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Abstract
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1 Introduction

For decades applied researchers have been using the method of instrumental variables when
estimating and testing nonlinear models with rational expectations, like a consumption-
based capital asset pricing model (C–CAPM) introduced in Hansen and Singleton (1982).
In such situations a researcher faces a need to form an instrument set, and carelessness in
implementation of this important step can lead to unreliable results. However, practitioners
often complain of lack of guides in selecting instruments in such models.

The present study uses numerical computations as a tool to shed some light on how
instrument sets should be formed in nonlinear models with rational expectations. We take
the one- and two-period variations of the one-return Hansen–Singleton model estimated by
a number of method-of-moments estimators. These estimators are first order asymptotically
equivalent but differ in their finite sample properties. They are: the generalized method
of moments (GMM) estimator (Hansen, 1982), and two versions of the empirical likelihood
(EL) estimator (Imbens, 1997; Smith, 1997) that differ by how they take account of serial
dependence. The GMM is still most popular method for this class of models, while the EL
has been recruited over years to improve finite sample properties of GMM estimators.

For the estimators of interest, we derive exact formulas for asymptotic variances and
second order asymptotic biases while varying a composition of a typical instrument set. To
this end, we use a simple but plausible dynamic lognormal specification so that it is possible
to find closed form expressions for various moments and calculate exact numerical values for
asymptotic variances and biases. The resulting numerical comparisons of these across various
estimators can provide valuable information on their finite sample properties, in addition to
existing Monte Carlo studies. A technical Appendix containing details of computations
is available from http://www.nes.ru/~sanatoly/papers/CCAPMapp.pdf. Even though the
computations are performed for concrete simple models, the tendencies we discover are likely
to prevail in more complex situations.

2 Models and estimators

Let x1,t be the one period rate of return, and x2,t be one period consumption growth. The
basic (q + 1)-period one-return C–CAPM of Hansen and Singleton (1982) with CRRA utility
implies the Euler equation

E
[
βq+1x1,t+1x1,t+2 · · ·x1,t+q+1x

α
2,t+1x

α
2,t+2 · · ·xα2,t+q+1 − 1|It

]
= 0,

where It is time t information, β is a discount factor, and α indexes risk aversion. The vector
of parameters is θ = (β, α)′ . The following vector of instruments is used:

zt = (x1,t, x1,t−1, · · · , x1,t−nl1+1, x2,t, x2,t−1, · · · , x2,t−nl2+1, 1)′ .

Thus, along with a constant, we employ nl1 current and most recent lagged values of x1,t and
nl2 current and most recent lagged values of x2,t, totaling to ` = 1+nl1+nl2 instruments. De-
note by mt the moment indicator zt

(
βq+1x1,t+1x1,t+2 · · ·x1,t+q+1x

α
2,t+1x

α
2,t+2 · · ·xα2,t+q+1 − 1

)
,

and by mθt its derivative with respect to θ. Denote for future use Σ = (Q′V −1Q)
−1
,

Ξ = ΣQ′V −1, Ω = V −1 − V −1QΞ, where Q = E [mθt] and V =
∑+q

s=−q E
[
mtm

′
t−s
]
.

To derive expressions for asymptotic variances and biases, we impose that the vector
(x1,t, x2,t)

′ is lognormally distributed, and the law of motion for (log x1,t, log x2,t)
′ is stationary

VAR(1) with normal innovations. Note that such lognormal specification is often adopted
when maximum likelihood is applied or is presumed when log-linearization is performed. To
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quantify the asymptotic variances and biases, we calibrate the model using the data from the
Hansen/Heaton/Ogaki GMM package. In what follows, we consider the one-period problem
(M1) corresponding to q = 0, and the two-period problem (M2) corresponding to q = 1.
Interestingly, the serial correlation in M2 is pretty severe.

The GMM estimator uses a HAC weight matrix in the Hansen–Hodrick form suitable
for problems with serial correlation of finite order; for M1 it reduces to a non-HAC one. By
default we presume that the weight matrix is based on an asymptotically efficient preliminary
parameter estimate; this is possible if a GMM estimator is iterated once or to convergence.
The EL estimators are adapted to autocorrelation in one of two ways. One named CEL
(corrected EL) is derived from the estimating equations for the baseline EL estimator by
temporally adding up the moment indicator in the tilting function (Imbens, 1997). Another
estimator named SEL (smoothed EL) uses the moment indicator that is smoothed from the
outset with a kernel function (Smith, 1997). We assume that the truncated kernel is used;
this leads to simplification of some bias expressions (Anatolyev, 2005). Note that for M1

CEL reduces to baseline EL, while smoothing in SEL is not necessary.

3 Asymptotic variance

The optimal instrument is the one that attains the efficiency bound, the greatest lower
bound for the asymptotic variance of GMM/EL estimators (Hansen, 1985). For M1, the
optimal instrument yields the following minimal asymptotic variances for estimates of β and
α: 6.878 × 10−3 and 6.202, respectively; efficiency can be attained by using the vector of
instruments (log x1,t, log x2,t, 1)′. For M2 the optimal instrument yields the following minimal
asymptotic variances for estimates of β and α: 7.121 × 10−3 and 6.487, respectively; the
optimal instrument is a linear function of all lags of log x1,t and log x2,t, hence the efficiency
bound cannot be attained using finite instrument sets.

All estimators of interest are asymptotically normal with asymptotic variance equal to
Σ. Tables 1A and 2A present the asymptotic variance as a function of the composition of
the instrument vector. They hide the fact that not including x1,t, the rate of return, as
an instrument is disastrous for the asymptotic variance for either parameter. That is, the
variable that enters the moment function linearly should always be used as an instrument.
Also, exclusion of a constant from an instrument set brings sharp efficiency losses, much
higher than are attainable by exclusion of several additional lags of regular instruments.

In M1 the asymptotic variance is stable over instrument sets and quickly reaches an
asymptote when the instrument set is expanded. Further, provided that x1,t is included,
inclusion of only x2,t allows to nearly reach the variance asymptote. Note that the asymptote
with variances of 6.880 × 10−3 for β and 6.222 for α is not that far from the asymptotic
variance bounds 6.878 × 10−3 and 6.202, respectively, differing at most by meager 0.3%.
Hence, it is not worthwhile to use complex nonlinear functions (other than logs) or many
lags for the sake of attaining more asymptotic efficiency.

In contrast, in M2, the asymptotic variance for both parameters can be decreased by
adding more and more lags of either variable, although with sharply decreasing returns.
For instance, adding two more lags (which researchers sometimes do in order to check for
robustness) of x1,t and x2,t to the instrument set (x1,t, x2,t, 1)′ reduces the asymptotic vari-
ances for β and α by 1.24% and 2.99%, respectively. Adding twenty more lags reduces the
asymptotic variances further by 0.05 ÷ 0.20%. However, again in contrast to M1, all these
gains fall short of what the efficiency bound provides: attaining it could deliver about 12%
of efficiency gains for β and about 50% – for α. Switching from levels to logs is able to reduce
asymptotic variance more significantly than expanding the instrument set.
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4 Asymptotic bias

The results of Anatolyev (2005, Theorem 1), and second-order asymptotic expansions anal-
ogous to those in Anatolyev (2005, proof of Theorem 2) lead to the following expressions for
the asymptotic biases of order T−1 for the GMM, CEL and SEL estimators:

BGMM = B0 +
+∞∑
s=−∞

B1 (s) +

q∑
u=−q

+∞∑
v=−∞

B2 (u, v) ,

BCEL = B0 +
∑
|s|>q

B1 (s) +

q∑
u=−q

∑
|v|>q

B2 (u, v) ,

BSEL = B0,

where

B0 = Ξ

(
+∞∑
s=−∞

E [mθtΞmt−s]− E

[
k∑
j=1

∂mθt

∂θj

Σ

2
ej

])
,

B1 (s) = −ΣE [m′θtΩmt−s] ,

B2 (u, v) = ΞE
[
mtm

′
t−uΩmt−v

]
,

k is the dimensionality of the parameter vector, and ej is the jth column of the identity
matrix. In the above expressions, some summands are identically zero by the conditional
moment restriction.

Tables 1B–1D and 2B–2D show quantified dependence of second order biases on the
instrument set, for M1 and M2, respectively. The biases of GMM estimators for estimation
of β are big and quickly rise when more instruments are exploited. In contrast, the biases
of EL estimators for estimation of β are small and stable over instrument combinations; in
addition, they are of the opposite sign. The growth of bias for GMM is provided exclusively
by the B2-terms that are not present in the bias expression for CEL in M1, and by similar B1-
and B2-terms in M2. Note that because of cancellations among different bias components
CEL sometimes exhibits a smaller bias than SEL. As far as estimation of α is concerned,
the bias of GMM in most cases turns out to be smaller in absolute value than those for the
EL-type estimators because of heavy cancellations. Cancellations also lead to an interesting
phenomenon that extending an instrument set sometimes results in a much smaller bias.

5 Some practical implications

Applied researchers are guided by asymptotic variances when choosing estimators. Often
they discover that the actual stochastic properties of these estimators in practice substan-
tially deviate from predictions of asymptotic theory. Most often researchers complain that
the estimators are biased, and the impact of bias is comparable with uncertainty implied
by the asymptotic variance. Thus, it makes sense to analyze the trade-off between the first
order asymptotic variance and the second order asymptotic bias. To this end, we define an
efficiency measure of interest as

MSE = Σ +
1

T
B2,

where Σ is the asymptotic variance common to all estimators, and B is the asymptotic bias
specific for each estimator. Minimization of MSE over instrument sets yields an optimal
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instrument combination nl∗ = (nl∗1, nl
∗
2). In the experiments below we allow the number of

lags of either variable to be no larger than 6 and set T = 100.
For M1, GMM yield nl∗ = (1, 1) for β and nl∗ = (4, 1) for α, while both EL estimators

show nl∗ = (3, 0) for both β and α. Switching from GMM to EL leads to less that 0.01%
lower MSE for β, but about 0.2% higher MSE for α. This is a consequence of fortunate
cancellations among the summands of bias components for GMM. In contrast, for M2 much
more efficiency can be attained by switching from GMM to EL: it results in about 0.3%
lower MSE for β, and about 0.2% lower for CEL, and about 0.4% higher MSE for SEL as
far as α is concerned. The optimal strategies exploit many more lags than in the case of M1:
when GMM is employed, nl∗ = (3, 2) for β and nl∗ = (4, 4) for α; when EL is employed,
nl∗ = (4, 3) for β and again nl∗ = (4, 4) for α.

Interestingly, a much sharper contrast between estimators in favor of SEL results if we
sum absolute values of bias components thus forbidding numerous cancellations among var-
ious components. Hence, in practice the number of components in a formula for asymptotic
bias may not be a good measure of biasedness because of cancellations. At the same time,
small amounts of reported discrepancies attest that the issue of how many instruments to
use in this sort of models is not a very serious issue provided that minimal requirements (like
the presence of a constant) are satisfied.

In addition to the reported experiments, we found that using the textbook two-step
GMM (with an identity weight matrix at the first step) in place of the iterative GMM does
not significantly affect the conclusions.
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Table 1. Asymptotic variances and biases, one-period problem

1A. Asymptotic variance

nl1 ↓ nl2 → 0 1 2 3 4
1 6.892 6.880 6.880 6.880 6.880

β, ×10−3 2 6.881 6.880 6.880 6.880 6.880
3 6.881 6.880 6.880 6.880 6.880
4 6.881 6.880 6.880 6.880 6.880
1 6.318 6.222 6.222 6.222 6.222

α 2 6.226 6.222 6.222 6.222 6.222
3 6.225 6.222 6.222 6.222 6.222
4 6.225 6.222 6.222 6.222 6.222

1B. Asymptotic bias for GMM

nl1 ↓ nl2 → 0 1 2 3 4
1 −0.574 1.160 3.232 5.299 7.363

β, ×10−2 2 1.920 3.502 5.859 7.925 9.990
3 4.096 5.814 7.983 10.098 12.163
4 6.173 7.897 10.086 12.172 14.245
1 0.819 0.947 0.768 0.593 0.419

α 2 0.262 0.524 0.087 −0.087 −0.261
3 −0.011 0.127 −0.139 −0.358 −0.532
4 −0.196 −0.063 −0.347 −0.540 −0.721

1C. Asymptotic bias for CEL

nl1 ↓ nl2 → 0 1 2 3 4
1 −0.574 −0.894 −0.894 −0.894 −0.894

β, ×10−2 2 −0.576 −0.902 −0.884 −0.8844 −0.884
3 −0.538 −0.863 −0.878 −0.8764 −0.876
4 −0.538 −0.861 −0.878 −0.877 −0.877
1 0.819 1.111 1.111 1.111 1.111

α 2 0.825 1.118 1.102 1.102 1.102
3 0.790 1.083 1.096 1.095 1.095
4 0.791 1.081 1.096 1.095 1.095

1D. Asymptotic bias for SEL

nl1 ↓ nl2 → 0 1 2 3 4
1 −0.574 −0.894 −0.894 −0.894 −0.894

β, ×10−2 2 −0.570 −0.906 −0.916 −0.916 −0.916
3 −0.543 −0.913 −0.916 −0.916 −0.916
4 −0.538 −0.913 −0.916 −0.916 −0.916
1 0.819 1.111 1.111 1.111 1.111

α 2 0.819 1.122 1.132 1.132 1.132
3 0.795 1.128 1.131 1.131 1.131
4 0.791 1.129 1.131 1.131 1.131
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Table 2. Asymptotic variances and biases, two-period problem

2A. Asymptotic variance

nl1 ↓ nl2 → 0 1 2 3 4
1 8.273 8.185 8.160 8.158 8.158

β, ×10−3 2 8.185 8.167 8.136 8.132 8.132
3 8.168 8.137 8.130 8.123 8.122
4 8.166 8.135 8.123 8.122 8.120
1 14.137 13.559 13.399 13.383 13.382

α 2 13.558 13.445 13.241 13.212 13.210
3 13.447 13.245 13.197 13.154 13.147
4 13.434 13.229 13.155 13.144 13.134

2B. Asymptotic bias for GMM

nl1 ↓ nl2 → 0 1 2 3 4
1 −3.489 0.5472 3.571 5.978 8.823

β, ×10−2 2 −0.076 0.766 3.787 5.943 8.758
3 3.035 3.649 4.441 6.716 9.459
4 5.524 6.196 6.618 7.361 10.184
1 5.218 2.836 1.792 1.500 0.879

α 2 4.334 3.543 2.623 2.544 1.946
3 3.487 2.550 2.442 2.334 1.784
4 3.116 2.125 2.217 2.212 1.677

2C. Asymptotic bias for CEL

nl1 ↓ nl2 → 0 1 2 3 4
1 −3.489 −2.625 0.839 0.512 1.430

β, ×10−2 2 −4.615 −3.755 0.006 −0.614 0.437
3 −3.456 −1.859 −0.156 −1.031 0.446
4 −3.366 −1.661 0.748 −0.204 1.859
1 5.218 3.411 0.260 0.461 −0.321

α 2 6.189 4.808 1.466 1.903 1.014
3 5.224 2.965 1.516 2.143 0.898
4 5.113 2.757 0.689 1.446 −0.291

2D. Asymptotic bias for SEL

nl1 ↓ nl2 → 0 1 2 3 4
1 −3.489 −2.625 −1.091 −1.562 −1.435

β, ×10−2 2 −3.706 −3.136 −1.485 −2.150 −1.979
3 −3.220 −2.198 −1.538 −2.359 −2.097
4 −3.398 −2.392 −1.658 −2.128 −1.765
1 5.218 3.411 1.854 2.204 2.098

α 2 5.463 4.313 2.708 3.229 3.089
3 5.078 3.294 2.693 3.329 3.111
4 5.224 3.444 2.761 3.134 2.833
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