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Abstract

We consider nonparametric estimation of optimal predictors when the loss function is linear-

exponential (Linex). We derive asymptotic distributions of the local constant and local linear

kernel estimators under Linex, and discuss the rules for the optimal bandwidth.
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1 Optimal prediction under Linex

The symmetric quadratic (Quad) loss function

Q(u) = u2 (1)

is prevailing in econometrics by the virtue of its convenience and tractability, which are

consequences of linearity of the derivative of Q(u) with respect to its argument. In particular,

this leads to a simple form of optimal predictor of y given x, which is

q(x) = E [y|x] . (2)

The use of Quad loss, however, often contradicts reality where economic agents put dif-

ferent weights to overprediction and underprediction (e.g., Stockman, 1987; Tversky and

Khaneman, 1991; West, Edison and Cho, 1993). A tractable example of an asymmetric loss

function is linear exponential (Linex) which has become a workhorse in the literature on

asymmetric loss. It has the form

L(u) = exp (αu)− αu− 1, (3)

where the known parameter α indexes the degree of asymmetry. When α > 0, the loss is

nearly exponential for positive errors, and nearly linear for negative errors; thus the loss is

smaller for overprediction than for underprediction. The Linex loss function was initially

introduced by Varian (1974) in the context of real estate assessment; estimation under the

Linex loss from the Bayesian perspective was studied by Zellner (1986).

The existing literature on econometric analysis under asymmetric Linex loss is limited

to parametric inference; see, for example, Weiss (1996), Christoffersen and Diebold (1997),

Batchelor and Peel (1998), Hwang, Knight and Satchell (2001), among others. In this paper

we instead take a nonparametric approach and present a set of results related to kernel

estimation under the Linex loss. We take as a starting point the result that under Linex,

the optimal predictor of y given x is (e.g., Zellner, 1986)

g(x) = α−1 logE [exp (αy) |x] . (4)

Let us use the following terminology. We call the predictor q(x) Quad-optimal, the predictor

g(x) Linex-optimal, the function u 7→ exp (αu) the Linex transformation, and the function
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u 7→ α−1 log (u) the antiLinex transformation. Then, the Linex-optimal predictor of y given

x is equal to the antiLinex-transformed Quad-optimal predictor of the Linex-transformed y

given x. Let us also denote this Quad-optimal predictor by h(x):

h(x) = E [exp (αy) |x] .

2 Kernel estimators of Linex-optimal predictor

Suppose we are given a series of n independent and identically distributed pairs (x1, y1), · · · ,

(xn, yn). Let K (·) be a kernel function, and b be a bandwidth.

First, we modify the well-known Nadaraya–Watson kernel estimator to the case of Linex

loss. The locally constant predictor ĝ(x) at x is set to solve the following problem of mini-

mization of the average kernel-weighted Linex loss:

ĝ(x) = arg min
β0

n−1

n∑
i=1

L (yi − β0)K

(
xi − x
b

)
= arg min

β0

n−1

n∑
i=1

(
exp (αyi)

exp (αβ0)
+ αβ0

)
K

(
xi − x
b

)
.

This problem has a unique closed-form solution

ĝ(x) = α−1 log

n∑
i=1

exp (αyi)K

(
xi − x
b

)
n∑
i=1

K

(
xi − x
b

) . (5)

The estimator so constructed is just the antiLinex-transformation of the usual Nadaraya–

Watson estimator of h(x). This makes sense because we are looking for a locally constant

estimator.

Second, we modify the classic local linear estimator. The local linear predictor ĝ(x) at

x and its first derivative ĝ′(x) are set to solve the following problem of minimization of the

average kernel-weighted Linex loss:(
ĝ(x)

ĝ′(x)

)
= arg min

(β0
β1

)
n−1

n∑
i=1

L (yi − β0 − β1 (xi − x))K

(
xi − x
b

)

= arg min
(β0
β1

)
n−1

n∑
i=1

(
exp (αyi)

exp (α (β0 + β1 (xi − x)))
+ α (β0 + β1 (xi − x))

)
K

(
xi − x
b

)
.
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This problem, unfortunately, does not have a closed-form solution, so the Linex-optimal

predictor should be found using numerical optimization techniques. Note however that the

objective function is strictly convex with respect to the parameters, so the solution is unique

and can easily be obtained numerically.

Asymptotic results for such estimators may be easily deduced using the statistical liter-

ature on the so-called local quasi-likelihood estimation (see, for example, Staniswalis (1989)

and Fan, Heckman and Wand (1995)). In particular, we have the following result.

Proposition 1 Let the kernel K be a symmetric density with support [−1, 1], the density

f(x) be continuously differentiable, the function g(x) be three times continuously differen-

tiable, the conditional variance var (exp (αyt) |x) exist and be twice continuously differen-

tiable. Let x be a fixed point isolated from the boundaries of its support, and var (exp (αyt) |x)

be nonzero. Then, provided that b→ 0 and nb3 →∞ as n→∞,

√
nb

(
var (exp (αyt) |x)

α2h(x)2f(x)
RK

)−1/2(
ĝ(x)− g(x)− b2 B(x)

αh(x)
σ2
K

)
d→ N(0, 1),

where RK ≡
∫
K(u)2du, σ2

K ≡
∫
u2K(u)du, and B(x) ≡ h′′(x)/2 + h′(x)f ′(x)/f(x) when

the local constant estimator is used, and B(x) ≡ h′′(x)/2 when the local linear estimator is

used.

Proof. The results follow from application of Theorems 1a and 1b in Fan, Heckman and

Wand (1995).

These asymptotic results are very similar to those obtained under Quad loss, and the

difference reveals itself in two instances. First, the “dependent variable” is exp (αyt) , the

Linex-transformed yt rather than the original yt. Second, additional divisors αh(x) and

(αh(x))2 are present in the asymptotic bias and variance expressions due to the antiLinex-

transformation. In fact, the result of Proposition 1 concerning the local constant estimator

follows straightforwardly from the asymptotics of the Nadaraya–Watson estimator under

Quad loss, the closed-form formula (5) for ĝ(x), and the delta method.

The presented asymptotic results also hold in time series contexts when data are station-

ary and mixing (Robinson, 1983).
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3 Optimal bandwidth

In this section we derive the formula for the optimal bandwidth that may be used in the plug-

in method. While under Quad loss the measure of performance yielding optimal bandwidths

is taken to be the (pointwise or integrated) mean squared error E [Q(·)], under Linex loss

it is more reasonable as the measure of performance to take the (pointwise or integrated)

expected Linex value E [L(·)]. It is interesting that both criteria result in the same expression

for the optimal bandwidth.

Proposition 2 Suppose the conditions of Proposition 1 hold. Then the local optimal band-

width rate in the sense of minimizing either the asymptotic expected Linex loss or the asymp-

totic mean squared error is

b∗(x) =

(
RK

4σ4
K

var (exp (αyt) |x)

B(x)2f(x)

)1/5

n−1/5.

Similarly, the global optimal bandwidth rate is

b∗ =

(
RK

4σ4
K

∫
var (exp (αyt) |x)h(x)−2f(x)−1w(x)dx∫

B(x)2h(x)−2w(x)dx

)1/5

n−1/5,

where w(x) is the chosen weight function.

Proof. Let ζn ∼ N(µn, ωn) represent the asymptotic distribution of g(x)− ĝ(x). Under the

asymptotic mean squared error criterion, the formula for b∗(x) is obtained in the standard

way by minimizing the expression µ2
n + ωn, and the formula for b∗ – by applying the same

technique to its integrated analog.

Now when b∗(x) and b∗ are proportional to n−1/5, µ2
n and ωn are proportional to n−4/5,

and the difference between g(x)− ĝ(x) and ζn is o(n−2/5). Then

E [L(g(x)− ĝ(x))] = exp

(
αµn +

1

2
α2ωn

)
− αµn − 1 + o(n−2/5)

= 1 +

(
αµn +

1

2
α2ωn

)
+

1

2

(
αµn +

1

2
α2ωn

)2

+ o
(
n−4/5

)
−αµn − 1 + o(n−2/5)

=
1

2
α2
(
µ2
n + ωn

)
+ o(n−2/5)

=
1

2
α2E [Q(g(x)− ĝ(x))] + o(n−2/5).

Hence, both the Linex and Quad criteria yield the same optimal bandwidths.
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