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1 Introduction

Any variable can be decomposed, by identity, into multiplicative absolute value and sign com-

ponents. One widely documented �nding in empirical work is that while the two multiplicative

components exhibit a substantial degree of predictability, the variable itself is often linearly

unpredictable. Anatolyev and Gospodinov (2010) capitalize on this observation and propose,

in a univariate setting, a model of joint dynamics of the components that is able to exploit

implicit nonlinearities, predictability in the marginals, dependence of the components etc. This

analytical setup also helps to construct the whole conditional predictive density (and various

conditional measures), uncover the sources of possible prediction failures of linear conditional

mean models, etc.

Given the rich information content and wide applicability of this approach, it is desirable

to extend it to a multivariate framework with m variables. For expositional purposes, we focus

the analysis on asset returns but other stationary, weakly dependent processes can also be

accommodated. In this paper, we propose a multivariate extension of the decomposition model.

We link the continuous marginals for the m absolute values and the binary marginals for the m

signs via a 2m-dimensional copula generated by the inversion method. A leading choice is the

normal copula which is prompted by its �exibility and computability and whose parsimonious

parameterization is readily interpretable; however, asymmetric copulas (for instance, skewed

normal) are also possible. We show how the likelihood function is constructed from the data,

how various conditional measures of interest (such as conditional mean, variance, covariance

and correlation, skewness and co-skewness, and so on) can be computed, and how the parameter

estimates behave in �nite samples. We further detail the model for a special case of bivariate

processes, i.e. when m = 2; which keeps the model parsimonious and avoids the curse of

dimensionality, with higher values of m implying a much higher risk of overparameterization.1

We also conduct a small simulation experiment to get a feel for the quality of estimation in

realistic samples. Finally, we provide an empirical application to two bond returns of di¤erent

maturity.

It should be stressed that our approach is multi-purpose and trades o¤�exibility in modeling

the marginals (for volatility and direction) for analytical tractability of the joint density of the

2m components. More �exible functional and distributional forms could be allowed provided

that this preserves the analytical convenience and internal consistency of the model. Instead,

and this is the approach adopted in this paper, one could further improve the speci�cation of

1 In addition, the case m > 2 brings in a need to consider a multivariate framework for binary directions-of-
change which does not often happens in �nancial econometrics, with models like bivariate probit just beginning
to gain attention recently (e.g., Nyberg, 2014); a rare exception is Anatolyev (2010).
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the marginals by incorporating (functions of) additional predictors.

The article is organized as follows. In Section 2 we discuss the construction of the joint

density and likelihood function as well as the computation of conditional measures. The numer-

ical properties of the proposed maximum likelihood estimator are evaluated in a Monte Carlo

experiment reported in Section 3. The usefulness of the method in a multivariate context is

illustrated by studying the predictability of intermediate-term and long-term government bond

returns. The empirical results from various di¤erent models, including the bivariate decompo-

sition model, are presented in Section 4. Section 5 concludes. The Appendix contains proofs,

derivations and auxiliary technical details.

2 Decomposition Approach

The decomposition approach is based on modeling the joint distribution of multiplicative com-

ponents of asset returns � their absolute values and signs, or, equivalently, directions. In a

univariate case, a positive marginal for the absolute values and a binary marginal for the signs

are linked by a copula, all three ingredients being conditional on the history of returns. In the

m-variate case, the ingredients of the decomposition model are an m-variate positive �marginal�

for m absolute values, an m-variate binary �marginal�for m directions, and a 2m-dimensional

copula that links all components.

The marginals for absolute values have positive support;2 each of these m marginals may

be Weibull, Generalized Gamma, Burr, or another positive distribution, with the dynamics

following some form of a multiplicative error model (MEM) (Engle, 2002). Each of m binary

marginals is, of course, Bernoulli; candidates for a convenient direction submodel are the probit

and logit models. The choice of the copula is vast. Anatolyev and Gospodinov (2010) in their

application used the Clayton, Frank, and Farley-Gumbel-Morgenstern copulas; Liu and Luger

(2015) in addition used the rotated Clayton copula, etc. In the multivariate setting, we suggest

using copulas generated by the inversion method (Trivedi and Zimmer, 2005). This class, in

addition to providing analytical convenience and integrity of the decomposition model, yields

other attractive features. First, such copulas are fairly �exible in a multivariate context: their

covariance matrix is parameterized by m(2m�1) parameters, which in the bivariate case m = 2

equals 6. These parameters are easily interpretable as degrees of dependence among di¤erent

components, which may not be the case with other copula choices. Second, the submodel for

absolute values in this case is a multivariate MEM model (as in Cipollini, Engle and Gallo,

2017), and the submodel for directions is a multivariate binary choice model (as, for example,

2Strictly speaking, the support should be non-negative, but we assume a continuous distribution of returns
which makes the di¤erence inconsequential.
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the multivariate probit in Ashford and Sowden, 1970). A special case of this class of copulas is

the normal copula which can facilitate computations of various conditional distributions involved

in the likelihood. The general theory developed below, however, is applicable to other choices

of copulas from this class; we also work out an asymmetric case of the skewed normal copula.

2.1 Univariate decomposition

To illustrate the main idea of our approach, we �rst present the univariate decomposition method

of Anatolyev and Gospodinov (2010). To show a more clear-cut result, we intentionally set the

copula to be normal, the volatility marginal to be Weibull, and the direction marginal to be

probit. Our multivariate extension in the next subsection is applicable to more general marginals

and copulas.

Let rt; t = 1; :::; T; be a time series of asset returns. It can be decomposed into two

multiplicative components as

rt = jrtj sign(rt) = jrtj(2It � 1);

where It = Ifrt > 0g; and If�g denotes the indicator function. The univariate decomposition
method of Anatolyev and Gospodinov (2010) is based on joint dynamic modeling of the two

multiplicative components ��volatility� jrtj and �direction�It, which is a linear transformation
of sign sign(rt):

Let 't = E(jrtjjFt�1) be the conditional expectation of a conditionally Weibull distrib-
uted absolute value jrtj with a shape parameter &, denoted as jrtjjFt�1 � W('t; &). Let

pt = Prfrt > 0jFt�1g = �(�t) be the �success� (i.e. the market going up) probability of

the Bernoulli distributed direction It denoted as ItjFt�1 � B(pt). The joint distribution of the
two multiplicative components can be expressed as

(jrtj; It) jFt�1 � C(W('t; &);B(pt); %);

where C(w; y) = �2(��1(w);��1(y); %) is a bivariate normal copula with correlation parameter

%. The processes 't and �t can be speci�ed as functions of the variables in Ft�1 adding to the
dimension of the parameter vector.

Let us temporarily suppress the time indexing. Denote by fv(u) and Fv(u) the PDF and

CDF of the volatility component, and by p the success probability of the direction component.

Proposition 1. The joint density/mass of the pair (jrj; I) is equal to

f(u; v) = fv(u) f
C
d (u; v);
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where fCd (u; v) is the Bernoulli PMF with �distorted�probability

pC(u) = �

 
��1(p)� %��1(Fv(u))p

1� %2

!
:

In our case, fv(u) and Fv(u) are those of the Weibull distribution, and p = �(�) is probit

success probability. Restoring time indexing, the joint log-likelihood is

`r =
TX
t=1

log fW('t;&)(jrtj) +
TX
t=1

It log p
C
t + (1� It) log(1� pCt );

where the series of �distorted�probabilities is, for t = 1; :::; T;

pCt = �

 
�t + %�

�1(FW('t;&)(jrtj))p
1� %2

!
:

2.2 Multivariate decomposition

Now let r1;t; r2;t; ..., rm;t be m time series of returns. Each of them can be decomposed as

ri;t = jri;tj(2Ii;t � 1);

i = 1; :::;m; where Ii;t = Ifri;t > 0g. Each absolute value jri;tj is distributed as D('i;t; & i); where
D is some distribution with a positive support, 'i;t = E(jri;tjjFt�1) is conditional mean, and & i
is (possibly multidimensional) shape parameter. Each direction Ii;t is distributed as Bernoulli

B(pi;t); where pi;t = Prfri;t > 0jFt�1g is conditional success probability. The information set
Ft�1 now embeds individual information sets Fi;t�1 and possibly information beyond the history
of the returns. Together, there are 2m components that are linked through 2m-variate copula

C: Arranging the arguments by m absolute values �rst and then by m indicators, we consider

copulas generated by the inversion method (Trivedi and Zimmer, 2005, section 3.1):

C (w1; :::; wm; y1; :::; ym) = 	2m(	
�1(w1); :::;	

�1(wm);	
�1(y1); :::;	

�1(ym); R; �);

where 	2m is CDF of some 2m-variate distribution (with corresponding PDF  2m), 	 is its

one-dimensional marginal CDF (with corresponding PDF  ), R is a 2m�2m copula correlation

matrix, and � denotes an additional (possibly multidimensional) shape parameter, if any. This

class contains, in particular, the popular in �nancial econometrics normal copula, in which case

	2m = �2m, 	 = �; and � is nil. Another possibility is Student�s t copula, in which case

	2m = T2m;� , 	 = T� ; and � is degrees of freedom. In the empirical application, we use

the normal copula, as well as the asymmetric copula based on the multivariate skewed normal

distribution (Azzalini and Dalla Valle, 1996), in which case � contains asymmetry parameters.3

3See Appendix A.2 for details when m = 2:
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For notational convenience, let us again temporarily suppress time indexing and parameter

dependence. Denote the marginal CDFs of volatility components by F1(u1); :::; Fm(um) and

their marginal PDFs by f1(u1); :::; fm(um): Furthermore, denote the success probabilities of the

direction components by p1; :::; pm, and the corresponding CMFs by G1(v1); :::; Gm(vm): The

following Proposition gives an expression for the 2m-variate joint density/mass function.

Proposition 2. The joint density/mass of the 2m-tuple (jr1j; :::; jrmj; I1; :::; Im) is equal to

f(u1; :::; um; v1; :::; vm) = fu(u1; :::; um)f
C(v1; :::; vm; u1; :::; um);

(u1; :::; um) 2 [0;1)m ; (v1; :::; vm) 2 f0; 1gm ; where

fu(u1; :::; um) = f1(u1):::fm(um)c(F1(u1); :::; F2(um))

is the m-variate PDF of the volatility submodel linked by the m-variate copula C (w1; :::; wm) =

	m(	
�1(w1); :::;	�1(wm)) with density

c(w1; :::; wm) =
 m(	

�1(w1); :::;	�1(wm))

 (	�1(w1)) ::: (	�1(wm))
;

and

fC(v1; :::; vm; u1; :::; um) =
X

`12f0;1g
:::

X
`m2f0;1g

(�1)`1+:::+`m �`1:::`m(v1; :::; vm; u1; :::; um);

where

�`1:::`m(v1; :::; vm; u1; :::; um) =

	m(	
�1(G1(v1 � `1)); :::;	�1(Gm(vm � `m))j	�1(F1(u1)); :::;	�1(Fm(um)))

is the �distorted�PMF of the m-variate PDF direction submodel.

Note that the volatility submodel is the copula-basedm-variate MEM (though with di¤erent

marginals) from Cipollini, Engle and Gallo (2017). The direction submodel is represented by the

probability mass function for an m-variate binary vector. It is straightforward to write out the

joint log-likelihood function (see below for the case m = 2) to be maximized over the parameter

collection that includes parameters ofmmarginal volatility models,mmarginal direction models,

and copula parameters. For the former two subcollections, it is natural to use as starting

values the parameter estimates from the stand-alone volatility and stand-alone direction models,

respectively, and the copula parameters can be initialized at the values implying independence

and normality.
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2.3 Bivariate decomposition

We now specialize the results to the case m = 2: The copula correlation matrix then has the

following structure:

R =

2664
1 %v %1 %vd
%v 1 %dv %2
%1 %dv 1 %d
%vd %2 %d 1

3775 � � Rv Rvd
Rdv Rd

�
;

where each block Rv; Rd; Rvd and Rdv is 2�2: The coe¢ cient %v is responsible for the dependence
between the two volatilities in the volatility submodel, the coe¢ cient %d �for the dependence

between the two directions in the direction submodel, the coe¢ cient %1 �for the dependence

between the volatility and direction in the decomposition submodel for the �rst asset, etc. The

following Corollary is an m = 2 re�nement of Proposition 2.

Corollary 3. The joint density/mass of the quartuple (jr1;tj; jr2;tj; I1;t; I2;t) is equal to

f(u1; u2; v1; v2) = fv(u1; u2)f
C
d (u1; u2; v1; v2);

(u1; u2) 2 [0;1)2 ; (v1; v2) 2 f0; 1g2 ; where

fv(u1; u2) = f1(u1)f2(u2)c(F1(u1); F2(u2))

is the bivariate PDF of the volatility submodel linked by the bivariate copula C(w1; w2) =

	2(	
�1(w1);	�1(w2)) with density

c(w1; w2) =
 2(	

�1(w1);	�1(w2))

 (	�1(w1)) (	�1(w2))
;

and

fCd (u1; u2; v1; v2) = pC11(u1; u2)
v1v2pC01(u1; u2)

(1�v1)v2pC10(u1; u2)
v1(1�v2)pC00(u1; u2)

(1�v1)(1�v2)

is the bivariate Bernoulli PMF of the direction submodel with �distorted�probabilities

pC11(u1; u2) = 1� �1(u1; u2)� �2(u1; u2) + �12(u1; u2);

pC01(u1; u2) = �1(u1; u2)� �12(u1; u2);

pC10(u1; u2) = �2(u1; u2)� �12(u1; u2);

pC00(u1; u2) = �12(u1; u2);

where4

�1(u1; u2) = 	2(	
�1(1� p1);	�1(1)j	�1(w1);	�1(w2))

��
w1=F1(u1);w2=F2(u2)

;

�2(u1; u2) = 	2(	
�1(1);	�1(1� p2)j	�1(w1);	�1(w2))

��
w1=F1(u1);w2=F2(u2)

;

�12(u1; u2) = 	2(	
�1(1� p1);	�1(1� p2)j	�1(w1);	�1(w2))

��
w1=F1(u1);w2=F2(u2)

:

4The following expressions can be simpli�ed using that 	2(y1;	�1(1)) = 	(y1) and 	2(	�1(1); y2) = 	(y2):
However, we prefer not to do it for the sake of generality of further computations of conditional CDFs.
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It is straightforward to deduce that when the copula is normal and there is no link between

the direction and volatility submodels, then

pCij = �(�1)ji�jj%d((�1)
i+1�1; (�1)j+1�2); i; j 2 f0; 1g;

where �%(�; �) denotes a standard bivariate normal CDF with correlation coe¢ cient %; reducing
to the bivariate probit model (Ashford and Sowden, 1970).5

The probabilities ��(u1; u2) can be computed using that the conditional CDF is

	2(v1; v2ju1; u2) =
Z v1

�1

Z v2

�1

 4(u1; u2; x3; x4)

 2(u1; u2)
dx3dx4:

Restoring time indexing, the joint log-likelihood equals

`r =

TX
t=1

X
i=1;2

log fD('i;t)(jri;tj) +
TX
t=1

c(FD('1;t)(jr1;tj); FD('2;t)(jr2;tj)) +

TX
t=1

I1;tI2;t log p
C
11;t + (1� I1;t)I2;t log pC01;t + I1;t(1� I2;t) log pC10;t + (1� I1;t)(1� I2;t) log pC00;t;

where pCij;t = pCij(jr1;tj; jr2;tj); i; j 2 f0; 1g; t = 1; :::; T; is a collection of the series of �distorted�
probabilities. We rely on standard results in the literature on maximum likelihood estimation

to obtain asymptotic normality of parameter estimates and compute their asymptotic variance.

2.4 Computation of conditional measures

The decomposition model is a fully speci�ed parametric model, and hence allows computation of

various conditional measures such as conditional mean values, conditional variances, covariances

and correlations, and so on. In this subsection we give technical details how one can compute

conditional expectations of various functions of r1, ..., rm:

Suppose one is interested in the conditional expectation of g(r1; :::; rm) for some function

g(�; :::; �). The predictor for a general function of returns is, temporarily omitting conditioning
on Ft�1 and time indexes,

E [g(r1; :::; rm)] =
X

v12f0;1g
:::

X
vm2f0;1g

Z +1

u1=0
:::

Z +1

um=0
g(u1(2v1 � 1); :::; um(2vm � 1))

fCd (v1; ::; vm)fv(u1; :::; um)du1:::dum:

The summation over all m-tuples of (v1; ::; vm) 2 f0; 1gm implies 2m terms, and integration over
(u1; :::; um) 2 [0;1)m can be implemented numerically, at least for smaller m:

5For example, pC00 = �%d(�
�1(1 � p1);�

�1(1 � p2)) = �%d(��1;t;��2;t); or p
C
01 = 1 � � (�1;t) �

�%d(��1;t;��2;t) = � (��1;t)� (� (��1;t)� ��%d(��1;t; �2;t)) = ��%d(��1;t; �2;t); etc.
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Consider again the case m = 2: The predictor for a general function of returns is

E [g(r1; r2)] =
X

v12f0;1g

X
v22f0;1g

Z +1

u1=0

Z +1

u2=0
g(u1(2v1 � 1); u2(2v2 � 1))fCd (v1; v2)fv(u1; u2)du1du2

=

Z +1

u1=0

Z +1

u2=0

�
g(�u1;�u2)pC00(u1; u2) + g(u1;�u2)pC10(u1; u2)
+g(�u1; u2)pC01(u1; u2) + g(u1; u2)pC11(u1; u2)

�
fv(u1; u2)du1du2;

where fv(u1; u2) and pCij(u1; u2); i; j 2 f0; 1g are de�ned in Corollary 3. If the function g(�; �) is
de�ned over absolute values only, then, denoting g(r1; r2) = h(jr1j; jr2j);

E [h(jr1j; jr2j)] =
Z +1

u1=0

Z +1

u2=0
h(u1; u2)fv(u1; u2)du1du2:

If g is a function of only one of returns, r1 say, the expression simpli�es:

E [g(r1)] =
X

v12f0;1g

X
v22f0;1g

Z +1

u1=0

Z +1

u2=0
g(u1(2v1 � 1))fCd (v1; v2)fv(u1; u2)du1du2

=

Z +1

u1=0

Z +1

u2=0
[g(�u1)�1(u1; u2) + g(u1) (1� �1(u1; u2))] fv(u1; u2)du1du2:

Alternatively and more simply, one can proceed as in Anatolyev and Gospodinov (2010):

E [g(r1)] =

Z +1

u1=0

�
g(�u1)pC1;t(u1) + g(u1)

�
1� pC1;t(u1)

��
f1(u1)du1:

As a consequence, the conditional means can be computed as

Et�1 [r1;t] =

Z +1

u1=0

Z +1

u2=0
u1 (1� 2�1;t(u1; u2)) fv;t(u1; u2)du1du2;

or alternatively, as

Et�1 [r1;t] = 2Et�1 [jr1;tjI1;t]� Et�1 [jr1;tj] = 2�1;t � '1;t;

where �1;t =
R +1
u1=0

R +1
u2=0

u1 (1� �1;t(u1; u2)) fv;t(u1; u2)du1du2: The expressions for Et�1 [r2;t] are
obtained similarly. The conditional means can be used, among other things, for constructing

the pseudo-R2 measure.

The conditional variances are simply

vart�1(r1;t) = Et�1
�
jr1;tj2

�
� Et�1 [r1;t]2 ;

where Et�1
�
jr1;tj2

�
=
R +1
u1=0

u21
R +1
u2=0

fv;t(u1; u2)du1du2; and similarly for vart�1(r2;t): The con-

ditional correlations are

corrt�1(r1;t; r2;t) =
Et�1 [r1;tr2;t]� Et�1 [r1;t]Et�1 [r2;t]p

vart�1(r1;t)vart�1(r2;t)
;

where Et�1 [r1;tr2;t] =
R +1
u1=0

R +1
u2=0

u1u2 (1� 2�1;t(u1; u2)� 2�2;t(u1; u2) + 4�12;t(u1; u2)) fv;t(u1; u2)du1du2:
In our simulations and empirical work, we compute the two-dimensional integrals involved

in these formulas via a product Gauss�Chebychev quadrature with 100 Chebychev quadrature

nodes on [0; 1]; see Judd (1998, p. 270).
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3 Simulation evidence

In this section, we investigate the �nite-sample properties of the maximum likelihood estimator of

the bivariate decomposition model. The simulation design is an �autoregressive�(not containing

extraneous predictors) version of the model used in the empirical section, with similar parameter

values.

The volatility equations are speci�ed as

ln'i;t = !vi + �vi ln'i;t�1 + �vij ln jrj;t�1j+ 
vijIj;t�1

for i; j = 1; 2: The parameter values are !vi = 0; �vi = 0:8; �vij = 0:1 for i = j and �vij = 0:05

for i 6= j, and 
vij = �0:3 for i = j and 
vij = 0:2 for i 6= j. That is, the persistence in volatility

is high, and its reaction to news about own components is higher than that to news about the

other variable�s components. The Weibull distribution shape parameters are &1 = &2 = 1:2: We

also try non-symmetric shapes with higher curvature: &1 = 1:5; &2 = 2:5:

The direction equations are speci�ed as

�i;t = !di + �dijIj;t�1

for i; j = 1; 2: The parameter values are !di = 0:3; �dij = 0:3 for i = j and �dij = �0:1 for i 6= j.

That is, the reaction of direction to own past directions is higher in absolute value than that

the other variable�s directions, and opposite in sign.

The elements of the dependence matrix R are set at %v = %d = 0:6 and %1 = %2 = %vd =

%dv = 0:2. That is, the namesake components are moderately correlated across variables; the

opposite components are weakly correlated both within the same variable and across variables.

Table 1 presents the mean and standard deviation of the estimates across 1,000 replications

for sample sizes n = 500 and n = 2000. To assess the accuracy of the asymptotic standard errors

and asymptotic normality of the estimates, we also report the empirical size of the individual t-

tests at the 5% signi�cance level. Overall, the estimates appear unbiased and well identi�ed. The

empirical size of tests for the true value is very close to the nominal level of the test. The results

also suggest that the volatility equation coe¢ cients are estimated on average twice as precisely

as the direction equation coe¢ cients, the other variable�s news impact coe¢ cients beating the

record. Another interesting thing is that the degree of volatility dependence is estimated twice

as precisely as all other dependence coe¢ cients. Higher curvature of the shape of the absolute

value marginals in fact brings a better precision of some parameter estimates, not signi�cantly

altering the empirical rejection rates.

To evaluate the accuracy of the predictions from the bivariate decomposition model, we

compute various predictive performance measures, and compare them to their analogs from a
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linear VAR(1) model �tted to the simulated data. One measure is the pseudo-R2 for returns

which is a measure that favors linear projections over complex nonlinear structures. The other

two measures, for which the decomposition model is supposed to show advantage, are the pseudo-

R2 for absolute values and the fraction of successful sign predictions.6 ;7

Figures 1�3 plot histograms for these three measures from the linear and decomposition

models for n = 500. It turns out that for this DGP the �gures of R2 for returns are small,

indicating that the noise by far exceeds the signal, and one should not expect big R2 values in

a corresponding application. The decomposition model, being the true DGP, produces a much

higher R2 for returns than the linear model, and the corresponding distribution dominates that

for the linear model. Even sharper is the contrast for the values of R2 for absolute returns

which are several-fold higher for the decomposition model than those for the linear model. The

sign predictability is also markedly more successful for the decomposition model, though by a

narrower margin. This is also natural as directions are intrinsically less persistent and hence

less predictable than the absolute values.

The discrepancy between these �gures in actual applications is not expected to be that

sharp as in these simulations, for two reasons. First, the actual data generation mechanism

may be more complex and its type is likely to fall �in between�linear and nonlinear. Second,

these quantities, especially pseudo-R2, are very noisy measures of time-series �t, at least for

such sample sizes. We will return to this issue in the empirical section of the paper.

4 Bond return predictability

4.1 Motivation and data description

Predictability of bond returns has been the focus of renewed research interest in the recent

literature. Cochrane and Piazzesi (2005) provide strong evidence of predictability of excess

bond returns by a linear combination of forward rates. Some subsequent studies show that

the �rst few principal components from a large panel of US economic and �nancial time series

(Ludvigson and Ng, 2009), survey in�ation expectations (Chernov and Mueller, 2012) and a

6The pseudo-R2 for returns and pseudo-R2 for absolute values are computed as

pseudo-R2r =

�P
t

�
r̂tjt�1 � r̂tjt�1

�
(r̂t � rt)

�2P
t

�
r̂tjt�1 � r̂tjt�1

�2P
t (r̂t � rt)

2
; pseudo-R2jrj =

�P
t(jr̂tjt�1j � jr̂tjt�1j)(jr̂tj � jrtj)

�2
P

t(jr̂tjt�1j � jr̂tjt�1j)2
P

t(jr̂tj � jrtj)2
;

7The proportions of successful sign predictions are computed as

S =
1

T

X
t

�
I+t Ifrt>0g +

�
1� I+t

�
Ifrt�0g

�
;

where I+t = Ifr̂tjt�1>0g for the linear model and I
+
t = IfpCt >0:5g for the decomposition model.
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cyclical component of past in�ation (Cieslak and Povala, 2015) also tend to be strong predictors

of future bond returns. The statistical magnitude of the bond return predictability and the

robustness of these �ndings are summarized in Du¤ee (2013). This predictive evidence may

at �rst appear to be at odds with the results that these additional factors are ine¤ective in

explaining the term structure of bond yields where the level, slope and the curvature of the

yield curve explain in excess of 99.5% of the cross-sectional variation of bond yields. However,

Du¤ee (2011) argues that this evidence can be reconciled if these are hidden factors; i.e., they

do not a¤ect the cross-section of yields but help to predict the future dynamics of bond returns.

In other words, the dimension of the state vector that determines current yields is smaller than

the dimension of the state vector that determines the expected bond yields and returns (Du¤ee,

2013).

Following Du¤ee (2013), this could be best illustrated using the conditional expectation

version of the main relationship linking long-term and short-term yields:

y
(n)
t =

1

n
Et

 
n�1X
h=0

y
(1)
t+h

!
+
1

n
Et

 
n�1X
h=0

r
(n)
t+h;t+h+1 � y

(1)
t+h

!
;

where y(n)t = � 1
n ln(P

(n)
t ) is the yield on an n-period zero-coupon bond with price P (n)t at time t

and r(n)t;t+1 � y
(1)
t = ln(P

(n�1)
t+1 =P

(n)
t )� y(1)t is the excess bond return between time t and t+1. It

is then plausible to envision a situation when a hidden factor has a non-zero equal but opposite

e¤ect on both expectational terms of the right-hand side while passing undetected through the

cross-section of yields at time t. For more rigorous discussion of this, see Du¤ee (2011). Joslin,

Priebsch and Singleton (2014) propose a new framework for estimating dynamic term structure

model with such hidden (unspanned) macro factors.

In this application, we explore possible nonlinearities in the predictive relationship between

long-term (with average maturity of 20 years) and medium-term (with average maturity of 5

years) bond returns and two popular predictors: the Cochrane-Piazzesi factor (cpt) and S&P500

stock returns (spt). The Cochrane-Piazzesi factor is constructed from the following monthly

predictive regression (Cochrane and Piazzesi, 2005; Du¤ee, 2013):

rxt;t+1 = F 0t
 + "t+1;

where rxt;t+1 = 1
4

P5
n=2 r

(n)
t;t+1 � y

(1)
t are excess returns for a portfolio of bonds with 2-, 3-,

4- and 5-year maturities, Ft = [1; y
(1)
t ; f

(2)
t ; :::; f

(5)
t ; f

(2)
t�1; :::; f

(5)
t�1; :::; f

(2)
t�11; :::; f

(5)
t�11]

0 and f (i)t =

ln(P
(i�1)
t )� ln(P (i)t ) for i = 2; :::; 5 is the forward rate at time t for loans between time t+ i� 1

and t + i. The Cochrane-Piazzesi factor is then computed as cpt = F 0t 
̂, where 
̂ is the OLS

estimate from the above regression.
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The yield data, used for constructing the Cochrane-Piazzesi factor, is obtained from the

U.S. Treasury yield curve of Gürkaynak, Sack and Wright (2007), maintained by the Federal

Reserve Board.8 The data for bond returns and S&P500 returns is from Ibbotson SBBI 2014

yearbook. We use returns on long-term government bonds (with an approximate maturity of

20 years) and intermediate-term government bonds (with an approximate maturity of 5 years),

which are denoted by r1 (LT) and r2 (IT), respectively. The data are monthly observations

covering the period January 1953 �December 2013.

The predictive regressions for bond returns are typically linear in the predictors and are

estimated separately for each maturity. The decomposition method allows for possible nonlin-

earities while the multivariate version of the method exploits possible dependencies between

long- and intermediate-term bond returns and their components.

4.2 Dynamic speci�cations and empirical results

In all speci�cations, we employ only one lag of the explanatory variables; extension to a higher-

lag versions are obvious, though they may lead to poorer precision of asymptotic inference

because of possible overparameterization. When the data are abundant and allow this, the lag

orders can be selected via information criteria such as BIC.

As a benchmark, we use the linear univariate and bivariate models. The univariate version

of our benchmark linear models is

ri;t = !`i + �`iri;t�1 + �`ispt�1 + �`icpt�1

for i = 1; 2; and the multivariate version is

ri;t = !`i + �`iiri;t�1 + �`ijrj;t�1 + �`ispt�1 + �`icpt�1

for i; j = 1; 2. The estimation is performed via univariate and bivariate Gaussian QML, re-

spectively. The estimation results for the univariate and bivariate model are presented in Table

2. For both (univariate and bivariate) versions, the external predictors have strong predictive

power: past stock returns have a negative e¤ect on bond returns, in line with the �great rotation�

hypothesis between stocks and bonds, and the Cochrane-Piazzesi factor tends to increase future

bond returns. In all cases, long-term bonds appear to react more strongly to changes in the

predictors. There is also a strong cross-e¤ect of lagged IT bond returns on LT bond returns but

not vice versa. As expected, the residuals of the two equations are highly positively correlated

with a correlation coe¢ cient of � = 0:82.

8Available at http://www.federalreserve.gov/Pubs/feds/2006/200628/200628abs.html.
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Along with the bivariate decomposition model, we also estimate the univariate decomposi-

tion models for both variables separately. In addition, we estimate bivariate stand-alone models

for absolute values only (bivariate MEM) and directions only (bivariate probit). Finally, the

univariate decomposition model combines the univariate volatility and directions submodels.

The bivariate decomposition model combines the bivariate volatility and directions submodels,

or, from the other perspective, it combines the two univariate decomposition models.

The speci�cations for the latent processes 'i;t and �i;t are the same in these models as long

as they model the same number of variables. The conditional mean in the bivariate model for

absolute returns (�volatility submodel�) is speci�ed as

ln'i;t = !vi + �vi ln'i;t�1 + �vi ln jri;t�1j+ 
viIi;t�1 + �vspt�1 + �vcpt�1

for i = 1; 2: The individual log-likelihood for the univariate volatility submodel for variable i is

given by

`vi =

TX
t=1

log fW('i;t;&i)(jri;tj)

for i = 1; 2: This is maximized separately for each individual volatility model (or jointly, which

is equivalent). The conditional means in the bivariate model for absolute returns are speci�ed

as

ln'i;t = !vi+�vi ln'i;t�1+�vii ln jri;t�1j+
viiIi;t�1+�vij ln jrj;t�1j+
vijIj;t�1+�vispt�1+�vicpt�1

for i = 1; 2: The joint log-likelihood for the bivariate volatility submodel is

`v = `v1 + `v2 +

TX
t=1

log c(FW('1;t;&1)(jr1;tj); FW('2;t;&2)(jr2;tj); %v):

An additional parameter involved is the degree of conditional dependence %v between the two

absolute values. The construction of the excess dispersion test that tests for adequacy of Weibull

marginals is described in Anatolyev and Gospodinov (2010). The estimation results for the

univariate and bivariate (standalone) volatility submodels are reported in the middle part of

Table 3, and those for the univariate (bivariate) decomposition models are presented in the left

(right) panel of Table 3. The results indicate that both volatility processes are persistent. For

LT, past positive (negative) returns cause lower (higher) current volatility. As in the linear

model, the external predictors have a signi�cant e¤ect on volatility but both of these e¤ects

are now negative. Another di¤erence with the linear models of the conditional mean is that

the cross-e¤ects (of absolute returns and direction) are now from LT to IT. The two volatility

processes are moderately strongly dependent with %v = 0:6.
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The latent variables that determine the conditional success probabilities in a univariate

probit model for directions (�direction submodel�) is given by

�i;t = !di + �diIi;t�1 + �dspt�1 + �dcpt�1

for i = 1; 2: The individual log-likelihood for the univariate direction submodel for variable i are

given by

`di =
TX
t=1

Ii;t log p1i;t + (1� Ii;t) log p0i;t:

The latent variables that determine the conditional success probabilities in a univariate probit

model for directions is given by

�i;t = !di + �diiIi;t�1 + �dijIj;t�1 + �dispt�1 + �dicpt�1

for i = 1; 2: The joint log-likelihood for the bivariate direction submodel is

`d =
TX
t=1

I1;tI2;t log p11;t+ I1;t(1� I2;t) log p10;t+(1� I1;t)I2;t log p01;t+(1� I1;t)(1� I2;t) log p00;t:

The degree of conditional dependence between the two directions is characterized by additional

parameter %d. The estimation results for the stand-alone direction submodels, as well as the

univariate and bivariate decomposition models, are reported in Table 4. The direction model for

LT exhibits positive persistence. Furthermore, the past direction of LT returns a¤ects positively

the direction of IT returns. The lagged stock returns and the Cochrane-Piazzesi factor again

have a signi�cant (negative and positive, respectively) e¤ect on the direction of bond returns.

The dependence of the directional components is strong with %d = 0:84.

The estimates of the dependence matrix R for the decomposition model are collected in

Table 5. The parameters for the univariate decomposition models are the degree of component

dependence %i for variable i = 1; 2: For the bivariate decomposition model, the two new elements

are %dv and %vd: The former indicates dependence between direction of LT and volatility of IT. It

is moderately large and highly signi�cant. The latter indicates dependence between direction of

IT and volatility of LT. It is close to zero and statistically insigni�cant. The positive and highly

signi�cant dependence between volatility of shorter-term bonds and the direction of longer-term

bond returns is interesting. It suggests that the volatility of the short-term bond returns appears

to be a priced risk that may not be necessarily revealed in a linear speci�cation.

4.3 Model comparison and prediction

Our model comparison includes univariate and bivariate linear models, bivariate stand-alone

(direction and volatility) models and univariate and bivariate decomposition models. Table 6
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reports the values of the log-likelihood and Bayesian information criterion (BIC) for di¤erent

models. The linear model is dominated by the other models. The bivariate decomposition model

performs the best despite the large number of estimated parameters. This is also con�rmed by

conducting of a likelihood ratio test in the bivariate decomposition model with restrictions

imposed by the nested standalone and univariate decomposition models. In both cases, the

restrictions are strongly rejected.9 Also, it is interesting to note that the pair of standalone

bivariate volatility and direction models outperforms the pair of univariate decomposition mod-

els. This �nding can be attributed to the fact that the two series are strongly dependent �in

dynamics�and much less �in multiplicative components�.

We construct return predictions from the decomposition model as described in subsection

2.4. The actual and predicted returns from the decomposition model are plotted in Figure 4.

Table 7 provides information on the quality of the model predictions measured by the pseudo-

R2 for returns and for absolute values, as well as fractions of correct sign predictions. In terms

of return prediction, the decomposition model tends to generate better predictions than the

linear model, with the bivariate version o¤ering noticeable improvements only for the long-term

bond returns. In terms of absolute return prediction, the predictions from the decomposition

model substantially dominate those from the linear model. In terms of sign prediction, again,

the decomposition model dominates, although by a narrower margin. We would like to stress

that a valuable feature of a fully speci�ed non-linear model for the components, such as the

decomposition model, is its ability to predict any function of these components, in contrast to

the linear model which is intrinsically tied to the objective of return mean prediction.

As indicated above, a fully-speci�ed model, such as the bivariate decomposition model, can

be used to derive the dynamics of any moments and co-moments of the predictive distribution

of returns. Figure 5 plots the conditional variances of r1 and r2 as well as their conditional

correlation. The conditional variances are characterized by sharp rises in the early 70s, early

80s and during the recent �nancial crisis. While the conditional correlation is large and stable,

it also exhibits sharp movements over the business cycle.

4.4 Robustness analysis

We estimate the bivariate decomposition model with some deviations from baseline speci�ca-

tions to verify the robustness of the results obtained. The �rst analysis concerns the marginal

distributions of the absolute value components. Recall that they are speci�ed as conditionally

Weibull, jrtjjFt�1 � W('t; &), and that the shape parameter & is estimated to be statistically
9The values of the LR statistic are 2 �732 � (5:8085�5:7676) � 60 and 2 �732 � (5:8085�5:3232) � 710 which are

far larger than conventional critical values of the �2 distribuition with 4 and 10 degrees of freedom, respectively.
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signi�cantly larger than unity (the unity would imply conditional exponentiality) for both types

of bonds; at the same time, the excess dispersion test does not reveal deviations from condi-

tional Weibullianity. However, we also �t a more general Burr distribution (e.g., Grammig and

Maurer, 2000) having Weibull as a limiting case. The PDF and CDF are, respectively,

f (�; &; %) =
&

�&
�&�1

�
1 + %

�
�

�

�&��1�%�1
;

F (�; &; %) = 1�
�
1 + %

�
�

�

�&��%�1
;

where

� =
�
�
1 + %�1

�
%1+&

�1

� (1 + &�1) � (%�1 � &�1) ; & > % > 0:

When %! 0; the Burr distribution reduces to Weibull. When the bivariate decomposition model

is estimated with Burr absolute value marginals, the estimated parameter %�1 tends to take

very large values, with the mean log-likelihood not reaching the Weibull-implied magnitude of

5:8085: This con�rms that conditional Weibullianity is �exible enough to describe the conditional

marginal distributions of the absolute value components.

Next, we deviate from the conditional probit model for the indicators and �t the logit model

pt =
1

1 + exp (��t)

instead. Note that the probit function is conformable with the normal copula speci�cation

while a use of logit in this context appears clumsy. When the bivariate decomposition model is

estimated with logit indicator marginals, the estimated parameters in the evolution of �t stay

similar; with the mean loglikelihood in�nitesimally going up from 5:80851 to 5:80866. This

increase is statistically insigni�cant according to the Voung (1989) test; the Voung test statistic

equals 0.62 which corresponds to the p-value of 0.54.

We also �t the dependence structure of the bivariate decomposition model with a non-

symmetric copula. We replace the normal copula by the skewed normal copula implied by the

so-called skewed normal density (Azzalini, 1985; Azzalini and Dalla Valle, 1996). The univariate

skewed normal density (Azzalini, 1985) is

 (x) = 2� (x) �

 
�xp
1� �2

!
;

where the parameter � indexes asymmetry; the density reduces to � (x) when � = 0. The

multivariate version of the skewed normal density and how to construct a corresponding copula

density are described in Appendix A.2. When the bivariate decomposition model is estimated

with the skewed normal copula, the estimated asymmetry parameters of both absolute value
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and direction components, �v and �d; are very close to zero, with the mean loglikelihood staying

practically the same at the magnitude of 5:80851 implied by the normal copula.

Finally, we verify optimality of using one lag of explanatory variables in evolution speci-

�cations for ln'i;t and �i;t: In order to avoid severe parameterization, we separately append

those with second lags of both endogenous and exogenous explanatory variables ln jri;t�2j; Ii;t�2;
ln jrj;t�2j; Ij;t�2; spt�2; cpt�2 in the case of ln'i;t (leading to 12 additional parameters) and Ii;t�2;
Ij;t�2; spt�2; cpt�2 in the case of �i;t (leading to 8 additional parameters). In both cases, an

increase in the likelihood does not justify higher model complexity: the BIC criterion increases

from �8279:39 to �8228:12 in the former case and to �8236:00 in the latter case.

5 Conclusions

This paper is concerned with the development of a multivariate version of the multiplicative

decomposition approach of Anatolyev and Gospodinov (2010). A particular attention is paid

to the parsimony, tractability and interpretability of this multivariate extension. The marginals

for the m absolute values and the binary marginals for the m directions are linked through a

2m-dimensional �exible copula which is parameterized by m(2m�1) correlation parameters and
possibly some shape parameters. The computation of various conditional measures of interest is

also discussed. We show how this approach allows one to uncover some important dependencies

that remain hidden in the usual analysis of multivariate models.
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Appendix

A.1 Proofs

Proof of Proposition 1. We will suppress the time index throughout. Anatolyev and Gospodi-

nov (2010) derive the multivariate structure of the density as in Proposition 1. What is left is

to compute the distorted success probability in the case of Gaussian copula. Because

@�2(x1; x2)

@x1
=

@

@x1

Z x1

�1

Z x2

�1
�2(t1; t2)dt1dt2

=

Z x2

�1

�
@

@x1

Z x1

�1
�2(t1; t2)dt1

�
dt2

=

Z x2

�1
�2(x1; t2)dt2

= � (x1)

Z x2

�1
�(t2jx1)dt2

= � (x1) � (x2jx1)

and hence

@C(w; y)

@w
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@�2(�
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@w
=
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����
x1=��1(w);x2=��1(y)

@��1(w)

@w

= � (x1) � (x2jx1; %)jx1=��1(w);x2=��1(y)
1

� (x1)

����
x1=��1(w)

= �
�
��1(y)j��1(w); %

�
= �

 
��1(y)� %��1(w)p

1� %2

!

we have, from Anatolyev and Gospodinov (2010), the distorted success probability is

pC = 1� @C(w; y)

@w

����
w=F (u);y=1��(�)

= �

 
� + %��1(F (u))p

1� %2

!
:

�
Lemma A1. For any 2m-variate copula C(w1; :::; wm; y1; :::; ym) from the class considered, the

following holds:

@mC(w1; :::; wm; y1; :::; ym)

@w1:::@wm
= c(w1; :::; wm)	m(	

�1(y1); :::;	
�1(ym)j	�1(w1); :::;	�1(wm));

where c(w1; :::; wm) is the density of the m-variate copula C(w1; :::; wm) implied by the 2m-

variate copula C(w1; :::; wm; y1; :::; ym):

c(w1; :::; wm) =
 m(	

�1(w1); :::;	�1(wm))

 (	�1(w1)) ::: (	�1(wm))
:
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Proof of Lemma A1. Note the following property:

@m	2m(x1; :::; xm; xm+1; :::; x2m)
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=

Z xm+1

�1
:::

Z x2m

�1
 2m(tm+1; :::; t2mjx1; :::; xm) m(x1; :::; xm)dtm+1:::dt2m

=  m(x1; :::; xm)

Z xm+1

�1
:::

Z x2m

�1
 2m(tm+1; :::; t2mjx1; :::; xm)dtm+1:::dt2m

=  m(x1; :::; xm)	m(xm+1; :::; x2mjx1; :::; xm):

This leads to

@mC(w1; :::; wm; y1; :::; ym)

@w1:::@wm

=
@m	2m(	

�1(w1); :::;	�1(wm);	�1(y1); :::;	�1(ym))

@w1:::@wm

=
@m	2m(x1; :::; xm; xm+1; :::; x2m)

@x1:::@xm

����
x1=	�1(w1);:::;xm=	�1(wm);xm+1=	�1(y1);:::;x2m=	�1(ym)

�@	
�1(w1)

@w1
:::
@	�1(wm)

@wm
=  m(x1; :::; xm)	m(xm+1; :::; x2mjx1; :::; xm)jx1=	�1(w1);:::;xm=	�1(wm);xm+1=	�1(y1);:::;x2m=	�1(ym)

� 1

 (x1)

����
x1=	�1(w1)

:::
1

 (xku)

����
xm=	�1(wm)

=
 m(	

�1(w1); :::;	�1(wm))

 (	�1(w1)) ::: (	�1(wm))
	m(	

�1(y1); :::;	
�1(ym)j	�1(w1); :::;	�1(wm))

= c(w1; :::; wm)	m(	
�1(y1); :::;	

�1(ym)j	�1(w1); :::;	�1(wm));

as asserted. �

Proof of Proposition 2. We will suppress the time index throughout. Denote the marginal

(Bernoulli) CDFs of direction components by G1(v1); :::; Gm(vm) and their marginal success

probabilities by p1; :::; pm: The joint CDF of the 2m-tuple (u1; :::; um; v1; :::; vm) is

F (u1; :::; um; v1; :::; vm) = C(F1(u1); :::; Fm(um); G1(v1); :::; Gm(vm)):
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The joint PDF/PMF is derived by taking the second derivative with respect to the m continuous

components and second-order di¤erence with respect to the m discrete components. Then, using

the properties of �nite di¤erences,

f(u1; :::; um; v1; :::; vm) =
X

`12f0;1g
:::

X
`m2f0;1g

(�1)`1+:::+`m �

@mC

@u1:::@um
(F1(u1); :::; Fm(um); G1(v1 � `1); :::; Gm(vm � `m))

= f1(u1):::fm(um)f@m(u1; :::; uku ; v1; :::; vm);

where the last term f@m(u1; :::; uku ; v1; :::; vm) equalsX
`12f0;1g

:::
X

`m2f0;1g
(�1)`1+:::+`m �

@mC

@w1:::@wm
(w1; :::; wm; G1(v1 � `1); :::; Gm(vm � `m))

����
w1=F1(u1);:::;wm=Fm(um)

= c(F1(u1); :::; Fm(um))
X

`12f0;1g
:::

X
`m2f0;1g

(�1)`1+:::+`m �`1:::`m(v1; :::; vm; u1; :::; um);

using Lemma A1. Collecting the pieces,

f(u1; :::; um; v1; :::; vm) = fu(u1; :::; um)f
C(v1; :::; vm; u1; :::; um);

where

fu(u1; :::; um) = f1(u1):::fm(um)c(F1(u1); :::; F2(um))

is the joint density of all �volatilities�modelled through the m-variate copula C(w1; :::; wm),

and fC(v1; :::; vm) is distorted PMF of the m-variate Bernoulli random variable representing all

�directions�:

fC(v1; :::; vm; u1; :::; um) =
X

`12f0;1g
:::

X
`m2f0;1g

(�1)`1+:::+`m �`1:::`m(v1; :::; vm; u1; :::; um);

where each vl 2 f0; 1g ; l = 1; :::;m: �

Proof of Corollary 3. When m = 2;

fC(v1; v2; u1; u2) = 	2(	
�1(G1(v1));	

�1(G2(v2))j	�1(F1(u1));	�1(F2(u2)))

�	2(	�1(G1(v1 � 1));	�1(G2(v2))j	�1(F1(u1));	�1(F2(u2)))

�	2(	�1(G1(v1));	�1(G2(v2 � 1))j	�1(F1(u1));	�1(F2(u2)))

+	2(	
�1(G1(v1 � 1));	�1(G2(v2 � 1))j	�1(F1(u1));	�1(F2(u2))):
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Considering the four points of support for (v1; v2) 2 f0; 1g2 and using that 	2(y; 0) = 	2(0; y) =
0 for any y and 	2(	�1(1);	�1(1)) = 1; we get

fC(v1; v2; u1; u2) = pC11(u1; u2)
v1v2pC01(u1; u2)

(1�v1)v2pC10(u1; u2)
v1(1�v2)pC00(u1; u2)

(1�v1)(1�v2);

where pCij(u1; u2); i; j 2 f0; 1g are as in the statement. �

A.2 Skewed normal copula

Let the parameter vector � index asymmetries of the components. The (2m)-variate skewed

normal density (Azzalini and Dalla Valle, 1996) is

 2m (x) = 2�2m (x;
)�
�
�0x
�
;

where 
 = �
�
R+ ��0

�
�;

� =
��1R�1�p
1 + �0R�1�

;

and � = diag
n�
1� �2i

�1=2o2m
i=1

; � =



�i �1� �2i ��1=2


2m

i=1
: When m = 2; the conditional CDF

is

	(vju) =
Z v

�1

�2 (u; x; !v)

� (u)

� (�v;1u+ �v;2x)

�(�u
�
1� �2u

��1=2
u)
dx:

The corresponding bivariate copula density is

cSN (w1; w2) =
1

2

�2 (x1; x2; !v) � (�v;1x1 + �v;2x2)

� (x1)� (x2) � (�1x1) � (�2x2)

����
x1=	�1(w1);x2=	�1(w2)

=
�2
�
	�1 (w1) ;	�1 (w2) ; !v

�
� (	�1 (w1))� (	�1 (w2))

�
�
�v;1	

�1 (w1) + �v;2	�1 (w2)
�

2� (�1	�1 (w1))� (�2	�1 (w2))
:

Note that the �rst term is related to the normal copula density, and the second term is a

correction for asymmetry. Finally, the conditional CDF needed to compute ��(u1; u2); is

	2(v1; v2ju1; u2) =
Z v1

�1

Z v2

�1

�4 (u1; u2; x1; x2;
)

�2 (u1; u2; !v)

� (�1u1 + �2u2 + �3x1 + �4x2)

� (�v;1u1 + �v;2u2)
dx1dx2:
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Table 1. Simulation results for the bivariate decomposition model.

symm, n = 500 symm, n = 2000 asymm, n = 2000
parameter true value mean stdev t,% mean stdev t,% mean stdev t,%

!v1 0 �0:018 0:065 4:9 �0:004 0:029 4:8 �0:003 0:024 4:6
�v1 0:8 0:800 0:032 6:8 0:800 0:015 6:4 0:800 0:015 6:2
�v11 0:1 0:095 0:024 7:8 0:099 0:011 5:1 0:099 0:011 5:6

v11 �0:3 �0:302 0:054 7:4 �0:301 0:027 6:2 �0:301 0:021 4:2
�v12 0:05 0:049 0:017 7:5 0:050 0:008 4:7 0:050 0:009 4:8

v12 0:2 0:203 0:052 7:2 0:200 0:025 5:5 0:200 0:020 4:8
&1 1:2 1:208 0:041 4:2 1:202 0:021 5:3

1:5 1:502 0:026 5:8
!v2 0 �0:017 0:064 5:1 �0:003 0:028 5:4 �0:003 0:014 6:8
�v2 0:8 0:801 0:031 8:1 0:801 0:014 5:3 0:800 0:013 7:0
�v21 0:05 0:050 0:017 6:9 0:050 0:008 5:6 0:050 0:004 5:6

v21 0:2 0:202 0:053 6:3 0:201 0:025 5:6 0:200 0:012 4:2
�v22 0:1 0:094 0:024 8:4 0:099 0:011 5:7 0:100 0:011 7:4

v22 �0:3 �0:303 0:054 6:5 �0:301 0:025 4:7 �0:301 0:012 4:2
&2 1:2 1:207 0:041 4:0 1:203 0:020 5:1

2:5 1:503 0:026 6:0

!d1 0:3 0:308 0:117 5:7 0:302 0:056 4:7 0:301 0:056 4:4
�d11 0:3 0:294 0:133 5:0 0:299 0:063 3:5 0:298 0:063 3:0
�d12 �0:1 �0:106 0:136 5:2 �0:103 0:067 5:7 �0:99 0:068 6:2
!d2 0:3 0:309 0:118 6:3 0:302 0:055 5:3 0:303 0:056 5:8
�d21 �0:1 �0:103 0:134 5:0 �0:101 0:066 5:2 �0:101 0:065 4:6
�d22 0:3 0:296 0:132 4:4 0:297 0:064 4:1 0:299 0:066 3:0

%v 0:6 0:601 0:029 6:6 0:599 0:014 4:3 0:599 0:014 4:4
%d 0:6 0:602 0:055 5:8 0:600 0:029 6:6 0:599 0:028 6:4
%1 0:2 0:204 0:056 5:1 0:202 0:029 5:2 0:199 0:028 4:4
%2 0:2 0:202 0:057 5:0 0:202 0:028 4:7 0:200 0:029 5:6
%vd 0:2 0:202 0:057 4:6 0:201 0:028 5:8 0:200 0:028 5:8
%dv 0:2 0:203 0:056 5:0 0:202 0:029 6:2 0:200 0:029 6:4

Notes: The tables present the Monte Carlo mean estimate (mean), its standard deviation (stdev) and the empirical

size of the t-test (t) for each individual parameter at the 5% signi�cance level. The �rst block contains parameters

of volatility equations, the second block contains parameters of direction equations, the third block contains

component dependence parameters. The number of Monte Carlo replications is 1,000 and the sample sizes are

n = 500 and n = 2000; �symm�and �asymm�stand for the cases when the shape parameters of absolute value

distribution are equal or di¤erent, respectively.

23



Table 2. Estimation results for the univariate and multivariate linear model.

Univariate linear Multivariate linear
parameter LTLT ITIT parameter LTLT+IT ITLT+IT

!`i 0:00229
(0:0012)

0:00283
(0:00068)

!`i 0:00120
(0:00111)

0:00287
(0:00064)

�`i 0:040
(0:054)

0:132
(0:049)

�`ii �0:170
(0:105)

0:109
(0:09782)

�`i �0:0905
(0:0311)

�0:0588
(0:0157)

�`i �0:0889
(0:0301)

�0:0593
(0:0151)

�`i 0:438
(0:094)

0:253
(0:051)

�`i 0:399
(0:095)

0:253
(0:051)

�`ij 0:493
(0:179)

0:014
(0:049)

�`i 0:0272
(0:0011)

0:0139
(0:0007)

�`i 0:0269
(0:0010)

0:0139
(0:0007)

� 0:819
(0:017)

Notes: Estimation based on the Gaussian quasi-density. Standard errors are reported in parentheses below the

estimate. � is the correlation coe¢ cient between the innovations of the two equations.
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Table 3. Estimation results for the univariate and multivariate volatility submodels.

Univariate MEM Multivariate MEM
Decomposition Volatility only Decomposition

parameter LTLT ITIT parameter LTLT+IT ITLT+IT LTLT+IT ITLT+IT
!vi �0:024

(0:035)
�0:095
(0:089)

!vi �0:032
(0:052)

�0:388
(0:149)

�0:026
(0:056)

�0:351
(0:136)

�vi 0:886
(0:016)

0:870
(0:029)

�vi 0:877
(0:016)

0:764
(0:042)

0:882
(0:017)

0:783
(0:036)

�vi 0:087
(0:012)

0:083
(0:015)

�vii 0:071
(0:016)

0:070
(0:020)

0:066
(0:016)

0:061
(0:020)


vi �0:079
(0:029)

�0:100
(0:038)


vii �0:120
(0:035)

�0:003
(0:045)

�0:124
(0:035)

0:027
(0:051)

�vi �0:958
(0:326)

�1:100
(0:348)

�vi �0:888
(0:310)

�1:274
(0:440)

�0:851
(0:302)

�1:146
(0:414)

�vi 0:642
(0:525)

�0:237
(0:811)

�vi 0:485
(0:508)

2:231
(1:260)

0:423
(0:525)

1:877
(1:172)

& i 1:207
(0:037)

1:114
(0:033)

& i 1:248
(0:037)

1:159
(0:033)

1:249
(0:037)

1:159
(0:033)

�vij 0:021
(0:014)

0:063
(0:021)

0:022
(0:014)

0:066
(0:020)


vij 0:047
(0:035)

�0:120
(0:045)

0:053
(0:038)

�0:129
(0:046)

%v 0:604
(0:024)

0:603
(0:024)

ED �0:49 �0:42 ED �0:80 1:11 0:22 0:49

Notes: Standard errors are reported in parentheses below the estimate. ED is excess dispersion test statistics for

validity of conditionally Weibull marginal.
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Table 4. Estimation results for the univariate and multivariate direction submodels.

Univariate probit Multivariate probit
Decomposition Direction only Decomposition

parameter LTLT ITIT parameter LTLT+IT ITLT+IT LTLT+IT ITLT+IT
!di �0:023

(0:078)
0:256
(0:089)

!di �0:023
(0:087)

0:176
(0:088)

0:049
(0:082)

0:206
(0:089)

�di 0:156
(0:096)

0:245
(0:103)

�dii 0:137
(0:122)

�0:011
(0:133)

0:135
(0:115)

�0:021
(0:141)

�di �2:53
(1:15)

�4:44
(1:19)

�di �2:43
(1:14)

�4:57
(1:17)

�2:33
(1:123)

�4:36
(1:11)

�di 18:66
(4:42)

�10:99
(4:58)

�di 18:28
(4:31)

11:59
(4:50)

15:66
(4:30)

9:24
(4:45)

�dij 0:025
(0:126)

0:445
(0:127)

�0:015
(0:105)

0:434
(0:130)

%d 0:845
(0:026)

0:835
(0:026)

Notes: Standard errors are reported in parentheses below the estimate.
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Table 5. Estimates of degrees of dependence from the univariate and multivariate

decomposition models.

Decomposition models
parameter Univariate Bivariate

%1 0:136
(0:046)

0:123
(0:045)

%2 0:152
(0:048)

0:203
(0:045)

%v 0:603
(0:024)

%d 0:835
(0:026)

%vd �0:022
(0:047)

%dv 0:300
(0:042)

Notes: Standard errors are reported in parentheses below the estimate.
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Table 6. Mean log-likelihoods ` and BIC.

Model Linear Bivariate standalone Decomposition
Univariate Bivariate Volatility Direction Univariate Bivariate

k 6 6 16 19 11 12 12 34

Partial ` 2:1840 2:8599 6:8378 �1:0702 2:3337 2:9895
Total ` 5:0439 5:6099 5:7676 5:3232 5:8085

BIC �7305:1 �8107:4 �8245:9 �7634:9 �8279:39

Notes: BIC is computed as BIC = �2T`+ k lnT .
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Table 7. Equation-by-equation quality of �t measures.

Univariate Bivariate
LTLT ITLT LTLT+IT ITLT+IT

pseudo-R2 for returns
Linear model 5:15% 8:95% 7:21% 8:91%

Decomposition model 5:10% 9:70% 5:34% 8:22%

pseudo-R2 for absolute returns
Linear model 3:67% 8:51% 5:29% 8:33%

Decomposition model 14:38% 12:35% 16:11% 12:39%

proportion of successful signs
Linear model 59:3% 67:5% 59:2% 67:8%

Decomposition model 59:7% 68:2% 64:3% 69:5%

Notes: The pseudo-R2 for returns and pseudo-R2 for absolute values are computed as

pseudo-R2r =

�P
t

�
r̂tjt�1 � r̂tjt�1

�
(r̂t � rt)

�2P
t

�
r̂tjt�1 � r̂tjt�1

�2P
t (r̂t � rt)

2
;

pseudo-R2jrj =

�P
t(
cjrjtjt�1 �cjrjtjt�1j)(jr̂tj � jrtj)�2P

t(
cjrjtjt�1 �cjrjtjt�1j)2Pt(jr̂tj � jrtj)2

;

where cjrjtjt�1 = jr̂tjt�1j for the linear model and cjrjtjt�1 = 't for the decomposition model. The proportions of
successful sign predictions are computed as

S =
1

T

X
t

�
I+t Ifrt>0g +

�
1� I+t

�
Ifrt�0g

�
;

where I+t = Ifr̂tjt�1>0g for the linear model and I
+
t = IfpCt >0:5g for the decomposition model.
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Figure 1: Histogram of pseudo-R2 for returns, for linear and decomposition models in Monte
Carlo simulations.
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Figure 2: Histogram of pseudo-R2 for absolute values of returns, for linear and decomposition
models in Monte Carlo simulations.
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Figure 3: Histogram of successful return sign predictions, for linear and decomposition models
in Monte Carlo simulations.
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Figure 4: Actual and predicted long-term (r1) and intermediate-term (r2) government bond
returns.
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Figure 5: Conditional variances and correlation of long-term (r1) and intermediate-term (r2)
government bond returns.
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