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1 Introduction

The problem of consistent estimation of structural parameters in a linear homoskedastic instrumen-

tal variables model under many instrument sequences (Kunitomo 1980, Morimune 1983, Bekker

1994) has been successfully solved. The leading estimator, limited information maximum likeli-

hood (LIML, Anderson and Rubin 1949), is consistent and is asymptotically more e¢ cient than

possible consistent alternatives like jackknife instrumental variables (e.g., Angrist, Imbens and

Krueger, 1999) and bias corrected two-stage least squares (e.g., Donald and Newey, 2001), while

the remarkable Fuller (1977) estimator resolves the problem of non-existence of LIML moments.

The higher order asymptotic properties, in particular second order asymptotic biases, are little

investigated. Kunitomo (1980) derives higher order expansions for the LIML and 2SLS estimators,

and Morimune (1983) develops approximations for the LIML, Fuller and modi�ed Fuller estimators,

when the structural and reduced form errors are assumed gaussian. In this paper, we derive second

order asymptotic biases of the LIML and Fuller estimators within the many instrument asymptotic

framework without a requirement of error gaussianity.

We �nd that the structure of second order asymptotic biases under error non-normality is

similar to that of �rst order asymptotic variance derived in Hansen, Hausman and Newey (2008).

Like a variance expression, a bias expression can be split into four components, one of which would

appear under the traditional asymptotics, another originates from instrument numerosity under

error normality, and the other two are responsible for deviations of various third and fourth error

moments from their gaussian counterparts. The Fuller estimator may tuned up to remove the

leading component in the LIML bias.

Online Appendix contains proofs and derivations.

2 Setup and estimators

Consider a structural equation with possibly endogenous regressors:

yi = x
0
i�0 + ei;

or in matrix notation, Y = X�0 + e; where Y = (y1; :::; yn)
0 is n � 1, X = (x1; :::; xn)

0 is n � p,
and e = (e1; :::; en)

0 is n� 1: There is additionally an n� ` matrix of instruments Z = (z1; :::; zn)0,
p � ` � n: Because the column dimension of Z will grow with sample size, its elements implicitly
depend on n: Let the reduced form be

xi = �
0zi + ui;

where � is ` � p. In matrix notation, X = Z� + U; where U = (u1; :::; un)
0 is n � p: We assume

that Z has full column rank and treat it as nonrandom.
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The errors (ei; ui) are zero mean IID across i having �nite eighth moments, with covariance

matrix

var

�
ei
ui

�
=

"
�2 �0

� 


#
:

Denote the third and fourth moments of the structural error by

v3 = E
�
e3i
�
; v4 = E

�
e4i
�
:

Let us de�ne

~ui = ui �
�

�2
ei; (1)

a population residual in the least squares projection of ui on ei; hence E [~uiei] = 0: The population

�residual variance�is
~
 � E

�
~ui~u

0
i

�
= 
� ��

0

�2
: (2)

We impose the following many instrument asymptotic framework.

Assumption 1 Asymptotically, as n!1, we have `=n = �+ o (1=n) with 0 < � < 1:

Let

�̂ =
`

n
:

Denote by P the projection matrix associated with Z:

P = Z
�
Z 0Z

��1
Z 0;

with ith; jth element Pij : Denote by DA a diagonal matrix containing the main diagonal of square

matrix A. The limited information maximum likelihood (LIML) estimator reads

�̂
LIML

= argmin
�

�
F (�) � (Y �X�)0 P (Y �X�)

(Y �X�)0 (Y �X�)

�
;

and the Fuller estimator is

�̂
FULL

=
�
X 0(P ���In)X

��1
X 0(P ���In)Y;

where

�� =
~�� (1� ~�) c= (n� `)
1� (1� ~�) c= (n� `)

for c > 0; and ~� = F (�̂
LIML

): The Fuller estimator is asymptotically equivalent to LIML but

corrects it for the existence of moments problem. The value c = 1 is usually recommended.

Next we make assumptions about data generation. By �lim�we understand taking a limit under

assumption 1.

Assumption 2 The following limits exist: 
 = lim `�1
P
i P

2
ii, �� = limn�1�0Z 0DP��I�n, Q =

limn�1�0Z 0Z�: The matrix Q is non-singular.
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The previous literature (Hansen, Hausman and Newey, 2008) establishes that with non-gaussian

errors, the LIML estimator is consistent and asymptotically normal with the variance of the form

V = V1 + V2 + V3 + V4;

where V1 is the conventional (few instrument) component, V2 is the many instrument component,
and V3 and V4 arise from third and fourth error moments, respectively. Namely,

V1 = �2Q�1;

V2 =
�

1� ��
2Q�1 ~
Q�1;

V3 =
1

1� �Q
�1 �E �~uie2i ��0� + ��E �~u0ie2i ��Q�1;

V4 =
� (
 � �)
(1� �)2

Q�1E
�
~ui~u

0
i

�
e2i � �2

��
Q�1:

Note that the variance components V3 and V4 vanish when the errors are jointly gaussian and/or
when the main diagonal of the projection matrix P is asymptotically homogeneous (see Anatolyev

and Yaskov, 2017). As the Fuller estimator is asymptotically equivalent to LIML under many

instrument asymptotics, its asymptotic variance also equals V:

3 Asymptotic biases

The bias expression B below divided by n is an expected di¤erence between the estimator and the
true parameter value to the second order.

Theorem: Suppose assumptions 1�2 hold. The second order asymptotic bias of the LIML

estimator has the following expression:

B = B1 + B2 + B3 + B4;

where

B1 = �Q�1�;

B2 = � �

1� �Q
�1 ~
Q�1�;

B3 =
1

1� �Q
�1

"
v3 ~
Q

�1

�2
� 2E

�
~ui~u

0
iei
�
Q�1 � tr

�
E
�
~ui~u

0
iei
�
Q�1

�
�
E
�
~uie

2
i

�
�0 +�0Q�1E

�
~uie

2
i

�
�2

Q�1

#
��;

B4 =
� (
 � �)
(1� �)2

Q�1

"�
Ip + ~
Q

�1
� E �~uie3i �

�2
� E

�
~ui~u

0
iQ

�1~uiei
�

�
E
�
~ui~u

0
i

�
e2i � �2

��
�2

Q�1�

#
:
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The bias expression has a structure similar to that of the �rst order asymptotic variance.

Analogously, the B2; B3 and B4 components (like V2; V3 and V4) are positively related to � and
vanish when �! 0: Analogously, these components are large and may overweigh the B1 component
if the instruments are not strong so that Q is small.

Theorem (continued): Suppose assumptions 1�2 hold. The second order asymptotic bias of

the Fuller estimator equals

BF = B +�BF1 ;

where

�BF1 = cQ�1�:

Because BF1 = �Q�1�; the leading bias component can be removed by setting c = 1, which

is a usual recommendation. It was noticed by Morimune (1983) that the Fuller estimator with

c = 1 does not fully remove the second order bias. In the case of one endogenous variable, the next

component, B2; can be removed by further modifying the Fuller estimator (Morimune 1983), which
does not though seem possible when p > 1 unless ~
 is proportional to Q:

4 Special cases

Asymptotically balanced design of instruments means that the main diagonal of the projection

matrix P is asymptotically homogeneous with values approaching �. See the theory and examples

in Anatolyev and Yaskov (2017).

Corollary 1: Suppose assumptions 1�2 hold, and in addition limPii = � for all i: Then

B = �
�
Q�1 +

�

1� �Q
�1 ~
Q�1

�
�:

Note that the matrix coe¢ cients in square brackets are strictly positive de�nite.

In another special case the structural error is mean, mean-square and mean-cube independent

of the reduced form residual. Then we have

Corollary 2: Suppose assumptions 1�2 hold, and in addition E [eij~ui] = 0, E
�
e2i j~ui

�
= �2 and

E
�
e3i j~ui

�
= v3. Then the bias components B3 and B4 become

B3 =
1

1� �
v3
�2
Q�1 ~
Q�1��;

B4 = 0:

Finally, let the structural and reduced form errors be jointly gaussian. This leads to

Corollary 3: Suppose assumptions 1�2 hold, and in addition the vector (ei; u0i)
0 is mean zero

normally distributed. Then

B3 = B4 = 0:
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5 Closing remarks

The second order bias expressions can be used to analyze tendencies of estimators to be more or less

biased in �nite samples, as well as to construct analytical bias corrections. This is useful even though

some moments may not exist, as is the case with LIML.1 In this paper, we have derived second

order biases of LIML and Fuller estimators in a homoskedastic environment. In heteroskedastic

models, the LIML estimator ceases to be consistent. Hausman, Newey, Woutersen, Chao, and

Swanson (2012) construct an alternative LIML-like estimator (as well as its Fuller modi�cation)

that uses jackknife ideas to reach consistency. Because of one-leave-outs, the asymptotic variance

of the resulting estimators, being quite complicated in nature, largely contains only two terms,

analogs of V1 and V2, even under error non-gaussianity. It is left for future research to investigate
the second-order bias of these estimators and its structure.
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A Online Appendix

Denote

�1 =
X
i6=j

P 2ij ; �2 =
X
i

(Pii � �)2; '1 =
X
i

(Pii � �) zi:

Lemma. The following limits obtain: limn�1�1 = � (1� 
) ; limn�1�2 = � (
 � �) ; and
limn�1�0' = ��:

Proof of Lemma. By properties of projection matrices,
P
j P

2
ij =

P
j PijPji =

�
P 2
�
ii
= Pii,

hence
P
i

P
j P

2
ij =

P
i Pii = tr(P ) = `: Then, �rst, �1 =

P
i

P
j P

2
ij �

P
i P

2
ii = ` �

P
i P

2
ii; while

limn�1` = � and limn�1
P
i P

2
ii = �
 by assumptions 1 and 2, hence limn

�1�1 = � (1� 
). Sec-
ond, �2 =

P
i P

2
ii�2�

P
i Pii+�

2 =
P
i P

2
ii�2�`; and hence limn�1�2 = �
�2�2+�2 = � (
 � �) :

Third, ' = Z 0DP �n � �Z 0�n = Z 0DP��I�n; and hence limn�1�0' = limn�1�0Z 0DP��I�n = ��: �

Proof of Theorem. Let us denote � = �0=�2 and ~U = U � e�: Note that E [ui~u0i] = ~
: The

following correspondences in third and fourth moments will also be useful:

E
�
uiu

0
iei
�
= E

�
~ui~u

0
iei
�
+ �0E

�
~u0ie

2
i

�
+ E

�
~uie

2
i

�
� + v3�

0�;

E
�
ui~u

0
iei
�
= E

�
~ui~u

0
iei
�
+ �0E

�
~u0ie

2
i

�
;

E
�
u0iQ

�1~uiei
�
= E

�
~u0iQ

�1~uiei
�
+ �Q�1E

�
~uie

2
i

�
;

E
�
uiu

0
iQ

�1~uiei
�
= E

�
~ui~u

0
iQ

�1~uiei
�
+ �0�Q�1E

�
~uie

3
i

�
+ �0E

�
~u0iQ

�1~uie
2
i

�
+ E

�
~ui~u

0
ie
2
i

�
Q�1�0:

In our derivations, we will use the elements of �rst order asymptotics such as n�1X 0X =

Q+ 
+OP (1=
p
n) ; n�1X 0PX = Q+ �
 +OP (1=

p
n) ; n�1X 0e = �+OP (1=

p
n) ; n�1X 0Pe =

��+OP (1=
p
n) ; n�1e0 (P � �I) e = OP (1=

p
n) ; etc. We will also extensively exploit that expec-

tations of cross products of
P
i6=j �ijziu

0
j and

P
i6=j �ijziej with

P
m6=k ��mkumek are zero, and so are

expectations of cross products of them and of
P
i6=j �ijuiu

0
j with

P
m ��mmumem, where f�ijgni;j=1

and f��ijgni;j=1 are arbitrary generic systems of constants. Unless otherwise indicated, I means In:

The LIML �rst order conditions are

1

n
X 0P

�
e�X

�
�̂ � �0

��
=
n�1

�
e�X

�
�̂ � �0

��0
P
�
e�X

�
�̂ � �0

��
n�1

�
e�X

�
�̂ � �0

��0 �
e�X

�
�̂ � �0

�� 1

n
X 0
�
e�X

�
�̂ � �0

��
:

The ratio on the right side can be represented as

�+
n�1e0 (P � �I) e� 2n�1e0 (P � �I)X

�
�̂ � �0

�
+
�
�̂ � �0

�0
n�1X 0 (P � �I)X

�
�̂ � �0

�
�2 + (n�1e0e� �2)� 2n�1e0X

�
�̂ � �0

�
+
�
�̂ � �0

�0
n�1X 0X

�
�̂ � �0

� : (3)
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Hence, to �rst order,

1

n
X 0P

�
e�X

�
�̂ � �0

��
=

�
�+

1

�2
e0 (P � �I) e

n

�
1

n
X 0
�
e�X

�
�̂ � �0

��
= �

1

n
X 0
�
e�X

�
�̂ � �0

��
+
1

�2
e0 (P � �I) e

n

X 0e

n
+OP

�
1

n

�
= �

1

n
X 0
�
e�X

�
�̂ � �0

��
+
e0 (P � �I) e

n
�0 +OP

�
1

n

�
:

Thus, the �rst order expansion is

�̂ � �0 =

�
X 0 (P � �I)X

n

��1 (X � e�)0 (P � �I) e
n

+OP

�
1

n

�
= (1� �)�1Q�1 (X � e�)0 (P � �I) e

n
+OP

�
1

n

�
: (4)

Next, expanding the ratio (3) further, we obtain on the right side of LIML �rst order conditions

�
1

n
X 0
�
e�X

�
�̂ � �0

��
+
1

�2

�
1�

�
1

�2
e0e

n
� 1
�
+
2

�2
�0
�
�̂ � �0

�
+ oP

�
1p
n

��
�
�
e0 (P � �I) e

n
� 2e

0 (P � �I)X
n

�
�̂ � �0

�
+
�
�̂ � �0

�
(1� �)Q

�
�̂ � �0

�
+ oP

�
1

n

��
� 1
n
X 0
�
e�X

�
�̂ � �0

��
+ oP

�
1

n

�
= �

1

n
X 0
�
e�X

�
�̂ � �0

��
+
1

�2
e0 (P � �I) e

n

1

n
X 0
�
e�X

�
�̂ � �0

��
+
1

�2

�
�
�
1

�2
e0e

n
� 1
�
e0 (P � �I) e

n
+
2

�2
e0 (P � �I) e

n
�0
�
�̂ � �0

��
�

+
1

�2

�
�2e

0 (P � �I)X
n

�
�̂ � �0

�
+ (1� �)

�
�̂ � �0

�0
Q
�
�̂ � �0

��
�+ oP

�
1

n

�
:

This leads to the expansion to second order

(1� �)Q
�
�̂ � �0

�
=

(X � e�)0 (P � �I) e
n

(5)

�
�
X 0 (P � �I)X

n
� (1� �)Q

��
�̂ � �0

�
+
1

�2
e0 (P � �I) �0e

n

�
e0e

n
� �2

�
+2�0

e0 (P � �I) (X � e�)
n

�
�̂ � �0

�
� (1� �) �0

�
�̂ � �0

�0
Q
�
�̂ � �0

�
� 1

�2
e0 (P � �I) e

n

�
X 0e

n
� �

�
+
1

�2
e0 (P � �I) e

n
(Q+
)

�
�̂ � �0

�
+ oP

�
1

n

�
:

Because 2�0n�1e0 (P � �I) (X � e�)�(1� �) �0
�
�̂ � �0

�0
Q = �0n�1e0 (P � �I) (X � e�)+OP (1=n) ;
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and because �0
�
n�1e0e� �2

�
�
�
n�1X 0e� �

�
= �n�1 (X � e�)0 e; and using the �rst order asymp-

totic expansion (4), we obtain

(1� �)Q
�
�̂ � �0

�
=

(X � e�)0 (P � �I) e
n

� (1� �)�1
�
X 0 (P � �I)X

n
� (1� �)Q

�
Q�1

(X � e�)0 (P � �I) e
n

+(1� �)�1 �0 e
0 (P � �I) (X � e�)

n
Q�1

(X � e�)0 (P � �I) e
n

� 1

�2
e0 (P � �I) e

n

(X � e�)0 e
n

+
1

�2
(1� �)�1

�
I +
Q�1

� e0 (P � �I) e
n

(X � e�)0 (P � �I) e
n

+ oP

�
1

n

�
:

Hence, apart from the prefactor (1� �)Q; there are four terms whose limits (after multiplication
by n) belong to the second order bias of LIML:

b1 = (1� �)�1 �0E
�
e0 (P � �I) (X � e�)

n
Q�1

(X � e�)0 (P � �I) e
n

�
;

b2 = � (1� �)�1E
�
X 0 (P � �I)X

n
Q�1

(X � e�)0 (P � �I) e
n

�
;

b3 = � 1

�2
E

�
e0 (P � �I) e

n

(X � e�)0 e
n

�
;

b4 =
1

�2
(1� �)�1

�
Ip +
Q

�1�E �e0 (P � �I) e
n

(X � e�)0 (P � �I) e
n

�
:

Consider each term in turn. In the �rst term b1,

E

�
e0 (P � �I) (X � e�)

n
Q�1

(X � e�)0 (P � �I) e
n

�
= E

" 
(1� �) �

0Z 0e

n
+
~U 0 (P � �I) e

n

!0
Q�1

 
(1� �) �

0Z 0e

n
+
~U 0 (P � �I) e

n

!#

= (1� �)2E
�
e0Z�

n
Q�1

�0Z 0e

n

�
+ E

" 
~U 0 (P � �I) e

n

!0
Q�1

~U 0 (P � �I) e
n

#

+2 (1� �)E
"�
�0Z 0e

n

�0
Q�1

~U 0 (P � �I) e
n

#

For the �rst part,

n2E

�
e0Z�

n
Q�1

�0Z 0e

n

�
= �2E

�
tr(Q�1�0Z 0Z�)

�
= n�2p+ o (n) :
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For the second part,

n2E

" 
~U 0 (P � �I) e

n

!0
Q�1

~U 0 (P � �I) e
n

#

= E

240@X
i6=j

Pij ~uiej +
X
i

(Pii � �) ~uiei

1A0Q�1
0@X
m6=k

Pmk~umek +
X
m

(Pmm � �) ~umem

1A35
=

X
i6=j

P 2ijE
�
~u0iejQ

�1~uiej
�
+
X
i6=j

P 2ijE
�
~u0iejQ

�1~ujei
�

+
X
i6=m

(Pmm � �) (Pii � �)E
�
~u0ieiQ

�1~umem
�
+
X
i

(Pii � �)2E
�
~u0ieiQ

�1~uiei
�

= �1�
2tr
�
~
Q�1

�
+ �2tr

�
E
�
~ui~u

0
ie
2
i

�
Q�1

�
:

For the third part,

n2E

"�
�0Z 0e

n

�0
Q�1

~U 0 (P � �I) e
n

#

= E

24X
i

z0iei�Q
�1

0@X
m6=k

Pmk~umek +
X
m

(Pmm � �) ~umem

1A35
=

X
m

(Pmm � �) z0m�Q�1E
�
~ume

2
m

�
= '0�Q�1E

�
~ume

2
m

�
:

The three parts together imply

n2E

�
e0 (P � �I) (X � e�)

n
Q�1

(X � e�)0 (P � �I) e
n

�
= (1� �)2 n�2p+ �1�2tr

�
~
Q�1

�
+ �2tr

�
E
�
~ui~u

0
ie
2
i

�
Q�1

�
+ 2 (1� �)'0�Q�1E

�
~ume

2
m

�
+ o (n) ;

and hence, taking limits and using Lemma A2,

limnb1 = (1� �) �p+ 2��2�E
�
~u0me

2
m

�
Q�1�� + (1� �)�1 � (1� 
) tr

�
~
Q�1

�
�

+(1� �)�1 � (
 � �)��2tr
�
E
�
~ui~u

0
ie
2
i

�
Q�1

�
�:
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In the second term b2,

E

�
X 0 (P � �I)X

n
Q�1

(X � e�)0 (P � �I) e
n

�
= E

"�
U 0 (P � �I)U

n
+ (1� �)

�
�0Z 0U

n
+
U 0Z�

n

��
Q�1

 
(1� �) �

0Z 0e

n
+
~U 0 (P � �I) e

n

!#

= (1� �)E
�
U 0 (P � �I)U

n
Q�1

�0Z 0e

n

�
+ E

"
U 0 (P � �I)U

n
Q�1

~U 0 (P � �I) e
n

#

+(1� �)2E
��
�0Z 0U

n
+
U 0Z�

n

�
Q�1

�0Z 0e

n

�
+(1� �)E

"�
�0Z 0U

n
+
U 0Z�

n

�
Q�1

~U 0 (P � �I) e
n

#

For the �rst part,

n2E

�
U 0 (P � �I)U

n
Q�1

�0Z 0e

n

�
= E

240@X
i6=j

Pijuiu
0
j +

X
i

(Pii � �)uiu0i

1AQ�1�0X
m

zmem

35
=

X
i

(Pii � �)E
�
uiu

0
iei
�
Q�1�0zi

=
�
E
�
~ui~u

0
iei
�
+ �0E

�
~u0ie

2
i

�
+ E

�
~uie

2
i

�
� + v3�

0�
�
Q�1�0':

For the second part,

n2E

"
U 0 (P � �I)U

n
Q�1

~U 0 (P � �I) e
n

#

= E

240@X
i6=j

Pijuiu
0
j +

X
i

(Pii � �)uiu0i

1AQ�1
0@X
m6=k

Pmk~umek +
X
m

(Pmm � �) ~umem

1A35
=

X
i6=j

P 2ijE
�
uiu

0
jQ

�1~uiej
�
+
X
i6=j

P 2ijE
�
uiu

0
jQ

�1~ujei
�

+
X
i

X
m6=k

Pmk (Pii � �)E
�
uiu

0
iQ

�1~umek
�
+
X
i6=j

X
m

(Pmm � �)PijE
�
uiu

0
jQ

�1~umem
�

+
X
i6=m

(Pmm � �) (Pii � �)E
�
uiu

0
iQ

�1~umem
�
+
X
i

(Pii � �)2E
�
uiu

0
iQ

�1~uiei
�

= �1 ~
Q
�1�+ �1tr

�
~
Q�1

�
�

+�2
�
E
�
~ui~u

0
iQ

�1~uiei
�
+ �0�Q�1E

�
~uie

3
i

�
+ �0E

�
~u0iQ

�1~uie
2
i

�
+ E

�
~ui~u

0
ie
2
i

�
Q�1�0

�
:

For the third part,

n2E

��
�0Z 0U

n
+
U 0Z�

n

�
Q�1

�0Z 0e

n

�
= �0

X
i

ziE
�
u0iei

�
Q�1�0zi +

X
i

E [uiei] z
0
i�Q

�1�0zi

= �0Z 0Z�Q�1�+ �tr
�
�0Z 0Z�Q�1

�
:
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For the fourth part,

n2E

"�
�0Z 0U

n
+
U 0Z�

n

�
Q�1

~U 0 (P � �I) e
n

#

= E

24 �0X
i

ziu
0
i +
X
i

uiz
0
i�

!
Q�1

0@X
m6=k

Pmk~umek +
X
m

(Pmm � �) ~umem

1A35
= �0'

�
E
�
~u0iQ

�1~uiei
�
+ �Q�1E

�
~uie

2
i

��
+
�
E
�
~ui~u

0
iei
�
+ �0E

�
~u0ie

2
i

��
Q�1�0':

The four parts together imply

n2E

�
X 0 (P � �I)X

n
Q�1

(X � e�)0 (P � �I) e
n

�
= (1� �)

�
E
�
~ui~u

0
iei
�
+ �0E

�
~u0ie

2
i

�
+ E

�
~uie

2
i

�
� + v3�

0�
�
Q�1�0'

+�1 ~
Q
�1�+ �1tr

�
~
Q�1

�
�

+�2
�
E
�
~ui~u

0
iQ

�1~uiei
�
+ �0�Q�1E

�
~uie

3
i

�
+ �0E

�
~u0iQ

�1~uie
2
i

�
+ E

�
~ui~u

0
ie
2
i

�
Q�1�0

�
+(1� �)2

�
�0Z 0Z�Q�1�+ �tr

�
�0Z 0Z�Q�1

��
+(1� �)

�
�0'

�
E
�
~u0iQ

�1~uiei
�
+ �Q�1E

�
~uie

2
i

��
+
�
E
�
~ui~u

0
iei
�
+ �0E

�
~u0ie

2
i

��
Q�1�0'

�
+ o (n) :

and hence, taking limits and using Lemma A2,

limnb2 = � (1� �) (1 + p) �� (1� �)�1 � (1� 
)
�
~
Q�1 + tr

�
~
Q�1

��
�

�
�
2E
�
~ui~u

0
iei
�
+ 2�0E

�
~u0ie

2
i

�
+ E

�
~uie

2
i

�
� + v3�

0�
�
Q�1��

�
�
E
�
~u0iQ

�1~uiei
�
+ �Q�1E

�
~uie

2
i

��
�� � (1� �)�1 � (
 � �)E

�
~ui~u

0
iQ

�1~uiei
�

� (1� �)�1 � (
 � �)
�
�0�Q�1E

�
~uie

3
i

�
+ �0E

�
~u0iQ

�1~uie
2
i

�
+ E

�
~ui~u

0
ie
2
i

�
Q�1�0

�
:

In the third term b3,

n2E

�
e0 (P � �I) e

n

(X � e�)0 e
n

�

= E

240@X
i6=j

Pijeiej +
X
i

(Pii � �) e2i

1A �0X
m

zmem +
X
m

~umem

!35
=

X
i6=m

(Pii � �)�2E
�
�0zmem + ~umem

�
+
X
i

(Pii � �)E
�
e2i
�
�0ziei + ~uiei

��
= �0'v3 + o(1);

also using assumption 1. Hence, taking limits and using Lemma A3,

limnb3 = ���2v3��:
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In the fourth term b4, similarly,

n2E

"
e0 (P � �I) e

n

 
(1� �) �

0Z 0e

n
+
~U 0 (P � �I) e

n

!#

= (1� �)n2E
�
e0 (P � �I) e

n

�0Z 0e

n

�
+ n2E

"
e0 (P � �I) e

n

~U 0 (P � �I) e
n

#
= (1� �)�0'v3 + �2E

�
~uie

3
i

�
:

hence, taking limits and using Lemma A3,

limnb4 = �
�2v3

�
Ip +
Q

�1��� + ��2 (1� �)�1 � (
 � �) �Ip +
Q�1�E �~uie3i � :
Gathering the pieces and adding them together, we obtain the expression as in the Theorem.

Now we proceed to the Fuller estimator. Note that

�� = ~�� (1� �) c
n
+ o

�
1

n

�
;

also using assumption 1. Therefore, the Fuller estimator�s �rst order conditions are, to second

order,

1

n
X 0P

�
e�X

�
�̂ � �

��
=

�
~�� (1� �) c

n
+ o

�
1

n

��
1

n
X 0
�
e�X

�
�̂ � �

��
= ~�

1

n
X 0
�
e�X

�
�̂ � �

��
� (1� �) c

n
� 1
n
X 0
�
e�X

�
�̂ � �

��
+ oP

�
1

n

�
:

The extra term adds to the right hand side of the expansion (5) the term

(1� �) c
n
� 1
n
X 0
�
e�X

�
�̂ � �

��
= (1� �) c

n
�+ oP

�
1

n

�
;

which contributes to the bias an additional component equal to cQ�1�: �

Proof of Corollary 1: In the special case of asymptotically balanced design of P; we have


 = �, �� = 0; andt he bias components B3 and B4 vanish. The rest is straightforward. �

Proof of Corollary 2: Error moment independence implies E [~uiei] = 0; E [~ui~u
0
iei] = 0;

E
�
~uie

2
i

�
= 0; E

�
~uie

3
i

�
= 0; E

�
~ui~u

0
iQ

�1~uiei
�
= 0 and E

�
~ui~u

0
iQ

�1 �e2i � �2�� = 0: Also,
E
�
uiu

0
iei
�
=

v3
�4
��0;

E
�
uiu

0
ie
2
i

�
= �2 ~
 +

v4
�4
��0;

E
�
uiu

0
iQ

�1uiei
�
= tr

�
~
Q�1

�
�+ 2~
Q�1�+

v4
�6
�
�0Q�1�

�
�:

The rest is straightforward. �

Proof of Corollary 3: Error normality implies v3 = 0; v4 = 3�4: The rest is straightforward.

�
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