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The term structure of Russian interest rates

Abstract

Using the series of Moscow Interbank Offer Rates, we estimate a flexible parametrization

of the diffusion process following the approach of Aït-Sahalia (1996) of matching parametric

and nonparametric estimates of the marginal density. On the basis of the estimated model

we compute the implied term structure using simulations.
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1 Introduction

The term structure of interest rates is critical for pricing fixed-income securities. “Term-

structure modeling is one of the major success stories in the application of financial models

to everyday business problems” (Duffie, 2001, Chapter 7). A key element of a term structure

is a model for the process followed by the instantaneous interest rate.

There exist several ways to estimate a diffusion process each having its strengths and

shortcomings. In earlier years researches attempted to parsimoniously specify the drift and

diffusion functions so that the difference equation could be solved analytically (e.g., Cox,

Ingersoll and Ross, 1985). Lately researchers have moved to estimating the functions non-

parametrically, or specifying them in more flexible ways and utilizing computer-intensive

methods. For example, Chan at al. (1992) run GMM on moment conditions that are

approximately implied by popular parametrizations of the differential equation, while Stanton

(1997) performs nonparametric estimation of first-order approximations to the drift and

diffusion functions. Hansen and Scheinkman (1995) propose to run GMM on a set of moment

conditions that are an exact implication of a flexibly parametrized differential equation; this

approach, however, leads to unpleasant concerns about a choice of the so called test function

(see Hansen et al., 1997). Another possibility to employ a flexible parametrization is the

approach of Aït-Sahalia (1996) of constructing an estimator and specification test based

on minimization of the distance between a non-parametric and implied parametric forms

of a marginal density. Even though this approach suffers from information loss due to the

use of a marginal density (Pritsker, 1997), the suggestion of Aït-Sahalia (1996) to base the

specification test on a transitional density leads to considerable computational difficulties in

implementing the test.

In the present paper, using the series of Moscow Interbank Offer Rates (MIBOR), we

explore some parametrizations of the differential equation and construct a reliable model for
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the term structure that may be further used for many possible applications. The analysis of

Russian interest rates from the position of continuous time modeling, to our knowledge, has

been encountered only in Dvorkovitch et al. (2000) who modeled the demand for Russian

Government securities from non-residents. The authors employed non-parametric estimation

of the drift and diffusion using the Stanton (1997) methodology, without any further inves-

tigation of properties of the data-generating process. In contrast, we follow the approach of

Aït-Sahalia (1996) to arrive at point parameter estimates and a specification test statistic; in

order to obtain inferences on parameter values we use a simple bootstrap procedure. Finally,

on the basis of the estimated semi-parametric model we compute the implied term structure

of interest rates using simulations.

The paper is organized as follows. In Section 2 we briefly describe the semi-parametric

estimator and the specification test for correct parameterization of the model. In Section 3

we estimate a flexible specification for the drift and diffusion functions and test the model

using the MIBOR series. In Section 4 we compute the term structure of interest rates.

2 Semi-parametric estimator and specification test

To model the behavior of instantaneous interest rate, we use a diffusion process that admits

the representation by the stationary stochastic differential equation

dxt = µ(xt)dt+ σ(xt)dBt.

It is known (e.g., Aït-Sahalia, 1996) that for a particular parameterization of the drift and

diffusion functions µ(x, θ) and σ2(x, θ), the parametric form for the marginal density can be

derived as

π(x, θ) =
ξ(θ)

σ2(x, θ)
exp

∫ x

x0

2µ(s, θ)

σ2(s, θ)
ds,
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where

ξ(θ) =

(∫ +∞

−∞

(
1

σ2(x, θ)
exp

∫ x

x0

2µ(s, θ)

σ2(s, θ)
ds

)
dx

)−1

,

where x0 is arbitrary. Aït-Sahalia (1996) proposes the following estimator of θ based on the

quadratic distance from the parametric marginal density and its non-parametric estimate:

θ̂ = arg min
q∈Θ

∫ +∞

−∞
(π(x, q)− π̂(x))2π0(x)dx. (1)

Here, π0(x) is the true marginal density, and π̂(x) is its non-parametric kernel estimator

obtained from the sample {xi}ni=1:

π̂(x) =
1

nhn

n∑
i=1

K

(
x− xi
hn

)
,

where K(·) is a kernel function and hn is a bandwidth parameter. By the analogy principle,

we replace the integral in (1) by its sample analog

1

n

n∑
t=1

(π(xt, θ)− π̂(xt))
2 . (2)

Aït-Sahalia (1996) shows that this estimator is consistent and asymptotically normal:

√
n(θ̂ − θ0)

d→ N(0,ΩM),

where ΩM is a complicated expression that depends on the kernel and the value of θ.

The specification test is based on the idea that if the parameterization of the model is

correct, the deviation of the parametric density from the non-parametric estimate should

not be big. The test is based on the statistic

M̂ = hn

n∑
i=1

(π(θ̂, xi)− π̂(xi))
2,

whose null asymptotic distribution is

h−1/2
n (M̂ − EM)

d→ N(0, VM),

where EM and VM may be estimated by

ÊM =

(∫ +∞

−∞
K2(x)dx

)(
1

n

n∑
i=1

π̂(xi)

)
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and

V̂M =

(∫ +∞

−∞

{∫ +∞

−∞
K(u)K(u+ x)du

}2

dx

)(
1

n

n∑
i=1

π̂3(xi)

)
.

For the Gaussian kernel which is used throughout,∫ +∞

−∞
K2(x)dx =

1

2
√
π
,

∫ +∞

−∞

{∫ +∞

−∞
K(u)K(u+ x)du

}2

dx =
1

2
√

2π
.

To test the null hypothesis at the significance level α, the critical value is

ĉ(α) = ÊM + z1−α

√
hnV̂M ,

and the null hypothesis of correct specification is rejected if M̂ ≥ ĉ(α).

3 Empirical results

The data is the series of daily observations of one-day MIBOR from January 1, 2000 to May

1, 2003, totaling to 805 observations. The data are obtained from www.cbr.ru, the official

Central Bank of Russia site. The rate is determined daily from interbank credit trades at

the Moscow Interbank Currency Exchange. The instantaneous interest rate corresponding

to the observed one was computed by

r = 365 ln

(
1 +

robs

365

)
.

As can be seen from Figure 1, the MIBOR series looks much smoother than the Eurodollar

rate (cf. Aït-Sahalia, 1996, Figure 2).

The non-parametric estimator for the marginal density was computed1 using the Gaus-

sian kernel (other kernels produced very similar results), and shown in Figure 2. After some

experimentation, h was set at 0.03. To compute the critical value for the test statistic M̂

1All procedures were written in GAUSS. When numerical optimization was required, the optmum proce-

dure was employed.
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we employ the following characteristics of the data:

1

n

n∑
i=1

π̂(xi) = 6.394,
1

n

n∑
i=1

π̂3(xi) = 377.97.

Then ÊM = 1.79, V̂M = 74.6, and the 5% critical value is c0.05 = 4.26.

First of all, fitting the popular Cox–Ingersoll–Ross (CIR), Vasicek (V) and Brennan–

Schwartz (BS) models

CIR: µ(x, θ) = α0 + α1x, σ(x, θ) = β0

√
x,

V: µ(x, θ) = α0 + α1x, σ(x, θ) = β0,

BS: µ(x, θ) = α0 + α1x, σ(x, θ) = β0x,

has been completely unsuccessful: the test statistics are huge compared to the critical value

(e.g., it equals M̂ = 72 for the CIR model). This demonstrates that these analytically

attractive models are too simple (in particular, the linearity of the drift function) for the

Russian interest rate data.

In order to arrive at a flexible parametrization, we follow Stanton (1997) and estimate the

first-order approximations to the drift and diffusion non-parametrically using the Nadaraya–

Watson estimator with the Gaussian kernel. As the forms of emerged curves are quite close

to those in Aït-Sahalia (1996), we employ his parametrization

µ(x, θ) = α0 + α1x+ α2x
2 +

α3

x
, σ(x, θ) = β0 + β1x+ β2x

β3 .

Since computation of asymptotic standard errors is problematic because of a complicated

form of the matrix ΩM , we employ a simple bootstrap procedure. As the proposed semi-

parametric estimator does not utilize information on transitional features of the data, there

is no need to preserve the temporal structure of the series, hence we adopted the basic

IID bootstrap resampling. The computational difficulties are present, however, because of

the need to achieve convergence for each bootstrap sample. This precludes obtaining a

large number of bootstrap estimates. In our procedure, the bootstrap sample contained 50
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estimates of the parameters vector. Standard errors were computed straightforwardly, taking

into account that the bootstrap distribution is centered around estimated values rather than

the true parameters.

The estimation results are reported in Table 12, and the resulting marginal density is

depicted on Figure 2. The value of the test statistics is M̂ = 0.069 which is far smaller

than the 5% critical value. Thus, the Aït-Sahalia (1996) flexible form fits the MIBOR data

very well, and the estimated model has a strong mean reversion property. The MIBOR and

Eurodollar deposit rates possess similar features, except that there is no evidence for several

regimes in the MIBOR case. The two regimes for the Eurodollar are most probably due to

a monetary policy shift in the beginning of 80’s, while there was no structural change in

Russia during the period under consideration. Note also that the value of the test statistics

is appreciably below the minimal one for the Eurodollar rate, which is a consequence of a

greater smoothness of the MIBOR and the absence of regime switches.

4 The term structure

One of most important applications of the diffusion model is derivation of the term structure

of interest rates. If Λt,s is a price at time t of a bond maturing time s, then it could be

represented from the no-arbitrage principle as

Λt,s = Et

[
exp

(∫ s

t

−rudu
)]

.

The term structure is usually represented as the yield curve

y (τ) = − ln(Λt,t+τ )

τ
2As a robustness check, we have also re-estimated the model after splitting the sample into two equal

halves. All parameter estimates on the two subperiods (not shown) are quite close, and are withing two

standard deviations from the estimates on Table 1.
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One way to compute the term structure is to explicitly solve the Feyman–Kac differential

equation. However, this option is unavailable for flexible parametrizations, hence we compute

the term structure using simulations. The result is shown in Figure 3. The yield curve is

monotonically increasing and slightly concave, without any humps.

5 Concluding remarks

Using the spot MIBOR series, we have estimated a flexible parametrization of the diffusion

process following the approach of Aït-Sahalia (1996). The Aït-Sahalia (1996) parametrization

fitted the MIBOR series very well, with decisive acceptance of the model by the specification

test. On the basis of the estimated model we have computed the implied term structure

using simulations. The corresponding yield curve turns out to be increasing and slightly

concave.
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Table 1

Estimates of parameters of the drift and diffusion functions

Function µ(x, θ) σ(x, θ)

Parameter α0 α1 α2 α3 β0 β1 β2 β3

Point estimate 1.83 −0.39 −0.70 1.98 −0.03 0.57 −1.84 1.52

Standard error (0.55) (0.54) (0.36) (0.66) (0.01) (0.11) (0.24) (0.10)

Notes:

The estimates are obtained by minimizing (2), the sample distance between the parametric

and non-parametric densities. The standard errors are obtained by bootstrap. For more

details, see the text.
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Figure 1

The MIBOR series

12



Figure 2

Parametric and non-parametric estimates of the marginal density
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Figure 3

The term structure of interest rates
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