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Abstract

We consider a multivariate dynamic model for the joint distribution of binary
outcomes associated with directions-of-change for several markets or assets.
The marginal distribution of each binary outcome follows a dynamic binary
choice model, while the association structure is parameterized via possibly
time varying dependence ratios. We illustrate the technique using daily stock
index returns from three European markets, from three Baltic markets, and
from two Chinese exchanges.

Key words: direction-of-change, binary choice, dependence ratio, stock re-
turns.

�Address: Stanislav Anatolyev, New Economic School, Nakhimovsky Pr., 47, Moscow,
117418 Russia. E-mail: sanatoly@nes.ru. I would like to thank the Editor, an Associate
Editor and two anonymous referees for very useful comments and suggestions.

1



1 Introduction

It has been long recognized that directional prediction of �nancial time series
is as important as prediction of its levels, and helps investors form trading
strategies, allocate funds e¢ ciently and extract pro�ts (e.g., Henriksson and
Merton, 1981; Leitch and Tanner, 1991; Pesaran and Timmermann, 1995).
There has been quite a bit of research which develops tools for testing for sign
predictability and evaluation of directional forecasts (Henriksson and Mer-
ton, 1981; Breen, Glosten and Jagannathan, 1989; Pesaran and Timmermann
1992; Anatolyev and Gerko 2005; Christo¤ersen and Diebold, 2006; Chung and
Hong, 2007). Applications may be found in Hartzmark (1991), Greer (2003)
and Bekiros and Georgoutsos (2008), among many others. The question of
how structural instability a¤ects directional forecast evaluation is studied in
Pesaran and Timmermann (2004). Lesser developed are tools for modeling
directions-of-change, particularly in a multivariate context, although one can
encounter univariate directional analyses in Rydberg and Shephard (2003),
Christo¤ersen and Diebold (2006), Startz (2008), and Anatolyev and Gospodi-
nov (2009).

Of course, one may use classical binary response analysis augmented by dy-
namic e¤ects (e.g., Dueker, 2005; Kauppi and Saikkonen, 2008; Startz, 2008).
Such models are widely used to primarily predict economy�s expansions and re-
cessions (e.g., Birchenhall, Jessen, Osborn, and Simpson, 1999; Dueker, 2005;
Chauvet and Potter, 2005; Startz, 2008). While it is straightforward to carry
these ideas over to modeling the directions-of-change in �nancial markets, it
is often interesting, however, to analyze several markets simultaneously. The
extension of univariate dynamic binary response models to this multivariate
case can go along di¤erent routes. We take the route where the probability
of an upward movement is modeled as an explicit parametric (such as logis-
tic) function of observable history (de Jong and Woutersen, 2007; Kauppi and
Saikkonen, 2008; Startz, 2008). Alternative routes such as the one with latent
variables following their own dynamics (as in, e.g., Dueker, 2005) lead to com-
putationally much more intensive estimation methods. Our main focus is on
the issues of dependence across markets.

One way to model several directions-of-change is to describe the joint evo-
lution of underlying returns based on a multivariate density (e.g., Engle, 2002;
Bauwens and Laurent, 2005) possibly using copulas (e.g., Patton, 2006), and
then convert it into the joint process followed by corresponding binary out-
comes. This �indirect�approach should be classi�ed as unnecessarily restric-
tive, because parameterizations of the joint distributions and its dynamics
lead to numerous restrictions which may not be supported empirically with
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con�dence. Needless to say, such approach leads to a complicated likelihood
function with a high-dimensional parameter vector. Also, it seems redundant
to �rst describe the whole evolution of the joint distribution of several returns,
and then reduce it to the evolution of its simple function. When modeling the
directions-of-change directly, it is much easier to avoid unnecessary restrictions
and describe fully the joint dynamics of direction indicators.

In this paper we propose the dynamic model for directions-of-change of
several assets or markets which originates from a static multivariate binary
choice model of Ekholm, Smith, and McDonald (1995) containing the descrip-
tion of binary marginals and so called dependence ratios, which are the ratios of
joint success probabilities to products of marginal success probabilities for joint
binary outcomes of all possible combinations of individual binary outcomes.
The dependence ratios have a clear interpretation and a number of advantages
over other association measures such as conditional odds ratios (Fitzmaurice
and Laird, 1993), marginal log odds ratios (Glonek and McCullagh, 1995), a
generalization of the two (Glonek, 1996), or copula-type representation (Tajar,
Denuit, and Lambert, 2001). Certain interesting hypotheses and association
models regarding the dependence structure are easily testable.

In our dynamic version of the multivariate direction-of-change model, the
marginal Bernoulli distributions are parameterized as functions of past di-
rections for all markets involved in the analysis, while the dependence ratios
may depend on past directions for the markets related to these dependence
ratios. To illustrate the technique, we apply the model to three sets of daily
stock market index returns: from three leading European markets, from three
emerging markets of Baltic states, and from the two largest Chinese stock
exchanges. The European and Chinese data show little dynamics but high de-
pendence, while the Baltic data show a lot of dynamics but little dependence
among the individual markets. We also demonstrate that our model is able to
produce out-of-sample conditional directional forecasts of high quality which
dominate forecasts produced by the �indirect�approach as well as those based
on univariate models.

The paper is organized as follows. In section 2 we present a parameteriza-
tion of the joint distribution of direction indicators using dependence ratios. In
section 3 we develop a dynamic model and describe its properties. Section 4
contains applications to some developed and emerging markets. Section 5
concludes.
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2 Direction indicators and dependence ratios

Suppose we have m markets with observable return xi from market i; i =
1; :::;m: Denote the direction indicator for market i by

Ii = I fxi > cg ; (1)

where I f�g is the indicator function. Usually, we are interested in the case
c = 0; but the constant c may in general be di¤erent from zero, especially
when the markets are expected on average to grow or fall, and c may well be
di¤erent across markets.

Denote by y the cell encoded as an 1�m vector of ones and zeros corre-
sponding to �up�(success) and �down�(failure) directions-of-change, respec-
tively, i.e. y = (y1; y2; :::; ym) 2 f0; 1gm. Let �y be a cell probability corre-
sponding to y, i.e. the joint probability mass of the vector I = (I1; I2; :::; Im)

0.
Denote Ny1 = fi : yi = Iig and Ny2 = fi : yi = 1� Iig ; and also by my

1 and m
y
2

the cardinalities of Ny1 and N
y
2: De�ne the cell indicator for the cell y as

Iy = I fI = y0g =
mY
i=1

I fIi = yig :

Because I fIi = 1g = Ii and I fIi = 0g = 1 � Ii; it is straightforward to see
that

Iy =

0@Y
k2Ny1

Ik

1A0@Y
i2Ny2

(1� Ii)

1A
=

0@Y
k2Ny1

Ik

1A0@ 1X
j1=0

:::
1X

jm2=0

�
(�1)

Pm2
i=1 ji

� Y
i2Ny2

Ijii

1A :

For example, in the case m = 3 and y = (1; 0; 1) we have N(101)1 = f1; 3g,
N(101)2 = f2g ; m(101)

1 = 2; m
(101)
2 = 1; �(101) = Pr fx1 > c; x2 � c; x3 > cg ; and

I(101) = I1 (1� I2) I3:
Let us denote by �i the marginal (success) probability corresponding to

market i; i.e.
�i = Pr fxi > cg = E(Ii):

Denote by �i1i2:::i` the joint (success) probability corresponding to di¤erent
markets i1; i2; :::; i`; where 1 < ` � m and 1 � ij � m for all j = 1; :::; `; i.e.

�i1i2:::i` = Pr fxi1 > c; xi2 > c; :::; xi` > cg :
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We factorize each joint probability �i1i2:::i` into the product of corresponding
marginal probabilities �i1 ; �i2 ; :::; �i` and the dependence ratio i1i2:::i` for
markets i1; i2; :::; i`:

�i1i2:::i` = �i1�i2 :::�i`i1i2:::i` :

When the markets are independent, all dependence ratios equal unity. A de-
pendence ratio greater than unity is indicative of positive association between
the involved markets. The deviation of a dependence ratio from unity measures
how far the corresponding joint success probability di¤ers from that under in-
dependence. For example, 12 = 2 means that the probability of I1 = I2 = 1
is twice that under independence; 123 = 1:5 means that the probability of
I1 = I2 = I3 = 1 is 50% larger than that under independence; etc.

Ekholm, Smith, and McDonald (1995) show that there is explicit, albeit
nonlinear, mapping from the collection of �i for all i and �i1i2:::i` and i1i2:::i`
for all combinations i1; i2; :::; i`; to the collection of �y for all y 2 f0; 1gm : It is
this collection of �y that enters the likelihood function. The mapping can be
written as follows:

�y = E(Iy)

=
1X

j1=0

:::

1X
j
m
y
2
=0

�
(�1)

Pm
y
2

i=1 ji

�
E

24Y
k2Ny1

Y
i2Ny2

IkI
ji
i

35 : (2)

The expectation of the product at the end of this formula has the form

�i1�i2 :::�i`i1i2:::i`

for an appropriate combination i1; i2; :::; i`: For example, when m = 3; there
are three dependence ratios of order 2, 12; 13; 23; and one dependence ratio
of order 3; 123; the mapping looks as follows:

�(111) = �1�2�3123
�(110) = �1�2 (12 � �3123)

�(101) = �1�3 (13 � �2123)

�(011) = �2�3 (23 � �1123)

�(100) = �1 (1� �212 � �313 + �2�3123)

�(010) = �2 (1� �112 � �323 + �1�3123)

�(001) = �3 (1� �113 � �223 + �1�2123)

�(000) = 1� �1 � �2 � �3 + �1�212 + �1�313 + �2�323 � �1�2�3123

Now, let previously considered variables additionally indexed by t cor-
respond to observation t (t = 1; 2; :::; T ), containing the vector of returns
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xt = (x1;t; x2;t; ::; xm;t)
0 and associated indicator vector It = (I1;t; I2;t; ::; Im;t)

0 :
Note that Ekholm, Smith, and McDonald (1995) and Ekholm, McDonald and
Smith (2000) parameterize the marginal probabilities as some functions of
exogenous variables characterizing corresponding IID units. In our context,
�units� are time periods having a di¤erent nature, so we keep the marginal
probabilities constant for now and postpone parameterizations to the next
section. The total loglikelihood is then written as

` (x1; x2; ::; xT ;') =

TX
t=1

0@ X
y2f0;1gm

Iyt log �
y

1A (3)

and is to be maximized with respect to 2m � 1 parameters in the collection

' =
�
�1; �2; :::; �m; 12; :::; m�1;m; 123; :::; m�2;m�1;m; :::; 12:::m

�
:

The maximum likelihood theory suggests that under suitable conditions, the
maximum likelihood estimator '̂ of ' is consistent, asymptotically normal and
asymptotically e¢ cient, with an information matrix consistently estimated in
a straightforward way (see, e.g., Gouriéroux and Monfort, 1981). One notable
condition in this context is that no marginal success probability is exactly zero
or one (i.e. some markets must grow faster and some slower than at rate c),
which will hold if the constant c in (1) is chosen judiciously.

Note that if maximization of (3) is performed with respect to the collection
of �y; y 2 f0; 1gm subject to the constraint

P
y2f0;1gm �

y = 1; the resulting ML
estimates of �y are equal to the empirical probabilities for corresponding cells.
The ML estimates of marginal success probabilities and dependence ratios can
be recovered using the mapping (2), which is, however, very hard to do even for
small m (not to mention that to compute standard errors is even harder) due
to a highly nonlinear nature of (2). Therefore, it is preferable to maximize (3)
with respect to the parameters in ' in the �rst place.

As pointed out in Ekholm, Smith, and McDonald (1995) and Ekholm,
McDonald and Smith (2000), using the dependence ratios has several advan-
tages over using other association structures such as conditional odds ratios
frequently used in statistical processing of binary data (for example, in Fitz-
maurice and Laird, 1993).

First, the interpretation of dependence ratios does not depend on how
many markets are in analysis, while that of conditional odds ratios does. This
means that adding a new market to a set of markets under analysis does not
change the old dependence ratios and their interpretation. For example, 12
is unrelated to the value of m (provided that m � 2), while the conditional

6



odds ratio for markets 1 and 2 evidently depends on m in the conditional set
(y3 = 0; :::; ym = 0) :

Second, when m > 2; no explicit mapping from the collection of marginals
and conditional odds ratios to the collection of �y exists, while it does exist
in case of dependence ratios. This greatly facilitates maximum likelihood
methods.

Third, the method described permits handling missing data in a straight-
forward way, while this is not the case when the association parameters are
conditional. In analyzing several �nancial markets it sometimes happens that
some markets are closed (because of, for example, national holidays) when
others are open, which results in missing data. If the �missing at random�
assumption can be accepted, for the observation t having missing yi�1 ; ..., yi�` we

replace in the loglikelihood
P

y I
y
t log �

y by
P

y I
y
t log

P
i�1;:::;i

�
`
�
yjyi�1:::i�` ; where

�
yjyi�1:::i�` signi�es the cell probability corresponding to y given the particular
combination yi�1:::i�` :

There are nonetheless two minor disadvantages in using dependence ratios
to using conditional odds ratios. First, the dependence ratio is not invariant
to the exchange of 1 and 0, i.e. to what we call the success and what we
call the failure. If we switch codes 1 and 0 for a couple of markets, the
corresponding conditional log odds ratio will only change its sign, while the
dependence ratio will take on a new value according to a nonlinear mapping
that also involves the marginals. However, if the direction of the market does
not possess symmetry (indeed, the perception of bull and bear markets is
di¤erent), this may be considered as an advantage rather than a drawback.
Second, the maximum likelihood estimates of marginal distribution parameters
and conditional odds ratios have a property of asymptotic block-diagonality of
the asymptotic variance matrix, a property not shared by dependence ratios.
However, this block diagonality, being a pleasant property, is not critical at
all.

Beside conditional odds ratios, there exist yet other measures of association
between binary variables which also are less advantageous than the dependence
ratios. The marginal log odds ratios (Glonek and McCullagh, 1995), which are
contrasts of log odds ratios in various joint distributions, are more interpretable
than conditional odds ratios, but also lack the existence of an explicit mapping
to the collection of �y: The copula-type representation for bivariate binary data
proposed by Tajar, Denuit and Lambert (2001) seems unnecessarily complex
and not generalizable to more than two binary variables in a straightforward
way.

It is also important to realize that the parameterization of the above model
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is complete in the sense that no assumptions are made beyond the description
of the full joint distribution of all m binary outcomes. An alternative, �indi-
rect�approach where one fully describes the joint distribution of underlying
returns and subsequently converts it into the joint distribution of correspond-
ing binary outcomes, should be classi�ed as unnecessarily restrictive, because
parameterizations of the marginal distributions and the dependence structure
of returns themselves necessarily leads to numerous restrictions, not to mention
excessive complicatedness of this approach.

Ekholm, Smith, and McDonald (1995) suggest a number of hypotheses
about certain con�gurations of the dependence ratios. These hypotheses im-
pose restrictions on dependence ratios i1i2:::i` and thus on joint probabili-
ties �i1i2:::i` without restricting marginal probabilities �1; :::; �m: The most re-
strictive hypothesis is that of independence across markets which assumes
that all dependence ratios are equal to unity. Another one is a hypothesis
of horizontal homogeneity which assumes equal dependence within all sub-
sets of markets of equal size. For example, when m = 3; this implies two
restrictions 12 = 23 = 13; when m = 4; this implies eight restrictions
12 = 13 = 14 = 23 = 24 = 34 together with 123 = 124 = 134 = 234:
When horizontal homogeneity holds and m > 2; the hypothesis of vertical
homogeneity assumes that the e¤ect on the dependence ratio of expanding
the subset of markets by one is the same irrespective of the size of the ini-
tial subset. For example, when m = 3; this hypothesis implies one additional
restriction 123 = 212; when m = 4; it implies two additional restrictions
1234 = 

3=2
123 = 312:

More intricate hypotheses implying existence of latent factors underlying
the joint distribution of indicators are described in Ekholm, McDonald and
Smith (2000). One of their association models, called �a latent binary fac-
tor�, seems to be relevant to �nancial markets. This model states that all
m indicators are independent conditional on a realization of a single unobserv-
able binary factor, say b 2 f0; 1g : This imposes the following constraints on
the dependence structure: there is horizontal homogeneity, and each `th or-
der (` = 2; :::;m) dependence ratio equals

�
v + (1� v)w`

�
= (v + (1� v)w)` ;

where v = E (b) 2 (0; 1) and w = E (Iijb = 0) =E (Iijb = 1) 2 (0; 1) are two
�deep�parameters. For example, if m = 3; this means that 12 = 23 = 13 =
(v + (1� v)w2) = (v + (1� v)w)2 and 123 = (v + (1� v)w3) = (v + (1� v)w)3.
The factor b may be interpreted as an indicator re�ecting fundamental changes
in all economies associated with the involved markets and driving the returns
in such a way that all �residual�movements are independent across the mar-
kets. The parameters v and w are interpretable from their de�nitions.

8



3 Adding dynamics

There is su¢ cient evidence that the directions of returns are predictable from
past history. Christo¤ersen and Diebold (2006), Linton and Whang (2007)
and Anatolyev and Gospodinov (2009) �nd convincing evidence of sign pre-
dictability of US stock returns, while Anatolyev (2008) discovers signi�cant
directional predictability in some Eastern European stock markets. Christof-
fersen and Diebold (2006) show that directional predictability may be induced
by volatility dynamics alone even when the returns are conditionally mean
independent. Thus, even e¢ cient markets may well be characterized by direc-
tional predictability.

As noted in the previous section, in Ekholm, Smith, and McDonald (1995)
and Ekholm, McDonald and Smith (2000) marginal probabilities and depen-
dence ratios are handled separately. In particular, the authors suggest setting
each marginal probability to some function (such as logistic) of associated co-
variates. We also follow the approach of separate modeling, but, because in our
context the �units�indexed by t are time periods rather than IID individual
objects, we parameterize the marginal probabilities and possibly dependence
ratios as functions of the history of trades. We include past directions-of-
change in all m markets as variables driving the evolution of marginal proba-
bilities, and the impact of past indicators is allowed to be di¤erent for di¤erent
markets:

�i;t = � (�i;t) ; i = 1; :::;m; (4)

where

�t = ! +

pX
j=1

�j�t�j +

qX
j=1

�jIt�j; (5)

where � (�) is the logistic function

� (z) =
exp (z)

1 + exp (z)
;

�t = (�1;t; �2;t; ::; �m;t)
0 ; ! is an m � 1 vector of intercepts, each �j is an

m�m matrix of autoregressive parameters, and each �j is an m�m matrix
of loadings on past directions-of-change. Such speci�cation for determination
of marginal probabilities is similar to that in Mosconi and Seri (2006) whose
latent regression in a bivariate probit analysis includes a �nite number of past
indicators as driving variables. In the latent processes approach, a vector of
the latent variable and explanatory variables is set to follow a VAR process as
in Dueker (2005). We extend these ideas and in addition include past values of
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�t on the right side of (5). In fact, our speci�cation is a two-way generalization
of the binary autoregressive model �rst proposed in Cox (1981). Even though
past indicators are binary variables, the equation (5) is able to generate a
rich set of values for �t and thus for marginal probabilities. The properties
of �t are familiar from the multivariate ARMA literature. The equation (5)
is a parsimonious representation of an in�nite order autoregressive structure
�t = ~! + 	(L) It for 	(L) = � (L)�1�(L) ; where � (z) = Im �

Pp
j=1 �jz

j

and �(L) =
Pq

j=1�jz
j are �nite order matrix polynomials assumed to be of

full rank, and L is the lag operator. The usual stationarity condition requires
that the roots of det(� (z)) lie outside the unit circle.

Past returns in place of past indicators potentially may also be used as
driving variables in (5). However, in our applications we have discovered a
much better explanatory power of past indicators (cf. Kauppi and Saikko-
nen, 2008). Kauppi and Saikkonen (2008) and Startz (2008) in a univariate
context suggest including lagged marginal probabilities �i;t as regressors in-
stead of lagged �i;t. Another possibility is including current and lagged values
of volatility measures as in Christo¤ersen and Diebold (2006), Christo¤ersen,
Diebold, Mariano, Tay, and Tse (2007) and Anatolyev and Gospodinov (2009);
this requires availability of realized volatility data or supplementary models
for volatility.

We refer to the speci�cation (4)�(5) as the MGARL(p; q) model where the
acronym MGARL stands for �multivariate generalized autoregressive logit�.
Of course, the normal CDF � (�) may be used in place of the logistic func-
tion � (�), in which case we have the MGARP model, the last letter standing
for �probit�. Logit speci�cations can be found in the literature stressing �-
nancial applications (e.g., Foresi and Peracchi, 1995; Rydberg and Shephard,
2003; Christo¤ersen and Diebold, 2006; Anatolyev and Gospodinov, 2009),
while probit is more favored in macroeconomic applications (e.g., Chauvet
and Potter, 2005; Dueker, 2005; Kauppi and Saikkonen, 2008) as well as in
microeconomic empirical examples (e.g., Mosconi and Seri, 2006). The as-
sumption of the logistic distribution (4) as well as the dynamic equation (5)
are testable; see, for example, a review in Gouriéroux (2000).

Let us �rst assume that all 2m �m� 1 dependence ratios do not depend
on time. Then the dynamics of joint probabilities is automatically determined
by the evolution of marginal probabilities. The dependence ratios change their
interpretation: they are now indicative of the degree of conditional dependence
among the involved markets given past realizations in all m markets. As there
are 2m�m�1 dependence ratios, in total there are (m+ pm2 + qm2)+(2m�
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m� 1) parameters in the collection

 =
�
!;�1; :::;�p;�1; :::;�q; 12; :::; m�1;m; 123; :::; m�2;m�1;m; :::; 12:::m

�
:

The loglikelihood function equals

` (x1; x2; ::; xT ; ) =
TX
t=1

0@ X
y2f0;1gm

Iyt log �
y
t

1A ;

and is to be maximized with respect to  : The maximum likelihood theory
suggests that under suitable conditions, the maximum likelihood estimator
 ̂ of  is consistent and asymptotically normal, with an information matrix
consistently estimated in a straightforward way. The �suitable conditions�are
likely to include the requirements for a correct speci�cation and stationarity.
The exact formulation of such conditions is outside the scope of this paper;
the closest reference is de Jong and Woutersen (2007).

The dependence ratios too may be parameterized as functions of past data.
It is reasonable to assume that they depend on past directions only from those
markets that are related to these dependence ratios. Two natural �exible
speci�cations are

i1i2:::i`;t = �i1i2:::i` exp

0@ X
i2fi1;i2;:::;i`g

rX
j=1

�i;jIi;t�j

1A (6)

and

i1i2:::i`;t = �i1i2:::i` +
X

i2fi1;i2;:::;i`g

rX
j=1

�i;jIi;t�j; (7)

where 1 < ` � m and 1 � ij � m for all j = 1; :::; `: The vector of parameters
 then contains all �i1i2:::i` and �i;j in place of all i1i2:::i` : The �-parameters in-
dicate how the degree of dependence varies with directions of past movements,
i.e. whether bullish or bearish markets are more dependent. The dynamics
of joint probabilities is determined by both evolution of marginal probabili-
ties and evolution of dependence ratios. The generalization of homogeneity
hypotheses in case when the dependence ratios are time varying is straightfor-
ward, but the latent binary factor association model does not seem to be.

Irrespective of whether there is dynamics in the model or not, the predicted
probabilities for market i conditional on all the other m� 1 indicators in the
same period can be constructed as

�i;t j�i =
Pr fI1;t; :::; Ii�1;t; 1; Ii+1;t; :::; Im;tjIt�1; It�2; :::gP

yi2f0;1g Pr fI1;t; :::; Ii�1;t; yi; Ii+1;t; :::; Im;tjIt�1; It�2; :::g
: (8)
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This formula contains only values of �yt for y = (I1;t; :::; Ii�1;t; 1; Ii+1;t; :::; Im;t)
and for y = (I1;t; :::; Ii�1;t; 0; Ii+1;t; :::; Im;t) : The denominator can also be in-
terpreted as �yt for y = (I1;t; :::; Ii�1;t; Ii+1;t; :::; Im;t) relative to the whole set of
markets less the ith market. For example, if m = 3; the predicted conditional
probabilities for the �rst market are �1;t j�1 = �1;t123;t=23;t if I2;t = I3;t = 1;

�1;t j�1 = �1;t
�
12;t � �3;t123;t

�
=
�
1� �3;t23;t

�
if I2;t = 1; I3;t = 0; etc. Sim-

ilarly one can construct predicted conditional joint probabilities. Of course,
the feasible forecasts �̂i;t j�i require replacing the unknown parameters by their

estimates from  ̂.

4 Empirical analysis of various stock markets

To illustrate the technique, we use three sets of stock market data, two of
them with 3 indexes (so that m = 3) and one with 2 indexes (so that m = 2).
The �rst set includes daily indexes from the developed European markets:
DAX (Deutsche Börse AG), CAC (Paris Bourse) and FTSE (London Stock
Exchange) from the beginning of 1991 to the end of 2000 (2542 days in total).
The second set includes daily indexes from the young emerging markets of
Baltic states: TALSE (Tallinn Stock Exchange) of Estonia, VILSE (Vilnius
Stock Exchange) of Lithuania, and RIGSE (Riga Stock Exchange) of Latvia
from January 2000 to January 2005 inclusive (1302 days in total). The third
set includes daily indexes from two Chinese stock exchanges, Shanghai a and
Shenzhen a, from October 1992 to January 2005 inclusive (3007 days in total).
For each data set, the series under analysis xt is a collection of logarithmic
returns for three or two indexes. Some summary statistics of the data are
collected in Table 1.

Throughout, we set c = 0, and use the logistic function for the link.
For simplicity, we handle missing data (on days when a stock exchange in
one country did not work while a stock exchange in another country in the
set worked) by imputing returns by dividing the total return by a num-
ber of days with missing data (for indicators, this e¤ectively means repli-
cating the sign of return for the following day). All procedures are writ-
ten in GAUSS. The loglikelihood maximization is performed using the cml
(constrained maximum likelihood) procedure. The beginning-of-sample val-
ues for dynamically changing variables are set to sample means, for example,

�1 =
�
Im �

Pp
j=1 �j

��1 �
! + (

Pq
j=1�j)(T

�1PT
t=1 It)

�
: In choosing lag or-

ders p and q; we �x r at zero and apply the general-to-speci�c methodology
where, starting from maximal orders p = 1 and q = 3 we successively remove
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more distant lags unless at least one parameter in matrix �j and at least one
parameter in matrix �j are signi�cant at the 5% level. After having �xed p
and q, we set r = 2 and remove lags of indicators unless t-ratios for all �-
parameters left exceed unity. Additional experimentation shows that the �nal
con�gurations of p; q and r are insensitive to the order of removal of distant
lags.

Table 1. Summary statistics for the return data from the European, Baltic
and Chinese stock markets.

Mean, �10�4 StDev, �10�2 Ups Downs
DAX 6:12 1:20 1367 1174
CAC 5:43 1:20 1347 1194
FTSE 4:24 0:91 1312 1229
TALSE 9:23 1:09 725 576
VILSE 8:84 0:88 725 576
RIGSE 10:60 1:73 729 572
Shanghai a 1:84 2:69 1484 1522
Shenzhen a 0:27 2:43 1513 1493

Notes: �Mean�and �StDev�stand for the mean and standard deviation of log returns;

�Ups�and �Downs��numbers of ups and downs.

The estimation results are reported in Tables 2a, 2b, and 2c. Note �rst
that for the European and Chinese markets there is no statistically signi�cant
dynamics in marginal success probabilities. This partly re�ects the e¢ ciency
of the developed European markets. The point estimates of !i and their signs
re�ect the extent to which the markets are bullish or bearish (cf. Table 1). In
contrast to the European and Chinese ones, the ine¢ cient Baltic markets re-
veal severe serial dependence in marginal success probabilities: the coe¢ cients
at lagged �t are quite close to unity (two of the three being within two stan-
dard deviations from 1), and whole two lags of past indicators are statistically
signi�cant at the 5% signi�cance level. Interestingly, all o¤-diagonal elements
of �1 and �2 are statistically insigni�cant; moreover, they are jointly insigni�-
cant (the LR test statistic is 7:47 which is far below conventional critical values
for the �2(12) distribution). Therefore, we have imposed their equality to zero
and show only the (reestimated) diagonal elements �1 and �2 of �1 and �2:
This means that last period indicators realized in the other markets have in-
�uence on the marginal probability of a given market only indirectly through
the term �1�t�1:
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Table 2a. Estimates of parameters of the MGARL model for the European
stock markets.

DAX CAC FTSE
! 0:152

0:040
0:120
0:040

0:065
0:040

Notes: Standard errors are below point estimates.

Table 2b. Estimates of parameters of the MGARL model for the Chinese
stock markets.

Shanghai Shenzhen
! �0:024

0:037
0:013
0:036

Notes: Standard errors are below point estimates.

Table 2c. Estimates of parameters of the MGARL model for the Baltic stock
markets.

TALSE VILSE RIGSE
! 0:068

0:042
�0:359
0:123

�0:039
0:026

�1

0BB@
0:920
0:064

0:079
0:038

�0:297
0:139

0:245
0:129

0:648
0:093

0:648
0:370

0:114
0:050

�0:062
0:030

1:012
0:075

1CCA
�1

�
0:449
0:104

0:414
0:117

�0:164
0:103

�
�2

�
�0:441
0:105

�0:005
0:143

0:204
0:110

�
Notes: The row vectors �1 and �2 contain diagonal elements of �1 and �2; all o¤-diagonal

elements being set to zero. Standard errors are below point estimates.

Tables 3a and 3b contain estimates of dependence ratios for the European
and Baltic markets. The dependence ratios are constant in both data sets;
no signi�cant predictability is attained using �exible speci�cations (6) or (7).
For the European markets the dependence ratios of order two are quite high,
and signify that the probability of two markets both going up is 30% to 40%
larger than this probability would be under independence. The dependence
ratio of order three is around 2, i.e. the probability of the three markets
all going up is twice as large as this probability under independence. These
�gures re�ect a high degree of integration of trades in these leading European
markets. In contrast, for the Baltic markets the dependence ratios of order
two are close to unity, if at all statistically signi�cantly di¤erent from it. These
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�gures are a re�ection of a low degree of integration of trades in the emerging
stock markets, despite the fact that they are geographically close and were
established nearly at the same time under similar economic conditions. Table
3c contains estimates of the dependence ratio for the Chinese markets. The
dependence ratio is not statistically signi�cantly far from a constant; using
the �exible speci�cation (7) yields slightly signi�cant dependence which we
nevertheless show. As the results indicate, even higher than in the case of
European markets is the dependence ratio of order two for the two Chinese
exchanges, which is of no surprise. This �gure implies that the probability of
the two exchanges both going up is 72% larger than this probability would
be under independence. Also, the dependence ratio tends to be negatively
associated with past upward movements in both exchanges. The impact of
the Shanghai return is �rst positive, but in the next period it is annihilated
and the long-run e¤ect is slightly negative.

Table 3a. Estimates of dependence ratios in the MGARL model for the
European stock markets.

DAX-CAC DAX-FTSE CAC-FTSE DAX-CAC-FTSE
1:348
0:020

1:319
0:020

1:413
0:022

2:058
0:055

Notes: Standard errors are below point estimates.

Table 3b. Estimates of dependence ratios in the MGARL model for the
Baltic stock markets.

TALSE-VILSE TALSE-RIGSE VILSE-RIGSE TALSE-VILSE-RIGSE
1:048
0:020

1:032
0:021

0:983
0:021

1:065
0:039

Notes: Standard errors are below point estimates.

Table 3c. Estimates of dependence ratios and their dynamics in the MGARL
model for the Chinese stock markets.

r = 0 r = 2
�12 1:723

0:027
1:748
0:034

�1;1 0:036
0:031

�2;1 �0:048
0:031

�1;2 �0:038
0:025

�2;2

Notes: Standard errors are below point estimates.
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Table 4 reports results of testing hypotheses about dependence ratios. In
European markets, the dependence ratios are so high that testing for depen-
dence is super�uous. The two-market dependence ratios, however, are not far
from each other so that the horizontal homogeneity may be tested. The test,
however, rejects horizontal homogeneity even at the 1% signi�cance level. In
the Baltic markets, all three hypotheses of independence, horizontal homo-
geneity and vertical homogeneity are rejected at the 10% signi�cance level,
but are not at the 5% signi�cance level. This in any case points at the sym-
metry and low, if at all, dependence among these emerging markets. If we
believe in horizontal homogeneity and the latent binary factor, but not in ver-
tical homogeneity in the case of Baltic markets, we can compute the implied
values of v = E (b) and w = E (Iijb = 0) =E (Iijb = 1) ; the parameters of the
corresponding association model. To this end, we apply minimum distance
estimation minimizing the quadratic distance between the vector of estimated
dependence ratios and the vector of those implied by the mapping from v and
w. This yields point estimates v = 0:40 and w = 0:74; which imply that the
latent fundamental factor is a bit favorable to downward movements (60=40
odds), which is somewhat surprising for bullish markets; given an upward
fundamental movement, an individual market has 38% more chances to be
positive than in case the fundamental movement is downward.

Table 4. Tests of dependence patterns in the MGARL model for the
European and Baltic stock markets.

Hypotheses European market Baltic market
Independence 9:23

5:6%

Horizontal homogeneity 19:36
0:0%

5:81
5:5%

Vertical homogeneity 7:59
5:5%

Notes: The independence statistic is distributed as �2(4) under independence across the

markets. The horizontal homogeneity statistic is distributed as �2(2) under horizontal

homogeneity across the markets. The vertical homogeneity statistic is distributed as �2(3)

under vertical homogeneity across the markets. P-values are below test statistics.

Our �nal exercise is on out-of-sample prediction, the point of which is to
show a high ability of the model to perform well out-of-sample, even though
such forecasting problem is barely feasible in real life. We use additional (�out-
of-sample�) data for the European markets from the beginning to the end of
2001 (245 days in total). We compare several sets of directional predictions.
One set represents two naïve forecasts: �straight up�when the prediction is
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1 no matter what; �straight down�when the prediction is 0 no matter what.
The second set of predictions, called �unconditional� and �conditional�, is
generated by our �direct�model described and estimated before. To generate
�unconditional�predictions, no information on directions-of-change in the two
other markets is used. That is, such predictions use three individual separate
univariate models, and we employ both static (corresponding to the absence
of dynamics in the �tted MGARL model) and dynamic (using only lagged
directions for the same markets) versions. To generate �conditional�predic-
tions, information on directions-of-change in the other two markets is used as
described at the end of section 3. The third type predictions used for com-
parison purposes are generated using the �indirect�approach to prediction of
directions-of-change, i.e. via a fully speci�ed multivariate dynamic model for
the returns. In the �indirect�approach, we exploit a trivariate GARCH�DCC
model of Engle (2002):

xtjIt�1 � N (�;
t) ;

where 
t = DtRtDt,

D2
t = 	+Kdiag

�
(xt�1 � �) (xt�1 � �)0

	
+ LD2

t�1;

Rt = diag fQtg�1=2Qtdiag fQtg�1=2 ;
Qt = �Q (1� �� �) + �D�1

t (xt�1 � �) (xt�1 � �)0D�1
t + �Qt�1;

	; K; L are diagonal and positive, and �Q is symmetric positive de�nite, and
diag f�g replaces all non-diagonal elements with zeros. Because of conditional
normality, conditional mean forecasts are linear in the other markets�returns
and can be computed in the following way: for market i; the conditional
mean is �i;t j�i = Si� + F 0S�i (xt � �) ; the conditional variance is !i;t j�i =

Si
tS
0
i + F 0tS�i
tS

0
�iFt; where Ft =

�
S�i
tS

0
�i
��1

S�i
tS
0
i; and Si; S�i are

selector matrices that select matrix rows related to market i and all markets
but i; respectively. The conditional directional probability forecasts for market
i are generated as �i;t j�i = �(�i;t j�i=

p
!i;t j�i): Of course, the feasible forecasts

�̂i;t j�i are constructed using estimates of the GARCH�DCC model.
We evaluate directional forecasts using the proportion of unsuccessful di-

rectional predictions U and the (absolute value) Brier score B popular in earth
sciences and medicine, but sometimes used in economics and �nance (see, e.g.,
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Christo¤ersen, Diebold, Mariano, Tay, and Tse, 2007):

Bi =
1

P

T+PX
t=T+1

j�̂i;t � Ii;tj;

Ui =
1

P

T+PX
t=T+1

jÎi;t � Ii;tj;

where Ii;t is a realized direction indicator, �̂i;t is a positive direction-of-change
probability forecast , Îi;t = If�̂i;t > cutig is a direction forecast, cuti is a speci-
�ed cuto¤ level, and P is a number of predictions (P = 244 in our case). Both
statistics are bounded between 0 and 1, the closer they are to zero the better
the predictions are. In contrast to matching indicator predictions with real-
izations in U , directional probabilities and indicator realizations are compared
in B. The cuto¤ level cuti separates �up� forecasts from �down� forecasts.
Reasonable values for cuti are 0:5 and a proportion of positive returns in the
sample. Note that by construction both measures for naïve forecasts in a given
market are equal.

Table 5. Out-of-sample forecasting results for the European stock markets.

Market DAX CAC FTSE DAX CAC FTSE
Predictions B U
Straight up 0:53 0:52 0:52 0:53 0:52 0:52
Straight down 0:47 0:48 0:48 0:47 0:48 0:48
Unconditional 0:50 0:50 0:50 0:53 0:52 0:52
Conditional 0:33 0:29 0:32 0:16 0:18 0:18
GARCH�DCC 0:36 0:41 0:41 0:18 0:25 0:24

Notes: Reported are statistics measuring the degree of out-of-sample �t of direction

forecasts: B is the (absolute value) Brier score, and U denotes a proportion of unsuccessful

directional predictions.

The results are presented in Table 5. We compute indicator forecasts for
cuti = 0:5; setting cuti to a proportion of positive returns in the estimation
sample when the European markets were slightly bullish delivers qualitatively
similar results, but the di¤erence between the �direct� and �indirect� ap-
proaches is more crispy; alternatively, setting it to a proportion of positive
returns in the prediction sample when the European markets were slightly
bearish diminishes that di¤erence. The static unconditional forecasts in our
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case coincide with �straight up�forecasts because the predicted probabilities
for all markets are greater than 0.5. These forecasts are overall bad and their
reversion to �straight down�improves the statistics, not appreciably though.
Switching to dynamic unconditional forecasts leaves direction forecasts intact,
while only slightly shifts the Brier scores.

The use of dependence ratios improves the quality criteria dramatically,
from near non-predictability to very signi�cant predictability, because of a
high degree of dependence among the three markets. Importantly, the �in-
direct� approach using the GARCH�DCC model delivers worse directional
predictions, both in terms of predicted directional probabilities and predicted
directions themselves. Interestingly, the GARCH�DCC model has a tendency
to be more �pessimistic�about �up�movements than the MGARL model: in
total 160 (out of 375) �up�predictions generated by the MGARL model are
�down�predictions when generated by the GARCH�DCC model, but only 4
(out of 357) predictions are switched in the opposite direction. On average, it
is more (wrongfully) pessimistic about the CAC index, which is re�ected in a
larger increase in scores relative to scores provided by the MGARL model. We
have also generated predictions from individual GARCH submodels implicit
in the GARCH�DCC structure. These �indirect�univariate predictions have
turned out to be very similar to the �straight down�forecasts.

The �indirect�approach shows worse performance presumably because of
possibly incorrect shape restrictions (e.g., conditional normality) or/and incor-
rect dynamics (e.g., no conditional mean dynamics), and in addition because of
relatively many parameters to estimate (the GARCH�DCC model contains 20
parameters, while only 7 parameters are used in the MGARL(0,0) model). Of
course, it is possible that a more sophisticated �indirect�model with a skewed
thick-tailed conditional density and complicated mean dynamics may even-
tually outperform the MGARL(0,0) model, but the computations may turn
out to be enormous (in particular, the form of the conditional density may be
very involved and not necessarily explicit). The proposed �direct�approach
and the MGARL framework are less prone to these tendencies. Also, it is as
well possible that including a nonlinear mean dynamics to the MGARL(0,0)
equations would improve its forecasting abilities too.

5 Concluding remarks

We have developed a multivariate dynamic model for the joint distribution
of binary outcomes associated with directions-of-change for several markets
or assets, where the marginal distribution of each binary outcome follows a
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dynamic binary choice model, while the association structure is parameterized
via possibly time varying dependence ratios. We have illustrated the technique
using daily stock index returns from three European markets, from three Baltic
markets, and from two Chinese exchanges. While the European and Chinese
data show little dynamics but high dependence, the Baltic data show a lot of
dynamics but little dependence among the individual markets. Finally, model-
ing dependence ratios is able to produce out-of-sample conditional directional
forecasts of high quality and dominate in this sense the �indirect�approach
and univariate modeling.
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