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1 Introduction

Since Robert Engle’s (1982) paper on autoregressive heteroskedasticity there has been

an outburst of research that suggests various generalizations and extensions to the

basic ARCH model. They have gone along several major directions. First, many

researchers sought more flexible specifications for the conditional variance that would

better fit the observed economic series – e.g., Generalized ARCH of Bollerslev (1986)

and Nonlinear ARCH of Higgins and Bera (1992) – or provide an account for some im-

portant features of the data such as, for instance, the leverage effect – e.g., Exponential

ARCH of Nelson (1991) and Threshold ARCH of Zaköian (1994). Second, to explain

high leptokurticity or skewness of the data, the original conditional normality as-

sumption was reconsidered – e.g., GARCH-t of Bollerslev (1987) and GARCH-EGB2

of Wang, Fawson, Barrett and McDonald (2001). Third, to explain long memory

in volatility, the conditional variance was modelled as Integrated GARCH of Engle

and Bollerslev (1986) and Fractionally Integrated GARCH of Baillie, Bollerslev and

Mikkelsen (1996). Finally, to explain time-varying risk premia, a feedback between

the mean and variance was modeled as ARCH-in-mean of Engle, Lilien and Robins

(1987). For excellent surveys from an econometric perspective, see Bera and Higgins

(1993) and Bollerslev, Engle and Nelson (1994). The present paper explores another

direction that has been ignored in the ARCH literature.

The ARCH-type modeling strategy is often structural for the conditional mean,

but non-structural for the conditional variance. The reason is that while economic
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theory, usually based on some intertemporal optimization problem, often provides a

functional form for the former, very rarely can it suggest such for the latter, because,

as Pagan and Hong (1991) emphasize, there is no optimizing theory that could yield

such form. The present paper considers the case when structural modeling of the

mean together with a nature of the problem impose certain restrictions on how one is

allowed to model the conditional variance. We consider multiperiod conditional mo-

ment restrictions, that is, the situation when prediction errors are overlapping (which

sometimes is informally called overlapping data). A variety of intertemporal macroe-

conomic and financial models give rise to multiperiod conditional moment restrictions,

where the moment function is serially correlated of known order: models with over-

lapping prediction horizons (Hodrick, 1987; Mishkin, 1990, 1992; Rich, Raymond and

Butler, 1992), with temporal aggregation (Hall, 1988; Hansen and Singleton, 1996),

or with complex decision rules (Eichenbaum, Hansen and Singleton, 1988). Some of

the issues to be discussed are mentioned in Rich, Raymond and Butler (1992), but the

authors decided not to stay in the maximum likelihood framework typical for ARCH

models and instead turned to distribution-free GMM.

Suppose one has a problem of two-step-ahead prediction and wishes to model

heteroskedasticity within the ARCH framework. A likely model may be the following:

yt+2 = x′tβ + et+2, (1)

et+2 = εt+2 + θεt+1, (2)

where the variables are indexed with the time when they get realized, and the condi-

2



tional mean is linear for simplicity. Under optimal prediction, the entire error term

et+2 has mean zero conditional on time t information =t = {xt, yt, xt−1, yt−1, · · ·} ,

which automatically includes the history of the disturbance. The variance equation is

typically specified for the innovations εt+1. For example, it may take the GARCH(1,1)

form

εt+1|=t ∼ N (0, ht), ht = ω + αε2
t + φht−1, (3)

that is, εt+1 is conditionally Gaussian with conditional mean zero and conditional

variance ht. This type of modeling the evolution of the conditional variance has

proved to often provide a good approximation to its actual evolution in the data. See,

for example, Pagan and Schwert (1990), Baillie and DeGennaro (1990), McCurdy and

Morgan (1991).

The error et+2 is made at time t and is interpreted as the error of the optimal

forecast of yt+2. However, in (3) the part εt+2 of the error is as though formed at

time t+ 1, the fact that may seem strange. In addition, as Hayashi and Sims (1983)

argued, the Wold innovation of the prediction error in a rational expectations model is

in general not a martingale difference sequence relative to the history of innovations.

Therefore, making the forecast error have the above structure is restrictive and arbi-

trary.1 One more doubtful consequence of (1)–(3) is the following. If εt+1 conditional

on =t is Gaussian, the entire error term et+2 is not Gaussian conditional on =t. This

can be seen by noting that while the component θεt+1 is conditionally normal, the

1Even for problems with serially uncorrelated errors, Francq and Zaköian (2000) relax the as-

sumption that the innovation forms a martingale difference.
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other component, εt+2, is conditionally (on =t) leptokurtic, the latter fact following

by the virtue of the conditional Jensen inequality. Thus the idea to impose normality

on the nonpredictable part of the predicted variable is not really carried out by (3).

We adapt a more natural set of assumptions about the error term. The assump-

tions will concern only the conditional behavior of the whole error, and not its inno-

vations. We let the conditional distribution of the error to be Gaussian. However,

to completely specify the likelihood function of the process, we have to impose dis-

tributional assumptions on the error conditional on future information sets. We set

these distributions to be Gaussian too. Such strategy leads to a hybrid of structural

and non-structural modeling of the mean and non-structural (ARCH-type) modeling

of the variance.

The paper is organized as follows. Section 2 outlines ideas and sets forth the

modeling strategy for a 2-step-ahead prediction problem, while a generalization is

relegated to the Appendix. Sections 3 and 4 are devoted to applications: section

3 revisits estimation of Mishkin’s (1990) relationship between the term structure

and future inflation at short horizons, and section 4 attempts to resolve the dispute

between Bomberger (1996, 1999) and Rich and Butler (1998) on whether disagreement

is an appropriate measure for forecast uncertainty. Finally, section 5 concludes.

2 Modeling strategy

Consider the framework of the foregoing 2-step-ahead prediction problem. Let us

denote Xt = σ(xt, xt−1, · · ·), Et = σ(et, et−1, · · ·), and =t = Xt ∨ Et. Following the
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original ARCH tradition, we would like to model et+2 as conditional Gaussian2:

et+2|=t ∼ N (0, ht) . This formulation is slack, however, since the likelihood function

is not uniquely defined. Rich, Raymond and Butler (1992) used a similar approach,

but without the normality assumption, and modeled ht as a linear function of squared

past prediction errors. Since they were dealing with prediction data from surveys,

they called their model Survey Data – ARCH. Incomplete specification allows only

GMM estimation, which leads to the problem of instrument selection and inefficiency.

We take an approach of full distributional specification. Assuming that T is even,

the conditional part of the likelihood function can be partitioned as

f(e1,e2)|=0 (e1, e2) ·
T−2∏
t=2
t even

f(et+1,et+2)|=t (et+1, et+2) .

If T is odd, the first factor in the latter partitioning is fe1|=−1 (e1) , but this boundary

effect does not matter asymptotically. Since we already have a restriction on et+2|=t,

it is natural to specify the joint distribution of (et+1, et+2)′ conditional on =t to take

advantage of the above partitioning and achieve unique identification of the likelihood.

We set that distribution to bivariate normal: et+1

et+2

 |=t ∼ N

 µt

0

 ,
 ωt−1 λt

λt ωt + E[µ2
t+1|=t]


 , (4)

where in addition E[µt+1|=t] = 0 and λ2
t = ωt−1E[µ2

t+1|=t]. The newly introduced time

varying parameters ωt and λt are =t-measurable, while the parameter µt is (Xt−1∨Et) -

measurable. All these restrictions are imposed on the entries of the mean and variance
2Of course, the gaussianity assumption can be changed to another distributional specification.

Whether the subsequent strategy still goes through is a topic of future research.
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to make the distributional specification (4) intrinsically compatible, because both

elements of the vector are essentially the same thing with a lag difference. Such

specification is easily interpretable: at the moment when the prediction is made, the

prediction error is conditionally Gaussian, and so is uncertainty left of the previous

prediction period error when the forecaster wants to revise that prediction.

It is easy to check that under the specification (4) the conditional density of two

successive disturbances partitions as

f(et+1,et+2)|=t (et+1, et+2) = fet+1|Xt−1,Et (et+1) fet+2|Xt,Et+1 (et+2) ,

so that the distributional assumption (4) together with the compatibility restrictions

is equivalent to

et+1|Xt−1, Et ∼ N (µt, ωt−1) (5)

subject to E[µt+1|=t] = 0. Note that the conditional variance ωt−1 is =t−1-measurable

(cf. Rich, Raymond and Butler, 1992). This property makes intuitive sense, since

we regard the error et+1 as made at time t − 1, so the variance of the residual part

after time t is realized was determined at time t− 1 too. The following gives a rough

idea of the structure of the error et+2. It consists of two components, ε1,t+1 and

ε2,t+2, that are made at time t and will be realized in the two subsequent periods.

Both have =t-conditional mean zero and =t-measurable conditional variance. At time

t + 1 the first error component, ε1,t+1, is realized, and conditional on this additional

information, the forecaster would be willing to reconsider her forecast, if she could.

That is, the second error component, ε2,t+2, is not the optimal prediction error based
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on the expanded information set, but instead has (Xt ∨ Et+1)-conditional mean µt+1.

From the perspective of time t, this µt+1 is unpredictable and hence has =t-conditional

mean zero.

It is interesting to contrast specification (5) with the conventional one for the Wold

innovation: εt+1|=t ∼ N(0, ht). While (5) has a more flexible specification for the

mean, that for the variance is more constrained. Therefore, neither model nests the

other. Following Pagan and Hong’s (1991) logic, we note that since our presumption

is that the economic theory imposes only the restriction E[et+2|=t] = 0 and says

nothing about the structure of µt, the latter has to be modeled in a non-structural

way, similarly to how ωt is usually modeled. Thus our next step is to specify the

parametric forms of µt and ωt.

For ωt, a natural strategy is to set it to a linear function of past squared prediction

errors, similarly to Rich, Raymond and Butler’s (1992) choice:

ωt = ω +
q∑
i=1

αie
2
t−i+1, (6)

or to a modification of another member of the ARCH family. Of course, such speci-

fications do not nest the conventional one. The conventional analog of (6) is a linear

function of the past squared innovations, having which in the specification is unnat-

ural in the present context. Besides, while working with stock returns indices, Pagan

and Schwert (1990) indicated that in the conventional specification (1)–(3) with con-

ditional variance from the ARCH family, no important discrepancies resulted from

use of lags of e2
t instead of lags of ε2

t in the specification for conditional variance ht in
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terms of fit.

To specify the form of µt, observe that due to the conditional bivariate normality3,

µt+1 = δt (et+1 − µt) , (7)

where δt is =t-measurable, and E[log |δt|] < 0 in order for µt to be stationary (see

Brandt, 1986). This has a natural interpretation: the forecaster wants to revise her

initial prediction of et+2 equalling zero, after the next period’s variables are realized,

by taking the fraction δt of the realized prediction error et+1 − µt from the previous

round, in the spirit of adaptive way of expectation formation. Since µt = E[et+1|=t],

from (7) it follows that et+1 has a nonlinear moving-average representation

et+2 = νt+2 + δtνt+1, (8)

where νt+1 = et+1− µt is an error of the ”revised” prediction, and the MA coefficient

is =t-measurable. The necessary and sufficient condition of invertibility of (8) is

again E[log |δt|] < 0. In the special case when the adaptation parameter δt is time

invariant, i.e. δt = δ for all t, we see that (8) is the usual Wold representation for the

disturbance. That is, the constancy of δt makes the prediction problem specified in

the conventional MA-ARCH spirit4.

3Indeed, since under normality the conditional expectations coincide with linear projections,

projecting et+2 on (Xt ∨ Et+1) using (4) yields µt+1 = ω−1
t−1λt (et+1 − µt) .

4Alternatively, one can see this by noting that when δt is time invariant, µt is a linear combination

of all past errors. This means that E[et+1|=t] is the same as the linear predictor Ê[et+1|et, et−1, ...],

which in turn implies that the Wold innovation in et+1 is a martingale difference.
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It is left to specify the form of δt. Note that although we know that δt = ω−1
t−1λt,

the only constraint put on δt is the stability condition E[log |δt|] < 0, as the form of λt

is not constrained by (4)5. In general, δt may be specified in a variety of ways as some

function of past prediction errors. It is desirable to specify it so that it is convenient to

test for its constancy in time, which amounts to testing for the martingale difference

hypothesis of the innovation of et. The form that we explore in applications is

δt = δ +
r∑
i=1

γiet−i+1, (9)

which appears to be a natural choice: as one often models the conditional second

moment by a quadratic form of past errors, it is natural to model the conditional

first moment by a linear form of them. With the specification (9), the martingale

difference hypothesis for the innovation of et can be tested via the null H0 : γ1 =

γ2 = · · · = γr = 0.

In the Appendix, we generalize this modeling framework for the case of a (J + 1)-

step-ahead prediction problem, where J ≥ 1. In the following two sections we apply

this framework for two prediction problems with J = 2 and J = 1.

3 Application 1: Term Structure and Future Inflation

Frederic Mishkin (1990) estimates a relationship between the term structure of nom-

inal interest rates, on the one hand, and future inflation and real interest rate, on

5Although λt must satisfy λ2
t = ωt−1E[µ2

t+1|=t], this equality carries no information about its

form, even after imposing (6) and (7).
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the other, at horizons from 1 to 12 months. The main question that he asks is: how

much information about changes in future inflation and changes in ex post real in-

terest rate is embedded in the slope of the term structure given that expectations

are rational? To answer this and related questions, Mishkin specifies the following

econometric model:

πmt − πnt = αm,n + βm,n (imt − int ) + ηm,nt , Et [ηm,nt ] = 0, (10)

where πkt is inflation rate between t and t+ k, ikt is the current nominal interest rate

on k-month Treasury bills, and ηm,nt is the prediction error. Rejection of the null

hypothesis H0 : βm,n = 0 corresponds to predictability of inflation, while rejection of

H0 : βm,n = 1 – to predictability of real interest rates. The combinations (m,n) are

(3, 1), (6, 3), (9, 6), (12, 6), and (12, 9), although Mishkin presents the results for all

combinations of m and n not exceeding 6 in an appendix to his working paper version

(Mishkin, 1988).

Since the data are overlapping, there is conditional serial correlation in ηm,nt of

order max (m,n)− 1. Mishkin utilizes OLS estimation with HAC robust calculation

of standard errors to perform the tests. He also acknowledges poor performance of

asymptotic approximation and simulates more relevant for the given sample sizes

critical values. Needless to say, the OLS estimator is inefficient in the class of in-

strumental variables due to the presence of serial correlation and possibly conditional

heteroskedasticity. We apply the ideas developed in the above sections to suggest an

alternative way to estimate (10). What follows does not pretend to be a rigorous
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investigation of the applied problem at hand, but rather a complementary illustrative

material.

The assumptions we make entail conditional normality, which is quite plausible

for the problem under consideration. The estimator is less robust than the class of

instrumental variables estimators, but if the normality does hold, the resulting tests

are expected to have more power. Given a short time span of the data, we consider the

shortest horizons that Mishkin (1990) uses: m = 3, n = 1. The framework outlined in

the Appendix applies, with J = 2, yt+3 = π3
t − π1

t , x
′
t = (1, i3t − i1t ) , β′ =

(
α3,1, β3,1

)
,

g (xt, β) = x′tβ, et+3 = η3,1
t . The expectation adjustment processes δ1,t and δ2,t are

specified as linear functions of the last realized prediction error:

δj,t = δj + γjet, j = 1, 2,

with δj and γj satisfying the stability condition. We parametrize the conditional

variance ωt as a linear function of the squared last realized error, in the ARCH(1)

spirit:

ωt = ω + αe2
t ,

where ω > 0 and α ≥ 0. The reason for such parsimonious specifications lies in

restricted sample sizes that the original author exploits.

The sample for the period from 1964.02 to 1986.12 (panel A in Table 1, 275

observations) is split into three subperiods: from 1964.02 to 1979.10 (panel B, 189

observations), from 1979.11 to 1982.10 (panel C, 36 observations) and from 1982.11

to 1986.12 (panel D, 50 observations). For reasons, see Mishkin (1990) and references
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therein. Mishkin (1992) finds that the series of nominal interest rates and inflation

may contain unit roots. Indeed, conventional unit root tests fail to reject unit roots

in the interest rate series. However, after taking differences between interest rates at

different maturities, these unit root tests strongly reject the presence of unit roots in

the resulting series.

Table 1 displays the results. With the more efficient estimation method, it is

clearer that splitting the sample is well justified: the results heavily differ across the

subperiods. In all but period C, numerical values for the structural parameters α3,1

and β3,1 agree with Mishkin’s (1990), but the inferences are different in that more

efficient estimates happen to often be more significant, sometimes reverting Mishkin’s

(1990) conclusion of the absence of information about the path of future inflation in

short term nominal interest rates.

The other tests yield the following results. Testing γ1 = γ2 = 0, i.e. that the Wold

innovation of et is a martingale difference, sometimes yields rejection, thus invalidating

the conventional specification for the error term. Testing α = 0, i.e. that there is no

conditional heteroskedasticity given time-varying expectation adjustment parameters,

always yields acceptance. This goes at variance with the presence of ARCH effects

in the error term of an ARMA representation of the inflation series documented in

Mishkin (1990, 1992). The discrepancy may be due to the documented difficulty to

disentangle the ARCH effect and bilinearity (Weiss, 1986).
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4 Application 2: Disagreement and Uncertainty

As mentioned earlier, Rich, Raymond and Butler (1992) noted inappropriateness of

conventional modelling of the variance when the data are overlapping. To deal with

multiperiod prediction data from surveys properly, they configured a conditional mo-

ment restriction E
[
e2
t+J+1|=t

]
= ωt and estimated this Survey Data – ARCH model by

GMM. They also applied the idea to the estimation of the relationship between fore-

cast dispersion and forecast uncertainty from data on inflation expectations from sev-

eral surveys, the Livingston survey series among them. In 1996, William Bomberger

estimated a similar relationship on the Livingston data with the use of the maximum

likelihood method that violates the multiperiod prediction nature of the problem.

Rich and Butler (1998) reacted with a critique which pointed out misspecification of

the ML procedure and suggested again the GMM framework. They found that the

structural specification of the variance equation is dominated by an ARCH-type one.

In his reply, Bomberger (1999) compared the results of GMM and misspecified ML

procedures and argued that despite misspecification, the results are reconcilable, espe-

cially if one takes into account the time span differences. In this section, we would like

to reexamine the relationship within this paper’s theoretical framework and possibly

find solid arguments for the Rich-Raymond-Butler – Bomberger dispute.

The series under investigation are6: (1) the observed mean error et+2 = πt+2− pt,

where πt+2 is a two-step-ahead7 inflation, pt = 1
nt

∑nt
i=1 pit is its average forecast made

6We change time indexing from the original to be consistent with our notation.
7The prediction horizon is one year, while the sampling interval is semi-annual.

13



at time t, pit is the forecast of forecaster i made at time t, and nt is a number of

forecasters at time t; and (2) the measure of disagreement among forecasters s2
t =

1
nt

∑nt
i=1(pit − pt)2. The semi-annual data from the Livingston survey on pt, s

2
t , et+2

and nt from 1946:1 to 1994:2 are given in Table 1 of Bomberger (1996). The object

of interest is uncertainty ωt = E
[
e2
t+2|=t

]
as function of time t information =t =

σ (st, et, st−1, et−1, . . .) .

Because of the aberrant behavior of all variables at the beginning of the sample

(which may be caused by a possibly transitional nature of the survey at initial stages

of its existence), it may not be innocuous to include the initial 7 observations into the

sample. The ARCH literature (e.g., van Dijk, Franses and Lucas, 1999) suggests that

the presence of outliers (to which the initial observations may be attributed) may

lead to spurious ARCH effects. Bomberger (1999) reports high degree of sensitivity

of GMM estimates to where the sample begins, and we find the same tendency with

our ML estimates. Since in these circumstances estimation from the full sample can

hardly rely on asymptotic theory, we report the results for the subsamples beginning

at 1949:2 (to rule out the transitional period) and at 1952:1 (to use one of Bomberger’s

subsamples), although we do that for the full sample too.

Rich and Butler (1998) found that in the model8

ωt = ω + σs2
t + α4e

2
t−4,

σ is insignificant when the term α4e
2
t−4 is included in the specification, and conclude

8Rich, Raymond and Butler (1992) included a square of the realized error’s fourth lag on the

basis of the sample autocorrelation function of the squared regression residuals.
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that disagreement s2
t is not a useful proxy for uncertainty. We would like to verify

this claim within the framework of the present paper keeping in mind that the ML

procedure may be more powerful than the GMM test. To this end, we adopt the

distributional assumption (5) with the specification (7) and

δt = δ + κst + γ4et−4.

That is, we let the adaptation parameter δt to linearly depend on the same variables

that enter the variance equation.

Table 2 shows the results for several subsamples. The lines that represent GMM

estimates are taken from earlier referenced sources. Firstly, we can see that if one takes

the standard errors at face value, the proposed ML procedure is indeed more efficient

and yields tighter confidence intervals. Secondly, in the function for the adjustment

parameter, κ is never significant, while γ4 tends to be significant, especially in the

stationary region. That is, the Wold innovation of et is not a martingale difference

sequence, and the prediction should indeed be adjusted on the basis of the past

prediction error. Thirdly, in the skedastic function, σ is always significant, which is in

favor of Bomberger’s use of the disagreement measure s2
t as a proxy for uncertainty.

However, this is not its perfect measure, and the fit does improve when one adds the

ARCH term, in contrast to Bomberger (1999). That is, we confirm Rich and Butler’s

(1998) reversal of what Bomberger (1999) calls ”the result B”. In addition, the results

are at variance with Bomberger’s pure proportionality specification ωt = σs2
t , as the

constant ω turns out to be highly significant.
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5 Conclusion

When the disturbance term is a multiperiod optimal prediction error and one wants

to model its conditional variance within the ARCH framework, it is conventional

to impose a linear moving average structure on the error making the innovation a

martingale difference sequence following ARCH. In this paper we argued that this

is overly restrictive in several respects and suggested Gaussian maximum likelihood

framework that does not entail this assumption. We applied this framework to two

empirical problems. One is estimation of Mishkin’s (1990) relationship between the

term structure of nominal interest rates and future inflation at short horizons. The

other is the dispute between Bomberger (1996, 1999) and Rich and Butler (1998) on

whether disagreement is an appropriate measure for forecast uncertainty.

Appendix: Generalization for many-step-ahead prediction

For the (J+1)-step-ahead prediction problem the generalization is straightforward.

The mean equation is

yt+J+1 = g (xt, β) + et+J+1,

where et+1 is modeled as Gaussian when conditioned on Xt−1 ∨ Et, with conditional

mean µt and conditional variance ωt−J , the latter being measurable relative to =t−J

to yield normality of et+1 conditional on each of =t,=t−1, · · · ,=t−J . That is,

et+1|Xt−1, Et ∼ N (µt, ωt−J)

subject to E
[
µt+J |=t

]
= 0. Driven by conditional normality, the specificetion for µt
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is

µt+J = δ1,t+J−1

(
et+J − µt+J−1

)
+ δ2,t+J−2

(
et+J−1 − µt+J−2

)
+ · · ·+ δJ,t (et+1 − µt) ,

where =t-measurable processes δj,t, j = 1, · · · , J satisfy the following condition for

the stability and stationarity of µt:

E [max(log |δj,t|, 0)] <∞ ∀ j = 1, · · · , J, E [log ‖Mt‖] < 0,

where

Mt
J×J

=

 δ1,t+J−1 δ2,t+J−2 · · · δJ,t

IJ−1 0J−1


(see Bougerol and Picard, 1992), and ‖·‖ is any matrix norm9.

Natural specifications for processes δj,t are (possibly nonlinear) functions of the

last rj realized errors:

δj,t = ∆j(et, et−1, · · · , et−rj+1; δj) j = 1, · · · , J,

where δj’s are ”mean parameters”. The conditional variance ωt may be parametrized

as a function of its previous p values and the last q realized errors:

ωt = Ω(ωt−1, ωt−2, · · · , ωt−p, et, et−1, · · · , et−q+1;ω),

where ω contains ”variance parameters”.

9It is preferable to use the spectral norm ‖A‖ =
√
% (A′A), where % (·) is the spectral radius,

because it is smaller than, for example, the Euclidean norm ‖A‖ =
√
tr (A′A).
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Let δ ≡ (δ′1 · · · δ′J)′ and θ ≡ (β′ δ′ ω′)′. Apart from a constant, the loglikelihood

for one observation is:

lt+1(θ) = −1

2

(
logωt−J +

(et+1 − µt)2

ωt−J

)

Maximization of
∑
t lt+1(θ) yields the maximum likelihood estimator θ̂, which under

suitable conditions is consistent for θ. Differentiating lt+1(θ) yields

∂lt+1

∂β
=

1

2

(
ε2t+1 −

1

ωt−J

)
∂ωt−J
∂β

+ εt+1

(
∂g (xt−J , β)

∂β
+
∂µt
∂β

)
∂lt+1

∂δ
= εt+1

∂µt
∂δ

∂lt+1

∂ω
=

1

2

(
ε2t+1 −

1

ωt−J

)
∂ωt−J
∂ω

where εt+1 = ω−1
t−J (et+1 − µt) , and

∂µt+J
∂β

=
∂δ1,t+J−1

∂β

(
et+J − µt+J−1

)
· · ·+ ∂δJ,t

∂β
(et+1 − µt)

−δ1,t+J−1

(
∂g (xt−1, β)

∂β
+
∂µt+J−1

∂β

)
· · · − δJ,t

(
∂g (xt−J , β)

∂β
+
∂µt
∂β

)
,

∂µt+J
∂δ

=
∂δ1,t+J−1

∂δ

(
et+J − µt+J−1

)
· · ·+ ∂δJ,t

∂δ
(et+1 − µt)

−δ1,t+J−1
∂µt+J−1

∂δ
· · · − δJ,t

∂µt
∂δ

,

∂δj,t+J−j
∂β

= −
∂∆j(et+J−j, · · · , et+J−j−rj+1; δj)

∂et+J−j

∂g (xt−j−1, β)

∂β

· · · −
∂∆j(et+J−j, · · · , et+J−j−rj+1; δj)

∂et+J−j−rj+1

∂g
(
xt−j−rj , β

)
∂β

,

∂δj,t+J−j
∂δ

=
∂∆j(et+J−j, · · · , et+J−j−rj+1; δj)

∂δ
,
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∂ωt−J
∂ω

=
∂Ω(ωt−J−1, · · · , ωt−J−p, et, · · · , et−q+1;ω)

∂ωt−J−1

∂ωt−J−1

∂ω

· · ·+ ∂Ω(ωt−J−1, · · · , ωt−J−p, et, · · · , et−q+1;ω)

∂ωt−J−p

∂ωt−J−p
∂ω

+
∂Ω(ωt−1, · · · , ωt−p, et, · · · , et−q+1;ω)

∂ω
.

Under correct specification and suitable conditions, a consistent estimate of the

asymptotic variance matrix of θ̂ is

V̂θ̂ = T

(∑
t

∂lt+1

∂θ

∂lt+1

∂θ′

)−1

.
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Francq, C. and J.-P. Zaköian, ”Estimating weak GARCH representations,” Econo-

metric Theory 16 (2000), 692–728.

Hall, R.E., ”Intertemporal substitution in consumption,” Journal of Political

Economy 96 (1988), 339–357.

Hansen, L.P. and K.J. Singleton, ”Efficient estimation of linear asset pricing mod-

els with moving-average errors,” Journal of Business and Economic Statistics 14

(1996), 53–68.

Hayashi, F. and C. Sims, ”Nearly efficient estimation of time series models with

predetermined, but not exogenous, instruments,” Econometrica 51 (1983), 783–798.

Higgins, M.L. and A.K. Bera, ”A class of nonlinear ARCH models,” International

Economic Review 33 (1992), 137–158.

21



Hodrick, R.J., The empirical evidence on the efficiency of forward and futures

foreign exchange markets (New York: Harwood Academic Publishers, 1987).

McCurdy, T.H. and I.G. Morgan, ”Tests for a systematic risk component in de-

viations from uncovered interest rate parity,” Review of Economic Studies 58 (1991),

587–602.

Mishkin, F., ”What does the term structure tell us about future inflation?” NBER

working paper No. 2626, 1988.

Mishkin, F., ”What does the term structure tell us about future inflation?” Jour-

nal of Monetary Economics 25 (1990), 77–95.

Mishkin, F., ”Is the Fisher effect for real? A reexamination of the relationship

between inflation and interest rates,” Journal of Monetary Economics 30 (1992),

195–215.

Nelson, D.B., ”Conditional heteroskedasticity in asset returns: a new approach,”

Econometrica 59 (1991), 347–370.

Pagan, A.R. and Y.S. Hong, ”Nonparametric estimation and the risk premium,”

in W.A. Barnett, J.E. Powell and G.E. Tauchen, eds., Semiparametric and nonpara-

metric methods in statistics and econometrics (Cambridge: Cambridge University

Press, 1991).

Pagan, A.R. and G.W. Schwert, ”Alternative models for conditional stock volatil-

ity,” Journal of Econometrics 45 (1990), 267–290.

Rich, R.W. and J.S. Butler, ”Disagreement as a measure of uncertainty: a com-

ment on Bomberger,” Journal of Money, Credit and Banking 30 (1998), 411–419.

22



Rich, R.W., J.E. Raymond and J.S. Butler, ”The relationship between forecast

dispersion and forecast uncertainty: evidence from a Survey Data – ARCH model,”

Journal of Applied Econometrics 7 (1992), 131–148.

van Dijk, D., P.H. Franses and A. Lucas, ”Testing for ARCH in the presence of

additive outliers,” Journal of Applied Econometrics 14 (1999), 539–562.

Wang, K.-L., C. Fawson, C.B. Barrett and J.B. McDonald, ”A flexible parametric

GARCH model with an application to exchange rates,” Journal of Applied Econo-

metrics 16 (2001), 521–536.

Weiss, A.A., ”ARCH and bilinear time series models: comparison and combina-

tion,” Journal of Business and Economic Statistics 4 (1986), 59–70.
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Table 1. The estimation results for the interest rates–inflation problem.

Method α3,1 β3,1 δ1 γ1 δ2 γ2 ω α
Panel A: 1964.02− 1986.12

ML
.157†

(.059)

−.276†

(.105)

.194†

(.052)

.071†

(.021)

.524†

(.050)

−.039�

(.021)

2.81†

(.25)

.031

(.067)

OLS
.169

(.142)

−.318

(.260)
− − − − − −

Panel B: 1964.02− 1979.10

ML
.189

(.157)

−.318

(.418)

.155�

(.082)

.081∗

(.031)

.299†

(.086)

−.004

(.028)

2.47†

(.24)

.002

(.046)

OLS
.142

(.185)

−.313

(.450)
− − − − − −

Panel C: 1979.11− 1982.10

ML
.562†

(.172)

−.817†

(.067)

−.655†

(.236)

−.074

(.132)

1.169†

(.273)

.259�

(.140)

1.44∗

(.75)

.002

(.098)

OLS
.009

(.564)

−.177

(.373)
− − − − − −

Panel D: 1982.11− 1986.12

ML
.571

(.604)

−.958

(1.02)

−.133

(.178)

.023

(.085)

.736†

(.133)

−.041

(.074)

2.36†

(.83)

.026

(.176)

OLS
.646

(.568)

−.954

(.913)
− − − − − −

Notes: The econometric model is π3
t − π1

t = α3,1 + β3,1(i3t − i1t ) + et+3, where
πkt is inflation rate from t to t+k, ikt is current nominal interest rate at t on k-
month Treasury bills, k = 1, 3, and et+3 is prediction error. The assumption
on et+3 is et+1|Xt−1, Et ∼ N (µt, ωt−2) , where µt+2 = δ1,t+1(et+2 − µt+1) +
δ2,t(et+1 − µt), δ1,t = δ1 + γ1et, δ2,t = δ2 + γ2et, ωt = ω + αe2

t . Asymptotic
standard errors are in parentheses. Lines denoted as ”OLS” are reproduced
from Mishkin (1990). Tests of individual significance of α is one-tailed; �

denotes significance at 10% level, * – at 5% level, † – at 1% level.



Table 2. The estimation results for the disagreement–uncertainty problem.

Method δ κ γ4 ω σ α4

Full sample 46:1–94:2

ML
−.474∗

(.186)

−.020

(.650)

.022

(.065)

1.28†

(.35)

.142∗

(.070)

.097�

(.068)

GMM − − − 2.88�

(1.73)

.131

(1.09)

.159∗

(.089)

Subsample 47:2–94:2

GMM − − − .38

(.89)

1.97†

(.77)

−.02

(.05)

Subsample 49:2–94:2

ML
−.551†

(.171)

.048

(.071)

−.089∗

(.042)

.696∗

(.348)

.340†

(.144)

.178∗

(.089)

Subsample 52:1–94:2

ML
−.597†

(.140)

.000

(.056)

−.104†

(.032)

.525∗

(.255)

.322∗

(.145)

.297†

(.121)

Notes: The econometric model is et+1|Xt−1, Et ∼ N (µt, ωt−1) , where et+2 is
observed average prediction error, µt = δt−1(et−µt−1), δt = δ+κst + γ4et−4,
ωt = ω + σs2

t + α4e
2
t−4, and s2

t is disagreement. Asymptotic standard errors
are in parentheses. The first GMM line is reproduced from Rich and Butler
(1998), the second – from Bomberger (1999). Tests of individual significance

of σ and α4 are one-tailed; � denotes significance at 10% level, * – at 5%
level, † – at 1% level.


