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Abstract

We extend the Modified Mixture of Distribution model of Andersen (1996) to the case

of a pair of assets whose return volatilities and trading volumes are driven by own latent

information variables, with the shocks to the two being correlated. The model allows one

to reveal what fraction of information flows is due to news that may be common for the

whole market, common for the industry, common for a particular exchange where the

stocks are traded, etc. We estimate the model using modifications of the GMM proce-

dure, and data from the Russian stock market represented by two exchanges and a small

number of stocks traded on both, and from the American stock market represented by

one exchange and stocks from a few industries. The results indicate that the information

flows are more highly correlated in the Russian market for a number of reasons, while at

the American market the common component seems to be negligible, except when the

two companies belong to the same industry.
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1 Introduction

The relationship between return volatility and trading volume has been the focus of the-

oretical and empirical research for a long time. Along with univariate models for return

volatilities, bivariate models for returns and trading volumes have been developed under a

variety of approaches. Within the ARCH framework, Lamoureux and Lastrapes (1990) in-

serted the volume directly in the GARCH process for the return volatility, and found that

the volume was strongly significant while the past return shocks were insignificant, which

confirmed that the trading volume is driven by the same factors that generate the return

volatility. Another approach was taken by Gallant, Ross and Tauchen (1992) who used

semi-nonparametric estimation of the joint density of price changes and trading volumes

conditional on past price changes and trading volumes. Tauchen, Zhang and Liu (1996)

used a semi-nonparametric framework and impulse response analysis to investigate the

relationship between return volatility, trading volume, and leverage. Tauchen and Pitts

(1983) put forth a structural approach called the “Mixture of Distribution Hypothesis”

(MDH) to modeling the joint distribution of returns and trading volumes conditional on

an underlying latent variable that proxies information flowing to the market. The MDH

paradigm was improved upon in several respects by Andersen (1996) and Liesenfeld (1998,

2001); see Section 2.

In this paper, we extend the Modified MDH model of Andersen (1996) to the case

of a pair of assets whose return volatilities and trading volumes are each driven by its

own latent information variable. The shocks to the two information variables are allowed

to be correlated, with the corresponding correlation coefficient being of primary interest.

Such modeling allows one to reveal what fraction of information flows is caused by news

that may be common for the whole market, common for the industry, common for a

particular exchange where the stocks are traded, etc., after cross-comparison of results

for a variety of asset pairs. We estimate the model using data from the developing

Russian stock market represented by two exchanges and a small number of stocks from

few industries traded on both exchanges, and data from the developed American stock

market represented by one exchange and stocks from many more industries. The results

indicate that the information flows are more highly correlated in the Russian market

due to high political and economic risks, more highly correlated when the companies

belong to the same industry, and more highly correlated when the stocks are traded at

the same exchange, although the correlation is nearly perfect for the same stocks traded
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at different exchanges. At the American market, the common component of information

flows seems to be negligible except when the two companies belong to the same industry,

although some relatively high correlations exist for some pairs of companies from different

industries.

From an existing variety of estimation methods usually applied to bivariate mixture

models we choose the GMM framework also used by Richardson and Smith (1994) and

Andersen (1996). To cope with the problem of not so big sample sizes, we apply several

modifications of the GMM – the continuously updating GMM of Hansen, Heaton and

Yaron (1996) and the downward testing algorithm of selecting correct moment restrictions

described in Andrews (1999); for details, see Section 3. The GMM diagnostic tests attest

that the exploited features of the model do provide a good fit to the data even though

the model as a whole may not account for all observed features of the joint distribution

of return volatilities and trading volumes.

A study close in goals to this paper is Spierdijk, Nijman, and van Soest (2002) which

tries to identify commonality of information and distinguish sector and stock specific news

for a pair of assets using ultra-high frequency data. The authors apply their bivariate

model for trading intensities to transaction data of stocks of several NYSE-traded US

department stores. They conclude that there is a large amount of common information

in information flows, although it is not completely clear if this is due to common industry

news, or common exchange news, or news common for the entire market.

The present paper is organized as follows. Section 2 briefly overviews the history

of bivariate mixture models, and presents an extension of Andersen’s (1996) model to

the case of two stocks. Section 3 contains the discussion of estimation methods. The

description of the data is given in Section 4. The results are reported and analyzed in

Section 5, and Section 6 concludes.

2 Model

2.1 Bivariate mixture models

The structural approach to analyzing the relationship between return volatility and trad-

ing volume based on information arrivals was first put forth by Tauchen and Pitts (1983).

In their framework, the asset market passes through a sequence of equilibria driven by

arrivals of new information to the market. The changes in prices and trade volumes aggre-
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gated across traders are approximately normally distributed; when aggregated throughout

the day t having It information arrivals the daily return rt and daily trading volume Vt

are also approximately normal conditional on It which is random:

rt|It ∼ N(0, σ2
rIt),

Vt|It ∼ N(µV It, σ
2
V It).

This model is termed the Mixture of Distribution Hypothesis (MDH). The dynamic be-

havior of the return and trading volume depends on the dynamics of the latent variable

It. Richardson and Smith (1994) estimate and test this model without restrictions placed

on the form of the process the latent information variable follows using the GMM pro-

cedure. They find out that the latent information variable has positive skewness and

large kurtosis and exhibits underdisperion. While many standard distributional assump-

tions for this variable can be rejected, Richardson and Smith (1994) find that parameter

restrictions passing the tests are close to those implied by a log-normally distributed in-

formation variable. Other authors have attempted to impose a dynamic structure on the

information variable, typically an autoregressive process of low order in logarithms or

another transformation, to identify the parameters of its dynamics, primarily the degree

of persistence.

Liesenfeld (2001) proposes an alternative Generalized Mixture of Distribution Hypoth-

esis (GMH) where the parameters measuring the sensitivity of traders’ reservation prices

are time varying and directed by a common latent variable Jt measuring the general degree

of uncertainty. As a result, the returns and volumes are driven by two latent variables, It

and Jt:

rt|It, Jt ∼ N
(
0, (σ2

r,1J
α1
t + σ2

r,2J
α2
t )It

)
,

Vt|It, Jt ∼ N
(
µV,1 + µV,2J

α2/2
t It, σ

2
V J

α2
t It

)
,

where It and Jt follow autoregression-type processes in logarithms. By estimating the

MDH and GMH for IBM and Kodak stocks using the SML procedure Liesenfeld (2001)

finds that the MDH is clearly rejected against the GMH. One of conclusions is that due

to low persistence in return volatility in the estimated MDH and some other aspects the

baseline MDH model cannot capture some important aspects of the volatility dynamics

adequately.

Andersen (1996) develops another alternative model using the theoretical framework

of Glosten and Milgrom (1985). In his modification, there are two types of trading volume
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that are due to informed traders and uninformed traders. The uninformed component is

governed by a time invariant Poisson process with constant intensity m0, while the in-

formed volume has a Poisson distribution with parameter m1It conditional on the number

of news arrivals. Hence the daily trading volume, being a sum of informed and uniformed

components, is distributed as Poisson too:

Vt|It ∼ Po(m0 +m1It).

The bivariate distribution in the Andersen (1996) Modified Mixture of Distribution Hy-

pothesis (MMH) model is

rt|It ∼ N(r̄, It),

Vt|It ∼ c · Po(m0 +m1It),

where the parameter σ2
r is set equal to 1 because the model is invariant to a scale trans-

formation of the information variable. The parameter c in the conditional distribution

of volume comes out from the process of detrending (for details, see Andersen, 1996),

and allows to distinguish the conditional mean and variance of volumes. The coefficients

cm0 and cm1EIt characterize the average uninformed and informed parts of volume re-

spectively, so one can easily find the corresponding shares of volumes of uninformed and

informed trades. Note also that for greater flexibility the conditional distribution of re-

turns has a nonzero mean in contrast to the previous discussion.

As can be seen the volume may take only positive values so this feature can be

considered as the advantage of this model over the MDH, which is an obvious advantage

over previous specifications. Using the GMM procedure without restrictions placed on

the dynamics of the information variable Andersen (1996) estimates both the MDH and

MMH for several NYSE-traded stocks. He finds that the MMH is an adequate model for

these assets while the MDH is clearly rejected. Furthermore, he imposes a restriction on

the process for the information variable in the form

I
1/2
t = ω + βI

1/2
t−1 + αI

1/2
t−1ut, ut ∼ i.i.d. (1, σ2

u), ut > 0.

Considering different distributions of ut (with σ2
u being some known constant) he estimates

the MMH together with the univariate mixture model for returns. One of main conclusions

is that there is a significant reduction in the measure of volatility persistence when the

univariate model for returns is expanded to encompass data on trading volumes. The full

MMH model passes all diagnostic tests.
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Liesenfeld (1998) is more pessimistic about the adequacy of the MMH model. He

obtains similar results using the data on four major German stocks. He estimates the

univariate model for returns, the MDH, and the MMH using the SML procedure, with

the information variable following an AR(1) process in logarithms

ln It = α + β ln It−1 + ut, ut ∼ i.i.d. N(0, σ2
u).

Liesenfeld (1998) finds that while the MMH is generally more preferred than the MDH

the estimates of the persistence of the information variable in both models are still lower

than in the univariate model for returns, so he doubted the validity of bivariate models.

He proposed a formal test to show that there is an additional source of persistence in

return volatility which is not captured by the information variable; this test reveals the

presence of such source.

The literature has other examples of criticism of the MDH paradigm. Interestingly,

Luu and Martens (2003) argue that rejections of the MDH obtained within the ARCH

framework may be caused by an imprecise measure of volatility.

2.2 Two-stock MMH model

We formulate the MMH model for a pair of stocks by extending the MMH model consid-

ered in Andersen (1996) except that the logarithm of the information variable follows a

Gaussian AR(1)-process:

rt|It ∼ N(r̄, It)

Vt|It ∼ c · Po(m0 +m1It) (1)

ln It = α + β ln It−1 + ut, ut ∼ i.i.d. N(0, σ2
u),

and rt and Vt are independent conditional on It. In choosing the form of the conditional

distribution of the information variable, we are driven by the following two reasons. First,

Richardson and Smith (1994) found that estimates of various moments of the information

variable were close to those implied by its being log-normally distributed. The second

reason is a relative simplicity of formulating the set of moment conditions when we con-

sider the extension of this model. As a guard against possible misspecifications of the

conditional distributions and/or form of dynamics we use an estimation procedure robust

to the presence of such misspecifications (see Section 3).

The key idea in extending this framework to a pair of stocks is that the dynamics of

the return volatility and trading volume of each stock is driven by the dynamics of its own

5



information variable that characterizes the amount of news coming to the market during

the day and concerning this particular stock. At the same time, the flows of information

concerning different stocks may interact with each other. This interaction can be allowed

and analyzed via the correlation coefficient between shocks to the information variables

for the two stocks. Hence, for two stocks labelled 1 and 2, the model is

rj,t|I1,t, I2,t ∼ N(r̄j, Ij,t), j ∈ {1, 2},

Vj,t|I1,t, I2,t ∼ cj · Po(mj,0 +mj,1Ij,t), j ∈ {1, 2},

ln Ij,t = αj + βj ln Ij,t−1 + uj,t, j ∈ {1, 2}, (2)(
u1,t

u2,t

)
∼ i.i.d. N

(0

0

)
,

 σ2
1 σ12

σ12 σ2
2


 ,

and r1,t, r2,t, V1,t and V2,t are independent conditional on I1,t, I2,t. It is expected that an

estimate of σ12 will be positive due to the information common for the two stocks. This

common information can have several sources. First, it may be common for the whole

market, resulting from overall political or economic news that have an effect on the stock

market. This kind of information may have especially significant effects on decisions of

traders and investors in emerging markets in developing and transition countries, while

the amount of such information is presumably lower in the developed countries due to

lower political risks. Second, if the stocks belong to companies from the same industry,

the information concerning this industry may have an effect on these companies simulta-

neously, and traders may change their decisions concerning stocks of companies from this

industry. A primary example of information common for the industry is changes in world

prices of energy sources. Third, the correlation between information variables belonging

to seemingly unrelated stocks may be high in concentrated markets with only few liquid

assets when the traders body contains few big players who can invest or withdraw funds

into or from different assets simultaneously.

A key variable of interest thus is the correlation coefficient

ρ12 =
σ12

σ1σ2

(3)

which can be tested for equality to zero (corresponding to the assumption of independence

between the two information variables) but is expected to be positive. Indeed, suppose

that the daily shocks (uj,t) for the two information variables are divided into two parts:

one part (ut) is a common shock (common for the whole market or for these particular

two stocks), and the other part (ũj,t) contains shocks that are unique for each stock,
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independent of each other and the common shock:

uj,t = ut + ũj,t, j ∈ {1, 2},

ut ∼ i.i.d. N(0, σ2),(
ũ1,t

ũ2,t

)
∼ i.i.d. N

(0

0

)
,

 σ̃2
1 0

0 σ̃2
2


 .

It is easy to see that σ2
j = σ2 + σ̃2

j , j ∈ {1, 2}, and σ12 = σ2 > 0, hence ρ12 > 0 too.

However, we do not impose this condition during estimation in order to let the data

determine the sign of this correlation.

3 Estimation issues

The key problem in estimating the mixture models is that the information variable that

drives the dynamics of returns and volumes is latent. Three major methods of estima-

tion of such models are the Generalized Method of Moments (GMM) used by Andersen

(1996) and Richardson and Smith (1994), Simulated Maximum Likelihood (SML) used

by Liesenfeld (1998, 2001) and Liesenfeld and Richard (2002), and Bayeasian Markov

Chain Monte Carlo applied in Watanabe (2000, 2003). In this paper, we take the GMM

approach because it is simpler and less computer-intensive (which especially matters in

the two stocks model), and in addition is able to handle models with elements contain-

ing misspecification (see below). That is, not exploiting all distributional features of the

model, which Liesenfeld (1998, 2001) attributes to drawbacks of the GMM, we instead

regard as an advantage.

In the next few subsections, we give details on how we run the GMM procedure. Many

of the modifications to the baseline GMM that we apply in this paper are motivated

by relatively smaller sample sizes than those used in this literature when the GMM is

employed.

3.1 Continuously updating GMM

In the present context, the classical GMM procedure (Hansen, 1982) is based on the

minimization of the quadratic distance between the sample moments and analytical mo-

ments using the efficient weighting matrix that is inversely proportional to the (long-run)

variance of the sample moments. Using the specified conditional distributions of returns

7



and trading volumes one can find unconditional moments of returns and volumes. These

moments are certain closed-form functions of the deep parameters of the model (these

functions are derived in Appendices A and B). In our model formulation, the deep pa-

rameters are the parameters figuring to the conditional distributions and the law of motion

for the information variable.

It is widely recognized that in situations when theoretical and empirical moments

are matched, the classical GMM estimator may be severely biased in samples that are

not large (see, for example, Andersen and Sørensen, 1995). In this paper, we apply

a modification of the GMM estimation called the continuously updating GMM (CU).

This method presumes simultaneous optimization of the GMM criterion function over

parameters both in the moment function and in the weighting matrix. The CU was

introduced in Hansen, Heaton and Yaron (1996) where the CU estimator was shown to

exhibit smaller biases than classical GMM estimators in time series applications when

sample sizes are not large. An intuitive explanation for such behavior was provided by

Donald and Newey (2000), while Newey and Smith (2004) showed the presence of such

tendencies by appealing to second order asymptotic properties.

3.2 GMM weighting matrix

The weighting matrix in the GMM or CU procedure is chosen so that it minimizes the

asymptotic variance of the estimated parameters. In our problem when moment functions

are serially correlated with unknown, possibly infinite, order, the form of the inverse to

the efficient weighting matrix is the long-run variance of the moment function

+∞∑
j=−∞

E [m(Zt, θ)m(Zt−j, θ)
′] ,

where m(Zt, θ) is the moment function (the difference between sample moments and

analytical moments), whose arguments are the vector of data Zt that includes returns

and volumes together with their lags, and the parameter vector θ. A (positive definite)

estimate of this matrix can be obtained in the Newey and West (1987) form:

1

T

b∑
j=−b

(
1− |j|

b+ 1

) min(T,T+j)∑
t=max(1,1+j)

(m(Zt, θ)− m̄(θ)) (m(Zt−j, θ)− m̄(θ))′ ,

where T is the sample size, b is a positive lag truncation parameter, and

m̄(θ) =
1

T

T∑
t=1

m(Zt, θ).
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Notice that when not all moment conditions are satisfied (see below), it is important to

subtract the average of the moment function m̄(θ) (see Andrews, 1999, and Hall, 2000).

It is important to choose carefully lag truncation for the Newey–West estimator. It

has been argued in the literature that when the sample is large the number of lags in the

estimate of the weighting matrix should be sufficiently large too. Andersen and Sørensen

(1995) suggested the following formula: b ≈
⌊
γT 1/3

⌋
, where γ is some constant which

varies between 0.6 and 5, and equals 1.2 for most experiments in their work. Andersen

(1996) for the sample of about 4,700 observations used 75 lags in the estimation of the

weighting matrix. Our samples are three times as small. Following Andersen and Sørensen

(1995), we set the lag truncation parameter equal to
⌊
1.2T 1/3

⌋
; for our sample sizes (about

1300 observations) it equals 13.

3.3 Moment selection

As mentioned before, because of a tight distributional specification of the model, we use

estimation robust to the presence of possible misspecifications. This means that we run

CU on a set of moment conditions (of which the model implies an infinite number) that

result from a consistent procedure of moment selection. To this end, we use the “downward

testing algorithm” described in Andrews (1999) applied to an initial set of (most reliable)

moment restrictions to end up with a set of only “right” ones. The downward testing

algorithm, along with the upward testing algorithm and the selection algorithm based on

information criteria has been proved to be consistent and well behaving in finite samples

(see Andrews, 1999). The idea of this algorithm is the following: moments are successively

removed from the set of moment restrictions until it is not possible to reject the model

using the J-test with the 5%-significant level, with the model having minimal J-statistic

being preferred among models with the same number of moment restrictions.

The starting set of moment conditions is formed according to the following principles.

Because of relatively small samples that are used in this study the number of moment

restrictions should not be very large (see Andersen and Sørensen, 1995). It is also known

that it is harder to estimate moments of higher order from such samples. Therefore, we

confine ourselves only to moments of order not higher than two, and run simulation exper-

iments to be certain that such moments can be accurately estimated using samples of sizes

we have (such experiments indicate, in particular, that third and fourth order moments

exploited, e.g., in Andersen, 1996, are estimated rather imprecisely). This stone also kills
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a second bird: by using only lower order moments we refrain from using relationships

between low and high order moments implied by the posited distributions. In forming

the set of moments, we abstain from using moments conditions that are less likely to be

satisfied in data (e.g., the implicit zero skewness in returns, or the implicit zero covariance

of returns of different assets). Similarly, to guard ourselves against misspecifications in

the dynamics of information variables, we include only first three lags of dynamic mo-

ments (Andersen, 1996, used up to 20 lags, but the sample was far larger). In addition, in

the two-stock model the cross-moments enter symmetrically: if, for example, E [r1,tV2,t]

is included, then E [r2,tV1,t] is included too until such moments have identical expressions

via parameters. Eventually, the outlined strategy resulted in the following starting set of

moment restrictions for the one-stock model:

E [rt] , E [|rt − r̄|] , E
[
(rt − r̄)2

]
, E [Vt] ,

E [|rt − r̄| |rt−k − r̄|] , E
[(
Vt − V̄

)2
]
, E

[(
Vt − V̄

) (
Vt−k − V̄

)]
, (4)

where k ∈ {1, 2, 3}, and V̄ = E [Vt] , so initially there are 11 moments and 7 parameters.

For the two-stock model, the starting set of moments is

E [ri,t] , E [|ri,t − r̄i|] , E
[
(ri,t − r̄i)2

]
, E [Vi,t] ,

E [|ri,t − r̄i| |ri,t−k − r̄i|] , E
[(
Vi,t − V̄i

)2
]
, E

[(
Vi,t − V̄i

) (
Vi,t−k − V̄i

)]
, (5)

E [|ri,t − r̄i| rj,t] , E [Vi,tVj,t] , E [Vi,trj,t] , E [|ri,t − r̄i|Vj,t] ,

where i, j ∈ {1, 2}, i 6= j, k ∈ {1, 2, 3}, and V̄i = E [Vi,t] , so initially there are 29

moments and 15 parameters. The analytical expressions for these moments are derived

in Appendices A and B. In the course of applying the downward testing algorithm, we

remove only moment restrictions that figure in the second line in (4) and in the second

and third lines in (5); the moments that figure in the first lines in (4) and (5) are always

regarded right. Interestingly, for no stock or pair of stocks did we have to exclude more

than two restrictions, in the majority of cases removing only one moment or not removing

at all. These facts give a rather convincing empirical support to the MMH model in both

original and modified forms.

3.4 Estimation algorithm

To summarize, the estimation is run in the following steps. First, the one-stock model

is estimated by the continuously updating GMM using the downward testing algorithm.
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The shares of volumes of uninformed and informed trades are calculated. Then, using

the obtained estimates as starting values (the starting value for σ12 is set to zero), the

two-stock model is estimated by the continuously updating GMM using the downward

testing algorithm. Finally, the correlation coefficient ρ12 is computed using the estimates

of σ2
1, σ

2
2 and σ12, and its standard errors are constructed by the delta-method.

4 Data

We use data from the developing Russian stock market which is of primary interest to us,

and in addition data from the developed American stock market. The Russian market

is represented by two exchanges and a small number of stocks traded on both exchanges

and belonging to three industries. In contrast, the American market is represented by one

exchange and stocks from many more industries. In order to make more fair comparisons,

we use samples of approximately equal size.

The organized stock market in Russia is composed of several stock exchanges, two of

which, MICEx (short for “Moscow Interbank Currency Exchange”) and RTS (short for

“Russian Trading System”), account for more than 95 percent of trade turnover, with the

share of MICEx being near 80 percent. A brief introduction to the Russian stock market

can be found in Ostrovsky (2003); details on the MICEx and RTS are available in English

at www.micex.com and www.rts.ru/?tid=2, respectively. The assets are traded in rubles

at the MICEx, but in US dollars at the RTS. The players primarily represent Russian

investors; the percentages of American and European investors are relatively small. On

each exchange more than a hundred equity stocks are transacted along with corporate

and government bonds and other assets. Most of stocks are traded very rarely, but several

blue chips are traded at a frequency of up to 6,000 transactions a day. The MICEx and

RTS are evidently quite active for an Eastern European market compared, for example,

with the Czech stock market, with most liquid stocks being traded at 67 trades per day

(Hanousek and Podpiera, 2003). There is a universal perception in the Russian financial

market that market prices of traded equities do not reflect their underlying fundamental

values. Dividends on blue chips are extremely rarely paid; when paid, they constitute a

tiny fraction of the market price. Capitalization figures also have little to do with the

fundamental value; they are inherited from Soviet era bookkeeping, and are said to be

underestimated. Hence, price fluctuations reflect more the dynamics of overall economic

and political factors than changes in fundamental values.
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So, the first sample covers the period from March 1, 1999 (when the normal trading

regime started), to June 4, 2004, composed of 1,311 trading days, and contains daily

closing prices and number of lots for four Russian corporations whose common stocks

were most frequently traded at the both exchanges during the whole period. Among

these four companies, two, SurgutNefteGaz (SNGS) and Lukoil (LKOH) are oil extrac-

tors, Unified Energy System of Russia (EESR) is the largest electricity producer, and

RosTeleKom (RTKM) is a leading Russian telecommunications company. We do not

consider some important stocks whose trading history does not go so far back as well as

belonging to companies that were subject to government attacks during this period. One

of leading Russian oil extractors Yukos falls into both categories. The data are taken from

www.finam.ru, www.micex.ru, and www.rts.ru.

The second sample covers the period from January 4, 1999, to April 30, 2004, com-

posed of 1,332 trading days, and contains daily closing prices corrected for dividends, and

daily number of traded shares for the common stocks of British Petroleum (BP), Chevron-

Texaco (CVX), Ford Motor (F), DaimlerChrysler AG (DCX), International Business Ma-

chines (IBM), Hewlett–Packard (HPQ), Verizon Communications (VZ), SBC Communi-

cations (SBC), Merck&Co (MRK), GlaxoSmithKline (GSK), McDonald’s (MCD), Yum!

Brands (YUM) at the New York Stock Exchange (NYSE). These stocks represent six dif-

ferent industries with two stocks in each industry: Oil & Gas Integrated (BP and CVX),

Auto & Truck Manufacturers (F and DCX), Computer Hardware (IBM and HPQ), Com-

munications Services (VZ and SBC), Major Drugs (MRK and GSK), and Restaurants

(MCD and YUM). Such choice allows us to see if there is higher correlation between the

information variables of two stocks that belong to the companies from the same industry.

These data are taken from www.finance.yahoo.com.

The daily return rt is the log-difference of closing stock prices, rt = ln pt− ln pt−1. The

daily observed volume series V O
t is the number of traded shares or lots. The summary

statistics for the returns are presented in Tables ?? and 2 for the Russian and Ameri-

can stocks, respectively. As one can see, the returns on Russian stocks are larger and

slightly more volatile. The distributions of returns are non-normal, with no or positive

skewness (with an exception of two restaurants) for both Russian and American stocks,

and comparable kurtosises (with an exception of HPQ). Interestingly, stocks for the same

companies traded at different Russian exchanges have more similar characteristics than

stocks for different companies. The values of the Ljung-Box statistics indicate that there is

a significant autocorrelation in squared and absolute returns much varying across stocks.
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The observed volume series for all stocks have a trend component that should be

removed. It been argued that if trading volume is strongly trended the estimation results

for the bivariate mixture model may be very misleading (Tauchen and Pitts, 1983); in

addition, it is important to have stationary series to use GMM (Andersen, 1996). We

follow a simple procedure similar to one used by Liesenfeld (1998) and Watanabe (2000)

to remove the exponential trend from volumes, but we also take care of the effects of

holidays and weekends as Andersen (1996) reports the existence of such effects. We

regress logarithm of trading volume on a constant, the time trend t and the variable

nontrt that equals the number of non-trading days preceding the current trading day t:

lnV O
t = c1 + c2t+ c3nontrt + errort.

The detrended volume Vt is the exponent of the residuals from this regression. Summary

statistics for the detrended trading volumes are presented in the same tables. The vari-

ability in degrees of skewness and kurtosis across the stocks in the Russian market is

amazing. Some of it (e.g., large skewness and kurtosis for SNGS at the RTS) is driven

by few instances when an unusually huge volume was transacted. There is also a sig-

nificant difference in the kurtosis across the stocks traded at the NYSE. The values of

the Ljung-Box statistics indicate very high autocorrelation in detrended trading volumes.

Finally, there is significant positive contemporaneous correlation between return volatil-

ity and volume, as confirmed by correlation coefficients between the volume and squared

return.The link between returns and trading volumes is evidently weaker in the Russian

market, but is still strong for the bivariate mixture model to work.

5 Empirical results

5.1 One-stock MMH model

The estimation results for the one-stock MMH model (1) with the stocks traded at the

MICEx and RTS are presented in Table ??, with the stocks traded at the NYSE – in

Table 4. The estimates of persistence of the information variable (β) are consistent with

the evidence in Andersen (1996), Liesenfeld (1998) and Watanabe (2003), and are on

average higher for the Russian market. This means that the news coming today has lower

effect on tomorrow’s decisions of traders at the NYSE than at the MICEx or RTS. This

may be caused by the different nature of information coming to different markets: the
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information concerning an overall political or economic situation may have a longer effect

on traders and investors, than the information concerning the company whose stock is

traded. The variance of the information shock is quite variable across stocks, but the

figures are comparable in size in the two markets. Interestingly, for two Russian stocks,

EESR and LKOH, this variance is much smaller when these stocks are traded at the

MICEx than when they traded at the RTS, and the other way round for the other two

Russian stocks, RTKM and SNGS. There is an impression that stock-specific news have

a tendency to appear in a particular exchange rather than in the whole market. The

average share of the uninformed volume in the total trading volume (SuV ) is shown in the

last columns of the tables. These shares are quite high in both markets fluctuating near

50%, and, most importantly, the numbers are comparable and even similar across the

markets.

5.2 Two-stock MMH model

The estimation results for the two-stock MMH model (2) with the stocks traded at the

MICEx, RTS and NYSE are presented in Table ??, 6, and 7, respectively (in the latter

case the results only for 6 pairs are reported). We also estimate the model (the results are

not shown to save space) for all pairs of stocks where one stock is drawn from the MICEx,

and the other – from the RTS. The parameter estimates differ from those obtained for

the one-stock MMH model, but the differences are consistent with the reported standard

errors. The estimates of the parameter σ12 are nonnegative for all pairs of stocks, reported

and unreported (except for the DCX–MCD pair where it is negative but insignificant

and close to zero), in spite of the fact that we do not impose any restrictions on this

parameter during estimation. This confirms the story behind the positive correlatedness

of information flows given below (3).

As discussed previously, the key parameter in the two-stock model is the correlation

coefficient ρ12 between the shocks of information variables computed as (3). Tables ??

and 9 report estimates of this parameter. Let us first consider correlations in the Russian

market. The northwest quadrant in Table ?? shows those for stocks traded at the MICEx,

the southeast quadrant – for stocks traded at the RTS, and the northeast quadrant shown

cross-correlations between shocks to information variables for stocks traded at the two

exchanges. All estimated correlations are highly significant. Correlations for different

stocks traded at the same exchange vary from about 0.3 to about 0.8, while those for
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different stocks at the different exchanges vary from about 0.2 to about 0.7, i.e. are

somewhat smaller but not appreciably. There is a tendency to companies from the same

industry to have higher correlated information variables: the highest correlation at the

MICEx, 0.680, belongs to the two oil companies LKOH and SNGS, and so does the

highest correlation at the RTS, 0.782. The between-exchanges correlations for these two

companies, 0.631 and 0.623, are also high, although somewhat smaller. In contrast, the

lowest correlation at the MICEx, 0.306, belongs to the pair RTKM (telecommunications

industry) and SNGS (oil extraction), and so does the lowest correlation at the RTS, 0.316.

The between-exchanges correlations for these two companies, 0.217 and 0.252, are also

the lowest. In the northeast quadrant there is some weak evidence of a symmetry relative

to the diagonal, although, for example, the high correlation for the SNGS stock from the

MICEx and the EESR stock from the RTS does not repeat itself for the EESR stock from

the MICEx and the SNGS stock from the RTS (that high correlation, 0.721, seems to be an

exception from many other tendencies). If one compares the same-exchange correlations

between stocks of two companies to the cross-exchange correlations, one can see that the

cross-exchange correlations tend to be lower than the maximal same-exchange correlation

for these two stocks, and most often lower than the minimal of them. Interestingly, the

cross-exchange correlations for stocks of the same company are very close to unity. For the

EESR, the most heavily traded stock, the point estimate even exceeds unity (recall that

we do not restrict |ρ12| to be lower than unity during estimation); it is also very high for

RTKM and SNGS, and a bit lower for LKOH. This points at an almost free information

mobility between the two exchanges. The fact that the same-exchange correlations are

generally larger than the cross-exchange correlations if the stocks are not of the same

company but of the same industry indicates that there is some specialization of traders

to work with securities at a particular exchange.

The fact that the lowest estimated same-exchange correlation equals 0.306 at the

MICEx and 0.316 at the RTS, while the lowest cross-exchange correlation equals 0.217,

indicates that some of the correlation is due to overall political and economic risk factors

and some is due to the commonality of the trading platform, i.e. due to exchange special-

ization. Further, the commonality of the industry drives the correlations up appreciably

from the average same-exchange or cross-exchange correlations. This sharply contrasts

with the evidence from the NYSE presented in Table 7. The lowest correlations for the

American market are so close to zero that it is reasonable to assume that the political and

economic risks have practically zero effect; the diversity of assets and liquidity are so high
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that common information can arise only from industry-wide news. Remember that the

NYSE-traded stocks are chosen from six industries with two stocks in each. The empirical

evidence confirms the hypothesis that the correlation of shocks of information variables

for stocks of same-industry companies is higher than of those from different industries,

although not perfectly. The correlation is indeed high for the pairs BP and CVX (0.64),

F and DCX (0.59), VZ and SBC (0.79), IBM and HPQ (0.47), but it is lower for MRK

and GSK (0.29), and much lower for MCD and YUM (0.16). There is also quite high

correlation for the stocks of companies from different industries, for example for SBC and

IBM (0.44), MCD and BP (0.43), YUM and DCX (0.39). In some cases it is easy to

understand what kind of information may be common for the industry in order to have

effect on the dynamics of both stocks from that industry. For example, for the Oil & Gas

Integrated industry it may be the world oil prices, for the Communications Services and

Major Drugs industries it may be advents of new technologies crucial for the development

of these industries, but it is hard to imagine what kind of information may be common

for the Restaurants industry.

6 Conclusion

The proposed natural extension of the Modified Mixture of Distribution model of Ander-

sen (1996) does provide interesting evidence about interconnection of information flows

associated with different assets. Of course, inferring which fractions of common informa-

tion are due to different factors from a large number of pairwise comparisons is far from

perfect. Hence, the model can be potentially extended to a larger number of assets, and

possibly introduce more complex lead–lag relationships for information flows, provided

that the span of data is long enough. A specification similar to those used in the panel

data analysis is a possibility.
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A Derivation of moment conditions

We express the moments as functions of models parameters and E [Iat ] and E
[
Iai,tI

b
j,t−k

]
that are in turn can be expressed as functions of model parameters as shown in Appendix

B. For one stock, the static moments are

E [rt] = r̄,

E [|rt − r̄|] =

√
2

π
E
[
I

1/2
t

]
,

E
[
(rt − r̄)2

]
= E [It] ,

E [Vt] = cm0 + cm1E [It] ≡ V̄ ,

E
[(
Vt − V̄

)2
]

= cV̄ + (cm1)2(E
[
I2
t

]
− (E [It])

2),

and the dynamic moments for k ≥ 1 are

E [|rt − r̄| |rt−k − r̄|] =
2

π
E
[
I

1/2
t I

1/2
t−k

]
,

E
[(
Vt − V̄

) (
Vt−k − V̄

)]
= (cm1)2

(
E [ItIt−k]− (E [It])

2
)
.

For two stocks i and j, i 6= j, and k ≥ 1,

E [|ri,t − r̄i| rj,t] =

√
2

π
r̄jE

[
I

1/2
i,t

]
,
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E [Vi,tVj,t] = cimi,0V̄j + cimi,0cjmj,0E [Ii,t] + cimi,1cjmj,1E [Ii,tIj,t] ,

E [Vi,trj,t] = (cimi,0 + cimi,1E [Ii,t]) r̄j ≡ V̄j r̄j,

E [Vi,t |rj,t − r̄j|] =

√
2

π

(
cimi,0E

[
I

1/2
j,t

]
+ cimi,1E

[
Ii,tI

1/2
j,t

])
.

B Derivation of moments of information variable

Denote λi,t = ln Ii,t. We need to express E
[
Iai,tI

b
j,t−k

]
= E [exp (aλi,t + bλj,t−k)] for k ≥ 0

via the parameters of processes the information variables follow. From the dynamics of

the information variables we have:

aλi,t + bλj,t−k = a
αi

1− βi
+ a

∞∑
l=0

βliui,t−l + b
αj

1− βj
+ b

∞∑
l=0

βljuj,t−k−l,

from which it follows that

aλi,t + bλj,t−k ∼ N

(
a

αi
1− βi

+ b
αj

1− βj
, a2 σ2

i

1− β2
i

+ b2 σ2
j

1− β2
j

+ 2abβki
σ12

1− βiβj

)
.

Hence,

E
[
Iai,tI

b
j,t−k

]
= exp

(
a

αi
1− βi

+ b
αj

1− βj
+
a2

2

σ2
i

1− β2
i

+
b2

2

σ2
j

1− β2
j

+ abβki
σ12

1− βiβj

)
.

In particular,

E
[
Iai,tI

b
i,t−k

]
= exp

(
(a+ b)

αi
1− βi

+

(
a2

2
+
b2

2
+ abβki

)
σ2
i

1− β2
i

)
,

E
[
Iai,t
]

= exp

(
a

αi
1− βi

+
a2

2

σ2
i

1− β2
i

)
.
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