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Abstract

The directional news impact curve (DNIC) is a relationship between returns and a

probability of next period’s return to exceed a certain threshold, zero in particular.

Using long series of S&P500 index returns and a number of parametric models sug-

gested in the literature as well and flexible semiparametric models, we investigate the

shape of DNIC, as well as forecasting abilities of these models. The semiparametric ap-

proach reveals that the DNIC has complicated shapes characterized by non-symmetry

with respect to past returns and their signs, heterogeneity across the thresholds, and

changes over time. Simple parametric models often miss some important features of

the DNIC, but some nevertheless exhibit superior out-of-sample performance.
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1 Introduction

The stock returns generally exhibit directional (sign) predictability (Gençay 1998, Hong and

Chung 2003, Anatolyev and Gerko 2005, Christoffersen and Diebold 2006, Linton and Whang

2007). Directions of movements of asset prices, or more generally, exceedances by asset re-

turns of certain thresholds, are important to model and predict. Observation-driven dynamic

models for directional probability require specification of the probability equation, typically

an input of the logistic link (i.e., the log odds ratio). This is useful, among others, in dis-

tributional regressions for returns (Foresi and Peracchi 1995, Anatolyev and Baruńık 2019),

in decomposition-based models (Rydberg and Shephard 2003, Anatolyev and Gospodinov

2010), and simply for predicting directions of financial market movements (Nyberg 2013,

Taylor and Yu 2016). In practice, the probability equation is typically specified as a linear

equation, possibly with a dynamic feedback, with (an) observable driving variable(s) from

the past history.

There are no stylized facts behind the movement of directional probabilities, compared

to, for example, volatility equations,1 hence these driving variables are typically specified in

an ad hoc manner. Most use past indicators of return movements and/or (simple functions

of) past returns. With daily data, typically, all ‘explanation power’ comes from one or

more such variables. Hong and Chung (2003) use a past indicator and past returns together

with their powers of 2 to 4; Anatolyev (2009) uses past indicators only, Skabar (2013)

uses up to 5 lags of returns; Liu and Luger (2015) and Frazier and Liu (2016) use a past

indicator and past return squared; Taylor and Yu (2016) use, in a variety of specifications,

a past indicator, a past signed indicator, a past absolute return or a past signed absolute

return; Anatolyev and Baruńık (2019) use a past indicator and a simple proxy for past daily

volatility. This illustrates unawareness of researchers about what variables (or more precisely,

what function(s) of past returns) one should use in probability equations as predictors. With

ultra-high frequency (transaction) data, Rydberg and Shephard (2003) have to use a pretty

long list of sophisticated past indicators and returns. With monthly data, most of the

‘explanation power’ is typically provided by various macroeconomic variables or financial

ratios; nevertheless, researchers still include at least one term from the past related to the

return. For example, Foresi and Peracchi (1995) and Nyberg (2013) use a past return; (in

addition some extraneous predictors) Anatolyev and Gospodinov (2010, 2019) use only a

1It is this abundance of stylized facts about the temporal behavior of squared returns that spurred a
great deal of research on volatility and a big volume of ARCH models (Bollerslev, 2010). The dynamics of
other conditional features are much more problematic to specify; see, for example, Anatolyev and Petukhov
(2016) for the dynamics of conditional skewness.
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past indicator, while Anatolyev, Gospodinov, Jamali, and Liu (2017) use a past indicator

together with a squared and cubed past return.

We do a careful investigation of what functions of past returns are most beneficial to

include in the probability equation for daily stock return data. In other words, we try to

uncover the directional news impact curve (directional NIC, DNIC), the effect of past re-

turns (‘news’) on the current probability of positive/negative returns (or more generally, the

probability of returns exceeding/not exceeding a threshold). This is a directional analog of

volatility NIC for conditional variance (Engle and Ng 1993) and skewness NIC for condi-

tional third moments (Anatolyev and Petukhov 2016). Using a long history of daily S&P500

returns, as well as DAX and Nikkei returns, we utilize a number of parametric and semi-

parametric specifications, and evaluate the models using both in-sample and out-of-sample

criteria. We are interested in models for daily returns as it is most likely that for this fre-

quency the purely autoregressive probabilistic forecasts are in a greatest need; however, the

uncovered DNIC can also serve as a useful guide for models on intradaily and monthly data.

The semiparametric models we use reveal that the DNICs have complicated shapes

characterized by non-symmetry with respect to past returns, their signs in particular. There

is a lot of heterogeneity across the thresholds, as well as evidence that the DNICs have been

subject to changes in shapes and in their parameters. Simple parametric models often miss

these features, but in spite of that, some of them exhibit superior out-of-sample performance

in terms of likelihood and/or Brier scores. While such evidence for the S&P500 index is

moderately strong, that for other indices, such as DAX and Nikkei, is pretty weak.

The material is organized as follows. The models for DNIC are outlined in Section 2.

Section 3 describes the data used on the experiments, and the criteria we use to discriminate

the models. In Section 4, we report the results of uncovering the directional NIC and those

of forecasting experiments. Finally, Section 5 concludes.

2 Models for directional NIC

Let rt be a daily return on day t. We are interested in the event

rt ≤ c,

where c is a threshold that may be zero or non-zero, its indicator

It = I {rt ≤ c} ,
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and the corresponding conditional probability

pt = Prt−1 {rt ≤ c} = Et−1 [It] .

Here, Prt−1 and Et−1 denote the probability and expectation, respectively, conditional on

the history {rτ , τ ≤ t− 1}.
The autologit model uses the traditional2 logit link:

pt =
1

1 + exp (−θt)
,

where the log-odds ratio θt = ln (pt/ (1− pt)) follows the dynamics

θt = ω + φt−2 + ψt−1,

where the term ψt−1, as a function of rt−1, is the directional news impact curve (DNIC), and

the term φt−2 is a function of variables dated earlier.3 The target is to investigate possible

specifications for ψt−1 from the point of view of in-sample fit and predictive ability.

The DNIC is a very important measure of the predicted probability of exceeding the

threshold. In particular, if a realization of rt−1 leads to an extremely large positive (negative)

realization of DNIC, then the probability that the next return does not exceed the threshold

is very high (very low). On the other hand, if a realization of rt−1 leads to a very small in

absolute value realization of DNIC, the predicted probabilities of exceeding and not exceeding

the threshold are approximately equal to 1
2
.

We call static the model with no dynamics, i.e. when φt−2 = ψt−1 = 0. We consider the

following dynamic specifications for ψt−1.

Simple benchmarks The simplest choices are using the past return linearly and in the

form of an indicator, resulting in the only return model

ψt−1 = αrrt−1

and the only indicator model

ψt−1 = αIIt−1.

2Most of the literature on financial directions-of-change of returns does use the logit link; in contrast, the
literature on predicting business cycles uses the probit link (e.g., Saikkonen and Kauppi 2008, Nyberg 2014).

3Note that ψt−1 may depend, beside rt−1, also on earlier history, additively and/or multiplicatively. The
term φt−2 usually equals zero, or takes the same form as ψt−1, or has a feedback form ςθt−1; in our empirical
experiments (see Section 4) we use the first two choices.
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We also include both predictors together and call it the return and indicator model:

ψt−1 = αrrt−1 + αIIt−1.

The inclusion of past return makes the DNIC a linear form, while the inclusion of past

indicator divides the DNIC at the threshold value into two separate pieces with a same

slope.

Complex benchmarks Based on ad hoc specifications in use in the previous literature,

we also exploit the following, more complex, benchmarks. These benchmarks are related

to attempts to account for volatility whose dynamics alone are able to generate directional

predictability (Christoffersen and Diebold 2006). These specifications though are quite arbi-

trary choices given the approximate convoluted formula in Christoffersen, Diebold, Mariano,

Tay, and Tse (2007), which is, however, also tied to arbitrary parameterizations of the con-

ditional density. The specifications introduce various simple types of nonlinearity (beyond

splitting it into two parts) into the directional NIC.

Based on Liu and Luger (2015) and Frazier and Liu (2016), we use the past indicator

and return squared, and call it the squared return and indicator model:

ψt−1 = αr2r
2
t−1 + αIIt−1.

The inclusion of a squared term introduces curviness (or non-constant returns) to the effect

of past returns.

Next, we change the squared return to absolute return, and call it the absolute return

and indicator model:

ψt−1 = α|r| |rt−1|+ αIIt−1,

as well as change it to signed past absolute returns, and call it the signed absolute return

and indicator model:

ψt−1 = α|r|− |rt−1| It−1 + α|r|+ |rt−1| (1− It−1) + αIIt−1,

as in Taylor and Yu (2016). The inclusion of an absolute value term makes the DNIC

piecewise linear and not as curvy as the quadratic. Splitting the absolute value term in the

latter specification is meant to introduce non-symmetry into the slope of DNIC with respect

to the sign of past returns, a sort of a leverage effect.

Finally, following Anatolyev and Baruńık (2019), we use a specification with a past
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indicator and a proxy for past daily volatility, and call it the log-volatility and indicator

model:

ψt−1 = αln|r| ln (1 + |rt−1|) + αIIt−1.

The idea behind the first term is to involve an absolute value of the past return with ‘penal-

ization’ of its high values.

Autoregressive score models Creal, Koopman and Lucas (2013) propose a family of

models with dynamics based on the score function. In our case, the likelihood based on the

Bernoulli distribution leads to the past indicator surprise as the predictor:

ψt−1 = αS0 (It−1 − pt−1) .

Because pt−1 belongs to the past with respect to period t − 1, the DNIC is essentially the

same as in the simple ‘only indicator’ benchmark. Therefore, we use the following scaled

version which we call the autoregressive score model:

ψt−1 = αS
It−1 − pt−1√
pt−1 (1− pt−1)

.

The corresponding DNIC is also similar to that in the ‘only indicator’ benchmark, but with

a time-varying coefficient, which depends on a more distant past history.

Semiparametric (piecewise linear) DNIC One semiparametric approach describes the

directional NIC by a continuous piecewise linear function in a way similar to volatility NIC

in Engle and Ng (1993) and skewness NIC in Anatolyev and Petukhov (2016). Let m+,

m− be some nonnegative integers; {τi}m+

i=−m−
be a set of real numbers satisfying τ−m− <

τ(−m−+1) < · · · < τ(m+−1) < τm+ . Define the dynamics by

ψt−1 =

m+∑
j=0

αj,+(rt−1 − τj)+ +

m−∑
j=0

αj,−(rt−1 − τ−j)−, (1)

and α0, α−1, αj,+ j = 0, 1, . . . ,m+, αj,−, j = 0, 1, . . . ,m− are parameters to be estimated;

x+ = max(0, x), x− = min(0, x). For rt−1 ∈ (τ0, τ1], this function has slope α0,+, for

rt−1 ∈ (τ1, τ2], this function has slope (α0,+ + α1,+), ..., for rt−1 ∈ (τj, τj+1], j ≥ 0, this

function has slope
∑j

i=0 αi,+, for rt−1 ∈ (τ−(j+1), τ−j], j ≥ 0, this function has slope
∑j

i=0 αi,−.

The parameters m+, m−, {τj}m+

j=−m−
are usually chosen by a researcher, although some

automated algorithms can be used. Higher values of m+ and m− lead to higher flexibility

6



of the model, but also to less precise parameter estimation. We describe in the empirical

section how we choose the knots {τj}m+

j=−m−
. We set m− = m+ = m, and call (1) the piecewise

M-knot linear model, where M = 2m+ 1.

Semiparametric (Fourier flexible form) DNIC Another semiparametric approach is

based on approximating the DNIC by Fourier sine and cosine waves (Gallant 1981):4

ψt−1 =
m∑
j=1

αj sin sin
(

2πj
rt−1
R

)
+

m∑
j=1

αj cos cos
(

2πj
rt−1
R

)
, (2)

where R = maxt |rt| . While the piecewise linear model provides a non-differentiable approx-

imation to the DNIC, the Fourier flexible form model generates a smooth approximation. A

shortcoming of this approach is spurious swings in the DNIC shape, especially towards the

boundaries of the empirical distribution of returns, found even for small values of m such as

m = 2. We call (2) the Fourier of order m model.

3 Data and performance criteria

The DNIC is hard to identify from the data, therefore we use a very long series in order

to make reliable conclusions. Namely, we use daily S&P500 returns from 03.01.1950 to

08.08.2019, totalling to 17512 returns. The data are downloaded from finance.yahoo.com.

We use the first T = 5000 returns for the in-sample analysis, and the rest P = 12512 for

the out-of-sample analysis with a rolling window of T = 5000. The figure 5000 is pretty

arbitrary, but large enough to make sure the dependencies are captured with sufficiently

large precision, while the rolling window scheme leaves a possibility of long-run changes in

parameters. Another measure taken because of weak identifiability is that we include, in

the dynamic part of the models, either only the first lag(s) alone (i.e., φt−2 = 0) or together

with the second lags of the indicator and return (i.e., φt−2 has the same form as ψt−1 in the

‘indicator and return’ benchmark but with an additional lag). In addition to S&P500 returns,

we also experiment with DAX and Nikkei index return data, from 30.12.1987 to 08.08.2019

(T + P = 7982 returns, rolling window of T = 3000) for DAX, and from 05.01.1965 to

08.08.2019 (T + P = 13436 returns, rolling window of T = 5000) for Nikkei.

We consider five thresholds c to investigate directional predictions with different amount

4An alternative set of basis functions may be (Hermite) polynomials. However, even inclusion of second
powers of returns makes estimation less stable. An advantage of Fourier series is boundedness of all its basis
functions.
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of drift. We set these to be quantiles of the symmetrized distribution of returns, that is, of

the empirical distribution of |rt| , t = 1, ..., T + P . The leading case is the pure directional

predictions, for which we set c50% to be the leftmost point of this distribution. The other cases

reflect (not) exceedances of returns of non-zero thresholds. We let c75% be the 50%-empirical

quantile and set c25% = −c75%; similarly, we let c90% be the 80%-empirical quantile and set

c10% = −c90%. Thus, c50% is approximately the median, c25% and c75% are approximately the

25% and 75% unconditional quantiles of returns, and c10% and c90% are approximately their

10% and 90% unconditional quantiles. We call c50% ‘quantile 50%’ or ‘median,’ call c25%

and c75% ‘quantile 25%’ and ‘quantile 75%,’ respectively, and call c10% and c90% ‘quantile

10%’ and ‘quantile 90%,’ respectively. Of most interest is the DNIC for pure directional

predictions, but DNICs for the other thresholds may also be important to, say, a trader who

tries to time the market with low and high, respectively, transaction costs.

We judge the performance of different models by several criteria. For the in-sample

analysis, we first look at t-ratios for the predictors in parametric models estimated using T

observations, which serve as an approximate measure of importance/strength of particular

predictors. Second, we use the information criteria (IC) for parametric models, AIC and

BIC, based on T observations:

ICT = −2T ¯̀
T + wT ‖α‖0 ,

where ¯̀
T is in-sample average loglikelihood, α is a whole parameter vector, and where wT = 2

for AIC and wT = lnT for BIC. We use IC to select among the two specifications within one

model (i.e. decide on whether only first lag(s) or also second lag(s) of basic predictors should

be in) and to compare performance across different models. A better fit model according to

a particular IC has a smaller value of ICT .

The out-of-sample criteria based on P one-step-ahead forecasts and realizations, are the

log-probability score

SP =
1

P

T+P∑
t=T+1

It ln
(
p̂t|t−1

)
+ (1− It) ln

(
1− p̂t|t−1

)
,

and the absolute Brier score

BP =
1

P

T+P∑
t=T+1

∣∣It − p̂t|t−1∣∣ ,
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where p̂t|t−1 =
(

1 + exp(−θ̂t)
)−1

is the predicted probability of the event rt ≤ c made at

t− 1. While the score SP is larger for a better predictive model, the criterion BP is smaller

for a better predictive model. We apply the out-of-sample criteria to both parametric and

semiparametric models.

4 Results

In this Section, we describe mostly the results obtained for the SP500 index. We also devote

the last subsection to discussing their differences with the results for the DAX and Nikkei

indices. All estimation and evaluation procedures were written in GAUSS (by Aptech Sys-

tems, Inc). For numerical optimization, the cml (constrained maximum likelihood) library

and the BHHH algorithm (Berndt, Hall, Hall and Hausman 1974) were employed.

4.1 In-sample fit of parametric models

We compare the following parametric models: the ‘only return’ benchmark, the ‘only indi-

cator’ benchmark, the ‘return and indicator’ benchmark, the ‘squared return and indicator’

model, the ‘absolute return and indicator’ model, the ‘signed absolute return and indicator’

model, the ‘log-volatility and indicator’ model, and the ‘autoregressive score’ model.

Tables 1 and 2 report median (across P = 12512 rolling samples of size T = 5000) t-ratios

for predictor coefficient estimates. The comparison of top two panels of Table 1 eloquently

leads to a conclusion that, except far in the tails, both past indicator and past return are

important predictors when used solely on their own; however, the past indicator is much

stronger. Far in the tails, it is the only strong predictor between the two. When they are

used together, as the bottom panel shows, the past indicator dominates and encompasses the

past return, the latter being practically useless. An attempt to make the DNIC time varying

by using the autoregressive score model does not seem to produce a stronger predictor out

of the past indicator, as the third panel indicates.

Table 2 contains median t-ratios in more complex parametric models. A general observa-

tion is that for some quantiles, though not all, a judiciously chosen second (+third) predictor,

given the past indicator, is able to pull out statistical significance from the past indicator

and become even stronger. Some of such predictors do this job better in the tails, some in

the middle range. For example, the absolute return and signed absolute return are especially

effective far in the tails, while in the center and in non-extreme tails, the log-volatility index

used ad hoc-ly in Anatolyev and Baruńık (2019) turns out to be very effective.
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Figure 1 presents ranking of parametric models by median (across P = 12512 rolling

samples of size T = 5000) values of information criteria AIC and BIC, for the five thresholds,

which are measured relative to those for the static model θt = ω. As a reference point, the

conventional α-level statistically significant difference between two nested models where the

larger model has one more parameter occurs when the relative IC exceeds |qχ
2(1)

1−α −wT |, which

for α = 5% is approximately 2 for AIC and 4.5 for BIC. This implies that all deviations on

the graph noticeable to a naked eye are substantial on the conventional significance scale.

One immediately notices high heterogeneity across the quantiles regarding which para-

metric model is optimal, as well as regarding the maximal deviation of the criterion from its

trivial counterpart, which is relatively small for the median quantile but is relatively large

for the rightmost quantile when AIC is considered; in terms of BIC, however, it is smallest

for the leftmost quantile but large towards the center. There does not seem to be one model

that is optimal for all parts of the distribution, be it in terms of AIC or BIC. At the same

time, each parametric model is optimal or near optimal at least for one of quantiles consid-

ered, in terms of either AIC or BIC. The time-varying ‘autoregressive score’ model with the

smart dynamics is near optimal only for the median quantile. Interestingly, for non-extreme

quantiles, the ‘only return’ benchmark is preferred by IC to the ‘only indicator’ benchmark,

despite the past indicator seems to be a stronger predictor than the past return if one makes

judgements from median t-ratios (see the discussion above).

4.2 Out-of-sample predictability

Figure 2 depicts the two average out-of-sample criteria computed over P = 12512 forecast

periods – the log-probability score and Brier score, for the same set of parametric models.

These criteria are also measured relative to the static model θt = ω. In addition to the

usual heterogeneity of model performances across the quantiles, one notices a much smaller

dispersion for the extreme quantiles in the case of log-probability score and for the extreme

and median quantiles in the case of Brier score. Note that for the 75% quantile, no parametric

model among those under consideration is better than the static model in terms of either

criterion. At the same time, for the whole left side of the return distribution, all parametric

models (except the ‘only return’ benchmark) are no worse than the static model. For these

quantiles, the ‘only indicator’ benchmark, the ‘autoregressive score’ model, and the ‘squared

return and indicator’ model fair evenly and are best performing in terms of both the log-

probability score and Brier score. For the rightmost quantile, however, the role of the best

performing is taken by the models that use past indicator and the signed absolute value of
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past return or past volatility index, albeit these models fare better than others by a narrow

margin. An interesting observation is that the ‘only return’ benchmark model is almost

uniformly worse than the static model by both criteria.

Next, we have run the two semiparametric models – the piecewise linear model with

m = 0 (i.e. M = 1 knot), with m = 1 (i.e. M = 3 knots) and with m = 2 (i.e. M = 5

knots), and the Fourier flexible form with m = 1 (i.e. of order 1) and m = 2 (i.e. of

order 2). Figure 3 depicts the same out-of-sample criteria for these five semiparametric

models relative to the static model, together with those for the quantile-specific and score-

specific best faring parametric models revealed by Figure 2. Interestingly, in terms of both

out-of-sample likelihood and Brier score, the best parametric model fares (weakly) better

for the quantiles in the left side of the return distribution as well as for the extreme right

quantile, while for the 75% quantile there are low-order (and thus not too parameterized)

semiparametric models that outperform the best parametric model (which, for this particular

quantile, is the static model).

4.3 Form of directional NIC

Now we investigate the form of the directional NIC. Figures 4–9 present the DNIC described

by the most flexible semiparametric models – the ‘piecewise 5-knot linear’ model (in blue)

and the ‘Fourier of order 2’ model (in orange). For Figures 4–6, the models are estimated

within the first 5000-periods window, for Figures 7–9 – within the last 5000-periods window;

Figures 4 and 7 present DNICs for purely directional predictions, Figures 5 and 8 – for

intermediate quantiles, and Figures 6 and 9 – for extreme quantiles.

In most of the graphs, the two semiparametric methods agree on the DNIC shapes,

though at times the Fourier flexible form shows spurious curls and loops. There is certain

temporal non-stability of parameters, but the general lineaments are similar in the early and

late periods: for the left quantiles, the DNICs are negative, asymmetric and possibly shifted

V-shaped, while for the right quantiles, the DNICs are positive, asymmetric and possibly

shifted inverted V-shaped. For the left quantiles, larger past returns, whether positive or

negative, increase the probability of this period’s return not to exceed a negative threshold,

while for the right quantiles, they decrease this probability. These V-shapes are a reflection

of (an extension of) the phenomenon documented by Christoffersen and Diebold (2006) who

showed that volatility movements are able to generate directional predictability even in the

absence of mean predictability. If one treats past absolute returns as a sort of volatility

indicator, larger past absolute returns associated with higher volatility must bring higher
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probability of a return being smaller than a negative threshold and a smaller probability for

a positive threshold. However, the slopes of DNIC for the left quantiles witness a sort of

a leverage effect to directional predictability: the effect of past returns on the probability

of this period’s return to not exceed a negative threshold is larger for negative past returns

than for positive past returns; in the right quantile, the evidence of the leverage effect is

similar but more blurry and more prone to temporal changes.

For purely directional predictions (i.e., with the 50% threshold), the DNIC shape is

most sophisticated and was changing over time most of all – from counterclockwise rotated

inverted S-shaped to skewed and shifted W-shaped. On average, both DNICs are negative

biased, which reflects a higher unconditional rate of positive returns, but this rate evidently

has grown over the years. In earlier days, negative/positive past returns were leading to a

probability of positive returns lower/higher than 1
2
, this relationship exhibiting decreasing

returns to scale and not even being monotonic. In the latest decades, however, both negative

and positive past returns have been leading to a probability of positive returns higher than
1
2
, just with a different intensity, negative past returns having a much higher impact.

Finally, it may be interesting to see if the parametric models capture the sophisticated

shapes of the directional NIC that the semiparametric model uncover. We focus only on the

early estimation period. Figures 10–12 show a parametric DNIC from the most curvy ‘signed

absolute return and indicator’ model (in blue) and the ‘log-volatility and indicator’ model

(in orange). The parametric DNICs do resemble the most adequate semiparametric DNIC

– the one that comes out of the ‘piecewise 5-knot linear’ model – but miss some important

features such as the leverage effect for the extreme quantiles and a smooth transition for

small past returns for purely directional predictions. In spite of these facts, as we have seen

before, these simple and tight parametric specifications often perform better in forecasting

the directions than the ‘more correct’ flexible semiparametric specifications.

4.4 Other indices

In addition to S&P500 returns, we have also experimented with uncovering the DNIC for

DAX and Nikkei index returns, for the median quantile. Perhaps surprisingly, the results

for these two indices are strikingly more trivial. For DAX, the values of information criteria

are practically indistinguishable from their values for the static model; for Nikkei, while the

AIC prefers some models (with a past indicator coupled with a past squared return or past

signed absolute return) to others, the BIC declines all parametric models in favor of the

static model. The median t-ratios, although exhibiting similar patterns, are much smaller
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in value; none of them are statistically significant at conventional levels, the maximal (in

absolute value) values barely reach 1.4 for DAX and 1.8 for Nikkei. Out-of-sample, for none

of the parametric or semiparametric models the log-probability score or Brier score are better

than those for the static model.

Figures 13–14 show the DNIC with the ‘piecewise 5-knot linear’ model (in blue) and the

‘Fourier of order 2’ model (in orange), for earlier estimation periods for DAX and Nikkei,

respectively. If they are taken at face value despite very weak identifiability, the shapes are

even more complex than in case of S&P500; however, the range of the impact is less than

half of that for S&P500: approximately [−0.3, 0.1] versus [−0.7, 0.3]. Such dissimilarity across

different indices, as well as weaker identifiability for indices other than S&P500, reveals itself

in the skewness NIC as well (see Anatolyev and Petukhov 2016).

5 Concluding remarks

We have analyzed the directional news impact curve – the relationship between returns and

next period’s probability of stock prices jumping by less or more than a certain threshold,

zero in particular, – using a long (several decades) S&P500 and other index return data.

We have used a number of simple parametric models suggested in the literature and that

involve past indicators and/or various functions of past returns as driving processes in the

specification for log-odds ratio, as well and more flexible semiparametric models such as the

piecewise linear model and Fourier flexible form.

The semiparametric models reveal that the DNIC has complicated shapes characterized

by asymmetry with respect to past returns and in particular their signs. There is a lot

of heterogeneity across the quantiles considered, or, in other words, across the thresholds

which the price needs to exceed in the next period. There is also evidence that the DNICs

have been subject to changes in shapes and in their parameters during the decades. Simple

parametric models, especially linear in past returns, often miss these features, but despite

this fact, some of them, with the presence of past indicator being crucial, exhibit superior

out-of-sample performance in terms of likelihood and/or Brier scores. These properties of

DNIC for S&P500 returns are not shared by DNIC of other index returns, such as DAX and

Nikkei, for which the dependence of conditional probabilities on the historical returns, at

least for the directional predictions, turns out to be very weak.
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Tables and Figures

Table 1. The median t-statistics on return and indicator variables for the simple benchmarks

and AS model.

median t-statistics

Model on indicator on return

10% −1.5

25% −3.1

only return 50% −2.3

75% −2.2

90% 1.0

10% 4.3

25% 4.0

only indicator 50% 3.4

75% 3.0

90% 2.3

10% 4.2

25% 4.0

only scaled indicator 50% 3.4

75% 3.0

90% 0.9

10% 2.3 −1.0

25% 3.1 −1.6

indicator and return 50% 2.2 −0.5

75% 1.9 −0.4

90% 3.4 1.7

Notes: The table reports median t-statistics for select benchmarks computed over P = 12512 rolling samples

of size T = 5000 of the SP500 index returns.
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Table 2. The median t-statistics on return and indicator variables for the complex bench-

marks.

median t-statistics

Model on indicator on other variables

10% 3.3 0.9

25% 4.1 −0.4

indicator and return squared 50% 3.4 −0.4

75% 2.7 −2.6

90% 0.5 −4.0

10% 1.9 2.4

25% 4.0 −0.0

indicator and absolute return 50% 3.4 −0.1

75% 2.5 −3.2

90% −0.5 −6.4

10% 2.8 0.2 4.2

25% 2.7 0.5 − 1.0

indicator and signed absolute return 50% 2.2 −0.0 − 1.1

75% 0.6 −2.4 − 1.4

90% 0.7 −6.9 − 1.1

10% −1.0 1.8

25% −1.6 4.0

indicator and log-volatility 50% −0.5 3.4

75% −0.4 2.9

90% 1.7 −0.4

Notes: The table reports median t-statistics for select benchmarks computed over P = 12512 rolling samples

of size T = 5000 of the SP500 index returns.

17



Figure 1: In-sample information criteria for parametric models
ure 1. In-sample information criteria for parametric models

        Notes: The figure depicts median AIC and BIC values for parametric DNIC models computed over P=12512  rolling samples of size T=5000  of the S&P500 index returns.
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Notes to Figure 1: The figure depicts median AIC and BIC values for parametric DNIC models computed over P = 12512 rolling samples of size
T = 5000 of the S&P500 index returns.
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Figure 2: Out-of-sample probability score and Brier criteria for parametric models
ure 2. Out-of-sample probability score and Brier criteria for parametric models

        Notes: The figure depicts average log-probability score and Brier scores for parametric DNIC models computed over P=12512  forecast periods, for the S&P500 index.
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Notes to Figure 2: The figure depicts average log-probability score and Brier scores for parametric DNIC models computed over P = 12512 forecast
periods, for the S&P500 index.
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Figure 3: Out-of-sample probability score and Brier criteria for semiparametric and best parametric models
ure 3. Out-of-sample probability score and Brier criteria for semiparametric and best parametric models

        Notes: The figure depicts average log-probability score and Brier scores for select DNIC models computed over P=12512  forecast periods, for the S&P500 index.
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Notes to Figure 3: The figure depicts average log-probability score and Brier scores for select DNIC models computed over P = 12512 forecast periods,
for the S&P500 index.
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Figure 4: Directional news impact curves, early estimation period, 50% threshold

Figure 5: Directional impact news curve, early estimation period, 25% and 75% thresholds

Figure 6: Directional impact news curve, early estimation period, 10% and 90% threshold

Notes to Figures 4–6: The figures depict DNIC for the SP500 index computed for T = 5000 returns in the
period 03.01.1950–31.12.1969 with the five-knot piecewise linear model (in blue) and the order-two Fourier
flexible form (in orange). Horizontal axis: lagged values of return rt−1, vertical axis: values of DNIC.
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Figure 7: Directional news impact curves, late estimation period, 50% threshold

Figure 8: Directional impact news curve, late estimation period, 25% and 75% thresholds

Figure 9: Directional impact news curve, late estimation period, 10% and 90% threshold

Notes to Figures 7–9: The figures depict DNIC for the SP500 index computed for T = 5000 returns in the
period 23.09.1999–08.08.2019 with the five-knot piecewise linear model (in blue) and the order-two Fourier
flexible form (in orange). Horizontal axis: lagged values of return rt−1, vertical axis: values of DNIC.
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Figure 10: Parametric directional NIC, early estimation period, 50% threshold

Figure 11: Parametric directional NIC, early estimation period, 25% and 75% thresholds

Figure 12: Parametric directional NIC, early estimation period, 10% and 90% threshold

Notes to Figures 10–12: The figures depict DNIC for the SP500 index computed for T = 5000 returns in the
period 03.01.1950–31.12.1969 with the past signed absolute return and past indicator model (in blue) and
the model with a past log-volatility index and past indicator (in orange). Horizontal axis: lagged values of
return rt−1, vertical axis: values of DNIC.
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Figure 13: Directional news impact curve for DAX index, early estimation period, 50%
threshold

Notes to Figure 13: The figure depicts DNIC for the DAX index computed for T = 3000 returns in the
period 30.12.1987–30.06.1999 with the five-knot piecewise linear model (in blue) and the order-two Fourier
flexible form (in orange). Horizontal axis: lagged values of return rt−1, vertical axis: values of DNIC.

Figure 14: Directional news impact curves for Nikkei index, early estimation period, 50%
threshold

Notes to Figure 14: The figure depicts DNIC for the Nikkei index computed for T = 5000 returns in the
period 05.01.1965–06.03.1984 with the five-knot piecewise linear model (in blue) and the order-two Fourier
flexible form (in orange). Horizontal axis: lagged values of return rt−1, vertical axis: values of DNIC.
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