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Abstract

In a simple autoregressive model with serially correlated errors, we evaluate size distor-

tions resulting from the residual bootstrap when the Wold innovation is serially dependent

and hence is expected to contaminate the inference. Small distortions caused by the pres-

ence of strong conditional heteroskedasticity or other nonlinearities can be partly removed

further by using the wild bootstrap.
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1 Introduction

For models with serially correlated errors, the residual bootstrap (Bose 1988, 1990) pre-

sumes an ideal moving average structure of the error, that the Wold innovations are

serially independent and hence may be harmlessly reshuffled during resampling. Such

error structure may not hold in reality, and the primary purpose of this note is to explore

how critical this condition is, and what happens when the error does not have that ideal

property. We evaluate, via simulations, size distortions resulting from the use of residual

bootstrap resampling when the error composition is such that the Wold innovation is

serially dependent.

The critical feature of the situation we concentrate on is the presence of serial corre-

lation of finite order, but without further knowledge of the structure of the error term.

Bose (1990) studied residual bootstrap in moving average models with ideal structure;

besides, he was interested in inference about moving average coefficients. We are instead

concerned with the inference about coefficients in the conditional mean while the serial

correlation in the error is treated as a nuisance feature. To isolate distortions caused only

by the structure of the error term, we use a very simple linear model without exogenous

variables and with the slope parameter equal to zero. We tune the parameters of the Data

Generating Process (DGP) so that the regression error is linear or nonlinear, conditionally

homo- or heteroskedastic, with innovations that are serially independent or only serially

uncorrelated but dependent. As a measure of performance, we use closeness of actual

rejection rates to nominal sizes for testing the null that the slope parameter is zero. The

parameters are estimated by OLS, and the corresponding t-ratio is bootstrapped.

Along with the residual bootstrap (Bose 1988), we also consider the wild bootstrap

(Wu 1986). While the residual bootstrap is ideal when the Wold innovation in the error

is a serially independent sequence, the wild bootstrap is expected to help in the case

of a conditionally heteroskedastic error term. The simulation evidence shows that the

residual bootstrap performs well even in situations where the non-IID structure of Wold

innovations is expected to contaminate the inference. Small distortions caused by the
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presence of conditional heteroskedasticity or other nonlinearities are partly removed by

the wild bootstrap.

The rest of the paper is organized as follows. Section 2 presents the model and test

statistic, section 3 – four DGPs. Section 4 describes the bootstrap algorithms. In section

5 simulation results are reported and discussed. Section 6 concludes.

2 Model and test statistic

The working model is linear with the error that is first-order serially correlated:

yt+2 = α + βyt + et+2, Et [et+2] = 0, (1)

where Et [·] ≡ E [·|yt, yt−1, . . .] . The true values of α and β are set to zero in all DGPs. The

zero value of β corresponds to testing the null of no predictive ability and allows us not to

be distracted by an autoregression bias which is often blamed for unsatisfactory bootstrap

performance (see Kilian 1999). Note that the model is silent about the composition of

the error term et+2. In particular, while it is representable in the MA(1) form with

serially uncorrelated Wold innovations according to the Wold decomposition theorem,

the innovations may not be serially independent.

The estimator we concentrate on is the OLS estimator of β:

β̂ =

∑T−2
t=1 yt+2(yt − ȳ)∑T−2
t=1 (yt − ȳ)2

, (2)

where ȳ = 1
T−2

∑T−2
t=1 yt, and T is the sample size. The OLS estimator of α is α̂ =

1
T−2

∑T−2
t=1 yt+2 − β̂ȳ. The residuals are computed as ê1 = y1 − α̂ − β̂ȳ, ê2 = y2 − α̂ − β̂ȳ,

êt = yt − α̂ − β̂yt−2, t = 3, · · · , T . We use the following simple variance estimator: let

~yt = (1 yt)
′, then

V̂ =

(
T−2∑
t=1

~yt~y
′
t

)−1 (T−2∑
t=1

~yt~y
′
t (êt+2)2 (3)

+
T−3∑
t=1

(
~yt+1~y

′
t + ~yt~y

′
t+1

)
êt+2êt+3

)(
T−2∑
t=1

~yt~y
′
t

)−1

,

(we omit scalar factors like T − 2 since they are immaterial for the bootstrap). This is

the familiar Hansen and Hodrick (1980) estimator that takes advantage of the structure
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of error autocorrelation: the middle term in (3) is a (scaled) estimate of the variance

and first-order autocovariances of ~ytet+2. Because the Hansen–Hodrick estimator is not

guaranteed to be positive definite, we modify V̂ by excluding the covariance terms in

the middle term in (3) whenever the (2, 2) component V̂2,2 is negative. The t-statistic is

tβ = β̂/
√
V̂2,2.

3 Data generating processes

We consider the following four types of structure of the error et in the DGP: linear

moving average with IID innovations; conditionally homoskedastic with uncorrelated but

not independent innovations; conditionally heteroskedastic with ARCH-type form of het-

eroskedasticity, and nonlinear moving average with IID fundamental shocks. In all DGPs,

the parameters are set so that et has the same variance and autocovariance structure:

E[e2
t ] = 1 + θ2, E[et+1et] = −θ, E[et+jet] = 0 for |j| > 1, where |θ| < 1, so that it is

representable as et+2 = εt+2 − θεt+1, where εt is (weak) white noise. In all DGPs, the

errors are leptokurtic reflecting one of specifics of financial data; the presence of error

autocorrelation is also characteristic of many financial data models (see Campbell, Lo

and MacKinlay 1997).

The simplest structure of the error occurs when it is a moving average with independent

innovations. We will call this DGP IID :

et+2 = wt+2 − θwt+1, wt+2 ∼ IID
√
.6 · t(5). (4)

The Wold innovation εt+2 equals wt+2, a serially independent sequence. In another error

structure, the innovations are not independent. We will call this DGP UC :

et+2 = ut+2 − sgn(θ)ut+1 + vt+2, (5)

ut+2 ∼ IID
√
.6|θ| · t(5), vt+2 ∼ IID

√
.6(1− |θ|) · t(5),

where ut+2 and vt+2 are independent. The principal difference between error structures

in (4) and (5) is that the Wold innovation in (4) is an IID sequence (a structure that is

ideal for the residual bootstrap), while in (5) the innovation is a serially uncorrelated,
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but not independent, sequence (a structure that may potentially invalidate the residual

bootstrap). Indeed, the Wold innovation equals

εt+2 =
∞∑
i=0

θiet+2−i = ut+2 + (θ − sgn(θ))
∞∑
i=0

θiut+1−i +
∞∑
i=0

θivt+2−i

and is clearly serially dependent (serial independence would follow from uncorrelatedness

only if the two disturbances ut and vt were normally distributed). Student’s distribution

in (4) and (5) leads to leptokurticity of innovations.

Next, we explore a conditionally heteroskedastic structure of the error calling this DGP

HS :

et+2 = %t+2 − θ%t+1, %t+2 = ζt+2

√
ωt, ζt+2 ∼ IID N (0, 1), (6)

where the auxiliary process ωt indexing conditional heteroskedasticity is specified in the

ARCH(1) spirit: ωt = 1 − αω(1 + θ2) + αωe
2
t , where 0 < αω < 1. The conditional

autocovariance structure of et+2 is: Et[e
2
t+2] = ωt+ θ2ωt−1, Et[et+2et+1] = −θωt−1. We put

αω = 0.3 so that the fourth moment of et+2 is finite for all values of θ such that |θ| < 1.

The Wold innovation εt+2 = %t+2 is clearly serially dependent. The ARCH structure

induces leptokurticity even though the conditional distribution is normal.

Finally, the MA(1) error can be generated nonlinearly from IID random sequence. We

call this DGP NL:

et+2 = ς t+2ς t+1 − θς t+1ς t, ς t+2 ∼ IID N (0, 1). (7)

The Wold innovation εt+2 = ς t+2ς t+1 is again serially dependent. The innovations are

leptokurtic because E
[
(ς t+1ς t)

4
]

= 9 > 3.

To summarize, the Wold innovation is IID under the DGP (4), but it is not under the

DGPs (5), (6) or (7).

4 Bootstrap resampling

In the residual bootstrap one resamples the Wold innovation in the error treated as an

IID process (Bose 1990, Kreiss and Franke 1992). After the residuals êt, t = 1, · · · , T are
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computed, we restore estimates of the Wold innovations ε̂t, t = 1, · · · , T in the following

way. We compute an estimate of θ by the method of moments imposing restrictions on

a value of the correlation coefficient (as the population correlation coefficient is bounded

by 1
2

in absolute value), which allows us to compute the estimate in a closed form: θ̂ =

−2ρ̂/(1 + (1− 4ρ̂2)1/2), where ρ̂ = min(.499,max(−.499, (
∑T−1
t=3 êtêt+1)/(

∑T−1
t=3 ê

2
t ))). Then

we calculate innovations: ε̂t =
∑t−1
i=0 θ̂

i
êt−i, t = 1, · · · , T . We then resample ε̂t from

the original sample randomly, uniformly over t, with replacement. Having obtained a

bootstrap sample ε∗t , t = 1, · · · , T, we generate the e∗ and y∗ series recursively as e∗1 = ε∗1,

y∗1 = α̂ + β̂ȳ + e∗1, e∗2 = ε∗2 − θ̂ε∗1, y∗2 = α̂ + β̂ȳ + e∗2, e
∗
t = ε∗t − θ̂ε∗t−1, y

∗
t = α̂ + β̂y∗t−2 + e∗t ,

t = 3, · · · , T. Using the bootstrap sample we obtain the bootstrap OLS estimator β̂
∗
,

bootstrap variance estimate V̂ ∗ by (2) and (3) evaluated at the bootstrap sample, and

bootstrap t-statistic t∗β = (β̂
∗
− β̂)/

√
V̂ ∗2,2.

The wild bootstrap proposed by Wu (1986) helps to preserve the pattern of conditional

heteroskedasticity in bootstrap samples. In the context of an autoregression it was de-

scribed in Kreiss (1997) and applied, for instance, in Hafner and Herwartz (2000). We

adapt the algorithm to our MA(1) setting. The construction of a bootstrap sample is simi-

lar to that for the residual bootstrap, but instead of resampling bootstrap innovations from

the set of estimated innovations ε̂t, t = 1, · · · , T , we obtain them by multiplying the latter

by an IID zero mean sequence ηt, t = 1, · · · , T having properties E[η2
t ] = E[η3

t ] = 1, i.e.

ε+
t = ηtε̂t, t = 1, · · · , T. Then we set e+

1 = ε+
1 , e+

2 = ε+
2 −θ̂ε+

1 , e
+
t = ε+

t −θ̂ε+
t−1, t = 3, · · · , T.

A bootstrap sample is generated recursively: y+
1 = α̂ + β̂ȳ + e+

1 , y+
2 = α̂ + β̂ȳ + e+

2 ,

y+
t = α̂ + β̂y+

t−2 + e+
t , t = 3, · · · , T. From the bootstrap sample we obtain the bootstrap

OLS estimator, bootstrap variance estimate and bootstrap t-statistic as in the residual

bootstrap. In our experiment, we use the following probability distribution for ηt: let

(η1t, η2t) be standard bivariate normal, then ηt = η1t/
√

2 + (η2
2t − 1)/2 (Mammen 1993).
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5 Simulation results

We evaluate rejection rates for 5% size tests on the basis of 10, 000 simulations (the

results for 1% and 10% size tests exhibit similar patterns). Thus, the estimates will

have a standard error of approximately
√

5% · (100%− 5%)/10, 000 ≈ 0.22%. In a single

simulation loop, a time series for yt of T + 1, 000 observations with zero starting values is

generated, first 1, 000 observations are discarded, and 1, 000 repetitions are used to form

a bootstrap distribution and read off bootstrap critical values. Table 1 reports actual

rejection frequencies for symmetric two-sided alternatives, i.e. Pr{|tβ| > q∗5%}, where q∗5%

is an appropriate critical value corresponding to the nominal size of 5%. For reference,

we also give actual rejection rates for the asymptotic approximation. We set the sample

length to 20, 40, 80, and MA coefficient to 0, ∓0.3, ∓0.6, ∓0.9. This allows us to study

the impact of a sample length and strength of serial correlation. Each row of Table 1

contains actual rejection frequencies for a particular sample size T and serial correlation

parameter θ. Columns IID, UC, HS and NL correspond to DGPs described in section 3.

One can notice immediately that bootstrap rejection rates are much closer to nom-

inal sizes than asymptotic ones, especially for smaller sample lengths, and than those

frequently encountered in other bootstrap simulation studies. The latter fact is a conse-

quence of linearity and absence of autoregressive persistence. Generally, size distortions

tend to rise as the degree of serial correlation (value of |θ|) increases, more strongly for

positive serial correlation (θ < 0) than for negative (θ > 0).

Consider the panel “Residual bootstrap”. The DGP IID has an ideal error structure for

the residual bootstrap, hence the corresponding size distortions can be considered as lower

bounds for distortions for other DGPs. However, the results for the DGP UC are nearly

identical to those for the DGP IID in spite of serial dependence of Wold innovations. This

implies a perhaps surprising fact: serial uncorrelatedness seems to be a guarantee against

big distortions in the residual bootstrap. Practically no distortions are observed for both

DGPs when θ = 0 even for the smallest sample size. For the DGP HS and DGP NL they

are but slightly worse: the actual rejection rates deviate from the nominal 5% by no more
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than 3%.

Consider now the panel “Wild bootstrap”. The “ideal” numbers for the DGP IID and

DGP UC are worsened by use of the wild bootstrap, although very slightly. Interestingly,

the evidence for the DGP HS where the wild bootstrap is hoped to correct for distortions

caused by conditional heteroskedasticity is mixed. The wild bootstrap tends to do so only

for larger sample sizes, but can actually worsen the situation for smaller ones. It appears

that the wild bootstrap does a better job for the DGP NL where the dependence structure

in the error is less clear.

6 Conclusion

To summarize, the residual bootstrap performs well even in situations where the non-IID

structure of the error may be expected to contaminate the inference much more. The

distortions are very small, especially when compared to those arising from nonlinearities

in the conditional mean or its high persistence. Even these small distortions caused by the

presence of conditional heteroskedasticity or other nonlinearities can be partly removed

by using the wild bootstrap, at least for non-tiny samples.
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T θ IID UC HS NL IID UC HS NL IID UC HS NL
20 -0.9 19.9 20.8 20.5 20.1 8.2 8.6 8.9 7.5 8.8 8.6 9.0 7.9

-0.6 19.3 18.3 18.9 21.0 8.0 7.4 8.2 8.9 8.0 8.7 8.5 9.0
-0.3 15.2 14.6 15.9 16.6 6.2 6.1 6.8 6.6 7.0 7.3 6.6 7.0

0 13.3 13.7 14.2 13.2 4.9 5.0 5.4 4.8 6.0 6.0 6.4 4.7
0.3 13.5 13.3 14.5 15.0 4.9 5.0 5.8 5.6 6.3 6.0 6.4 5.9
0.6 13.9 14.1 15.5 16.4 5.6 5.1 7.1 7.1 5.9 6.2 6.4 6.3
0.9 14.4 14.5 16.2 17.2 5.3 5.4 6.5 6.8 6.1 6.0 7.6 6.0

40 -0.9 12.4 12.4 14.3 15.4 6.6 6.4 7.6 7.9 6.1 5.7 6.7 6.6
-0.6 12.0 12.5 13.3 15.9 6.5 6.0 7.2 8.5 6.2 6.0 6.7 7.3
-0.3 10.5 10.0 11.6 13.8 5.9 5.6 6.2 7.3 6.3 6.1 6.4 6.2

0 9.3 9.6 10.4 10.9 4.8 5.0 5.7 5.4 5.9 5.7 6.1 5.2
0.3 9.6 10.2 10.6 11.9 5.7 4.9 6.2 6.8 5.3 5.4 5.8 5.2
0.6 9.9 10.4 11.4 13.2 5.2 5.3 6.3 7.2 5.3 5.0 6.3 5.8
0.9 10.4 10.0 12.1 12.5 5.4 5.0 7.5 6.8 5.1 4.9 6.6 5.0

80 -0.9 9.4 9.0 10.5 11.4 5.0 5.8 7.0 7.0 5.0 5.4 6.0 4.9
-0.6 8.6 9.1 9.9 11.8 5.6 5.4 5.9 8.0 5.7 5.3 5.6 5.2
-0.3 8.3 7.9 8.8 10.8 5.1 5.6 6.0 7.0 4.7 5.1 5.7 5.6

0 7.4 7.0 8.1 9.2 5.1 5.2 5.8 6.3 5.2 5.1 5.8 4.7
0.3 7.7 7.6 8.2 10.0 5.2 5.0 5.8 7.2 4.9 4.9 5.7 5.4
0.6 7.7 7.7 9.0 10.1 5.1 5.1 5.9 6.6 4.4 4.7 5.7 5.5
0.9 7.6 8.1 9.6 10.0 5.3 5.0 6.4 6.6 4.7 4.7 5.8 4.5

Table 1. Actual rejection rates for asymptotic and bootstrap inferences

            parameter θ, for a nominal size of 5%. Columns IID, UC, HS and NL correspond to DGPs described
            in section 3

Notes: Each row contains actual rejection frequencies for a particular sample size T and serial correlation

Wild bootstrapAsymptotic approximation Residual bootstrap


