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Abstract

We develop a test for a restricted functional form of a mean regression when a complex

distributional model for all variables is estimated. The test statistic is an average squared

deviation from the estimated hypothesized form of the form implied by the estimated para-

metric model, and is asymptotically distributed as a mixture of chi-squared distributions.

The test is easy to implement using numerical derivatives, and it performs well in samples of

typical size. We illustrate the test using data on labor market characteristics of U.S. young

men.
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1 Introduction

In a fully parametric setup when the distributional specification is available, one may be inter-

ested in whether the mean regression takes a particular restricted functional form. While the

unrestricted regression may be inferred from the specified distribution and estimated from the

data, it is likely to allow a rich variety of shapes.1 In such a case, it is often interesting whether

the shape of the mean regression reduces to some functional form implied by economic theory,

tradition in the literature, or visual inspection; at the same time, it may be problematic to test

directly for parametric restrictions embedded in the hypothesized shape. As an example, Figure

2 from our illustrative application based on a complex mixed continuous/discrete distribution

presents two regressions of a wage variable on a variable representing education and on a variable

representing age, derived from the estimator of the fully parametric (i.e. joint distributional)

model. One of these regressions looks quite like linear to a naked eye, and is widely assumed

to be linear in the literature, but is it truly linear? The other may seem to be cubic or quartic,

but is it truly such? Do the observable deviations from a low-order polynomial owe merely to

the sampling error, or do they evidence against these simple forms of the conditional mean?

In this paper, we develop a test for a parametric functional form of a mean regression when

the full parametric model for all variables is estimated.2 A natural test statistic is the average

squared deviation of the regression function implied by the estimated parametric model from

the hypothesized functional form. We derive the asymptotic distribution of the test statistics,

which turns out to be a weighed sum of chi-squared distributions with one degree of freedom.

Even though the test statistic is non-pivotizable (except possibly in some special cases when the

distribution collapses to a single scaled chi-squared distribution with one degree of freedom), the

test is easy to implement by employing estimates of the weights by using numerical derivatives

of the true and hypothesized regression functions and the score function. We demonstrate good

size and power properties of the test in finite samples using two simple stylized models – one is

based on bivariate normality, and the other on a mixed continuous/discrete marginals linked by

a copula. Finally, we illustrate the test using Card’s (1995) data on wage, education and age of

a few thousand U.S. young men. Despite the regressions may look seemingly linear to a naked

eye, the test decidedly rejects linearity of regressions of log-wage on education, log-wage on age,

and log-wage on both education and age, as well as of low-order (quartic) polynomial analogs

1Unless the distributional specification is very simple, as, for example, joint normalily, in which case the mean
regression is necessarily linear.

2Another appropriate context is semiparametric where a conditional distribution is specified and estimated in
the first place. However, this case is less practical, because specifying a conditional distribution typically entails
specifying the conditional mean as a part of the modeling strategy.
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of these.

There exists a variety of tests for a parametric form of a mean regression against non-

parametric alternatives; see, for instance, Härdle and Mammen (1990) and Horowitz and Spokoiny

(2001). This is also a valid approach to testing for a regression parametric specification. How-

ever, when the whole framework is parametric, more natural is to utilize it and perform testing

within the parametric distributional model. In addition, from the technical standpoint, the non-

parametric tests usually involve kernel estimation of the mean regression and bootstrapping of

the test statistic, so their implementation is more involved than that of the test proposed here.

The paper is structured as follows. In Section 2 the setup is described, the assumptions are

laid out, and properties of auxiliary estimates are derived. In Section 3 the test statistic and

its asymptotic properties are presented, and implementation of the test is described. Section

4 contains two illustrative examples, accompanied by simulation evidence. In Section 5, we

illustrate how the test works using labor market data. Finally, Section 6 concludes. All proofs

and tedious derivations are relegated to the Appendix. Notes on notation: ‖·‖ denotes the L2

norm of a matrix, by dim (·) we denote dimensionality of a vector, by rk(·) – its rank.

2 Setup and estimation

Suppose there is a parametric density3 model f(u, v|θ), θ ∈ Θ for a pair of possibly multidimen-

sional random variables (u, v) , u being scalar and v being possibly multidimensional, and let θ0

be the true value of parameter θ. The implied mean regression for u given v is the value at θ0

of the conditional expectation function

E (u|v, θ) =

∫ +∞

−∞
uf(u|v, θ)du,

where

f(u|v, θ) =
f(u, v|θ)
g(v|θ)

is the conditional density of u given v, and

g(v|θ) =

∫ +∞

−∞
f(u, v|θ)du

3We call simply by ‘density’ what may in fact be a mass in the case discrete variables are considered, or a
density/mass in the case mixed continuous/discrete variables are. The integrals considered from now on are then
redefined accordingly.
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is the marginal density of v. The estimated implied regression is then

E
(
u|v, θ̂

)
=

1

g(v|θ̂)

∫ +∞

−∞
uf(u, v|θ̂)du, (1)

where θ̂ is the maximum likelihood estimator of θ0:

θ̂ = arg min
θ∈Θ

n∑
i=1

ln f(ui, vi|θ).

We would like to compare the implied regression (1) to the parametric functional form

ψ
(
v, β0

)
, where

β0 = arg min
β∈B

E
[
(u− ψ (v, β))2

]
.

The estimator β̂ of the (pseudo)true value of the parameter β0 is based on least squares4:

β̂ = arg min
β∈B

n∑
i=1

(ui − ψ (vi, β))2 .

Denote ϑ = (θ′, β′)′ and ϑ0 =
(
θ0′, β0′)′. Because the test to be developed will need to

use information on asymptotic correlatedness between θ̂ and β̂, we frame the two estimation

problems inside one joint optimization problem5

ϑ̂ ≡
(
θ̂′, β̂′

)′
= arg max

θ∈Θ,β∈B

1

n

n∑
i=1

{
Q (ui, vi|ϑ) ≡ ln f (ui, vi|θ)−

1

2
(ui − ψ (vi, β))2

}
,

and the asymptotic variance estimate V̂ϑ for ϑ̂ can be obtained numerically from this optimization

problem. The factor 1
2 is added for convenience of computing the derivatives; its presence (or

presence of any other positive factor) does not affect the estimator or its properties.

Let us have a closer look at the structure of V̂ϑ. Because ϑ̂ is an extremum estimator, it has

a sandwich form H−1ΩH−1, where H is a Hessian matrix, and Ω is a variance matrix of first

derivatives. Because of an additive structure of Q (u, v|ϑ) in θ and β, H has a block-diagonal

form

H =

 Hf 0

0 −Mψψ

 ,
4The use of other consistent criteria is also possible. The test can be modified in a straightforward way.
5Even in the most likely case when ψ (v, β) is linear in β and the solution for β̂ is known in a closed form, the

ML estimator θ̂f is likely not, so one still has to solve a nonlinear optimization problem. The closed form of β̂
can be conveniently used as an starting (and final) point for β during optimization.
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where

Hf = E

[
∂2 ln f(u, v|θ0)

∂θ∂θ′

]
= E

[
∂2Q

(
u, v|θ0, β0

)
∂θ∂θ′

]
and

Mψψ = E

[
∂ψ
(
v, β0

)
∂β

∂ψ
(
v, β0

)
∂β′

]
= −E

[
∂2Q

(
u, v|θ0, β0

)
∂β∂β′

]
.

Next,

Ω =

 −Hf Mufψ

M ′ufψ Mu2ψψ

 ,
where

Mufψ = E

[(
u− ψ

(
v, β0

)) ∂ ln f(u, v|θ0)

∂θ

∂ψ
(
v, β0

)
∂β′

]
,

Mu2ψψ = E

[(
u− ψ

(
v, β0

))2 ∂ψ (v, β0
)

∂β

∂ψ
(
v, β0

)
∂β′

]

and the northwest corner is occupied by Hf because of information matrix equality (recall that

θ̂ is an ML estimate). Putting the pieces together,

V̂ϑ = H−1ΩH−1 =

 −H−1
f −H−1

f MufψM
−1
ψψ

−M−1
ψψM

′
ufψH

−1
f M−1

ψψMu2ψψM
−1
ψψ

 .
Note that while H is necessarily of full rank, the matrix Ω may well be singular. In one of

examples in Section 4, rk(Ω) = 4 while dim (ϑ) = 5. The matrices Hf , Mψψ, Muψψ and Mu2ψψ

can be easily estimated by numerical derivatives and the parameter estimate ϑ̂ already obtained.

We make a number of assumptions that guarantee existence of the above moments and

ensure joint consistency and asymptotic normality of ML and LS estimates θ̂ and β̂.

Assumption 1 The following about data generation holds:

(a) the data {(ui, vi)}ni=1 is a random sample from a population with probability density f(u, v|θ0)

and finite E
[
u2
]

;

(b) the parameter set Θ is a compact subset of Rdim(θ), and θ0 is in the interior of Θ;

(c) for any θ ∈ Θ such that θ 6= θ0, it holds that f(u, v|θ) 6= f(u, v|θ0);

(d) f(u, v|θ) is continuous in θ on Θ and twice continuously differentiable in θ in a neighborhood

Nθ of Θ;

(e) the following moments are finite: E [supθ∈Θ |f(u, v|θ)|] , E
[
supθ∈Nθ

∥∥∂2 ln f(u, v|θ)/∂θ∂θ′
∥∥] ,

and the following functions are integrable: supθ∈Nθ ‖∂f(u, v|θ)/∂θ‖ , supθ∈Nθ
∥∥∂2f(u, v|θ)/∂θ∂θ′

∥∥ ;
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(f) the matrix Hf is non-singular.

Assumption 2 The following about the hypothesized regression function holds:

(a) the parameter set B is a compact subset of Rdim(β), and β0 is in the interior of B;

(b) for any β ∈ B such that β 6= β0, it holds that ψ (v, β) 6= ψ
(
v, β0

)
;

(c) ψ (v, β) is continuously differentiable in β on B and twice continuously differentiable in β in

a neighborhood Nβ of B;

(d) the following moments are finite: E
[
supβ∈B ψ (v, β)2

]
, E

[
supβ∈B ‖∂ψ (v, β) /∂β‖2

]
,

E
[
supβ∈Nβ ‖∂ψ (v, β) /∂β · ∂ψ (v, β) /∂β′‖

]
, E

[
supβ∈Nβ

∥∥∂2ψ (v, β) /∂β∂β′
∥∥2
]

;

(e) the matrix Mψψ is non-singular.

Lemma 1: Suppose assumptions 1–2 hold. Then ϑ̂
p→ ϑ0.

For future use, define

∆ = E

[(
∂E(u|v, θ0)

∂ϑ
−
∂ψ
(
v, β0

)
∂ϑ

)(
∂E(u|v, θ0)

∂ϑ
−
∂ψ
(
v, β0

)
∂ϑ

)′]
.

A natural estimator of ∆ is

∆̂ =
1

n

n∑
i=1

(
∂E(u|vi, θ̂)

∂ϑ
− ∂ψ(vi, β̂)

∂ϑ

)(
∂E(u|vi, θ̂)

∂ϑ
− ∂ψ(vi, β̂)

∂ϑ

)′
.

For simplicity, we assume that this evaluation occurs without computational error.6 We make

additional technical assumptions that ensure finiteness of ∆ and consistency of ∆̂.

Assumption 3 The following moments exist and are finite: E
[
supθ∈Θ ‖∂ ln f(u|v, θ)/∂θ‖2

]
,

E
[
supθ∈Nθ ‖E [u · ∂ ln f(u|v, θ)/∂θ|v]‖2

]
.

Lemma 2: Suppose assumptions 1–3 hold. Then ∆̂
p→ ∆.

6There are several sources of computational errors: software’s round-off error, error in evaluation of integrals
on a finite domain, error from neglecting tails of functions being integrated, and error in evaluation of derivatives.
See Judd (1998) for information about orders of some of these approximation errors. For example, two-sided
differences in evaluation of first derivatives lead to errors of order O

(
h2 + h−1ε

)
, where h is a step size and ε

is an error in computation of the function being integrated (which may exceed the round-off error) (Judd, 1998,
section 7.7); numerical integration on a bounded interval using the Gaussian–Chebychev quadrature causes errors
of order O

(
(22m(2m)!)−1

)
, where m is a number of quadrature nodes (Judd, 1998, section 7.2). We assume that

the total computational error is sufficiently controllable so that it does not affect the test statistic to the precision
used to compute it.

6



Note that because of convenient partitioning of ϑ into θ and β and dependence E (u|v, θ)

only on θ and of ψ (v, β) only on β, differentiation inside ∆ also separates out, and one can

rewrite

∂E
(
u|v, θ0

)
∂ϑ

−
∂ψ
(
v, β0

)
∂ϑ

=


∂E
(
u|v, θ0

)
∂θ

−
∂ψ
(
v, β0

)
∂β

 . (2)

While the bottom entry can be computed analytically, for the top entry one can use the ma-

chinery of numerical derivatives in a straightforward way.

3 Test and asymptotics

Suppose that ψ (v, β) is specified so that it may be equal, almost surely, to E (u|v, θ) derived

from a fully parametric model f(u, v|θ) for some combination of θ and β. The null hypothesis

to be tested is

H0 : E
(
u|v, θ0

)
= ψ

(
v, β0

)
a.s.

Denote

Λ = H−1ΩH−1∆.

The test of the null H0 is based on the comparison at data points of regression values implied

by the full parametric model and by the hypothesized regression function. The sample squared

deviations statistic is

D̂ =
1

n

n∑
i=1

(
E(u|vi, θ̂)− ψ(vi, β̂)

)2
,

which is the sample analog to

D = E
[(
E
(
u|v, θ0

)
− ψ

(
v, β0

))2]
,

which is zero under H0 and nonzero otherwise.

The following theorem provides the asymptotic distribution of D̂ under the null, which turns

out to be a weighted sum of chi-squared distributions.

Theorem 1: Suppose assumptions 1–2 hold and rk(Λ) 6= 0. Then, under H0,

nD̂
d→ D,
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where

D d
=

dim(ϑ)∑
j=1

λjζ
2
j ,

where {λj}dim(ϑ)
j=1 are eigenvalues of Λ, and {ζ2

j }
dim(ϑ)
j=1 ∼ IID χ2

(1).

To implement the test, one computes D̂, constructs consistent estimates Ĥ and ∆̂ of H and

∆ and finds eigenvalues {λ̂j}dim(ϑ)
j=1 of Λ̂ = Ĥ−1Ω̂Ĥ−1∆̂. Then one simulates the distribution of

D̂ d
=

dim(ϑ)∑
j=1

λ̂jζ
2
j ,

and reads off its relevant right quantile to use as critical values for nD̂.7

Note that Λ may well be of reduced rank, and it may be of rank even lower than dim (θ)

and/or dim (β). In one of examples in Section 4, rk(Λ) = 1 while dim (θ) = 3 and dim (β) = 2;

in the second example, rk(Λ) = 3 while dim (θ) = 5 and dim (β) = 2. This happens because

typically there is a great deal of collinearity between the derivative of the true regression, the

derivative of the hypothesized regression, and the score, at least under the null. This phe-

nomenon does not, however, pose any difficulties in implementation in case rk(Λ) is a priori

unknown (which is typically the case) as the other dim (ϑ)− rk(Λ) eigenvalues of Λ are zeros.

Consider now the situation when the null hypothesis does not hold. More precisely, the

null does not hold if for no parameter value the functional form ψ (v, β) coincides with the true

regression almost surely. Note that in this case β0 is interpreted as a pseudotrue value of β as

the true value does not exist. The following theorem says that under any alternative, the test

statistic diverges.

Theorem 2: Suppose assumptions 1–2 hold, and Pr{E
(
u|v, θ0

)
6= ψ (v, β)} > 0 for any β ∈ B.

Then

nD̂
p→ +∞.

Theorem 2 implies that the test is consistent against any deviations from the true specifi-

cation, i.e. when the regression function does not equal, on a set of positive measure however

small it is, to the hypothesized specification ψ (v, β) for any β ∈ B. The power of the test is

7As a practical matter, simulation of the null distribution can be implemented very easily given the collection
of eigenvalues. For example, in GAUSS, the vector of simulated values can be computed using the statement
sumc(lambda.*rndn(d,S)ˆ2);. Here, the vector lambda contains the eigenvalues, d is the dimension of ϑ, and S is
the number of simulations.
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expected to be greater the larger is this set on which the two functions (evaluated at the true

and pseudotrue parameter values, respectively) deviate from each other, and/or the larger are

those deviations.

4 Illustrations and simulations

In this section we elaborate on two examples of data generating processes to illustrate the

construction of the test and verify its finite sample performance.

The aim of our first experiment is to analyze the size of the test in a simplest setup, and, even

more importantly, to see whether the use of numerical derivatives delivers good enough precision

in controlling the size of the test. Here all variables are continuous, the regression function has a

known form, and the matrices related to first and second derivatives are computable in a closed

form. Namely, we use a jointly normal model for the two variables

f(u, v|θ) =
1

2π
√

1− ρ2
exp

(
−(u− µu)2 − 2ρ (u− µu) (v − µv) + (v − µv)2

2 (1− ρ2)

)
,

where θ = (µu, µv, ρ)′ . Due to joint normality, the regression function is linear: E (u|v, θ) =

µu + ρ (v − µv) . We use this fact to verify performance of the test in finite samples in terms of

size properties, setting ψ (v, β) = a+bv, where β = (a, b)′ . Notice that there is a priori no doubt

that the tested regression functional form is true. The total dimensionality of the parameter

vector is dim (ϑ) = 5.

In Appendix A2 we derive that

Λ = 2ρ2 1− ρ2

1 + ρ2



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 µv 0 −µv
0 0 −1 0 1


. (3)

We rule out the cases ρ = ±1 as these values sit on the boundary of the parameter set [−1, 1]

for ρ. In the formulation of Theorem 1, we also rule out the case ρ = 0 which leads to Λ being

a zero matrix with rk(Λ) = 0. The test will not work properly when ρ = 0.

Provided that ρ 6= 0 and ρ 6= ±1, the rank of Λ is unity no matter what the parameter

values are, and only non-zero eigenvalue is λρ = 2ρ2 1−ρ2
1+ρ2

. Note that even though dim (ϑ) = 5,

we have rk(H) = 5, rk(Ω) = 4, rk(∆) = 2, yet rk(Λ) = 1. Because rk(Λ) = 1, the limiting
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distribution in fact simplifies to λρ times a χ2
(1) distribution. Thus, the critical values can be

computed simply as λ̂ρ times an appropriate quantile of the tabulated χ2
(1) distribution, where

λ̂ρ is λρ with the ML estimate ρ̂ plugged in place of ρ.

This result will be used as an ‘analytic’ benchmark when one uses analytical derivatives.

To that end, we set the limiting distribution as described in the previous paragraph. The other,

‘numerical’ value for Λ is obtained as Ĥ−1Ω̂Ĥ−1∆̂, where Ĥ, Ω̂ and ∆̂ are estimates of H, Ω

and ∆ using numerical derivatives.8

The pairs {(ui, vi)}ni=1 are drawn from the bivariate normal distribution with means µ0
u =

µ0
v = 1, unit variances and correlation ρ0 = 0.5. The following simulation results are based on

2000 simulations; the rejection rates are expressed in percentages.

rejection rates

analytical numerical

10% 5% 1% 10% 5% 1%

n = 100

10.5 5.6 1.0 15.0 8.9 3.0

n = 500

10.1 5.1 1.2 7.9 4.0 1.0

n = 2000

10.6 5.0 0.7 8.5 4.8 1.2

The size control is excellent even for small samples when analytical derivatives are used.

When one computes numerical derivatives instead, there are expectedly some size distortions,

which go away quickly as the sample size grows. For samples of a few thousand, the size control

is of no concern, at least for low-dimensional setups.

In our second experiment, we will analyze the size and power of the test in a more realistic

setup. Here the data are mixed continuous and discrete. The continuous u has a logistic distri-

bution, the discrete v is drawn from a three-point distribution, and the dependence is induced

by the Farlie–Gumbel–Morgenstern (FGM) copula. These choices are due to availability of the

joint PDF/PMF and CDF/CMF in a closed form, simplicity of the form of mean regression,

8The derivatives are computed using two-sided differences with the step of hθ componentwise, where h = 10−5.
The integrals involved in evaluation of expectations are computed via Gauss–Chebychev quadrature with m = 100
quadrature nodes on [−8, 8]. Such precision is more than sufficient not to worry about the error ε of computation
of the function being integrated; see the previous footnote.
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simplicity of tuning the parameters so that the regression function is linear or non-linear, and,

finally, conceptual similarity to our illustrative empirical application.

The continuous marginal has the density

fu(u|µ, γ) =
exp

(
−γ−1 (u− µ)

)
γ [1 + exp (−γ−1 (u− µ))]2

and cumulative distribution function

Fu(u|µ, γ) =
1

1 + exp (−γ−1 (u− µ))
.

We set the true value of µ to be zero in order to obtain symmetry. The three-point distri-

bution of the discrete marginal is v ∈ {−1, 0,+1} with marginal PMF g(v) represented by

the corresponding collection of probabilities q ∈ {q−1, 1− q−1 − q+1, q+1} with CMF G(v) =

q−11{v≤−1} + (1− q−1 − q+1) 1{v≤0} + q+11{v≤1}. The dependence is induced by the FGM cop-

ula

C(w1, w2) = w1w2(1 + ρ(1− w1)(1− w2)),

where ρ ∈ [−1,+1] and ρ > 0 implies positive, although moderate at most, dependence.

Let θ = (µ, γ, q−1, q+1, ρ)′ . It is shown in Appendix A2 that the joint density/mass is

f(u, v|θ) = fu(u|µ, γ)qC−1 (Fu(u|µ, γ))1{v=−1} qC0 (Fu(u|µ, γ))1{v=0} qC+1 (Fu(u|µ, γ))1{v=+1}

= γ−1ω (u) (1− ω (u))ϕ (u)
1{v=−1}
−1 (1− ϕ−1 (u)− ϕ+1 (u))1{v=0} ϕ (u)

1{v=+1}
+1 ,

where

ω (u) =
exp

(
−γ−1 (u− µ)

)
1 + exp (−γ−1 (u− µ))

and

ϕ−1 (u) = q−1 + ρ (1− 2 (1− ω (u))) q−1 (1− q−1)

ϕ+1 (u) = q+1 − ρ (1− 2 (1− ω (u))) q+1 (1− q+1)

If, in addition to µ0 = 0, we set q0
−1 = q0

+1, then, due to a symmetry around the origin, the

regression function will be linear: E (u|v) = λv, where λ depends on q0
−1. If we set q0

−1 6= q0
+1,

the symmetry ceases to take place, and the regression function is no longer linear. We again

set ψ (v, β) = a + bv, where β = (a, b)′ , and study size properties when q0
−1 = q0

+1 and power

properties when q0
−1 6= q0

+1. The total dimensionality of the parameter vector is dim (ϑ) = 7.

11



Figure 1: Regressions for the second experiment, linear and non-linear

The variables {ui}ni=1 are drawn from the standard logistic distribution (i.e. with µ0 = 0

and γ0 = 1). We set ρ0 = 1 implying the correlation coefficient of 1
3 . Then, for a given i

and given pair (q0
−1, q

0
+1), we compute ϕ−1 (ui) and ϕ+1 (ui) and use these to generate the

variables {vi}ni=1 from the three-point distribution {−1, 0,+1} with corresponding probabilities

{ϕ−1 (ui) , 1− ϕ−1 (ui)− ϕ+1 (ui) , ϕ+1 (ui)} . We set the pair (q0
−1, q

0
+1) to three values, one of

which implies a linear regression, while the other two imply non-linear ones (see Figure 1).

The following table contains simulation results for samples of small size n = 100, moderate

size n = 500, and big size n = 2000. The results are based on 2000 simulations; the rejection

rates are expressed in percentages.9

parameters true regression at v line on Figure 1 n = 100 n = 500 n = 2000

q0
−1 q0

+1 −1 0 +1 10% 5% 1% 10% 5% 1% 10% 5% 1%

0.4 0.4 −0.6 0 0.6 solid 8.1 3.7 0.4 10.2 5.2 0.8 8.7 4.7 1.1

0.3 0.5 −0.7 −0.2 0.5 dashed 8.3 4.3 0.5 39.6 20.3 3.8 93.7 92.7 79.6

0.2 0.6 −0.8 −0.4 0.4 dash-dotted 10.9 4.8 0.7 93.4 85.3 34.1 98.6 97.8 94.9

Except for small samples, the size and power figures are favorable. The actual rejection rates

9See the previous computational footnote, except that the domain of integration is now [−20, 20].
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shown in the first line are quite close to nominal test sizes. The power figures are impressive,

especially for large samples, and even though the true regression line does not deviate much

from a linear form, the test detects it pretty often from a sample of a moderate size. With small

samples, the null rejection rates fall short of nominal rates a bit, and the test has hard time

detecting small deviations from the null. While a hundred observations are clearly not sufficient

for the test to work properly, increasing the sample size severalfold straightens out the rejection

rates and makes the properties of the test very attractive.

5 Illustrative application

In this section we illustrate the test using the labor market data from Card (1995). These

data contain, in particular, wage, education and age of a sample of U.S. men of size n =

3010 taken in 1976. The main variable is logarithm of wages (lwage76), and regressors are

education (ed76) and age (age76). We run bivariate and trivariate full parametric models

for the pairs (lwage76,ed76), (lwage76,age76) and the triple (lwage76,ed76,age76), compute

implied regressions of log wages on one or two regressors, and test them for linearity using the

test developed in this paper.10

Because the regressand is a continuous variables while both regressors are discrete, we

construct the joint distribution by using the copula machinery. The marginal density for the

continuously distributed log wages is chosen to be the skew-normal distribution (Azzalini, 1985):

u = µ+ σw,

where µ is a location parameter, σ is a scale parameter,

fw (w|γ) = 2φ (w) Φ (γw) ,

and11 γ is a shape parameter that indexes the degree of skewness; the distribution reduces to the

regular normal when γ = 0. In total, the skew-normal density fu (u|θu) and its CDF Fu(u|θu)

are characterized by three parameters in θu = (µ, σ, γ)′ . Azzalini, Dal Cappello and Kotz (2003)

argue that this distribution (among others) well approximates the real log income data. Below

are the results of fitting the marginal skew-normal density to the variable lwage76.

10We do not make any attempt to interpret these regressions as any sort of causal relationships. A causal
approach when ed76 is involved requires an acknowledgement of its endogeneity and needs instrumental variables
for consistent estimation; see Card (1995) and the rest of the returns to schooling literature.

11Note that µ and σ are not the mean and standard deviation of u.
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marginal skewed normal: lwage76

parameter µ σ γ

estimate 6.586 0.550 −1.100

standard error 0.034 0.021 0.162

The Kolmogorov–Smirnov statistic (the maximal difference between the empirical distribu-

tion function and estimated CDF) equals 0.0168, and, normalized by
√
n, equals 0.921, which is

quite smaller than the critical value even at the 20% significance level (e.g., Massey, 1995).

The marginal distributions of the variables ed76 and age76 are categorical, with a number

of categories being k1 = 18 for the former and k2 = 11 for the latter,12 and with categorical

probabilities q` = (qj)
k`
j=1 , ` = 1, 2 subject to

∑k`
j=1 qj = 1. Let us denote the CMF of this

distribution by Gv(v|q) =
∑bvc

j=1 qj . The estimates are shown in the following tables.

marginal categorical: ed76

parameter q1 q2 q3 q4 q5 q6 q7 q8 q9

estimate, ×102 0.03 0.06 0.09 0.09 0.32 0.53 0.96 2.24 2.67

standard error, ×102 0.03 0.04 0.05 0.05 0.10 0.13 0.18 0.27 0.29

parameter q10 q11 q12 q13 q14 q15 q16 q17 q18

estimate, ×102 4.19 5.40 33.04 9.20 8.63 5.28 15.25 5.06 6.96

standard error, ×102 0.37 0.41 0.85 0.52 0.51 0.41 0.65 0.40 0.46

marginal categorical: age76

parameter q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11

estimate 0.131 0.122 0.128 0.114 0.105 0.078 0.066 0.055 0.071 0.063 0.068

standard error 0.006 0.006 0.006 0.006 0.006 0.005 0.005 0.004 0.005 0.004 0.005

Because the two/three components are both discrete and continuous, we extend the method

of Anatolyev and Gospodinov (2010) of constructing a joint distribution of mixed marginals to

the case of multiple values in the discrete marginal’s support13 using copula machinery. We

12While the minimal values of ed76 is 1, that of age76 is 24, therefore we simply subtract 23 from age76 upfront
for convenience.

13In Anatolyev and Gospodinov (2010), the discrete marginal is Bernoulli.
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employ the Gaussian copula because it is simple and convenient, easily interpretable, and allows

natural extension to higher dimensions with a reasonable increase in the degree of parameteri-

zation. When there is only one discrete regressor, the Gaussian copula has only one correlation

parameter %. It is derived in Appendix A3 that the joint density is

f(u, v|θ) = fu (u|θu) fC(u, v|θ),

where

fC(u, v|θ) = Φ

(
Φ−1(G(v|q))− %Φ−1(Fu(u|θu))√

1− %2

)
− Φ

(
Φ−1(G(v − 1|q))− %Φ−1(Fu(u|θu))√

1− %2

)

is ‘distorted’ categorical probability, and θ = (θ′u, %, q
′)′ collects all 21 or 14 parameters.

Maximization of the joint (log) likelihood yields estimates of parameters of the marginals

very close to figures reported above but with lower standard errors, and the estimates of the

copula as in the following tables:

copula: ed76

parameter %

estimate 0.327

standard error 0.017

copula: age76

parameter %

estimate 0.290

standard error 0.017

One can see that the estimates of bivariate degrees of dependence are highly statistically

significant and moderately large in value.

Figure 2 shows the estimated mean regressions. In the case of ed76, it may appear that the

true functional form is linear, which is what the corresponding literature tends to focus on. In

the case of age76, linearity does not seem to hold, but a low-order polynomial like a cubic form

may be appropriate. To verify whether these conjectures hold, we first perform the test for a

linear mean regression:

ψ (v, β) = a+ bv.
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Figure 2: Estimated mean regression with regressor ed76 (top panel) or age76 (bottom panel)

The test results are in the following tables.

regression on: ed76

test statistic 1.05

10% 1.49

critical values, ×10−5 5% 1.79

1% 2.47

regression on: age76

test statistic 2.00

10% 1.56

critical values, ×10−5 5% 1.99

1% 3.00

The hypothesis of a linear regression form is decidedly rejected for both regressors at any

conventional significance level; in fact, the exceedance is huge. We conclude that the form of
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the actual mean regression differs from what is usually assumed in regressions of wages on its

determinants.

Labor econometricians often add in their linear regressions a square of a variable related

to duration (e.g., work experience14); Murphy and Welch (1990) show that even fourth powers

may be needed. Therefore, we have also run the test with low-order polynomial hypothesized

regression forms: ψ2 (v, β) = a + bv + cv2 and ψ4 (v, β) = a + bv + cv2 + dv3 + fv4. These

functional forms are also rejected at any conventional significance level.

When there are two discrete regressors, the Gaussian copula has a 3× 3 correlation matrix

R =


1 %0 %1

%0 1 %2

%1 %2 1


with 3 distinct parameters %0, %1, %2. It is derived in Appendix A3 that the joint density is

f(u, v1, v2|θ) = fu(u|θu)fC(u, v1, v2|θ),

where

fC(u1, v1, v2) = Φ2(ϕ1 (v1) , ϕ2 (v2) |ϕu (u))− Φ2(ϕ1 (v1 − 1) , ϕ2 (v2) |ϕu (u))

−Φ2(ϕ1 (v1) , ϕ2 (v2 − 1) |ϕu (u)) + Φ2(ϕ1 (v1 − 1) , ϕ2 (v2 − 1) |ϕ (u))

for v1, v2 ∈ {0, 1} are ‘distorted’ bivariate categorical probabilities, where

ϕ` (v) = Φ−1(G`(v)), ` = 1, 2,

ϕu (u) = Φ−1(Fu(u)),

and θ = (θ′u, %0, %1, %2, q
′
1, q
′
2)′ collects all 33 parameters.

Maximization of the joint (log) likelihood yields estimates of parameters of the marginals

very close to figures reported above but with lower standard errors, and the estimates of the

copula as in the following tables:

14More precisely, the potential experience is defined as age minus education less 6.
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copula: ed76 and age76

parameter %0 %1 %2

estimate 0.187 0.328 0.290

standard error 0.019 0.017 0.017

One can see that the estimates of bivariate degrees of dependence %1 and %2 are very close

to those from bivariate models with similar standard errors. The degree of dependence between

the two regressors %0 is estimated to be quite modest but significantly different from zero.
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Figure 3: Estimated mean regression with regressors ed76 and age76

Figure 3 shows the surface of the estimated mean regression which is arguably close to a

plane. We perform the test for a linear mean regression:

ψ (v1, v2, β) = a+ b1v1 + b2v2.
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The test results are:

regression on: ed76 and age76

test statistic 3.03

10% 2.63

critical values, ×10−5 5% 3.09

1% 4.11

The hypothesis of a linear regression form is decidedly rejected for both regressors at any

conventional significance level. We also repeat this exercise for the form quadratic in both

regressors ψ22 (v1, v2, β) = a + b1v1 + b2v2 + c1v
2
1 + c12v1v2 + c2v

2
2, as well as, motivated by

the study of Murphy and Welch (1990), for the form linear in education and quartic in age,

ψ14 (v1, v2, β) = a+ b1v1 + b2v2 + c2v
2
2 + c12v1v2 + d2v

3
2 + d12v1v

2
2 + f2v

4
2 + f12v1v

3
2, as well as the

same form with age v2 replaced by potential experience that equals v2 + 17− v1.15

These functional forms are also decidedly rejected at any conventional significance level.

Evidently, the observable “bumps” in the curves/surface in Figures 2 and 3 are not due to a

sampling error only, but rather are built-in attributes of the shapes of regressions. The overall

results imply that the true mean regressions are not likely to reduce to low-order polynomials in

the conditioning variables but rather take more complex functional forms, which is contradictory

to popular empirical practices.16

6 Conclusion

We have developed a test for a restricted functional form of a mean regression function when

a parametric distribution for all variables is specified and estimated. The test is based on

mean-square comparison of the estimated regression implied by the joint density and estimated

hypothesized functional form. The test statistic is asymptotically mixed chi-squared distributed,

with the coefficients computable from the true and hypothesized regression functions and the

score function. The size and power properties are favorable for sample sizes usually employed. A

possible direction of future research may be extension of the test to causal regressions estimated

by instrumental variables.

15See footnotes 12 and 14.
16While the regressions we have considered here are not causal (see footnote 10), the rejections obtained indi-

rectly indicate probable misspecification of similar causal relationships used in the returns to schooling literature.
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A Appendix: proofs

Proof of Lemma 1. Consistency and asymptotic normality of ϑ̂ follow from Newey and

McFadden (1994, theorems 2.5, 2.6, 3.3 and 3.4) using Assumptions 1 and 2. �

Proof of Lemma 2. Note that

E

[∥∥∥∥∂E(u|v, θ0)

∂ϑ

∥∥∥∥2
]

= E

[∥∥∥∥∫ +∞

−∞
u
∂f(u|v, θ0)

∂θ
du

∥∥∥∥2
]

= E

[∥∥∥∥E [u∂ ln f(u|v, θ0)

∂θ
|v
]∥∥∥∥2
]
<∞,

which follows from Assumption 3. Next,

E

[∥∥∥∥∥∂E(u|v, θ0)

∂ϑ

∂ψ
(
v, β0

)
∂ϑ′

∥∥∥∥∥
]
≤ E

[∥∥∥∥∂E(u|v, θ0)

∂ϑ

∥∥∥∥
∥∥∥∥∥∂ψ

(
v, β0

)
∂ϑ′

∥∥∥∥∥
]

≤ E

[∥∥∥∥∂E(u|v, θ0)

∂ϑ

∥∥∥∥2
]1/2

E

∥∥∥∥∥∂ψ
(
v, β0

)
∂ϑ′

∥∥∥∥∥
2
1/2

<∞,

which follows from the previous and Assumption 2(f). Finally, Mψψ is finite by Assumption

2(f). This shows finiteness of ∆.

Now,

E

[
sup

θ∈Nθ,β∈Nβ

∥∥∥∥(∂E(u|vi, θ)
∂ϑ

− ∂ψ(vi, β)

∂ϑ

)(
∂E(u|vi, θ)

∂ϑ
− ∂ψ(vi, β)

∂ϑ

)′∥∥∥∥
]

≤ E

[
sup

θ∈Nθ,β∈Nβ

(∥∥∥∥∂E(u|vi, θ)
∂ϑ

∥∥∥∥+

∥∥∥∥∂ψ(vi, β)

∂ϑ

∥∥∥∥)2
]

≤ 2E

[
sup
θ∈Nθ

∥∥∥∥E [u∂ ln f(u|v, θ)
∂θ

|v
]∥∥∥∥2
]

+ 2E

[
sup
β∈Nβ

∥∥∥∥∂ψ(vi, β)

∂β

∥∥∥∥2
]
<∞

by Assumptions 2(d) and 3. Then, by Lemma 4.3 of Newey and McFadden (1994), ∆̂
p→ ∆. �

Proof of Theorem 1. Take a second-order stochastic expansion of nD̂ around the true pa-

rameter value ϑ0:

nD̂ =
n∑
i=1

(
E
(
u|vi, θ0

)
− ψ

(
vi, β

0
))2

+
√
n
∂D̂

∂ϑ′

∣∣∣∣∣
ϑ0

ζ̂ϑ + ζ̂ ′ϑ
1

2

∂2D̂

∂ϑ∂ϑ′

∣∣∣∣∣
ϑ0

ζ̂ϑ +OP

(
1√
n

)
,

where

ζ̂ϑ =
√
n
(
ϑ̂− ϑ0

)
p→ ζϑ

d
= N (0, Vϑ) ,

and Vϑ = H−1ΩH−1 is the asymptotic distribution of ϑ̂. Under H0, the leading term is zero.
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Next, under H0,

∂D̂

∂ϑ′

∣∣∣∣∣
ϑ0

=
1

n

n∑
i=1

∂

∂ϑ

(
E
(
u|v, θ0

)
− ψ

(
vi, β

0
))2

= 2
1

n

n∑
i=1

(
E
(
u|v, θ0

)
− ψ

(
vi, β

0
)) ∂ (E (u|v, θ0

)
− ψ

(
vi, β

0
))

∂ϑ

= 0.

Finally,

1

2

∂2D̂

∂ϑ∂ϑ′

∣∣∣∣∣
ϑ0

=
1

2

1

n

n∑
i=1

∂2

∂ϑ∂ϑ′
(
E
(
u|vi, θ0

)
− ψ

(
vi, β

0
))2

=
1

n

n∑
i=1

∂

∂ϑ′

[(
E
(
u|vi, θ0

)
− ψ

(
vi, β

0
))(∂E (u|vi, θ0

)
∂ϑ

−
∂ψ
(
vi, β

0
)

∂ϑ

)]

=
1

n

n∑
i=1

(
∂E
(
u|vi, θ0

)
∂ϑ

−
∂ψ
(
vi, β

0
)

∂ϑ

)(
∂E
(
u|vi, θ0

)
∂ϑ

−
∂ψ
(
vi, β

0
)

∂ϑ

)′

+
1

n

n∑
i=1

(
E
(
u|vi, θ0

)
− ψ

(
vi, β

0
)) ∂

∂ϑ′

(
∂E
(
u|vi, θ0

)
∂ϑ

−
∂ψ
(
vi, β

0
)

∂ϑ

)

=
H0

1

n

n∑
i=1

(
∂E
(
u|vi, θ0

)
∂ϑ

−
∂ψ
(
vi, β

0
)

∂ϑ

)(
∂E
(
u|vi, θ0

)
∂ϑ

−
∂ψ
(
vi, β

0
)

∂ϑ

)′
= ∆ + oP (1)

by the law of large numbers (see the proof of Lemma 2) and because

E

[∥∥∥∥∥
(
∂E
(
u|v, θ0

)
∂ϑ

−
∂ψ
(
v, β0

)
∂ϑ

)(
∂E
(
u|v, θ0

)
∂ϑ

−
∂ψ
(
v, β0

)
∂ϑ

)′∥∥∥∥∥
]

≤ E

∥∥∥∥∥∂E
(
u|v, θ0

)
∂ϑ

−
∂ψ
(
v, β0

)
∂ϑ

∥∥∥∥∥
2


≤ 2E

∥∥∥∥∥∂E
(
u|v, θ0

)
∂ϑ

∥∥∥∥∥
2

+

∥∥∥∥∥∂ψ
(
v, β0

)
∂ϑ

∥∥∥∥∥
2
 <∞.

Summarizing, we have that under H0,

nD̂ = ζ ′ϑ∆ζϑ + oP (1).
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Now, using Lemma 3.2 from Vuong (1989), we get that

nD̂
p→

dim(ϑ)∑
j=1

λjζ
2
j ,

where {λj}dim(ϑ)
j=1 are eigenvalues of Vϑ∆ = Λ, and {ζ2

j }
dim(ϑ)
j=1 ∼ IIDχ2

(1). �

Proof of Theorem 2. It follows from the proof of Theorem 1 that

nD̂ =
n∑
i=1

(
E
(
u|vi, θ0

)
− ψ

(
vi, β

0
))2

+OP
(√
n
)
.

Because E
(
u|v, θ0

)
6= ψ

(
v, β0

)
almost surely, we have that nD̂ tends to +∞ as n→∞ as it is

positive by construction. �

B Appendix: details on simulation experiments

Consider the setup of the first experiment. Because E (u|v) = µu + ρ (v − µv) and ψ (v, β) =

a+ bv, we compute that

∂E (u|v)

∂ϑ
− ∂ψ (v, β)

∂ϑ
=



1

−ρ

v − µv
−1

−v


.

Note that there are only two non-collinear elements. Hence,

∆ =



1 −ρ 0 −1 −µv
−ρ ρ2 0 ρ ρµv

0 0 1 0 −1

−1 ρ 0 1 µv

−µv ρµv −1 µv 1 + µ2
v


,

which, expectedly, has a rank of 2.

The logdensity is

ln f(u, v|θ) = − ln 2π − 1

2
ln
(
1− ρ2

)
− (u− µu)2 − 2ρ (u− µu) (v − µv) + (v − µv)2

2 (1− ρ2)
,
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and its derivatives are

∂ ln f(u, v|θ)
∂θ

=


1

1− ρ2
((u− µu)− ρ (v − µv))

1

1− ρ2
((v − µv)− ρ (u− µu))

ρ

1− ρ2
− ρ

(1− ρ2)2

(
(u− µu)2 + (v − µv)2

)
+

1 + ρ2

(1− ρ2)2 (u− µu) (v − µv)

 .

Then

E

[
∂2 ln f(u, v|θ)

∂θ∂θ′

]
= E


− 1

1−ρ2
ρ

1−ρ2 0

ρ
1−ρ2 − 1

1−ρ2 0

0 0 − 1+ρ2

(1−ρ2)2

 .
The derivatives of the hypothesized regression function are

∂ψ (v, β)

∂β
=

(
−1

−v

)
,

and hence

E

[
∂ψ (v, β)

∂β

∂ψ (v, β)

∂β′

]
=

 1 µv

µv 1 + µ2
v

 .
So, the (minus) inverted Hessian is

−H−1 =



1 ρ 0 0 0

ρ 1 0 0 0

0 0
(1−ρ2)

2

1+ρ2
0 0

0 0 0 1 + µ2
v −µv

0 0 0 −µv 1


.
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Next we compute

E

[
∂ ln f(u, v|θ)

∂θ

∂ ln f(u, v|θ)
∂θ′

]
=


1

1−ρ2 − ρ
1−ρ2 0

− ρ
1−ρ2

1
1−ρ2 0

0 0 1+ρ2

(1−ρ2)2

 ,

E

[
(u− ψ (v, β))2 ∂ψ (v, β)

∂β

∂ψ (v, β)

∂β′

]
=

(
1− ρ2

) 1 µv

µv 1 + µ2
v

 ,

E

[
(u− ψ (v, β))

∂ ln f(u, v|θ)
∂θ

∂ψ (v, β)

∂β′

]
=


1 µv

−ρ −ρµv
0 1

 .
Hence, the matrix of expected cross-products of the elements of the score vector is

Ω =



1
1−ρ2 − ρ

1−ρ2 0 1 µv

− ρ
1−ρ2

1
1−ρ2 0 −ρ −ρµv

0 0 1+ρ2

(1−ρ2)2
0 1

1 −ρ 0 1− ρ2
(
1− ρ2

)
µv

µv −ρµv 1
(
1− ρ2

)
µv

(
1− ρ2

) (
1 + µ2

v

)


.

Then the asymptotic variance matrix is

Vϑ =



1 ρ 0 1− ρ2 0

ρ 1 0 0 0

0 0
(1−ρ2)

2

1+ρ2
−µv

(1−ρ2)
2

1+ρ2
(1−ρ2)

2

1+ρ2

1− ρ2 0 −µv
(1−ρ2)

2

1+ρ2

(
1− ρ2

) (
1 + µ2

v

)
−µv

(
1− ρ2

)
0 0

(1−ρ2)
2

1+ρ2
−µv

(
1− ρ2

)
1− ρ2


,

and, consequently,

Vϑ∆ = 2ρ2 1− ρ2

1 + ρ2



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 µv 0 −µv
0 0 −1 0 1


.

For the second experiment, we extend the method of Anatolyev and Gospodinov (2010) of

constructing a joint distribution of mixed discrete and continuous marginals to the cases of the
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cardinality of the discrete marginal’s support higher than two. The joint CDF/CMF is

F (u, v) = C(F (u), G(v)),

so the PDF/PMF is a derivative with respect to the continuous argument and a difference with

respect to the discrete one:

f(u, v) =
∂C

∂u
(F (u), G(v))− ∂C

∂u
(F (u), G(v − 1))

= fu(u)f∂(u, v),

where the second term is

f∂(u, v) =

[
∂C

∂w
(w,G(v))− ∂C

∂w
(w,G(v − 1))

]
w=F (u)

,

or

f∂(u,−1) =

[
∂C

∂w
(w, q−1)

]
w=Fu(u)

,

f∂(u, 0) =

[
∂C

∂w
(w, 1− q+1)− ∂C

∂w
(w, q−1)

]
w=Fu(u)

,

f∂(u, 1) = 1−
[
∂C

∂w
(w, 1− q+1)

]
w=Fu(u)

.

For the FGM copula,

∂C

∂w1
(w1, z) = z + ρ(1− 2z)w2(1− w2),

implying the distorted success probabilities

qC−1 (z) = q−1 + ρ (1− 2z) q−1 (1− q−1) ,

qC0 (z) = 1− q−1 − q+1 + ρ (1− 2z) [q+1 (1− q+1)− q−1 (1− q−1)] ,

qC+1 (z) = q+1 − ρ (1− 2z) q+1 (1− q+1) .

The joint density/mass is

f(u, v) = fu(u)qC−1 (Fu(u))1{v=−1} qC0 (Fu(u))1{v=0} qC+1 (Fu(u))1{v=+1} ,
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and the result follows.

C Appendix: details on empirical illustration

We omit the parameters during the derivations. In the case of only one discrete component, the

joint PDF/PMF is

f(u, v) =
∂C

∂u
(Fu(u), Gv(v))− ∂C

∂u
(Fu(u), Gv(v − 1)) = fu(u)fC(u, v),

where the last term is

fC(u, v) =

[
∂C

∂w
(w,Gv(v))− ∂C

∂w
(w,Gv(v − 1))

]
w=Fu(u)

.

The Gaussian copula is C(w, y) = Φ2(Φ−1(w),Φ−1(y)), where Φ2 is CDF of the standard

bivariate normal, and Φ−1 is inverse to the standard normal CDF. Note the important property:

∂Φ2(x1, x2)

∂x1
=

∂

∂x1

∫ x1

−∞

∫ x2

−∞
φ2(t1, t2)dt1dt2

=
∂

∂x1

∫ x1

−∞

∫ x2

−∞
φ(t2|t1)φ(t1)dt1dt2

=
∂

∂x1

∫ x1

−∞
φ(t1)

(∫ x2

−∞
φ(t2|t1)dt2

)
dt1

=
∂

∂x1

∫ x1

−∞
φ(t1)Φ (x2|t1) dt1

= φ(x1)Φ (x2|x1) .

This leads to

∂C(w, y)

∂w
=

∂Φ2(Φ−1(w),Φ−1(y))

∂w

=
∂Φ2(x1, x2)

∂x1

∣∣∣∣
x1=Φ−1(w),x2=Φ−1(y)

· ∂Φ−1(w)

∂w

= φ(x1)Φ (x2|x1)|x1=Φ−1(w),x2=Φ−1(y) ·
1

φ (x1)

∣∣∣∣
x1=Φ−1(w)

= Φ(Φ−1(y)|Φ−1(w)).

Then,

fC(u, v) = Φ(Φ−1(Gv(v))|Φ−1(Fu(u)))− Φ(Φ−1(Gv(v − 1))|Φ−1(Fu(u))).
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Note that because Φ2 is bivariate standard normal with correlation coefficient %, we have, by

normality of the conditional distributions under joint normality, that

Φ
(
Φ−1(y)|Φ−1(w)

)
= Φ

(
Φ−1(y)− %Φ−1(w)√

1− %2

)
,

and hence

fC(u, v) = Φ

(
Φ−1(G(v))− %Φ−1(F (u))√

1− %2

)
− Φ

(
Φ−1(G(v − 1))− %Φ−1(F (u))√

1− %2

)
.

In the case of two discrete components, the joint PDF/PMF is

f(u, v1, v2) =
∂C

∂u
(Fu(u), G1(v1), G2(v2))− ∂C

∂u
(Fu(u), G1(v1 − 1), G2(v2))

−∂C
∂u

(Fu(u), G1(v1), G2(v2 − 1)) +
∂C

∂u
(Fu(u), G1(v1 − 1), G2(v2 − 1))

= fu(u)fC(u, v1, v2),

where the last term is

fC(u, v1, v2) =

[
∂C

∂w
(w,G1(v1), G2(v2)) − ∂C

∂w
(w,G1(v1 − 1), G2(v2))

−∂C
∂w

(w,G1(v1), G2(v2 − 1)) +
∂C

∂w
(w,G1(v1 − 1), G2(v2 − 1))

]
w=Fu(u)

.

Consider the 3-dimensional Gaussian copula

C(w, y1, y2) = Φ3(Φ−1(w),Φ−1(y1),Φ−1(y2)).

27



Note the property

∂Φ3(x1, x2, x3)

∂x1
=

∂

∂x1

∫ x1

−∞

∫ x2

−∞

∫ x3

−∞
φ3(t1, t2, t3)dt1dt2dt3

=

∫ x2

−∞

∫ x3

−∞

(
∂

∂x1

∫ x1

−∞
φ3(t1, t2, t3)dt1

)
dt2dt3

=

∫ x2

−∞

∫ x3

−∞
φ3(x1, t2, t3)dt2dt3

=

∫ x2

−∞

∫ x3

−∞
φ2(t2, t3|x1)φ(x1)dt2dt3

= φ(x1)

∫ x2

−∞

∫ x3

−∞
φ2(t2, t3|x1)dt2dt3

= φ(x1)Φ2(x2, x3|x1),

which leads to

∂C(w, y1, y2)

∂w
=

∂Φ3(Φ−1(w),Φ−1(y1),Φ−1(y2))

∂w

=
∂Φ3(x1, x2, x3)

∂x1

∣∣∣∣
x1=Φ−1(w),x2=Φ−1(y1),x3=Φ−1(y2)

· ∂Φ−1(w)

∂w

= φ(x1)Φ2(x2, x3|x1)|x1=Φ−1(w),x2=Φ−1(y1),x3=Φ−1(y2) ·
1

φ (x1)

∣∣∣∣
x1=Φ−1(w)

= Φ2(Φ−1(y1),Φ−1(y2)|Φ−1(w)).

Then,

fC(u1, v1, v2) = Φ2(Φ−1(G1(v1)),Φ−1(G2(v2))|Φ−1(Fu(u)))

−Φ2(Φ−1(G1(v1 − 1)),Φ−1(G2(v2))|Φ−1(Fu(u)))

−Φ2(Φ−1(G1(v1)),Φ−1(G2(v2 − 1))|Φ−1(Fu(u)))

+ Φ2(Φ−1(G1(v1 − 1)),Φ−1(G2(v2 − 1))|Φ−1(Fu(u))).

As a computational matter, we use the fact that(
y1

y2

)
|x ∼ N (µ%x,ΩR) ,

where

µR =

(
%1

%2

)
, ΩR =

 1− %2
1 %0 − %1%2

%0 − %1%2 1− %2
2

 ,
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and that

Φ2(y1, y2|x) =
1

2π
√

det ΩR

∫ y1

−∞

∫ y2

−∞
exp

(
−1

2

((
z1

z2

)
− µ%x

)′
Ω−1
R

((
z1

z2

)
− µ%x

))
dz1dz2.
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