounded from below, so the prerequisites of Lemma 2 are satisfied. Of

course, the asymptotic variance of the instrument ζ
(jkl)
t depends on the trimming parameter

ε, which it is reasonable to set to a small number to distort φ
(j)
t to the least degree.

3.2 The multiple equations case

The covariance and variance parameters under homoskedasticity are given by ΓH = −ΣΘ′,
ΩH = Σ + ΘΣΘ′, where Θ and Σ are determined from the Wold decomposition of et:
et = εt+1 − Θεt and Σ ≡ E[εtε

′
t]. The zeroth-order approximation Φ

(0)
t = ΦH for Φt is one

that satisfies the matrix quadratic equation(
ΦH
)2

ΘΣ− ΦH (Σ + ΘΣΘ′) + ΣΘ′ = 0. (32)

Note that the unstable solution is trivially Θ−1, but the stable one is not Θ. Let representa-
tion et = εt+1−Θεt be invertible, i.e. all s eigenvalues πi, i = 1, . . . , s, of Θ lie strictly inside
the unit circle on the complex plane.3 Construct s × s matrices Π ≡ diag (π1, . . . , πs) and
Ψ ≡ (x1, . . . , xs), where each column xi is a solution of the following system of s equations:[

π2
iΣΘ′ − πi (Σ + ΘΣΘ′) + ΘΣ

]
xi = 0.

Then the stable solution of (32) is ΦH = (Ψ−1ΠΨ)
′
. This follows, for example, from appli-

cation of Theorems 3 and 4 of Uhlig (1995).

3Some of these eigenvalues may be complex. However, even then the resulting solution ΦH will be
real-valued. See Uhlig (1995).
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Anticipating the preferred choice of approximation orders j = 1, k = 0, and l = 1 in
the single-equation case (see Section 4), we give approximations of same orders here. The
linearization of (14) yields a difference equation with the stationary solution

Φ
(1)
t = ΦH −

∞∑
i=0

(
ΦH
)i
Et

[
ΦHΩt+i + Γt+i +

(
ΦH
)2

Γ′t+i+1

]
(ΘΣ)′ −1ΦH

(
ΘΣ (ΘΣ)′ −1ΦH

)i
.

The k × s matrix ∆t solves (15), with the zeroth-order approximation given by

∆
(0)
t = ∆H

t =
∞∑
i=0

Et

[
Dt+i

(
ΦH ′)i] .

For Pt the first-order approximation is

P
(1)
t = Ω−1

t .

The approximately optimal instrument Ξ
(101)
t follows

Ξ
(101)
t = Ξ

(101)
t−1 (Φ

(1)
t )− + ∆

(0)
t P

(1)
t .

For matrices, we generalize the trimming device “−” in the following way. Take an arbitrary
nonsingular s × s matrix A. The basic structure of A is decomposition A = P∆Q′, where
P and Q are each orthonormal s × s matrices, i.e. P ′P = PP ′ = Q′Q = QQ′ = Is, and ∆
is a diagonal matrix with strictly positive elements on the diagonal ordered in descending
order (Green and Carroll 1976, section 5.7). This decomposition always exists. Observe
that the L2 norm of A is |A| =

√
% (A′A), where % (·) is the spectral radius, and A′A =

Q∆P ′P∆Q′ = Q∆2Q′. But this is the eigenstructure of symmetric positive definite matrix
A′A, with matrix ∆2 containing s real positive eigenvalues of A′A. If any of these exceed
1, we can deflate them to lie within [0, (1− ε)2] in the same way we do trimming in the
scalar case. By doing so we automatically force |A| to be bounded from above by 1 − ε.
Thus, for matrix A the trimming algorithm goes as follows: (1) Compute A′A and find its
eigenstructure which yields the matrix of eigenvalues ∆2 and the matrix Q of eigenvectors.
(2) Find the square root ∆ of ∆2. (3) Compute the implied matrix P by P = AQ∆−1. (4)
Trim the diagonal entries of matrix ∆ using operator “−”, and construct the trimmed A as
A− = P∆−Q′.

3.3 Discussion

Similar transformations of nonlinear equations by (log-)linearization and (more rarely) second-
order expansion often occur in estimation of Euler equations and are a standard tool in the
asset pricing and business cycles literatures. There are several studies analyzing the effects of
such transformations on the precision of estimates of parameters in Euler equations. Some
of these studies document large biases in those estimates, which, however, largely result
from certain econometric problems possibly caused by linearization, rather than from the
approximation error per se (Attanasio and Low 2002). For example, Carroll (2001) finds out
that both OLS and IV estimates of preference parameters are biased, the reason being that
the approximation error is endogenous making OLS estimates inconsistent and IV estimates
corrupt in the absence of reliable instruments. Ludvigson and Paxson (2001) also obtain
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large biases, but, as Attanasio and Low (2002) note, there is no identifying information in
their model and convincing instruments for IV estimation. Attanasio and Low (2002) find no
systematic biases for IV estimates of structural parameters in loglinearized equations, and
show that “for all parameter specifications, the performance of the non-linear GMM estima-
tor is considerably worse than that of the estimators based on the log-linearized equations.”
It can be concluded from this literature that the approximations can indeed be used as a
constructive tool, especially when there are no attractive alternatives.

A natural question arises: does a higher-order approximation of parameter processes imply
a better approximation of the optimal instrument? Even though this question is rhetorical
for practical purposes because approximations beyond the second are prohibitively complex,
it is interesting to know if the proposed method is the way to attain the efficiency bound.
Unfortunately, the answer is no. It is true that for infinitesimally small conditional het-
eroskedasticity and serial correlation the parameter processes may be approximated to any
desired precision, but it is unlikely to reach perceptible efficiency gains, and it is in fact more
likely to incur efficiency losses in feasible implementation with samples of typical size. In con-
trast, in a situation of strong heteroskedasticity and serial correlation, the Taylor expansion
of infinite order does not guarantee yielding true parameter processes, or even convergence
of the infinite series. As an illustration, consider a function which is well-behaved in the
considered sense, exp(x), and suppose we want to approximate this function by a Taylor se-
ries expansion around x = 0. Because the function x 7→ exp(x) is analytic, the Taylor series
evaluated at x = 1,

∑∞
n=0 (n!)−1 , converges to exp(1). However, even though the function

x 7→ exp(x)−1.9525·exp(−1/x2) has the same Taylor expansion around x = 0, it has a differ-
ent value at x = 1. At the same time, the first-order approximation

∑1
n=0 (n!)−1 = 2 for this

function at x = 1 happens to be exact (which is purely incidental), while higher order terms
introduce discrepancies. We conclude that the approximately optimal instrument should be
really viewed as a heuristic approximation, and not as an intermediate step towards the truly
optimal instrument; whether this approximation delivers efficiency gains in practice can only
be evaluated via asymptotic calculations and Monte–Carlo studies. In any case, however,
a researcher does not risk consistency of estimates by using the approximation, and most
likely wins in terms of efficiency as asymptotic calculations and simulations will show.

Now, to construct a feasible optimal instrument, certain conditional expectations need
to be estimated. In the rest of the subsection, we discuss some issues of their estimation,
relegating details to the simulation and application sections. As seen from the formulas
for components of approximately optimal instruments, one needs estimates of (an infinite
number of) conditional expectations of future (from the viewpoint of period t) conditional
scores, variances and autocovariances, and possibly other, more complicated, objects. Since
the parametric approach requires knowledge not implied by the model and thus is not attrac-
tive, we rely on nonparametric estimates of the involved auxiliary functions. More concretely,
we employ the Nadaraya–Watson (NW) nonparametric estimator with a global bandwidth,
using the nonparametric corrected asymptotic final prediction error (CAFPE) criterion of
Tschernig and Yang (2000) to select significant lags and an optimal value of the bandwidth.
Alternative possibilities include nearest neighborhood regressions (Robinson 1987) and series
expansions (Newey 1990). Among kernel-based methods, we intentionally do not use a more
precise local polynomial regression and/or variable bandwidth, for two reasons. First, we
do not want to increase computational costs in simulations which are already appreciable.
Second, we would like to give conservative evidence on the performance of our estimator so
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that it may be even more enhanced by using more advanced nonparametric methods.
Whichever approach is adopted, one has to deal with infinite summations present in (18),

(22), (24), etc. This is not as hard to do as it may seem. Take, for example, the infinite
summation

∞∑
i=0

θiEt [dt+i] . (33)

Note that the conditional expectation of dt+i given =t converges to its unconditional counter-
part E [∂f(β,xt)/∂β] as i→∞. Note also that the weight θi in front of Et [dt+i] converges
to zero as i → ∞. Thus, it is sufficient to estimate but a finite number of summands up to
some i = i0, and substitute the tail of the series by a tail composed of corresponding uncon-
ditionals. Informally, let us assume that the error from estimation of an expectation is δE,
and the error from substitution of a conditional by an unconditional estimator is δS. Then
the maximum estimation error in (33) would be δE/ (1− θ) if all terms could be estimated,
while the total error resulting from estimation and substitution is

(
δE + θi0+1δS

)
/ (1− θ) .

That is, if i0 is high enough, the difference in the two errors is negligeable. The computations
above assume that δS is the same for each i, while in fact the substitution error goes down
as i increases, which further reduces the difference between the two errors.

We thus estimate nonparametrically, according to the procedure described in detail in
Section 5, the summands from i = 0 increasing i until the nonparametric procedure selects no
significant lags for two i’s in a row, say for i0 and i0 +1, or until θi0/ (1− θ) falls below 0.001,
whichever happens earlier. Starting from i = i0 we use the sample mean of ∂f(β̂,xt)/∂β,
i.e. a nonparametric estimate of the unconditional expectation E [∂f(β,xt)/∂β], in place of
Et [dt+i]. Similarly, to estimate

∞∑
i=1

θ2iEt
[
θωt+i + 2γt+i

]
, (34)

we estimate Et
[
θωt+i + 2γt+i

]
by nonparametrically regressing θ̂ê2

t+i + 2êt+iêt+i−1 on the
basic instruments and their lags, increasing i from i = 1 until the procedure selects no
significant lags for two i’s in a row, or until θ2i/

(
1− θ2

)
falls below 0.001. Here, β̂, θ̂, and

êt are preliminary consistent estimates of β, θ and et, respectively.

4 Asymptotic comparisons

4.1 An example with quadratic heteroskedasticity

We will use the following data generating mechanism for the calibration of asymptotic gains:

yt = βzt + et, et = εt+1 − θεt, =t = σ (zt, zt−1, . . .) ;

εt = νt

√
1− λ+ λ (1− ϕ2) z2

t , zt = ϕzt−1 + ηt, (ηt, νt)
′ ∼ IID N (0, I2) .

Here θ ∈ (−1, 1), ϕ ∈ (0, 1), and λ ∈ [0, 1). The basic instrument is zt. The aim is estimation
of β from the data on yt and zt. We have (all constants κ·· here and below may be found in
the Appendix available from the author on request):
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ωt = κω1 + κω2z
2
t ,

γt = κγ1 + κγ2z
2
t ,

dt = zt.

The zeroth-order approximation to the parameters is

φ
(0)
t = θ,

δ
(0)
t = κδ1zt,

ρ
(0)
t =

1

κω1 + κω2z2
t

.

The first-order approximation to the parameters is

φ
(1)
t = κφ1 + κφ2z

2
t ,

δ
(1)
t = κδ2zt + κδ3z

3
t ,

ρ
(1)
t =

1

κω1 + κω2z2
t

.

The second-order approximation to the parameters is

φ
(2)
t = κφ3 + κφ4z

2
t + κφ5z

4
t ,

δ
(2)
t = κδ3zt + κδ4z

3
t + κδ5z

5
t ,

ρ
(2)
t =

κρ1 + κρ2z
2
t + κρ3 (zt)

(κω1 + κω2z2
t )

2 .

One can see that both φ
(1)
t and φ

(2)
t are polynomials in the basic instrument zt with un-

bounded support. This points at the importance of using the trimming device “−”.
The additional instruments that we use in comparisons are the basic instrument zt implied

by the OLS estimator, and the West–Wong–Anatolyev instrument (West, Wong and Ana-
tolyev 2002), which is optimal in the class of linear combinations of the present and past
basic instruments, and thus attains the efficiency bound in the class of GMM estimators that
use as instruments lags of the basic instrument. An interesting feature of the present exam-
ple is the asymptotic equivalence of the West–Wong–Anatolyev instrument and the one that
would be optimal if there were no conditional heteroskedasticity (the proof of this fact is in

the aforementioned Appendix). Approximately optimal instruments include ζ
(101)
t , the one

that uses approximations φ
(1)
t , δ

(0)
t and ρ

(1)
t , which turns out to be a reasonable compromise

between an instrument’s complexity and efficiency gains in this example, and three other
versions where one of the parameters is higher-order approximated compared to ζ

(101)
t , that

is, either φ
(2)
t is used in place of φ

(1)
t , or δ

(1)
t in place of δ

(0)
t , or ρ

(2)
t in place of ρ

(1)
t . For the

basic and West–Wong–Anatolyev instruments the asymptotic variances are computed us-
ing closed-form formulas, for the approximately optimal instruments – by simulations, with
sample sizes of at least 108 observations.

Table 1 presents limited but typical evidence on relative asymptotic performance of the
considered estimators and corresponds to the case of moderate heteroskedasticity (λ = 0.5)
and moderate persistence in the basic instrument (ϕ = 0.5). The degree of serial correlation
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θ is set to ±0.1, ±0.5, ±0.9. In judging the applicability potential of various approximately
optimal instruments, we are guided by asymptotic efficiency gains, on the one hand, and by
complexity of their forms, on the other hand. The latter factor is very important because
when a more complex approximation tends to yield slight efficiency gains, these gains are
not likely to be realized with a feasible version.

A quick look at the table reveals significant asymptotic efficiency gains from the use of the
approximately optimal instrument ζ

(101)
t relative to the asymptotic variance provided by the

class of GMM estimators, especially when the serial correlation is strong. Often switching
from the linearly optimal instrument to the nonlinear approximately optimal instrument
provides more efficiency gains than switching from the basic instrument to the instrument
optimal in the entire linear class of instruments. The numbers reveal restrictiveness of the
space of instruments that are linear in lags of the basic instrument and a promise of the
adopted approach. In many unreported experiments the same pattern emerges, and in no
case have we obtained efficiency losses for the instrument ζ

(101)
t (which cannot be excluded

in principle).

As far as higher-order approximations are concerned, the use of φ
(2)
t in place of φ

(1)
t tends

to decrease efficiency (the entries with dashes indicate awkwardly high variances). Taking
into account the difficulty of its derivation, a good advice is to forget about its exploitation.
The use of δ

(1)
t in place of δ

(0)
t is able to provide further slight efficiency gains (as well as slight

efficiency losses), but its form is far too complex. The use of ρ
(2)
t in place of ρ

(1)
t has similar

effects, and although it never shows efficiency losses, the potential gains seem too small to
justify its complexity and computational costs, although one may think of its exploitation
in problems with strong serial correlation.

To appraise the significance of the trimming device “−”, an additional experiment was
run where the trimming of φ

(1)
t in the construction of ζ

(101)
t was abolished. This brought no

change in asymptotic variance for small values of |θ| (and thus for small |κφ2|) but worsened
it for values of θ farther away from zero. Such deterioration indicates the importance of
trimming big values of |φ(1)

t | that the true |φt| is unlikely to take.

4.2 The Heaton–Ogaki example

Heaton and Ogaki (1991) present an econometric example where it is possible to obtain
an exact expression for the efficiency bound. Naturally, in this case it is also possible to
write out the explicit solution for the parameters of the optimal instrument, which we do
below. Unfortunately, in order to accomplish either goal, one has to assume normality of
the fundamental process, which nullifies this example’s practical significance.

Let wt be a serially independent standard normal q × 1 vector, and ut be a two-period
ahead forecast error with the Wold representation ut = ν ′0wt + ν ′1wt−1, where ν0 and ν1

are q × 1 vectors of constants. Observable at time t is the q × 1 vector xt, and the space
of instruments is =t = σ(xt,xt−1, . . .). Let ut be connected to xt via ut =

(
1, β,0′q−2

)
xt,

where β is a scalar parameter of interest. The rational expectations hypothesis imposes the
restriction

Et [ut+2] = 0.

Under the assumptions made, the error in this equation is conditionally homoskedastic.
There is conditional heteroskedasticity in another restriction, the conditional analog of Work-
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ing’s (1960) result on temporal aggregation:

Et [ut+2 (ρut+2 − ut+1)] = 0,

where ρ ≡ ν′0ν1

ν′0ν0+ν′1ν1
= 1

4
. The disturbance vector of the two equation system is

et =

(
ut+2

ut+2 (ρut+2 − ut+1)

)
.

The observational equation for xt is xt = Hyt, where the law of motion of the p × 1 state
vector yt is

yt = Ayt−1 + Cwt,

where A is a stable p×p matrix, C is a p×q matrix, and H is a q×p matrix. These constants
should be consistent with

(
1, β,0′q−2

)
HC = ν ′0,

(
1, β,0′q−2

)
HAC = ν ′1,

(
1, β,0′q−2

)
HAiC =

0, i ≥ 2. Then
Dt =

(
−hA2yt, rd + (hA2yt)(ν

′
1wt)

)
,

where h ≡
(
0, 1,0′q−2

)
H, rd ≡ −h (AC%1 + C%0) , %0 ≡ 2ρν0 − ν1, %1 ≡ 2ρν1 − ν0.

The process Φt and the product ∆tPt are

Φt =
1

ξ11ξ12

(
−ξ12ξ21 0

(ξ22α
′
11 − ξ12α

′
21) wt − ξ12α

′
22wt−1 −ξ11ξ22

)
,

∆tPt =
(

r1yt + r2(ν ′1wt) r2

)
,

where constants ξij and αij are defined in equations (4)–(10) of Heaton and Ogaki (1991),
and the 1× p vector r1 and the scalar r2 are

r1 = − 1
ξ2
11

hA2
(

Ip + ξ21

ξ11
A
)−1

, r2 = 1
ξ2
12

(
1 + ξ22

ξ12

)−1 (
rd − ξ21

ξ11
r1C%1

)
.

Note that E [max (0, log |∆tPt|)] < ∞ and E [max (0, log |Φt|)] < ∞ are satisfied due to
normality of wt, and λ(Φ) < 0 because Φt has a triangular structure with diagonal elements
that are less than unity in absolute value (see remarks in subsection 2.2). Finally, E[|Ξt|4] <
∞ due to normality of wt. Note that unfolding the recursion for the optimal instrument
Ξt by repeated substitutions gives that the second element of Ξt is constant, and the first
element is a linear function of the present and all past wt. That is, the optimal instrument
is equivalent to the West–Wong–Anatolyev instrument provided that xt is chosen to be the
basic instrument.

Now we derive the approximation for the optimal instrument. The variance and covariance
processes are:

Ωt = (ν ′0ν0 + ν ′1ν1)

(
1 −ν ′1wt

−ν ′1wt %2 + (ν ′1wt)
2

)
,

Γt = (ν ′0ν1)

(
1 −ν ′1wt

%′1wt − ν ′1wt−1 −2ρ%2 − (ν ′1wt) (%′1wt − ν ′1wt−1)

)
,

where %2 ≡ ν ′0ν0 − ρν ′0ν1. Consequently,

ΩH = (ν ′0ν0+ν ′1ν1)

(
1 0
0 (ν ′0ν0 + ν ′1ν1)(1− ρ2)

)
, ΓH = (ν ′0ν1)

(
1 0
0 (ν ′0ν1)(2ρ2 − 1)

)
.
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Since both ΩH and ΓH are diagonal, ΦH is too and is equal to Θ ≡ diag(θ1, θ2), which is
defined together with Σ via Θ = −ΓHΣ−1 and I2 + Θ2 = ΩHΣ−1. Then one may find θ1 and
θ2 from equations

θ1

1 + θ2
1

= −ρ, θ2

1 + θ2
2

= ρ2 1− 2ρ2

1− ρ2
,

subject to |θ1| < 1 (⇒ θ1 = − ξ21

ξ11
) and |θ2| < 1. The parameter processes of the approxi-

mately optimal instrument have the following forms:

Φ
(1)
t = Θ−

[
ΘΩt + Γt + Θ2ν ′0ν1

(
1 −ν ′1wt

0 (ν ′0ν1)(2ρ2 − 1)

)]
Σ−1,

∆
(0)
t =

(
ξ2

11r1yt
rd + θ2hA

2Cν1

1− θ2

+ (hA2yt)(ν
′
1wt)

)
,

P
(1)
t =

ρ

%2ν ′0ν1

(
%2 + (ν ′1wt)

2 ν ′1wt

ν ′1wt 1

)
.

To calibrate asymptotic losses of the approximately optimal IV estimator relative to the
optimal IV estimator, let q = 1, xt = (zt zt−1)′ , ν0 = 1, ν1 = 2−

√
3, so that ut = zt+βzt−1 =

wt + ν1wt−1, and

yt =

 zt
zt−1

wt

 , A =

 −β 0 ν1

1 0 0
0 0 0

 , C =

 1
0
1

 , H =

(
1 0 0
0 1 0

)
, h ≡ (0 1 0) .

Table 2 presents asymptotic variances of some IV estimators for several values of β. The
“truly optimal” IV estimator is most efficient, and significantly beats the optimal IV esti-
mator that ignores the second equation (“first equation optimal”), especially when β is close
to ν1. The “homoskedasticity optimal” instrument that would be optimal if there were no
conditional heteroskedasticity captures much of the efficiency gains. However, the proposed
“approximately optimal” instrument captures an overwhelming part of the further efficiency
gains provided by the optimal instrument. Thus, the efficiency losses arising from the ap-
proximation error turn out to be tiny (only 0.8÷3.0% for the utilized values of β), and show
that the proposed instrument is able to nearly attain the efficiency bound.

5 Simulation Evidence

5.1 The model, data generating mechanism, and estimators

In order to get a feel for finite sample properties of a feasible version of the proposed esti-
mator, we set up the following econometric model:

yt = α + βxt + et, (35)

where (α, β)′ is the vector of parameters to be estimated, whose numerical value is set to
(0, 0)′. The data are generated according to

et = εt+1 − θεt, εt|=t ∼ N
(
0, σ2

t

)
,

xt = E [xt|=t] + ηxt, ηxt ∼ IID N (0, 1) ,

zt = 1 + ϕ(zt−1 − 1) + ηzt, ηzt ∼ IID N (0, 1) .
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Apart from the constant, the basic instrument is zt. We set the parameter values as follows.
The parameter of the disturbance is θ takes values ±0.3, ±0.6, ±0.9. The value of ϕ is set
to 0.3. The skedastic function is set to

σ2
t = (zt + zt−1)2 , (36)

and the conditional expectation of the right hand variable given the instrument history – to

E [xt|=t] = 1 + zt + zt−1. (37)

We present simulation evidence on the behavior of IV estimators with the following in-
struments.

(1) The simple IV estimator β̂IV with the exactly identifying instrument (1 zt)
′ . The

use of this “naive” estimator may be attributed to a researcher who wants to avoid
complications arising from overidentification.

(2) The two-stage least squares estimator β̂2SLS with the overidentifying instrument (1 zt zt−1)′.
This would probably be the most intensively used estimator in this context, in spite of
the presence of conditional heteroskedasticity.

(3) The GMM estimator β̂GMM with the overidentifying instrument (1 zt zt−1)′. This esti-
mator in contrast to β̂2SLS optimally exploits the information in the three instruments
in the presence of conditional heteroskedasticity.

(4) The estimator β̂ζH that would be a feasible optimal IV estimator in the absence of het-
eroskedasticity. This estimator has been previously known and used in the literature.

(5) The approximately optimal IV estimator β̂ζ(101) , corresponding to the feasible instru-

ment ζ̂
(101)

t .

Other possible competing estimators could be standard GMM estimators using instruments
containing more lags of zt. There is sufficient evidence, however, that these suffer a number of
small sample deficiencies, mainly due to the need to estimate the efficient weighting matrix,
thus we do not consider such estimators here. For their detailed consideration in conditionally
heteroskedastic environments, see Tauchen (1986) and West, Wong and Anatolyev (2002).

The feasible instruments ζ̂
H

t and ζ̂
(101)

t are formed via

ζ̂
H

t = ζ̂
H

t−1θ̂ +
δ̂

(0)

t

σ̂2 (38)

and
ζ̂

(101)

t = ζ̂
(101)

t−1 (φ̂
(1)

t )− + ρ̂
(1)
t δ̂

(0)

t , (39)

starting from ζ̂
H

0 = 0 and ζ̂
(101)

0 = 0. The 2SLS residuals are used to compute the estimates
σ̂2 and θ̂ of the implied σ2 and θ, and to evaluate conditional expectations of future ωt and
γt. The trimming parameter ε is set at 10−2.
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5.2 Details on nonparametric estimation

As mentioned in Section 3, we use the nonparametric corrected asymptotic final prediction
error (CAFPE) criterion of Tschernig and Yang (2000) to select significant lags and an
optimal value of the bandwidth. The criterion is

CAFPE =
(
Â+ 2K(0)m(T − im + 1)−1h−mopt B̂

) (
1 +m(T − im + 1)−4/(m+4)

)
, (40)

where K(u) is a kernel function, m is a number of employed lags of the basic instrument, and
im is its maximal employed lag. Here, Â and B̂ are the following nonparametric estimates
of ingredients of the asymptotic final prediction error:

Â = (T − im + 1)−1

T∑
t=im

(yt − m̂y (zt−i1 , · · · , zt−im))2 wt,

B̂ = (T − im + 1)−1

T∑
t=im

(yt − m̂y (zt−i1 , · · · , zt−im))2

µ̂ (zt−i1 , · · · , zt−im)
wt,

where m̂y (zt−i1 , · · · , zt−im) is a NW estimate of the regression function of yt on the basic in-
strument and its lags, µ̂ (zt−i1 , · · · , zt−im) is a NW estimate of the joint density of the vector
of included lags, and wt equals zero if the associated joint density estimate µ̂ (zt−i1 , · · · , zt−im)
is among the lowest 5% over the values of (zt−i1 , · · · , zt−im) in the sample, and unity other-
wise. Such screening off extreme observations is conventional in nonparametric estimation
literature (see also Tjostheim and Auestad 1994). The optimal bandwidth hopt is deter-
mined via a grid search procedure. The first term in (40) is a nonparametric estimate of the
asymptotic final prediction error, the second term in (40) is a correction aimed at penalizing
lag overfitting (i.e. choosing superfluous lags in addition to correct ones). When no lags
are used, we set the CAFPE equal to 0.95 times the sample variance of the first 95% of
observations on yt. Here, only 95% are taken in order to compensate for screening off in
computing Â and B̂, and the factor 0.95 is used to help reduce lag overfitting and speed up
the process.4

It is straightforward to verify that the DGP implies that Et [dt+i] , Et [ωt+i] and Et
[
γt+i

]
for all i ≥ 0 are functions of at most zt and zt−1, so that the basic instrument together
with its first lag are sufficient regressors. In nonparametric estimation, we set the possible
regressors to be zt, zt−1 and zt−2 (i.e. im may be no larger than 2 and m may be no

larger than 3), thus allowing for lag overfitting in estimating φ
(1)
t , δ

(0)
t and ρ

(1)
t . We use the

product kernel with Epanechnikov marginals (thus K(0) = 0.75) having the same bandwidth
value. We calculate the CAFPE for all combinations of inclusions of lags up to m = 3
and for all bandwidth values on a grid from 2h0 to 5h0 with a step of 1

5
h0, where h0 =

V̂ ar (zt)
1/2 (4/(m + 2))1/(m+4)(T − im + 1)−1/(m+4) (the lower bound is set so because the

optimal bandwidth never turns out smaller than 2h0). From all estimates, we select the
bandwidth that yields a minimum value to the CAFPE.

4Without this correction factor, the procedure for nonparametric estimation of infinite sums leads to
spurious estimates of terms with negligeable dependence on the instruments and in addition to slower sim-
ulations.
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5.3 Results

Table 3 reports standard deviations of the five simulated estimators for several combinations
of sample sizes and values of the parameter θ. Additional experiments showed that the closer
is |θ| to unity, the greater is the probability of obtaining an outlier in the distribution of
approximately optimal IV estimates, such outliers marring the standard deviations. In the
table we report the results for such combinations of T and θ that T increases with |θ| so that
the outliers do not tend to appear; the interquantile ranges in the cases when the outliers do
appear exhibit a similar pattern. Due to significant computational costs, we set the number
of repetitions to 300 when T = 500, to 200 when T = 1, 000, and to 100 when T = 2, 000.

All estimators are centered around zero, the true parameter value, judging by their sample
means and medians (not shown). It is clear that the asymptotic efficiency gains provided by

the proposed instrument ζ̂
(101)

t and evaluated earlier are realized in finite samples as well.
Among the traditional IV estimators (β̂IV , β̂2SLS and β̂GMM), the GMM estimator exhibits
highest variance, despite asymptotically it is more efficient than the 2SLS. The efficiency

gains provided by the instrument ζ̂
H

t relative to the 2SLS instrument are small, in most
part due to imprecise non-parametric estimation. The approximately optimal instrument

ζ̂
(101)

t relative to the traditional instruments and ζ̂
H

t yields sufficiently big efficiency gains,
however.

It may be interesting to know what values various auxiliary parameters take during the
nonparametric estimation described in the previous subsection. When conditional scores are
estimated, on average 2.2 summands participate in the summation in (33), and the CAFPE
criterion selects on average 2.8h0 as an optimal bandwidth. When conditional variances and
covariances are estimated, on average 1.0÷ 2.1 summands participate in the summation in
(34), with higher value being associated with higher |θ|, and the CAFPE criterion selects on
average 4.0h0 as an optimal bandwidth.

6 Application to ultra-high frequency returns

Consider tick-by-tick transaction data from a stock or foreign exchange market. Let the
white noise εt represent the return from the trade at t, and dt – the duration between this
and the previous trade. By Meddahi, Renault and Werker (2003), an exact discretization
of a continuous time stochastic volatility process with linear mean reversion implies the
conditional moment restriction

E

[(
r2
t − τ

)
−
(
r2
t−1 − τ

)
exp (−κdt−1)

c (κdt)

c (κdt−1)
|rt−2, dt−2, rt−3, dt−3, · · ·

]
= 0,

where rt = εt/
√
dt is a rescaled return, and c (v) ≡ (1− exp (−v)) /v. The parameter vector

is (τ , κ)′ , where τ > 0 indexes unconditional volatility, and κ > 0 indexes mean reversion.
The conditional score vector is

(
fτ,t (τ , κ)

fκ,t (τ , κ)

)
=

 exp (−κdt−1) c (κdt−1)−1 c (κdt)− 1(
r2
t−1 − τ

)
exp (−κdt−1) c (κdt−1)−2×

× (c (κdt) (c (κdt−1) + c′ (κdt−1)) dt−1 − c (κdt−1) c′ (κdt) dt)

 .
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For conventional IV implementation, we choose the instrument vector

zt =
(
1, rt−2, · · · , rt−1−`, r

2
t−2, · · · , r2

t−1−`, log dt−2, · · · , log dt−1−`, log2 dt−2, · · · , log2 dt−1−`
)′

for ` = 1, 2, 3 (we use log durations here and later because their distribution is much less
skewed than that of raw durations). We use the identity weight matrix at the initial stage,
then iterate seven times the GMM procedure using the estimated efficient weight matrix.

Let τ̂ , κ̂ and êt denote estimates of τ , κ and et obtained from conventional IV estimation
with ` = 2. From the residuals we compute the estimates θ̂ and σ̂2 of the implied θ and σ2. To
implement the approximately optimal IV estimation, we estimate nonparametric regressions
of fτ,t(τ̂ , κ̂), fκ(τ̂ , κ̂), ê2

t and êtêt−1 on current and past rt−2 and log dt−2 standardized by
corresponding standard errors. Because many lags turn out to be significant, instead of full
search through all possible lag combinations we use a directed search algorithm of Tjostheim
and Auestad (1994): a new significant lag is added if it improves upon the CAFPE and if it
does it better than other candidates. In every loop, we make the bandwidths for standardized
rt and log dt run on a two dimensional grid [2hr, 5hr]× [2hlog d, 5hlog d] with steps of 1

3
hr and

1
3
hlog d, where hς = (4/(m+ 2))1/(m+4)(T − im+ 1)−1/(m+4), where ς is r or log d, to determine

optimal bandwidth values hopt,r and hopt,log d. In the standard formula (40) we change h−mopt
to h−mropt,rh

−mlog d

opt,log d, where mς is a number of employed lags of the basic instrument ς, where ς is
r or log d, and mr + mlog d = m. After some experimentation, we set the maximum mr and
mlog d at 1 and 3, respectively, and employ the product kernel with normal marginals (thus
K(0) = 1/

√
2π).

We use the data on trades in frequently traded common stocks at the Moscow Interbank
Currency Exchange (MICEx) of the two oil extraction companies, Yukos and Lukoil.5 The
observation period is the week August 12–16, 2002, i.e. 5 trading days, during which the
stocks were being traded at 400–700 transactions a day. Prior to the analysis, we remove
intraday and interday deterministic patterns in durations and return volatilities, see Ana-
tolyev and Shakin (2003) for details. To obtain rt, we take the variable of adjusted raw
returns, pass them through an ARMA(1, 1) filter (cf. Engle 2000), trim those that exceed 5
in absolute value to get rid of outliers, and demean.

The computations are made in GAUSS 4.0.23. Numerical optimization is performed using
the constrained optimization package co.ext from the library co.lib, with the bfgs and
newton algorithms and stepbt line search method. When implementing various estimation
techniques, we construct asymptotic variance estimators and GMM efficient weight matrices
in the Hansen–Hodrick form, as with the available sample sizes there is little chance to end
up with a non-positive definite matrix.

The results are presented in Table 4, with standard errors in parentheses. For Yukos,
the serial correlation is weak, and so is the conditional heteroskedasticity (in the condi-
tional variance, no significant lags are selected; in the conditional autocovariance, only rt−2

is significant). As a consequence, the point estimates of κ using approximately optimal IV
estimators are close to each other and to some of conventional GMM estimates. In contrast,
for Lukoil, the serial correlation and conditional heteroskedasticity are much stronger, and
as a consequence, the point estimates of κ using approximately optimal IV estimators differ
more from each other, and appreciably from conventional GMM estimates. The standard

5A detailed description of the companies, their stocks and trades at the MICEx is available in English
from www.micex.com.
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errors for approximately optimal IV estimators rank as expected, with a much higher differ-
ence for Lukoil than for Yukos, while those for conventional GMM estimators are implausibly
low. Moreover, in unreported experiments with other instrument sets the asymptotic confi-
dence intervals for κ using different instrument sets sometimes do not intersect. This may
be due to severe biases of GMM estimates and standard errors due to nonlinearity of the
moment function and high dimensionality of the GMM efficient weight matrix in case of
many instruments (see, for example, Newey and Smith 2001).

7 Concluding remarks

For general two-period conditional moment restrictions characterized by the presence of
conditional heteroskedasticity, we have shown how to construct approximately optimal in-
struments, the ones that approximately satisfy the system of optimality conditions, evaluated
the asymptotic properties of corresponding instrumental variables estimators, and verified
their finite sample behavior. We have concentrated on the first order serial correlation be-
cause such problems are met most frequently among potential applications. For example,
among these are CAPM models with habit formation or durability (Ferson and Constan-
tinides 1991), overlapping data from forecasting surveys (Rich, Raymond and Butler 1992),
data contaminated by temporal aggregation (Hall 1988), or ultra-high frequency returns and
durations (Meddahi, Renault and Werker 2003).

The applications with conditional moment restrictions that have higher than the first order
of serial correlation are less frequent, and in addition it is likely that a researcher will want to
exploit the idea of optimal instruments. However, in such cases the approximation technique
is absolutely the same as detailed above, with a tendency to become increasingly more compli-
cated as the serial correlation order grows. The reason of this increasing complicatedness lies
in a more unwieldy structure of the system defining the process that the optimal instrument
follows (Anatolyev 2003). Let p denote the order of serial correlation, then there are p + 1
processes indexing the conditional heteroskedasticity: Et[ete

′
t], Et[et−1e

′
t], · · · , Et[et−pe′t],

and the optimal instrument Ξt has the following recursion structure:

Ξt = Ξt−1Φ1,t + Ξt−2Φ2,t + · · ·+ Ξt−pΦp,t + ∆tPt,

where Φ1,t, Φ2,t, · · · , Φp,t, ∆t, Pt are auxiliary processes. The analog of the equation (14)
is a polynomial of order p+ 2 with respect to the conditional heteroskedasticity parameters
and the p processes Φ1,t, Φ2,t, · · · , Φp,t sought for. The analogs of (16) and (15) are more
involved as well.

There are of course limitations of the approach presented in this paper. First, in chase of
efficiency a researcher faces the need to use nonparametric estimation of various ingredients of
the approximately optimal instrument. Second, although the impact of the approximation
error was found to be small in the considered situations, it may potentially be larger or
smaller, and it is impossible to unambiguously rank the approximately optimal instrument
among other instruments in terms of asymptotic efficiency. Third, an econometrician may
be dissatisfied by approximations being willing to achieve the efficiency bound. Alterntative
approaches that do not invoke approximations are currently under investigation.
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Table 1. Asymptotic variances of various IV estimators in the example with quadratic
heteroskedasticity.

θ zt ζHt ζ
(101)
t ζ

(201)
t ζ

(111)
t ζ

(102)
t

−0.9 3.503 3.047 2.318 − 2.309 2.307

−0.5 2.063 1.922 1.632 1.795 1.635 1.632

−0.1 1.103 1.097 1.029 1.032 1.029 1.029

+0.1 0.803 0.797 0.769 0.772 0.769 0.769

+0.5 0.563 0.422 0.392 0.540 0.393 0.392

+0.9 0.803 0.347 0.271 − 0.271 0.270

Notes: The model and DGP are yt = βzt + et, where zt = 0.5zt−1 + ηt, et = εt+1 − θεt,
εt = νt

√
0.5 + 0.375z2

t , (ηt, νt)
′ ∼ IID N (0, I2) . The numbers in the table are asymptotic

variances of the IV estimators of β that make use of the following instruments: the basic
instrument zt; the instrument ζHt optimal in the absence of heteroskedasticity; the leading

version of the proposed instrument ζ
(101)
t which uses approximations φ

(1)
t , δ

(0)
t and ρ

(1)
t ; and

three other versions ζ
(201)
t , ζ

(111)
t , and ζ

(102)
t , where φ

(2)
t is used in place of φ

(1)
t , or δ

(1)
t in place

of δ
(0)
t , or ρ

(2)
t in place of ρ

(1)
t , correspondingly.
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Table 2. Asymptotic variances of various IV estimators in the Heaton–Ogaki example.

β −0.8 −0.3 0 +0.3 +0.8

Truly optimal 0.360 0.910 1.000 0.910 0.360

Approximately optimal 0.363 0.917 1.012 0.923 0.371

Homoskedasticity optimal 0.399 1.070 1.313 1.235 0.430

First equation optimal 0.466 3.293 13.93 749.4 0.786

Notes: The DGP and model are Et[(ut+2, ut+2(0.25ut+2−ut+1))′] = 0, where ut = zt+βzt−1 =
wt +

(
2−
√

3
)
wt−1, and wt ∼ IID N (0, 1). The numbers in the table are asymptotic

variances of the IV estimators of β that make use of the following instruments: the “truly
optimal” instrument that is optimal among nonlinear functions of the history of zt; the
proposed “approximately optimal” instrument which uses approximations Φ

(1)
t , ∆

(0)
t and

P
(1)
t ; the “homoskedasticity optimal” instrument that would be optimal if there were no

conditional heteroskedasticity; and the “first equation optimal” instrument that is optimal
among nonlinear functions of the history of zt ignoring the second restriction.
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Table 3. Standard deviations of various IV estimators, from simulations.

θ T β̂IV β̂2SLS β̂GMM β̂ζH β̂ζ(101)

−0.3 500 0.125 0.100 0.247 0.099 0.073

+0.3 500 0.099 0.065 0.176 0.063 0.048

−0.6 1000 0.102 0.087 0.199 0.081 0.075

+0.6 1000 0.060 0.038 0.115 0.033 0.028

−0.9 2000 0.089 0.079 0.187 0.067 0.059

+0.9 2000 0.047 0.025 0.077 0.024 0.022

Notes: The DGP is zt = 1 + ϕ(zt−1 − 1) + ηzt, xt = 1 + zt + zt−1 + ηxt, where (ηzt, ηxt)
′ ∼

IID N (0, I2) , and yt = εt+1 − θεt, εt|zt, zt−1, · · · ∼ N (0, (zt + zt−1)2) . The table contains
standard deviations obtained by simulations of the following IV estimators of β with the
true value 0 in the model yt = α + βxt + et: the exactly identifying IV estimator β̂IV using
(1 zt)

′ as a vector of instruments; the two-stage least squares and GMM estimators β̂2SLS and
β̂GMM using (1 zt zt−1)′ as a vector of instruments; the feasible estimator β̂ζH that would be
an optimal IV estimator in the absence of heteroskedasticity; and the feasible approximately
optimal IV estimator β̂ζ(101) . The number of repetitions is 300 when T = 500, 200 when
T = 1000, and 100 when T = 2000.
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Table 4. The results of application of various IV estimators to the model of ultra-high
frequency returns.

Stock Yukos Lukoil

Method τ κ τ κ

GMM, ` = 1
1.874

(0.179)
6.167

(1.423)
1.835

(0.124)
3.072

(0.158)

GMM, ` = 2
1.913

(0.125)
9.700

(2.048)
1.835

(0.110)
3.134

(0.143)

GMM, ` = 3
1.880

(0.122)
10.407
(2.269)

1.765
(0.109)

2.694
(0.088)

Optimal under
homoskedasticity

1.974
(0.122)

9.217
(2.375)

2.010
(0.077)

7.433
(0.912)

Approximately
optimal

1.964
(0.122)

9.306
(2.312)

1.976
(0.077)

6.065
(0.430)

θ̂ 0.027 0.232

Number of
observations

2308 5572

Notes: The parameters τ and κ are estimated from the conditional moment restriction
E
[
(r2
t − τ)−

(
r2
t−1 − τ

)
exp (−κdt−1) c (κdt) /c (κdt−1) |rt−2, dt−2, rt−3, dt−3, · · ·

]
= 0, where

rt = εt/
√
dt, εt is a raw return from the transaction at t, dt is a duration between this and the

previous transactions, and c (v) ≡ (1− exp (−v)) /v. The table contains estimates of τ and
κ, with Hansen–Hodrick standard errors in brackets. The estimators are: the iterated GMM
estimators using the vector of instruments (1, rt−2, · · · , rt−1−`, r

2
t−2, · · · , r2

t−1−`, log dt−2, · · · ,
log dt−1−`, log2 dt−2, · · · , log2 dt−1−`)

′ for various values of `; the exactly identifying GMM es-
timator that would be an optimal IV estimator in the absence of heteroskedasticity; and
the exactly identifying GMM estimator using the feasible approximately optimal IV instru-

ment ζ̂
(101)

t . The line “θ̂” contains estimates of the moving average coefficient in the MA
representation of the error.
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A Appendix (not intended for publication)

A.1 Constants

The constants in various approximations of parameters of the optimal instrument in the
example with quadratic heteroskedasticity are:

κω1 = 1 + θ2 − λ
(
ϕ2 + θ2

)
, κω2 = λ

(
1− ϕ2

) (
ϕ2 + θ2

)
,

κγ1 = −θ (1− λ) , κγ2 = −λθ
(
1− ϕ2

)
,

κφ1 = θ

{
1−

λ (1− ϕ2)
(
1− θ2

)
1− ϕ2θ2

}
, κφ2 =

λθ (1− ϕ2)
2 (

1− θ2
)

1− ϕ2θ2 ,

κφ3 = λκφ1 +
1

1− θ2

{
κ2
φ1

θ
+

2θκφ1κφ2

1− ϕ2θ2 +
3θ
(
1 + ϕ2θ2

)
κ2
φ2(

1− ϕ2θ2
) (

1− ϕ4θ2
)} ,

κφ4 = λκφ2 +
1

θ

{
κφ1κγ2 +

2κφ1κφ2

1− ϕ2θ2 +
6ϕ2θ2κ2

φ2(
1− ϕ2θ2

) (
1− ϕ4θ2

)} ,
κφ5 =

κφ2

θ

{
κγ2 +

κφ2

1− ϕ4θ2

}
,

κδ1 =
1

1− ϕθ
, κδ2 = κδ1 + ϕκ2

δ1

{
κφ1 +

3κφ2

1− ϕ3θ

}
, κδ3 =

ϕ3κφ2κδ1
1− ϕ3θ

,

κδ4 = κδ3 +
ϕ3

1− ϕ3θ

{
κφ1κδ2 + κφ4κδ1 +

10 (κφ2κδ2 + κδ1κφ5)

1− ϕ5θ

}
,

κδ5 =
ϕ5 (κφ2κδ2 + κδ1κφ5)

1− ϕ5θ
,

κρ1 = κω1 −
κ2
γ2

κω2

{
1− κω1

κω2

+
2κγ1

κγ2

}
, κρ2 = κω2 −

ϕ2κ2
γ2

κω2

,

κρ3 (x) = −
(
κγ1 −

κω1κγ2

κω2

)2√
π

2κω1κω2

· <
(
w

(
− ϕ√

2
x+ i

√
κω1

2κω2

))
,

where < (·) is an operator of removing the imaginary part of a complex number, and w (·)

is the error function: w (x) ≡ e−x
2

(
1 + 2i√

π

x∫
0

e−t
2
dt

)
=
∞∑
n=0

(ix)n

Γ(n2 +1)
.

A.2 Linear IV bound for the example with quadratic heteroskedas-
ticity

We find the efficiency bound for linear IV estimators by explicitly deriving the instrument
optimal in the linear class (West, Wong and Anatolyev 2002). Let the optimal instrument

be z∗t =
∞∑
i=0

giηt−i and let τ ≡ E[η4
t ]− 1. The optimality condition is

∀k ≥ 0 E
[
ηt−kzt

]
= E

[
ηt−kz

∗
t e

2
t

]
+ E

[
ηt−k−1z

∗
t etet−1

]
+ E

[
ηt−kz

∗
t−1etet−1

]
. (41)

The left hand side in (41) is ϕk. Calculate the three terms on the right hand side using

Et[e
2
t ] = κω1 + κω2z

2
t , Et[etet−1] = κγ1 + κγ2z

2
t , z

∗
t =

∞∑
i=0

giηt−i and zt =
∞∑
i=0

ϕiηt−i:
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E
[
ηt−kz

∗
t e

2
t

]
= E

ηt−k ( ∞∑
i=0

giηt−i

)κω1 + κω2

(
∞∑
j=0

ϕjηt−j

)2


=
(
κω1 + κω2

(
1

1−ϕ2 + ϕ2kτ
))

gk + 2ϕkκω2

∞∑
i=0,i6=k

ϕigi,

E
[
ηt−k−1z

∗
t etet−1

]
= E

ηt−k−1

(
∞∑
i=0

giηt−i

)κγ1 + κγ2

(
∞∑
j=0

ϕjηt−j

)2


=
(
κγ1 + κγ2

(
1

1−ϕ2 + ϕ2(k+1)τ
))

gk+1 + 2ϕk+1κγ2

∞∑
i=0,i6=k+1

ϕigi,

E
[
ηt−kz

∗
t−1etet−1

]
= E

ηt−k ( ∞∑
i=1

gi−1ηt−i

)κγ1 + κγ2

(
∞∑
j=0

ϕjηt−j

)2


=


(
κγ1 + κγ2

(
1

1−ϕ2 + ϕ2kτ
))

gk−1 + 2ϕk+1κγ2

∞∑
i=0,i6=k−1

ϕigi, k > 0,

2ϕκγ2

∞∑
i=0

ϕigi, k = 0.

Therefore the system (41) can be written in a matrix form

Φ = SG, (42)

where Φ ≡


1
ϕ
...
ϕk

...

 , G ≡


g0

g1
...
gk
...

 , S ≡


S0,0 S0,1 · · · S0,k · · ·
S1,0 S1,1 · · · S1,k · · ·

...
...

. . .
...

Sk,0 Sk,1 · · · Sk,k · · ·
...

...
...

. . .

 , and

Sk,k = κω1 + κω2

(
1

1−ϕ2 + ϕ2kτ
)

+ 4ϕ2k+1κγ2, k ≥ 0,

Sk,k−1 = κγ1 + κγ2

(
1

1−ϕ2 + ϕ2kτ
)

+ 2ϕ2k−1 (κω2 + ϕκγ2) , k ≥ 1,

Sk,k+1 = κγ1 + κγ2

(
1

1−ϕ2 + ϕ2(k+1)τ
)

+ 2ϕ2k+1 (κω2 + ϕκγ2) , k ≥ 0,

Sk,j = 2ϕj+k (κω2 + 2ϕκγ2) , k ≥ 0, j < k − 1 or j > k + 1.

The optimal instrument then is characterized by the vector of weights G = S−1Φ, and the
efficiency bound is

Vz∗ =
(
Φ′S−1Φ

)−1
.

Now we prove that instrument z∗t is identical to ζHt when ηt|=t ∼ N (0, 1) implying τ = 2.
Note that the weighting vector GH implied by ζHt is a solution of the system

Φ = SHGH , (43)

where Ψ is as above, and SH is a triagonal matrix with 1 + θ2 as diagonal entries and −θ as
off diagonal entries. When τ = 2, the matrix S can be decomposed as S = SH +%ΦΦ′, where
% ≡ 2 (κω2 + 2ϕκγ2) . Therefore, equation (42) may be written as Φ =

(
SH + %ΦΦ′

)
G, or

Φ (1− %Φ′G) = SHG, i.e. the same as (43) up to the multiplicative scalar factor 1− %Φ′G.
Therefore, the solution G differs from GH only by the multiplicative factor. This implies
that z∗t and ζHt are essentially the same instrument.
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