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1 Introduction

Modern international macroeconomic theory is founded on the belief that exchange rate changes can

be explained by economic fundamentals. Starting with Meese and Rogo¤ (1983), a large number of

studies has documented the empirical regularity that the random walk model of exchange rates is

the best performing model in terms of out-of-sample forecasting and that economic fundamentals

do not contain predictive power for exchange rate movements. While a near-random-walk behavior

in exchange rates is expected when the discount factor is near unity (Engel and West, 2005), the

failure of the economic fundamentals and �nancial variables to exhibit any systematic predictive

power is widely regarded as a major weakness of modern international macroeconomics (Bacchetta

and van Wincoop, 2006).1

While this earlier literature supports the existence of an �exchange rate disconnect puzzle�,

the empirical evidence documenting some success at predicting exchange rate movements has

steadily accumulated in subsequent contributions to the literature (Chinn and Meese, 1995; Clarida,

Sarno, Taylor and Valente; 2003; Engel, Mark and West, 2007; Mark, 1995). More recently, addi-

tional empirical evidence suggesting short-horizon predictability in exchange rate returns emerged

(Molodtsova and Papell; 2009; Ferraro, Rogo¤ and Rossi, 2015).2 However, the most robust evi-

dence of predictive power of economic fundamentals for exchange rate returns is uncovered when

the information from many predictors is aggregated. Li, Tsiakas and Wang (2015) provide evi-

dence that exchange rate return forecasts generated from "kitchen sink" regressions with elastic-net

shrinkage methods yield statistical and economic gains over the competing models. Similarly, Della

Corte, Sarno and Tsiakas (2009) show that combining the forecasts of di¤erent models generates

economically signi�cant improvements relative to the random walk.3

1The disconnect between fundamentals and exchange rate changes is known as the �exchange rate disconnect
puzzle� (see, for example, Della Corte and Tsiakas, 2012). Engel and West (2005) demonstrate analytically that
exchange rates can exhibit near-random-walk behavior if fundamentals are integrated of order one and the factor
used for discounting future fundamentals is near one. The authors also argue that, in such a setup, the near-random-
walk behavior in exchange rates can still be consistent with a rational expectations present-value model and that
their �ndings shed light on the reasons underlying the disconnect between exchange rates and fundamentals. Sarno
and Sojli (2009) lend support to Engel and West (2005)�s analytical framework by providing empirical evidence that
the discount factor is close to one.

2At �rst, the �ndings emerging from the literature pointed to long-horizon predictability in exchange rates (Chinn
and Meese, 1995; Mark, 1995). Later studies also �nd short-horizon predictability in exchange rate movements using
Taylor rule fundamentals (Molodtsova and Papell, 2009). Della Corte and Tsiakas (2012) articulately describe the
state of the literature since Meese and Rogo¤ (1973) as coming �full circle�from �nding no predictability in exchange
rate movements to uncovering long-horizon predictability (Mark, 1995) then back to �nding no predictability (Cheung,
Chinn and Pasqual, 2005) to eventually �nding evidence of short-horizon predictability (Molodtsova and Papell, 2009).

3Della Corte and Tsiakas (2012) summarize the three approaches that have traditionally been used in the literature
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The �ndings emerging from recent contributions to the literature con�rm that predictability is

not con�ned to exchange rate returns but also extends to the cross-section and time series of carry

trade returns. Even if exchange rates were to follow a random walk (and exchange rate returns

are unpredictable), the returns to the carry trade, a popular trading strategy among investors,

are predictable. In a carry trade, an investor borrows in a low-interest currency and invests the

borrowed funds in a high-yielding currency. Note that the carry trade returns consist, as detailed

next, of two parts- a future currency return and an interest rate di¤erential. This implies that

carry trade predictability can arise from predictability in either exchange rate returns or interest

rate di¤erentials. If exchange rates follow a random walk, carry trade returns would be equal to

the interest rate di¤erential between two currencies and are therefore predictable (Li, Tsiakas and

Wang, 2015).

The consensus emerging from the empirical research suggests that the carry trade has provided

investors with statistically and economically signi�cant positive returns over sustained periods and

that carry trade returns are predictable. These latter two �ndings largely explain the strategy�s

popularity. Lustig, Roussanov and Verdelhan (2011) provide evidence that the interest rate dif-

ferential (i.e. a �high-minus-low� interest rate factor) is an important cross-sectional predictor

of carry trade returns while Menkho¤, Sarno, Schmeling and Schrimpf (2012a) �nd that a global

foreign exchange volatility factor is another cross-sectional predictor of carry trade returns.

A number of studies also uncover time series predictability in carry trade returns (Ang and

Chen, 2010; Bakshi and Panayotov, 2013; Cenedese, Sarno and Tsiakas, 2014).4 The predictability

of the carry trade returns and the pro�tability of the carry trade are consistent with the lack of

empirical support for Uncovered Interest Parity (UIP) and with the �forward premium puzzle�.5

to uncover predictability in exchange rates returns. One group of studies assesses a (linear) model�s statistical
performance vis-à-vis the random walk and is therefore speci�c to the model in question and is concerned with
the time series predictability in individual currency returns. Another strand of research evaluates the economic
signi�cance of several exchange rate forecasts within a portfolio allocation exercise while the third approach relies on
forecast combination in order to account for model uncertainty. In this paper, we assess the statistical and economic
signi�cance of our forecasts and thereby employ the �rst and second approaches to assessing predictability.

4Bakshi and Panayotov (2013) identify the TED spread as an important predictor of carry trade returns while Ang
and Chen (2010) �nd that term structure of interest rate variables are useful predictors of carry trade returns. The
success of the TED spread and the currency volatility factors in predicting carry trade returns is consistent with the
ability of these variables to proxy for crash (Brunnermeier, Nagel and Pedersen, 2009; Berge, Jordà and Taylor, 2010;
Farhi, Fraiberger, Gabaix, Ranciere and Verdelhan, 2009; Jordà and Taylor, 2012) and liquidity (Mancini, Ranaldo
and Wrampelmeyer, 2013; Mancini Gri¤oli and Ranaldo, 2011) risk.

5The �forward premium puzzle�is the empirical regularity that forward rates are biased predictors of future spot
rates. For a recent review of the literature on the �forward premium puzzle�, see Engel (2015). Under Covered
Interest Parity (CIP), the �forward premium puzzle� is equivalent to an empirical violation of UIP (Cenedese,
Sarno and Tsiakas, 2014; Della Corte and Tsiakas, 2012; Li, Tsiakas and Wang, 2015). The empirical rejection of
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In this paper, we adopt a statistical approach to uncovering and exploiting potential predictabil-

ity in future currency returns. More speci�cally, we capitalize on the method proposed by Anatolyev

and Gospodinov (2010), extended to time-varying copulas, to decompose currency returns into two

multiplicative components (sign and absolute returns) that individually exhibit much greater pre-

dictability than raw returns. We then model the joint conditional distribution of these components

and use it to produce forecasts of future returns. This method of incorporating any implicit non-

linearities in a �exible, indirect fashion is motivated by the prior empirical evidence pointing to a

statistically and economically signi�cant element of nonlinear out-of-sample predictability in for-

eign exchange markets especially at long horizons (Cenedese, Sarno and Tsiakas, 2014; Clarida,

Sarno, Taylor and Valente, 2003; Kilian and Taylor, 2003). The decomposition model thus exploits

deviations from UIP to predict future currency returns which are the uncertain part of carry trade

returns.6 While we assess the statistical accuracy of the currency returns forecasts from the de-

composition model, we examine the economic signi�cance of our �ndings using carry trade returns

in light of he popularity of the carry trade among currency investors.

By virtue of allowing for nonlinearities in currency returns, our paper relates to an existing

line of research that exploits the existence of nonlinearities in foreign exchange rate returns for

predictive purposes (Clarida, Sarno, Taylor and Valente, 2003; Kilian and Taylor, 2003). By way

of conditioning on absolute returns for two quantiles, our approach also closely relates to that

of Cenedese, Sarno and Tsiakas (2014) who decompose market variance into average variance

and average correlation and provide empirical evidence, using predictive quantile regressions, that

average variance is a strong predictor of future carry trade returns.

Several interesting results emerge from our analysis. First, the decomposition model exhibits

substantial directional accuracy in predicting future currency returns. Second, the out-of-sample

forecasting gains of the decomposition model (relative to the random walk and linear prediction

models) translate into economically and statistically highly signi�cant pro�tability. More speci�-

cally, trading individual currency forward contracts or forming portfolios based on the sign of the

UIP, in turn, implies that exchange rates do not su¢ ciently adjust to eliminate the gains that investors can realize
by borrowing in low-yielding currencies and investing in high-yielding currencies. The latter strategy is a simple
implementation of the carry trade and violations of UIP therefore give rise to carry trade pro�tability (Della Corte
and Tsiakas, 2012).

6As discussed next, carry trade returns are composed of two parts: the forward premium (or interest rate di¤er-
ential) which constitutes the �xed or perfectly predictable part of carry trade returns and the future currency return,
which constitutes the uncertain part of the carry trade return. We use to decomposition model to generate forecasts
of future currency returns.
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predicted return from the decomposition model generates larger (risk-adjusted) pro�ts than any of

the competing models.

We contribute to the existing foreign exchange predictability literature along the following lines.

From a modeling perspective, this paper o¤ers a new approach to modeling and forecasting currency

returns. While pure carry trade strategies exploit only the di¤erential in interest rates, both of

which are near the zero lower bound over much of our out-of-sample forecasting period, we employ

a model-based carry trade strategy that capitalizes on the predictability of future currency returns.

As we show in the paper, our decomposition model uncovers a large degree of predictability that

generates highly pro�table trading strategies. On the empirical front, our analysis sheds light on

the recent pro�tability of the carry trade and momentum portfolios as a by-product of the economic

assessment of the decomposition model.

The rest of the paper proceeds as follows. Section 2 provides a motivating example for our

decomposition approach as well as a detailed discussion of the speci�c decomposition model that

we employ. The data and variables employed in the empirical analysis are described in Section 3.

Our empirical �ndings as well as the trading strategies that we consider to assess the pro�tability

of the decomposition model are discussed in Section 4. Section 5 o¤ers some concluding remarks.

2 Decomposition Method

2.1 Motivating Example

The decomposition method is based on exploiting predictability of multiplicative components in

order to tease out nonlinear predictability from a series that is linearly unpredictable. Let us

�rst illustrate this possibility with a simple example. Suppose that two processes, "t and xt, are

symmetrically distributed and serially and mutually independent at all leads and lags. Construct

at to be a zero-mean AR(1) process

at = �at�1 + "t:

Let at be observable at time t: This series is mean predictable from the past if � 6= 0, and the best

predictor is �at�1: Next, let xt be observable at time t; and set the binary variable bt to be the sign

of the last period xt:

bt = sign(xt�1):
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This series is perfectly predictable from the past of xt. Note that the series at and bt have mean

zero and are mutually independent at all lags and leads. Now let us construct the �returns�series

rt = atbt

which has the properties that E [rt] = E [at]E [bt] = 0; and, for j > 0;

E [rtrt�j ] = E [atbtat�jbt�j ] = E [atat�j ]E [bt]E [bt�j ] = 0:

In other words, the �returns�have mean zero and are serially uncorrelated, i.e., linearly unpredictable

from their own past. Moreover, rt is also linearly unpredictable from at�j for any j > 0; from bt�j

for any j � 0, and from xt�j for any j > 0:

E [rtat�j ] = E [atbtat�j ] = E [atat�j ]E [bt] = 0;

E [rtbt�j ] = E [atbtbt�j ] = E [at]E [btbt�j ] = 0;

E [rtxt�j ] = E [atbtxt�j ] = E [at]E [btxt�j ] = 0:

This shows that the �returns�rt+1 are linearly unpredictable from all observable histories. However,

rt+1 is nonlinearly predictable from the observable past since

E [rt+1jFt] = �at sign(xt):

The optimal nonlinear predictor is proportional to �; the degree of persistence in at; while the

optimal linear predictor is zero irrespective of it. Note that a similar result would also hold if

the best predictor of at was nonlinear in at�1. This example provides some intuition why the

decomposition model is potentially able to detect certain forms of hidden predictability in the

data; namely, when one (or both) of the multiplicative components exhibits persistence.

2.2 General Approach

Now we describe the decomposition approach of Anatolyev and Gospodinov (2010) whose key

insight is based on the return decomposition

rt = jrtj sign(rt) = jrtj(2I[rt > 0]� 1);

where rt are asset returns and I[�] is the indicator function. The method then proceeds with

the joint dynamic modeling of the two multiplicative components ��volatility� jrtj and (a linear

transformation of) �direction�I[rt > 0].
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As in the above example, the driving force behind the predictive ability of the decomposition

model is the predictability in the two components, jrtj and I[rt > 0], that has been documented in

previous studies. Consider �rst the model speci�cation for absolute returns. Since jrtj is a positively

valued variable, the dynamics of absolute returns is speci�ed using the multiplicative error model

(Engle, 2002)

jrtj =  t�t;

where  t = E(jrtjjFt�1) and �t is a positive multiplicative error. This error has unit conditional

mean and conditional distribution D which may be �exibly speci�ed as a scaled Weibull distribution

with a shape parameter &. A convenient dynamic speci�cation for the conditional expectation  t

is the logarithmic autoregressive model

ln t = !v + �v ln t�1 + vjrt�1j+ �vI [rt�1 > 0] + x0t�1�v: (1)

This volatility model allows for persistence, regime-switching, a direct e¤ect of last-period absolute

return, and possible e¤ects of other predictors xt�1:

In the direction model, the conditional �success probability�pt = Prfrt > 0jFt�1g is parameter-

ized as a dynamic logit model

pt =
exp (�t)

1 + exp (�t)

with

�t = !d + �dI [rt�1 > 0] + y0t�1�d; (2)

allowing for regime-switching and possible e¤ects of other predictors yt�1 that may be di¤erent

from xt�1. A direct persistence e¤ect is not included because directional persistence is much lower

than volatility persistence.

To describe the joint distribution of Rt � (jrtj; I [rt > 0])0; the copula approach is used. The

conditional marginals of Rt are (D( t);B(pt))0, where B(pt) denotes the Bernoulli distribution

with probability mass function pvt (1� pt)
1�v, v 2 f0; 1g: Let C(w1; w2) denote a copula function

on [0; 1] � [0; 1]. Anatolyev and Gospodinov (2010) derive that, conditional on Ft�1, the joint

density/mass of Rt is given by

fRt (u; v) = fD(uj t)%t
�
FD(uj t)

�v �
1� %t

�
FD(uj t)

��1�v
; (3)

where fD (�) and FD (�) are density and CDF of D, and %t (z) = 1� @C (z; 1� pt) =@w1.
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Denote by �t a time-varying copula parameter that captures the dependence between the two

marginals. We consider the Frank copula7 which has the form

C(w1; w2) = �
1

�
ln

�
1 +

[exp (��w1)� 1][exp (��w2)� 1]
exp (��)� 1

�
;

where � < 0 (� > 0) implies negative (positive) dependence while � = 0 implies independence. For

this copula, Anatolyev and Gospodinov (2010) deduce that

%t (z) =

�
1� 1� exp (�� (1� pt))

1� exp (�pt)
exp (� (1� z))

��1
:

To allow for greater �exibility, we adopt a time-varying copula speci�cation, where the depen-

dence (copula) parameter is assumed to follow the dynamic process (see Manner and Reznikova,

2012)

�t = �0 + �1�t�1 + �2jrt�1j(1� I [rt�1 > 0])

with j�1j < 1 and �t 2 (�1;+1)n0. In this speci�cation, the forcing variable jrt�1j(1�I [rt�1 > 0])

is equal to jrt�1j when rt�1 is negative and zero otherwise. As �t ! 0, the Frank copula approaches

the independence copula and %t (z) = pt.

The parameter vector (&; !v; �v; v; �v; �
0
v; !d; �d; �

0
d; �0; �1; �2)

0 is estimated by maximum like-

lihood. From (3), the sample log-likelihood function to be maximized is given by

TX
t=1

�
I [rt > 0] ln %t

�
FD(jrtjj t)

�
+ (1� I [rt > 0]) ln

�
1� %t

�
FD(jrtjj t)

��
+ ln fD(jrtjj t)

	
:

As our interest lies in the mean prediction of returns, we use the fact that

E (rt+1jFt) = 2E (jrt+1jI [rt+1 > 0] jFt)� E (jrt+1jjFt)

to construct the prediction of return at time t+ 1 as

r̂t+1 = 2�̂t+1 �  ̂t+1; (4)

where  ̂t+1 and �̂t+1 are feasible analogs of  t+1 and �t+1; and �t+1 = E (jrt+1jI [rt+1 > 0] jFt)

is the conditional expected cross-product of jrt+1j and I [rt+1 > 0]. As shown in Anatolyev and

Gospodinov (2010), �t+1 can be computed as

�t+1 =

Z 1

0
QD(z)%t+1(z)dz; (5)

7The subsequent results are very similar with double Clayton copula and Farlie�Gumbel�Morgenstern copula and
we omit the discussion of these two copula choices.
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where QD(z) is a quantile function of the distribution D: The feasible version �̂t+1 is obtained

numerically (via the Gauss�Chebyshev quadrature) by evaluating the integral (5) using �tted QD(z)

and �tted %t+1(z):

3 Data Description

Our empirical analysis is conducted with a cross-section comprising the ten major and most liquid

(Della Corte and Tsiakas, 2012) currencies (G10) over the period January 1976 to December 2016.

More speci�cally, monthly data on the spot (St) and one-month forward (Ft) rates, expressed in

US dollars per unit of the foreign currency, for the British pound (GBP), Canadian dollar (CAD),

Swiss franc (CHF), Euro (EUR), Japanese yen (JPY), Australian dollar (AUD), New Zealand

dollar (NZD), Swedish krona (SEK) and Norwegian krone (NOK) are obtained from Barclays

Bank through Datastream8 for the period December 1984 to December 2016.9

One-month forward rates for the period January 1976 to November 1984 are implied using

CIP. In order to apply CIP, we �rst obtain data on the one-month Euro deposit rates starting

January 1976 for GBP, CAD, CHF, USD and in August 1978 for JPY from Datastream. The

interest rate data are then combined with spot exchange rates obtained from the Federal Reserve�s

H.10 statistical release and the one-month forwards for these currencies are computed using CIP.10

Given that the one-month Euro deposit rate data for Japan are available only after August 1978,

we follow Della Corte and Tsiakas (2012) by using spot and one-month forward data for JPY from

Hai, Mark and Wu (1997) to back�ll our data to January 1976.11 One month forward and spot

data for the Euro are available starting only January 1999. Therefore, we extend the spot and

forward rate data for the Euro back to January 1976 by splicing them with spot and one-month

forward rate data on the Deutsche Mark (DEM) using the �xed conversion rate between the Euro

and Deutsche Mark of January 1999.12

8The bid and ask data used in the pro�t computations of Section 4.2 are also obtained from Barclays Bank via
Datastream.

9The cross-section of G10 currencies is used in a number of in�uential studies such as Della Corte and Tsiakas
(2012), Li, Tsiakas and Wang (2015), Burnside, Eichenbaum, Kleshchelski, and Rebelo (2011), Lustig, Roussanov,
and Verdelhan (2011), Daniel, Hodrick, and Lu (2017), and Bekaert and Panayotov (2016). The one-month forward
and spot rates are end-of-month observations sampled from daily data.
10The pre-December 1984 spot exchange rates can be downloaded from: https://www.federalreserve.gov/

releases/h10/hist/default1989.htm.
11Table 1 of Della Corte and Tsiakas (2012) provides an excellent overview of the data sources, including thorough

information regarding series codes. This detailed data description provides guidance for assembling spot and one-
month forward rate data for the G10 currencies starting in 1976.
12We thank an anonymous referee for suggesting that we follow the literature by merging data for EUR with data
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As a result of the unavailability of one-month Euro deposit rate data for Norway, Sweden, New

Zealand and Australia prior to 1997, we again follow Della Corte and Tsiakas (2012) to extend

the spot and forward rate data for these currencies back to 1976. For Norway and Sweden, we

obtain spot and one-forward rate data, quoted in terms of British pound, from Datastream and

convert these rates into USD using the GBP/USD exchange rate. We obtain money market rate

data for New Zealand and Australia from Datastream and combine these interest rate data with

spot exchange rate data in order to imply the NZD and AUD forward rates via CIP for the period

January 1976 to November 1984.13

The currency returns for the j-th exchange rate are constructed as rjt+1 = ln(Sjt+1)� ln(Sjt).

The main interest of this paper lies in forecasting carry trade (or excess currency) returns that are

de�ned as erjt+1 = ln(Sjt+1) � ln(Fjt) = sjt+1 � fjt = (sjt+1 � sjt) � (fjt � sjt) = rjt+1 � fpjt,

where fpjt = ln(Fjt) � ln(Sjt) = fjt � sjt. Under risk-neutrality and rational expectations, UIP

implies that the expected carry trade return is equal to zero (Li, Tsiakas and Wang, 2015).14 A

sizeable number of existing studies document the lack of empirical support for UIP and deviations

from UIP imply that carry trade returns are di¤erent from zero.

Unlike UIP which is a predictive relationship, CIP is a contemporaneous arbitrage condition

which stipulates that the forward premium is equal to the interest rate di¤erential fjt�sjt = it�i�t ,

where it and i�t denote the nominal interest rates in the domestic and foreign currency, respectively.
15

In contrast to the weak empirical support for UIP, ample empirical evidence exists in support of

CIP.16

for DEM in order to extend the Euro spot and forward rates series backwards. Similar to the other currencies, we
obtain the one-month forward rate data for DEM, used to splice the EUR series and extend it back to 1976, by
applying CIP to spot and one-month Euro deposit rates for DEM.
13The source of the interest rate data for New Zealand and Australia is the International Financial Statistics

database of the International Monetary Fund. The series codes can be found in Della Corte and Tsiakas (2012).
14More precisely, Li, Tsiakas and Wang (2015) note that the implications of UIP are threefold. First, UIP implies

that the forward rate is an unbiased predictor of the future spot rate. The large literature on the �forward premium
puzzle� provides strong empirical evidence against the unbiasedness of forward rates as predictors of future spot
exchange rates. Second, as noted above, the expected currency excess (carry trade) returns are equal to zero under
UIP. Hassan and Mano (2014) argue that while the forward premium puzzle implies non-zero currency excess returns,
the two have to be treated as separate phenomena. Third, under CIP and UIP, the expected currency returns are
equal to the forward premium.
15A common approach to testing CIP is to estimate the following regression:

ft � st = �+ �(it � i�t ) + error:

Under CIP and in the absence of transaction costs, the intercept and slope coe¢ cients in the previous regression
should equal zero and one, respectively.
16See, for example, Akram, Sarno and Rime (2008) for evidence of empirical support for CIP. More recent research

(Baba and Packer, 2009) suggests that short-lived deviations from CIP can exist during periods of �nancial turmoil
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To be exact, carry trade (or excess currency) returns are given by erjt+1 = (sjt+1�sjt)�(it�i�t )

as they measure the returns from investing in a foreign currency that is �nanced by borrowing in

the domestic currency (Brunnermeier, Nagel and Pedersen, 2009). Under CIP, the excess currency

return can be equivalently written, in terms of the forward premium, as erjt+1 = (sjt+1 � sjt) �

(fjt � sjt).

Table 1 provides summary statistics of the exchange rate data. The currency returns for the nine

exchange rates are plotted in Figure 1. As documented elsewhere in the literature, the exchange

rate returns appear to be serially uncorrelated while the forward premium is highly persistent with

variability which is only a small fraction of the variability of the currency returns (Gospodinov,

2009). The null hypothesis of a zero mean of exchange rate returns cannot be rejected at any

commonly used signi�cance level for all currencies. As a result, we use the decomposition approach

described in the previous section to obtain the forecast of sjt+1 � sjt �rst and then construct the

predicted carry trade returns by subtracting the (observed at time t) forward premium fjt � sjt.

This also allows us to relate our results to the large literature on (in-sample and out-of-sample)

forecasting of currency returns and gain a better understanding of the source of the statistical and

economic improvements of the carry trade strategies.

4 Empirical Results

4.1 Currency Return Predictability

This section presents in-sample estimation and out-of-sample forecasts for the exchange rate returns.

4.1.1 In-Sample Estimation Results

Let �rt�1 = rt�1 � 1
t�1

Pt�1
i=1 ri denote the demeaned exchange rate returns. The predictors for

the volatility model (1) and direction model (2) are xt�1 = fpt�1 and yt�1 = (fpt�1; �r2t�1; �r
3
t�1)

0,

respectively. The higher moments of returns are included in the direction model following Anatolyev

and Gospodinov (2010). Thus, the decomposition model for the dynamic behavior of exchange rate

returns rt uses marginals that are given by

ln t = !v + �v ln t�1 + vjrt�1j+ �vI [rt�1 > 0] + �vfpt�1
(such as the period following the Lehman bankruptcy) due to insu¢ cient liquidity (Mancini Gri¤oli and Ranaldo,
2011). Subsequent research (Borio, McCauley, McGuire and Sushko, 2016; Du, Tepper and Verdelhan, 2016) also
maintains that temporary deviations from CIP continued to occur after the �nancial crisis.
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�t = !d + �dI [rt�1 > 0] + �1dfpt�1 + �2d�r2t�1 + �3d�r3t�1;

and a joint distribution based on the time-varying Frank copula

C(jrtj; I [rt > 0]) = �
1

�t
ln

�
1 +

[exp (��tjrtj)� 1][exp (��tI [rt > 0])� 1]
exp (��t)� 1

�
;

where �t = �0 + �1�t�1 + �2jrt�1j(1� I [rt�1 > 0]). As speci�ed above, the models for each of the

nine exchange rates against the USD are estimated with monthly data for the period January 1976

�December 2016.

Table 2 reports the estimated parameters and their corresponding t-statistics. A few interesting

observations emerge from these results. All of the exchange rates are characterized by strong

persistence in volatility. The forward premium appears to be a useful predictor for both the

volatility and the direction models.17 Finally, the persistence parameter in the time-varying copula

process is large and signi�cant for GBP, CAD, CHF, JPY and NOK.

Even though Table 2 shows that some parameters in the decomposition model may be insignif-

icant for one or more currencies, we do not undertake any model selection for individual currencies

for the following reasons. First, some predictors may only exhibit occasional and short-lived pre-

dictive power (and hence are insigni�cant in the whole sample) but they might prove to be useful

when needed the most (during the �nancial crisis or periods of liquidity shortage, for example).

Second, keeping all predictors the same facilitates the comparison and the interpretation of the

out-of-sample results across models and currencies. We acknowledge, however, that the forecasting

performance can be further improved by a careful model selection based on information up to the

time when the forecast is constructed.18

4.1.2 Out-of-Sample Forecasting Results

This section reports results for one-step ahead out-of-sample forecasts for currency returns. The

forecast period is from January 2004 to December 2016. We set the length of the window in the out-

of-sample forecasting exercise to be R = 335, which is the length of the initial estimation sample,

and consider two competing models: a linear predictive model and the decomposition model. The

17 In an earlier version of the paper, we also experimented with speculative and hedging pressure for each currency
as well the S&P500 option-implied volatility index (VIX) as predictors.
18This point is accentuated in Sarno and Valente (2009) who conduct a thorough search for the best-performing

model in terms of exchange rate return prediction. Their analysis also reveals frequent shifts in the relation between
economic fundamentals and exchange rate movements which possibly explains the success of non-linear models of
exchange rate return prediction.

11



linear model uses the same vector of predictors, (fpt�1; �r2t�1; �r
3
t�1)

0, as the decomposition model.

The benchmark is a random walk (RW) model with drift.

Table 3 reports the out-of-sample pseudo-R2 statistic of Campbell and Thompson (2008) for

forecasting currency returns19

R2oos = 1�
PT�1
t=R L(rjt+1 � r̂jt+1)PT�1
t=R L(rjt+1 � ~rjt+1)

;

where L(�) is a loss function based on forecast errors, and r̂jt+1 and ~rjt+1 denote the forecasts

from one of the competing models and the benchmark (RW) model, respectively. More speci�cally,

a positive R2oos statistic implies that the competing model outperforms the benchmark model in

terms of out-of-sample prediction and vice versa. This paper considers loss functions based on both

squared and absolute forecast errors.

The results suggest that the decomposition model dominates the random walk with drift and

linear models for all currencies and loss functions. Under the quadratic (absolute) loss function,

the largest forecast gains are obtained for EUR (AUD) followed by those for CHF and AUD (CHF

and EUR). Albeit more moderate, the out-of-sample improvement for the other currencies is also

impressive.

To determine the statistical signi�cance of these �ndings, Table 3 also presents the test proposed

by Giacomini and White (GW, 2006) based on the di¤erence in currency j forecast losses 4Ljt+1 =

L(rjt+1� r̂jt+1)�L(rjt+1� ~rjt+1), where L(rjt+1� r̂jt+1) and L(rjt+1� ~rjt+1) are losses computed

from the competing model and the RW model, respectively. As for R2oos, we use both quadratic and

absolute error loss functions. Following Giacomini and White (GW, 2006), we use the conditional

version of the test with a test function (1;4Ljt)0. The di¤erence is statistically signi�cant if the test

statistic exceeds the critical value from a �22 distribution. A plus (minus) sign indicates that the

corresponding model outperforms (underperforms) the benchmark statistically signi�cantly at the

10% level. The results in Table 3 show that the decomposition model dominates the RW and linear

models for all currencies. The improvements of the decomposition model over the RW benchmark

are statistically signi�cant for GBP, EUR, AUD and NZD under a quadratic loss function and for

GBP, CHF, EUR, AUD and NOK under an absolute loss function.

19While Campbell and Thompson (2008) and Welch and Goyal (2008) employ the statistic R2oos to assess the
performance of competing models in predicting the equity risk premium, Della Corte and Tsiakas (2012) and Li,
Tsiakas and Wang (2015) use R2oos to compare the out-of-sample predictive accuracy of competing models for foreign
exchange rate returns.
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Next, we present evidence for the directional performance of the models which is exploited in

the next section. In particular, we compute the statistics for the area under the receiver operating

characteristic curve (AUC) suggested by Jordà and Taylor (2012).20 Note that higher values for

AUC indicate a better directional forecast performance. As evident from Table 3, the directional

forecasts of the decomposition model outperform those based on the linear and RW with drift

models across all currencies.

Since Meese and Rogo¤ (1973), researchers routinely compare models�statistical and directional

forecast accuracy to that of the RW. Nonetheless, Della Corte and Tsiakas (2012) observe that

even marginal statistical forecast accuracy gains for a model vis-à-vis the RW may translate into

economic pro�tability. In addition, Melvin, Prins and Shand (2013) persuasively argue that a model

which correctly rank-orders currency return forecasts (relative to one other in the cross-section) is

su¢ cient for successful currency investing. That is, from the perspective of investors, (losses) pro�ts

do not directly follow from a model�s (in)ability to outperform the RW benchmark. Based on the

prior observations, we next evaluate the economic signi�cance of the accuracy of these directional

forecasts in the context of trading strategies.

4.2 Trading Strategies

4.2.1 Active Trading Strategy for Individual Currencies

The trading strategy discussed in this section is based on the sign of predicted carry trade returns

from one of the econometric models. We conduct our trading exercises using the sign of the

predicted carry trade returns, rather than the sign currency returns, so as to benchmark our results

against the carry trade which is a popular strategy in active currency management (Li, Tsiakas

and Wang, 2015). The strategy, conducted from the perspective of a U.S. investor, consists of

going long in the foreign currency when the sign of the predicted carry trade return from one of

the econometric models is positive. Conversely, when the predicted sign of the carry trade return

is negative, the trader shorts the foreign currency. As argued in Burnside, Eichenbaum and Rebelo

(2011), the payo¤ from conducting the carry trade in the forward market is proportional, under

CIP, to trading directly in the spot market (i.e., based on interest rate di¤erentials). The realized

20More speci�cally, let dt+1 = sign(ert+1) 2 f�1; 1g, Np =
P

dt+1=1
1, Nn =

P
dt+1=�1 1, �k = f bert+1jdt+1 = 1g

for k = 1; :::; Np, and �l = f bert+1jdt+1 = �1g for l = 1; :::; Nn. Then, AUC = 1
NpNn

PNp
k=1

PNn
l=1 I [�k > �l]. See

Jordà and Taylor (2012) for more details.
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return from trading based on model i is

�̂ijt+1 = sign( berijt+1)erjt+1; (6)

where berijt+1 = r̂ijt+1 + (sjt � fjt) and r̂ijt+1 denotes the i-th model forecast of rjt+1 for currency j.

It is important to stress that the predicted returns r̂ijt+1 are genuine out-of-sample forecasts that

utilize information only up to time t.

Following the literature (Lustig, Roussanov and Verdelhan, 2011; Menkho¤, Sarno, Schmeling

and Schrimpf, 2012a; Bakshi and Panayotov, 2013), we employ the bid-ask prices to account for

the transaction costs that investors would incur when implementing the trades. Let sajt and s
b
jt

denote the ask and bid (o¤ered) prices, respectively, for currency j. The spot price, sjt, is the

midpoint of the bid and ask quotes. The trading strategy considered is as follows: the investor

goes long in the foreign currency if the predicted carry trade return from one of the econometric

models is positive and exceeds the transaction costs observed at time t; that is, if sign( berijt+1) > 0
and berijt+1 > sajt � sjt. Conversely, the investor shorts the foreign currency if the predicted carry

trade return from model i is negative and exceeds, in absolute value, the transaction costs observed

at time t (if sign( berijt+1) < 0 and j berijt+1j > sjt � sbjt). If the predicted carry trade return is lower

than the transaction costs, no position is taken (i.e., the investor stays outside the market). The

net-of-transaction costs returns of a long position are given by sign( berijt+1)erjt+1 � (sajt+1 � sjt+1)

while the net of transaction costs returns to a short position are sign( berijt+1)erjt+1� (sjt+1�sbjt+1).
We consider a benchmark strategy that uses the sign of the forward premium as an ex ante

predictor of the sign of the carry trade returns. This strategy consists of selling currencies that are

at a forward premium and buying currencies that are at a forward discount (Burnside, Eichenbaum

and Rebelo, 2011). The predicted carry trade return of the benchmark strategy is ber0jt+1 = �fpjt
which is equivalent to trading based on a random walk model for the spot exchange rate.21

The value of the initial investment is set equal to $100. The value of the portfolio is re-

calculated and re-invested every period. The results for the net-of-transaction-cost payo¤s as well

as the annualized average returns, volatilities and Sharpe ratios are presented in Table 4.

Table 4 shows that, with the exception of JPY and NZD (which are popular carry trade fund-

ing and investment currencies, respectively), the decomposition model outperforms the remaining

21Starting from erjt+1 = sjt+1 � fjt = (sjt+1 � sjt) � (fjt � sjt), a random walk (with no drift) for sjt+1 would
imply that ber0jt+1 = �fpjt.
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models with some of the di¤erences in payo¤s (GBP, EUR and AUD) being large. Similar results

hold for the risk-adjusted returns (Sharpe ratios) in Table 4.22 We also considered another trading

strategy in which the investor longs the foreign currency if sign( berijt+1) > 0 and shorts the foreign
currency if sign( berijt+1) < 0. The investor thereby takes a position and incurs transaction costs

every period. The results are very similar (with slightly lower payo¤s in most cases) to the results

reported in Table 4 for the trading strategy with the option to stay outside the market.

4.2.2 Currency Portfolios

In addition to investigating the pro�tability of trading individual currencies based on the sign of

the econometric forecast, we examine the directional pro�tability of the econometric models from

a portfolio perspective. More speci�cally, an equally-weighted portfolio is constructed by averaging

the net-of-transaction costs realized returns from one of the econometric models across all the

currencies. The excess return of the equally weighted portfolio therefore measures the returns

accruing to an investor who trades the currencies based on the predicted sign of the carry trade

returns from one of the econometric models.

Following the literature (Accominotti and Chambers, 2014; Ang and Chen, 2010; Brunnermeier,

Nagel and Pedersen, 2009; Lustig, Roussanov and Verdelhan, 2011 and Li, Tsiakas andWang, 2015),

we construct benchmark long-short carry trade portfolios on the basis of interest rate di¤erentials

(as proxied for, under CIP, by fpjt). The �rst portfolio, referred to as �signed forward premium�

or �signed fp�, consists of going long a currency that is at a forward discount (i.e., a currency

with a negative forward premium) and going short a currency that is at a forward premium (i.e.,

a currency whose forward premium is positive). The returns of this portfolio are equivalent to

trading based on a random walk model for each of the exchange rates. In line with prior research,

we also sort currencies based on the forward premium. More speci�cally, we consider three long-

short �forward premium�portfolios: a �one long/one short�portfolio (1l/1s(fp)) in which the investor

longs the currency with the largest negative forward premium and shorts the currency with the

largest positive forward premium, a �two long/two short�portfolio (2l/2s(fp)) in which the investor

longs the two currencies with the largest negative forward premiums and shorts the two currencies

with the largest positive forward premiums as well as a �three long/three short�portfolio (3l/3s(fp))

22To evaluate the statistical signi�cance of the computed Sharpe ratios, we constructed 90% bootstrap con�dence
intervals based on the moving block bootstrap with a blocksize equal to 8. Only the decomposition-based Sharpe
ratios for GBP, CHF and EUR are statistically larger than zero.
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in which the investor goes long the three currencies with the largest negative forward premiums and

goes short the three currencies with the largest positive forward premiums.23 For most of our out-

of-sample period, JPY and CHF are the currencies with the largest positive forward premium.24

This is consistent with these currencies being �funding currencies� as noted in previous research

(Brunnermeier, Nagel and Pedersen, 2009; Galati, Heath and McGuire, 2007). The �target� or

�investment�currencies in the carry trade are AUD and NZD.

In addition to portfolios formed on the basis of the forward premium, we employ the momentum

portfolios of Menkho¤, Sarno, Schmeling and Schrimpf (2012b) constructed by sorting currencies

on the basis of the lagged carry trade returns as additional benchmarks. Again, we consider three

variants of the momentum portfolio: The �one long/one short�momentum portfolio (1l/1s(m))

consists of longing the currency with the largest carry trade return and shorting the currency with

the lowest carry trade return at time t, the �two long/two short�portfolio (2l/2s(m)) consists of

going long the two currencies with the largest carry trade returns and short the two currencies with

the lowest carry trade returns at time t and the �three long/three short�momentum (3l/3s(m)),

used in Li, Tsiakas and Wang (2015), consists of going long the three currencies with the largest

carry trade returns and short the three currencies with the lowest carry trade returns at time

t.25 The investor realizes the returns at time t + 1. All the portfolios (momentum and carry) are

rebalanced monthly. While cognizant of the challenges inherent in identifying useful benchmarks

for active currency investing discussed by Melvin, Prins and Shand (2013), we elect to employ the

carry trade and momentum portfolios as benchmarks due to their widespread use by academics (Li,

Tsiakas and Wang, 2015, among others) and investors alike.

When constructing the long-short portfolios, the net-of-transaction costs returns to a currency

in which the investor goes long are computed as erjt+1 � (sajt+1 � sjt+1) � (fjt � f bjt) whereas

the net-of-transaction costs returns for a currency in which the investor goes short are erjt+1 �

(sjt+1�sbjt+1)� (fajt�fjt). The results (dollar values and Sharpe ratios) for the portfolio strategies

are reported in Table 5. For comparability with the existing literature, Table 5 also reports the

23While the �three long/three short�portfolio is commonly used in existing research (Li, Tsiakas and Wang, 2015),
we consider three variants of the forward premium portfolios in light of Bekaert and Panayotov (2016)�s empirical
�ndings according to which the carry trade�s pro�tability hinges on the currencies included in the portfolio. In fact,
the authors distinguish between �good�and �bad�carry trades depending on the currencies comprising the portfolio.
The di¤erences in the pro�tability of the three forward premium portfolios that we consider resonates with Bekaert
and Panayotov (2016)�s �ndings.
24 In 2015 and 2016, SEK and CHF become the two funding currencies.
25As noted in Li, Tsiakas and Wang (2015), the momentum portfolio allows investors to gain a long exposure to

the currencies that are on an upward trend and a short exposure in currencies that are on a downward trend.
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skewness and the kurtosis of each portfolio�s realized returns.

Overall, the portfolio formed on the basis of the decomposition model generates higher pro�ts

and risk-adjusted returns than the other portfolios.26 The decomposition model�s portfolio returns

also exhibit a lower volatility than the �three long/three short�carry and momentum portfolios. In

addition, the decomposition model�s skewness is positive and larger than that of any of the bench-

mark portfolios. These latter observations suggest that the decomposition model�s portfolio might

be less prone to crash risk than these portfolios. The decomposition model�s portfolio also outper-

forms any of the competing benchmarks on a risk-adjusted return basis (i.e. in terms of Sharpe

ratio). Furthermore, with the exception of GBP, the risk-adjusted returns of the decomposition

model�s portfolio also appear to be larger than most of the individual currencies. This is consistent

with portfolio volatility being lower, due to better diversi�cation, than individual currency return

volatility.27 We view our results as suggesting that a portfolio strategy might be less adversely

a¤ected than individual currencies by the unwinding of the carry trade.

The statistical and trading success of the decomposition model appears to be stemming from

two factors. First, the decomposition model models the entire conditional distribution of currency

returns and incorporates, in a parsimonious and �exible manner, inherent nonlinearities in the ex-

change rate dynamics that may prove particularly important during periods of �nancial turbulence.

Second and relatedly, by modeling absolute returns directly, which proxy for volatility, the decom-

position model succeeds in avoiding large negative losses. In this respect, we interpret the success

of the decomposition as being consistent with the �ndings of Cenedese, Sarno and Tsiakas (2014)

who provide, using predictive quantile regressions, compelling empirical evidence which suggests

that higher variance relates to future carry losses. Furthermore, our decomposition of currency

returns relates analytically to the approach of Cenedese, Sarno and Tsiakas (2014). In fact, while

we decompose currency returns into absolute and sign components, Cenedese, Sarno and Tsiakas

(2014) decompose market variance into average variance and average correlation and show that the

predictive power for future carry trade returns arises from average variance. The authors also show

that conditioning on market variance results in net-of-transaction costs trading gains. In a similar

26The Sharpe ratio for the decomposition method is statistically larger than zero using moving block bootstrap
with a blocksize equal to 8. The Sharpe ratios of the other trading strategies are insigni�cant.
27As pointed out by Brunnermeier, Nagel and Pedersen (2009), elevated levels of volatility can lead to the unwinding

of carry trade positions, and, consequently, to currency crashes. In this context, it is interesting to note that Menkho¤,
Sarno, Schmeling and Schrimpf (2012a) identify a global currency volatility risk factor and show, by sorting currencies
into �ve portfolios based on volatility, that high interest rate currencies yield lower payo¤s when global volatility is
high.
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vein, our �ndings suggest that conditioning on absolute returns yields statistical and economic

gains. Finally, the decomposition model delivers substantially improved directional forecasts which

play a crucial role in the success of the model-based trading strategies.

5 Concluding Remarks

This paper examines the pro�tability of carry trade returns using a �exible approach that de-

composes currency returns into multiplicative sign and absolute return components which exhibit

much greater predictability than raw returns. We use the joint conditional distribution of these

components, modeled as a time-varying copula, to produce forecasts of future returns.

Our out-of-sample forecasting results suggest that the decomposition model exhibits substantial

out-of-sample predictability. We show that the out-of-sample forecasting gains of the decomposition

model translate into economically and statistically highly signi�cant pro�tability: trading individual

currencies or forming portfolios based on the predicted carry trade returns from the decomposition

model generates larger risk-adjusted pro�ts than any of the competing models. We view the

decomposition model�s success as arising from its improved directional forecasting and its ability

to avoid large losses by adequately capturing the tail of the distribution of future currency excess

returns. It would be interesting, as an avenue for future research, to examine if the carry trade�s

pro�tability of the decomposition model extends to other asset markets (such as commodity and

bond markets) as in Koijen, Moskowitz, Pedersen and Vrugt (2017).
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Table 1. Descriptive statistics.

currency variable mean med std min max skew kurt AC(1)
GBP r -0.100 -0.077 2.974 -13.172 13.347 -0.257 4.789 0.073

fp -0.144 -0.087 0.213 -1.118 0.796 -0.633 5.312 0.827
er 0.044 0.042 3.007 -12.655 13.782 -0.205 4.658 0.091

CAD r -0.056 -0.006 1.990 -12.452 8.984 -0.512 7.786 -0.051
fp -0.064 -0.050 0.140 -0.758 0.406 -0.541 4.726 0.675
er 0.008 0.009 2.005 -12.623 8.976 -0.552 7.739 -0.043

CHF r 0.192 0.114 3.445 -14.554 12.803 -0.016 4.097 -0.002
fp 0.216 0.207 0.268 -0.885 1.052 0.303 3.969 0.841
er -0.024 -0.123 3.469 -15.331 12.598 -0.066 4.037 0.016

EUR r 0.070 0.131 3.146 -11.139 10.006 -0.141 3.718 0.008
fp 0.096 0.100 0.225 -0.546 0.868 -0.107 3.896 0.835
er -0.026 0.063 3.156 -10.950 9.543 -0.174 3.667 0.019

JPY r 0.195 0.052 3.303 -10.363 15.980 0.350 4.349 0.052
fp 0.223 0.186 0.268 -2.232 1.796 -0.803 18.405 0.515
er -0.027 -0.0819 3.326 -11.070 15.552 0.293 4.223 0.072

AUD r -0.112 0.068 3.273 -19.553 8.930 -1.055 7.796 0.026
fp -0.208 -0.199 0.258 -1.035 0.712 -0.152 4.579 0.831
er 0.097 0.278 3.291 -19.394 9.135 -0.994 7.620 0.037

NZD r -0.081 0.094 3.431 -24.850 12.263 -1.056 9.951 -0.011
fp -0.290 -0.230 0.365 -3.045 0.516 -2.624 14.927 0.819
er 0.208 0.272 3.498 -24.981 12.469 -0.914 9.685 0.019

SEK r -0.148 -0.063 3.178 -16.959 8.777 -0.661 5.817 0.076
fp -0.142 -0.111 0.311 -2.845 1.117 -2.336 18.081 0.663
er -0.005 0.075 3.182 -16.563 8.824 -0.575 5.335 0.087

NOK r -0.090 0.062 3.055 -13.008 10.003 -0.310 4.314 0.018
fp -0.170 -0.137 0.321 -1.768 2.765 0.541 19.965 0.656
er 0.080 0.201 3.057 -12.804 10.059 -0.274 4.141 0.038

Notes: The table presents the mean, median (med), standard deviation (std), minimum value
(min), maximum value (max), skewness (skew), kurtosis (kurt) and the �rst-order autocorrelation
coe¢ cient (AC(1)) of the currency returns (r), forward premium (fp) and carry trade returns (er)
for the period January 1976 to December 2016. All series are in percent.
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Table 2. Estimation results for currency returns from the decomposition method.

GBP CAD CHF EUR JPY AUD NZD SEK NOK
volatility

& 1:098
(2:468)

1:134
(3:357)

1:189
(4:427)

1:150
(3:652)

1:149
(3:635)

1:118
(3:043)

1:075
(2:013)

1:170
(4:100)

1:138
(3:423)

!v �0:530
(�1:928)

�0:419
(�3:277)

�0:828
(�10:82)

�0:724
(�1:218)

�0:722
(�1:769)

�1:270
(�3:439)

�0:367
(�4:054)

�1:210
(�2:373)

�2:584
(�2:556)

�v 0:869
(12:54)

0:916
(35:09)

0:800
(25:06)

0:815
(5:293)

0:824
(7:962)

0:674
(7:393)

0:910
(42:02)

0:684
(5:283)

0:347
(1:317)

v 1:971
(2:305)

4:146
(3:534)

3:012
(3:156)

2:011
(1:025)

1:359
(0:733)

4:461
(2:582)

2:642
(4:291)

3:003
(1:590)

4:116
(1:322)

�v �0:047
(�1:385)

0:008
(0:271)

0:025
(0:691)

�0:037
(�0:814)

0:026
(0:538)

�0:210
(�3:619)

�0:086
(�3:029)

�0:122
(�2:371)

0:028
(0:427)

�v �4:959
(�4:551)

6:027
(9:921)

2:753
(2:112)

2:051
(2:969)

10:535
(31:68)

�17:80
(�15:50)

�1:970
(�3:447)

�8:513
(�3:101)

�4:215
(�2:318)

direction
!d �0:220

(�1:491)
�0:146
(�1:048)

�0:089
(�0:528)

�0:094
(�0:612)

�0:004
(�0:020)

�0:109
(�0:721)

�0:283
(�1:892)

�0:225
(�1:626)

0:051
(0:347)

�d 0:148
(0:779)

0:153
(0:807)

0:544
(2:772)

0:481
(2:439)

0:387
(1:993)

0:014
(0:074)

0:235
(1:254)

0:227
(1:187)

0:207
(1:085)

�1d �0:952
(�2:098)

�1:599
(�2:396)

�0:645
(�1:863)

�0:143
(�2:108)

�0:744
(�2:004)

�0:851
(�2:342)

�0:586
(�2:203)

�0:581
(�2:804)

0:122
(1:790)

�2d 0:020
(1:322)

0:044
(1:007)

0:012
(1:187)

�0:076
(�1:296)

0:034
(1:806)

�0:026
(�1:410)

0:062
(1:107)

0:013
(1:044)

�0:075
(�1:263)

�3d 0:026
(1:256)

0:013
(1:314)

�0:042
(�1:908)

�0:028
(�1:324)

�0:039
(�1:522)

�0:028
(�1:611)

�0:024
(�1:245)

0:035
(1:359)

�0:013
(�1:712)

copula
�0 0:222

(1:698)
�0:205
(�2:018)

�0:018
(�0:626)

�0:236
(�0:858)

0:207
(1:543)

�0:348
(�1:189)

�0:009
(�0:048)

0:257
(0:851)

0:014
(0:307)

�1 0:623
(2:634)

0:750
(2:209)

0:968
(17:29)

0:109
(0:247)

0:818
(4:746)

0:516
(1:081)

0:478
(1:868)

0:100
(0:199)

0:980
(20:04)

�2 �12:92
(�7:191)

14:25
(7:060)

2:157
(0:662)

19:95
(5:795)

�11:25
(�1:619)

8:512
(3:716)

�15:86
(�2:595)

�31:03
(�6:621)

�2:303
(�1:389)

Notes: The table reports the maximum likelihood estimates and their t-statistics (in parentheses
below the estimates) for the decomposition model with time-varying copula dependence. All t-
statistics are for statistical signi�cance except for the t-statistic for & which is testing the null that
& = 1:
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Table 3. Statistics for out-of-sample forecast performance.

R2oos GW AUC
quadratic absolute quadratic absolute

linear decom linear decom linear decom linear decom RW linear decom
GBP -2.63 5.91 -2.64 3.54 7.67(-) 4.62(+) 6.73(-) 5.62(+) 0.518 0.421 0.582
CAD -17.80 4.24 -2.46 3.99 1.23 0.71 0.94 1.16 0.432 0.505 0.605
CHF -5.14 7.41 -1.02 4.74 3.18 3.98 0.92 6.83(+) 0.513 0.555 0.612
EUR -2.06 8.39 -0.27 4.61 1.82 5.12(+) 0.21 5.85(+) 0.543 0.517 0.612
JPY -1.65 0.75 -0.00 2.90 4.80(-) 1.13 2.47 4.16 0.515 0.546 0.588
AUD -8.74 6.81 -3.79 5.15 4.92(-) 5.55(+) 4.81(-) 10.18(+) 0.436 0.441 0.646
NZD -10.13 0.70 -5.31 0.97 4.48 6.18(+) 5.60(-) 1.61 0.406 0.408 0.508
SEK -4.49 4.96 -2.48 3.35 1.84 3.22 2.26 4.57 0.440 0.451 0.557
NOK -4.10 4.46 -2.25 3.19 2.74 3.92 3.28 7.78(+) 0.496 0.477 0.586

Notes: R2oos denotes the out-of-sample R
2, based on squared and absolute forecast errors, for the

linear and decomposition (decom) models, using the random walk (RW) with drift as a benchmark
model. GW denotes the Giacomini and White (2006) test of forecast performance under quadratic
and absolute loss between the competing (linear or decomposition) model and the RW model. A
plus (minus) sign indicates that the model outperforms (underperforms) the benchmark statistically
signi�cantly at the 10% level. The statistics without any sign signify that the test does not reject the
null of an equal predictive ability. AUC denotes the area under the receiver operating characteristic
curve of Jordà and Taylor (2012) for RW, linear, and the decomposition models. The out-of-sample
evaluation period is January 2004 �December 2016.
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Table 4. Dollar values ($100 initial investment), annualized average returns, standard deviations
and Sharpe ratios of trading strategies for individual currencies.

Payo¤ in $ Average return Std. deviation Sharpe ratio
bench linear decom bench linear decom bench linear decom bench linear decom

GBP 75.67 91.47 211.85 -1.85 -0.30 6.18 7.55 8.76 8.99 -0.24 -0.03 0.68
CAD 72.11 75.45 111.92 -2.19 -1.71 1.33 7.97 9.51 9.71 -0.27 -0.18 0.13
CHF 92.65 84.11 114.07 0.10 -0.75 3.32 10.17 10.64 10.12 0.01 -0.07 0.32
EUR 115.78 93.89 205.40 1.43 -0.02 6.03 7.94 9.58 9.88 0.18 -0.00 0.61
JPY 110.62 84.83 105.20 1.05 -0.77 0.87 7.52 9.89 9.73 0.14 -0.07 0.08
AUD 115.00 56.23 209.41 1.93 -3.59 6.51 13.01 12.71 12.88 0.14 -0.28 0.50
NZD 125.69 86.15 105.03 2.71 -0.25 1.32 13.76 13.35 13.76 0.19 -0.01 0.09
SEK 86.45 53.96 149.22 -0.66 -4.12 3.67 9.58 11.11 10.93 -0.06 -0.37 0.33
NOK 55.79 65.21 128.77 -3.86 -2.67 2.52 11.00 11.05 10.82 -0.35 -0.24 0.23

Notes: The table presents the dollar payo¤s to a $100 initial investment, annualized average re-
turns in %, standard deviations and Sharpe ratios based on the sign of the predicted carry trade
return from one of the competing models (benchmark (bench), linear and decomposition (decom))
during the out-of-sample evaluation period: January 2004 �December 2016. Benchmark refers to
a strategy of taking a long or short position depending on the sign of the forward premium.
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Table 5. Dollar values and descriptive statistics of trading portfolios of carry trade returns.

value in $ mean std skew kurt SR
linear 79.95 -1.58 5.28 0.06 1.49 -0.29
decom 155.15 3.53 5.51 1.54 7.10 0.64

Benchmark strategies
signed fp 96.73 -0.14 4.61 -0.52 1.43 -0.03
1l/1s(fp) 118.18 1.54 7.10 -1.39 4.79 0.21
2l/2s(fp) 128.03 2.06 5.65 -0.74 2.19 0.36
3l/3s(fp) 127.05 2.21 8.63 -0.87 3.07 0.25
1l/1s(m) 83.86 -1.12 6.86 0.66 3.90 -0.16
2l/2s(m) 97.46 -0.07 4.96 0.09 2.02 -0.01
3l/3s(m) 132.00 2.42 7.67 0.24 3.29 0.36

Notes: The table reports the payo¤s to a $100 initial investment, the annualized average return
in % (mean), standard deviation (std), skewness (skew), kurtosis (kurt) and Sharpe ratio (SR)
in an equally-weighted portfolio formed on the basis of the predicted sign from the linear and
decomposition (decom) models. The signed forward premium (�signed fp�) portfolio benchmark is
an equally-weighted portfolio which is long currencies with a negative forward premium and short
currencies with a positive forward premium. The �one-long/one-short� benchmark (1l/1s(fp)) is
a long-short portfolio which is long the currency with the largest negative forward premium and
short the currency with the largest positive forward premium. The �two-long/two-short�benchmark
(2l/2s(fp)) is a long-short portfolio which is long the two currencies with the largest negative forward
premiums and short the two currencies with the largest positive forward premiums. The �three-
long/three-short�benchmark (3l/3s(fp)) is a long-short portfolio which is long the three currencies
with the largest negative forward premiums and short the three currencies with the largest positive
forward premiums. The �one-long/one-short�momentum portfolio (1l/1s(m)) is long the currency
with the highest carry trade return and short the currency with the lowest carry trade return. The
�two-long/two-short�momentum portfolio (2l/2s(m)) is long the two currencies with the highest
carry trade returns and short the two currencies with the lowest carry trade returns. The �three-
long/three-short�momentum portfolio (3l/3s(m)) is long the three currencies with the highest carry
trade returns and short the three currencies with the lowest carry trade returns.
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Figure 1: Monthly returns for the spot exchange rates against USD (in percent).
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