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Abstract

We present a feasible generalized Mallows criterion for model selection for a linear

regression setup with conditional heteroskedasticity and possibly numerous explana-

tory variables. The feasible version exploits unbiased individual variance estimates

from recent literature. The property of asymptotic optimality of the feasible crite-

rion is shown. A simulation experiment shows large discrepancies between model

selection outcomes and those yielded by the classical Mallows criterion or other

available alternatives.
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mail stanislav.anatolyev@cerge-ei.cz. I thank an anonymous expert referee for helpful suggestions.

This research was supported by the grant 20-28055S from the Czech Science Foundation.

1



1 Introduction and setup

The Mallows criterion (Mallows, 1973) is a powerful tool of model selection and averaging

for linear regressions. Originally developed for homoskedastic regressions, it is proven to

have favorable properties in suitable setups, such as asymptotic optimality (Li, 1987). It

is often applied bluntly in more general settings; however, theoretically correct adaptation

to more modern regression setups, such as those containing conditional heteroskedasticity

and at the same time allowing use of extended regressor sets, is highly desirable.

Adaptation of the Mallows criterion to conditionally heteroskedastic regressions was

made by Andrews (1991) who also showed asymptotic optimality of the infeasible version.

Liu and Okui (2013) operationalize the generalized Mallows criterion in a model averaging

context via a clever use of the Eicker-White asymptotic variance formula and the weighted

average structure of the criterion. However, if one is allowed to utilize extended sets of

regressors, whose number may be comparable to the number of observations, the Eicker-

White formula may unfortunately fail to correctly estimate asymptotic variances, as was

recently shown in Cattaneo, Jansson, and Newey (2018a).

We propose alternative implementation of the generalized Mallows criterion by using

estimates of individual error variances in linear models from Kline, Saggio and Sølvsten

(2020) and Jochmans (2021). These allow exploiting regressor sets whose numerosity is

comparable to sample sizes. We show that the resulting feasible generalized Mallows cri-

terion keeps the asymptotic optimality property. We also verify how the feasible criterion

performs in prediction terms in model selection experiments when many regressors are

allowed, and compare outcomes across alternative variance estimates.

Consider a mean regression in an IID environment:

yi = gi + ei,

where, for the ith unit, gi = E [yi|xi] is conditional mean given the vector xi of basic

regressors, ei is regression error with conditional variance σ2
i ≡ E [yi|xi] , i = 1, ..., n, and

the sample {(xi, yi)}ni=1 is random. The regression function is approximated by a sequence

of linear regression models

yi = zi (q)
′ β (q) + ui
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estimated by ordinary least squares (OLS)

β̂ (q) =

(
n∑
i=1

zi (q) zi (q)
′

)−1 n∑
i=1

zi (q) yi

so that the fitted values are ĝi (q) = zi (q)
′ β̂ (q) = (P (q) y)i . Here, q ∈ {1, ..., q̄} ≡

Q is the model index, model q̄ being the largest, zi (q) is a respective dim (zi (q)) × 1

vector of regressors that are functions of the basic regressors xi, y is an n × 1 vector

of all response variables, and P (q) is an associated projection matrix. We assume for

simplicity that, as n→∞, the number of models under consideration stays finite, but the

precision of the largest model increases. The dimensionality of regressor sets is restricted

only by the sample size dim (zi (q)) < n and by full rank of the corresponding matrices∑n
i=1 zi (q) zi (q)

′ for all q ∈ Q. Our analysis is conditional on all basic regressors {xi}ni=1 .

2 Classical and generalized Mallows criteria

When the regression model is homoskedastic, i.e. when σ2
i = σ2 for all i = 1, ..., n, the

classical Mallows criterion to be minimized with respect to q is defined as

Cp (q) = ê (q)′ ê (q) + 2 dim (zi (q)) σ̂
2, (1)

where ê (q) is an n × 1 vector of OLS residuals for model q, and σ̂2 is the OLS residual

variance from the model with largest dim (zi (q)) . The motivation of the criterion (1) is

that its expected value minimizes the prediction risk defined as expected squared deviation

of fitted values from the true regression values:

R (q) = E [(ĝ (q)− g)′(ĝ (q)− g)] ,

where g and ĝ (q) are n × 1 vectors of true regression values and fitted values for model

q, respectively. Indeed, ĝ (q) − g = −M (q) g + P (q) e, where M (q) = In − P (q) is the

orthogonal to P (q) projection matrix. Hence, R (q) = g′M (q) g + dim (zi (q))σ
2, while

for the infeasible version of Cp (q) , call it C0
p (q), that uses σ2 in place of σ̂2, one obtains

E
[
C0
p (q)

]
= E

[
(g + e− ĝ (q))′ (g + e− ĝ (q))

]
+ 2 dim (zi (q))σ

2 = R (q) + const.
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Thus, minimization of the infeasible version of (1) minimized the prediction risk. The

unknown σ2 is replaced by the OLS residual variance from the largest model to minimize

the impact of the misspecification error.

Andrews (1991) generalizes the infeasible version of (1) for heteroskedastic models

and names it the generalized Mallows criterion. This criterion reads

GC0
p (q) = ê (q)′ ê (q) + 2

n∑
i=1

Pii (q)σ
2
i , (2)

where Pii (q) is the ith diagonal entry of P (q) , also called a leverage for ith observation, in

model q. The motivation of (2) is the same: the choice of q that minimizes GC0
p (q) also

minimizes the prediction risk defined analogously; both criteria have the same expressions

up to the replacement of dim (zi (q))σ
2 by

∑n
i=1 Pii (q)σ

2
i . This results in prediction risk

R (q) = g′M (q) g +
n∑
i=1

Pii (q)σ
2
i . (3)

Andrews (1991) shows that under suitable conditions, when the errors are heteroskedastic,

the GC0
p (q) criterion is asymptotically, as n → ∞, optimal in the sense that the predic-

tion risk of the regression model selected by the GC0
p procedure is close to the minimal

prediction risk in large samples.

Andrews (1991) notes that the feasible version of GC0
p (q) in a heteroskedastic context

is generally not available because of unknown individual error variances σ2
i for all i in the

penalty term. However, recent literature suggests availability of estimates of individual

error variances that are in addition robust to presence of many regressors. Then, it is

possible to construct a feasible version of (2), say,

GCp (q) = ê (q)′ ê (q) + 2
n∑
i=1

Pii (q) σ̂
2
i , (4)

where σ̂2
i are (approximately) unbiased estimates of error variances σ2

i , i = 1, ..., n, such

that n−1GCp (q) differs from n−1GC0
p (q) by no more than op (1) , and so the feasible

generalized Mallows criterion also retains the asymptotic optimality property.

Let Mii denote the ith diagonal entry of M (q) for some model q. We exploit the

following estimator of ith error variance:

σ̂2
i =

yiêi
Mii

, (5)
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which originates from leave-one-out OLS estimation and well-known equality between

OLS residuals êi corrected for leverage and leave-one-out OLS residuals. The estimates (5)

were proposed by Kline, Saggio and Sølvsten (2020) for estimation of quadratic forms in

parameters of correctly specified linear regressions, and by Jochmans (2021) for estimation

of asymptotic variances in presence of many covariates in possibly misspecified linear

regressions. This estimator is unbiased when the regression model is correctly specified:

E
[
σ̂2
i

]
=

1

Mii

E

[
(gi + ei)

n∑
j=1

Mij (gj + ej)

]
=
gi (Mg)i
Mii

+ σ2
i ,

which is exactly σ2
i when g is in the span of zi (q)’s. When model q does not nest the true

regression, there is bias from the first term. To reduce this bias, we employ error variance

estimates from the largest model q̄ akin to how it is done under homoskedasticity. The

use of these error variance estimates allows the approximating models to be large in the

sense that dim (zi (q)) for some or even all q may be comparable to n.

An attractive modification of (5) is1

σ̂2
i =

(yi − ȳn) êi
Mii

, (6)

where by ān we denote the sample mean of a variable ai. In (6), demeaning of outcome

variables corrects (5) for a scale effect, but introduces a bias, which, however, when

aggregated in (4), has a negligible effect compared to the leading terms.

3 Asymptotic optimality

We impose the following conditions, which include and expand those imposed in Andrews

(1991) needed to show asymptotic optimality of the infeasible criterion GC0
p (q).

Assumption 1 There are finite positive constants Cσ, Cσ, Cκ, CM , CR not depending

on n, such that

(i) Cσ < min1≤i≤n σ
2
i < max1≤i≤n σ

2
i ≤ Cσ, max1≤i≤nE [e4i ] ≤ Cκ and E [g2i ] <∞;

(ii) CM ≤ min1≤i≤nMii (q̄);

(iii) g′M (q̄) g ≤ OP (nδMg) for δMg < 1, and minq∈Q
{
g′M (q) g + dim(zi(q))

}
> CRn.

1I thank Mikkel Sølvsten for suggesting this descaled version.
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Assumption 1(i) restricts heteroskedasticity and kurtosity of the error term, as well

as imposes integrability of the conditional mean; Assumption 1(ii) restricts leverages.

Assumption 1(iii) makes sure that the precision of the largest model asymptotically in-

creases, and that any model under consideration is either not precise enough, or has many

enough regressors. Importantly, we do not make assumptions about asymptotically van-

ishing diagonal elements of the projection matrices P (q), which preclude the numerosity

of regressors to be comparable to the sample size. In the literature, such assumptions are

typically variations of the condition maxq∈Q max1≤i≤n Pii (q)
P→ 0.

The following theorem proved in online Appendix2 is an analog of Andrews’s (1991)

optimality result for the feasible version of the generalized Mallows criterion.

Theorem 1. Let Assumption 1 hold. The feasible generalized Mallows criterion (4) with

individual variances estimates in (5) or (6) that use the OLS residuals from the largest

model is asymptotically optimal:

R (q̂)

minq∈QR (q)

P→ 1

as n→∞, where q̂ ≡ arg minq∈QGCp (q) .

4 Alternative variance estimates

Liu and Okui (2013) operationalize the generalized Mallows criterion in a model averaging

context via the identity

n∑
i=1

Piiσ
2
i = tr

(( n∑
i=1

ziz
′
i

)−1 n∑
i=1

ziz
′
iσ

2
i

)
. (7)

The second matrix under the trace can be handled via Eicker-White heteroskedasticity

consistent estimation or various “almost unbiased” improvements thereof, referred to in

the literature as HCK (see MacKinnon, 2012, for a review):

n∑
i=1

µiziz
′
iê

2
i , (8)

2Available at is.gd/MallowsM.
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where µi = 1 for the Eicker-White estimator sometimes referred to as ‘HC0’, µi =

n/ (n− dim(zi (q̄))) for the modification known as ‘HC1’, µi = 1/Mii for the modifica-

tion known as ‘HC2’, and µi = 1/M2
ii for the modification known as ‘HC3’ (MacKinnon,

2012). However, Cattaneo, Jansson, and Newey (2018a) show that all these variants yield

inconsistent results when there are many explanatory variables.

Also, Cattaneo, Jansson, and Newey (2018a) propose an alternative estimator of

the individual variances in linear models, which is robust to regressor numerosity. This

estimator restricts the number of regressors to be at most half of the sample size. In the

simulation study of Section 5, where this property does hold, using these estimates yields

comparable yet a bit less convincing results. Thus, we stick to the variance estimates (6).

5 Simulation evidence

The data generating process is inspired by simulations in Cattaneo, Jansson, and Newey

(2018b). The true regression function is gi = exp
(
‖xi‖2

)
, where the basic regressor vector

xi contains d = 5 independent standard uniform. There are q̄ = 10 models corresponding

to the following composition of regressors zi. shown in Table 1. Beyond the two minimal

models, new sets of regressors first become next-order powers of the basic regressors, and

then also all interactions of the same order. For example, zi (3) contains 1, xi and xi�xi,

while zi (4) contains 1, xi and 15 distinct elements of xix
′
i. The sample size is n = 800.

We insert the diagonal elements of the projection matrix P x associated with the basic

regressors xi directly into the skedastic function: σi = nP x
ii . This induces correlation

between P x
ii and σ2

i of about 0.96, and correlations between Pii (q) and σ̂2
i in the range

0.22 ÷ 0.26 depending on q ∈ Q\{1} . We also examine the homoskedastic case σi =∑n
i=1 P

x
ii = dim (xi) = 5. The error term is generated as ei = σiui, where ui, i = 1, ..., n,

are independent standard normal. The signal-to-noise ratio is var (gi) /var (ei) ≈ 1.2.

We compute averages, across 10,000 simulations, of the following two measures: one is

the normalized exact value of expected prediction risk computed from (3) for the selected

model q̂, and the other is the mean squared prediction error computed as MSPE (q̂) =

n∗−1
∑n∗

i=1

(
g∗i −z∗i (q̂)′ β̂ (q̂)

)2
, where g∗i is generated according to the same data generating
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Table 1: Composition of regressors

model q regressors zi (q) dim (zi (q))

1 1 1

2 1, xi 6

3 zi (2) , x�2i 11

4 zi (2) , x⊗2i 21

5 zi (4) , x�3i 26

6 zi (4) , x⊗3i 56

7 zi (6) , x�4i 61

8 zi (6) , x⊗4i 126

9 zi (8) , x�5i 131

10 zi (8) , x⊗5i 252

Notes: a�k denotes a list of length dim (a) of kth powers of all elements of a, and a⊗k denotes a list of

all kth cross-powers of all elements of a.

process, z∗i (q) is formed as in model q, and n∗ = 50, 000 is the number of pseudo-out-of-

sample observations.

Table 2 contains the values of the Cp and GCp criteria for four experiments. In the

heteroskedastic case, both the predictive risk and mean squared prediction error are larger

for the classical criterion by more than 50% and more than 80%, respectively. At the same

time, in the homoskedastic setup, the finite-sample distortions because of more complex

estimation of individual error variances are meager.

Figure 1 presents a histogram of models selected by the two criteria in the het-

eroskedastic case. One can clearly see that the GCp criterion selected a more parsimonious

model, with a peak on model 4 with only second powers of the basic regressors included

and no bigger than model 7 that allows only own 4th powers. In contrast, the models

selected by Cp are much bigger on average ranging between model 4 and model 10 thus

sometimes employing even all 5th powers, and almost half of the time prefers model 6 with

all 3rd powers of the basic regressors included. As Table 2 indicates, including these higher

8



Table 2: Values of predictive measures

heteroskedastic design homoskedastic design

measure classical Cp generalized GCp classical Cp generalized GCp

n−1R (q̂) 4.41 2.85 2.07 2.11

MSPE (q̂) 6.18 3.37 2.54 2.58

Figure 1: Models selected by the two Mallows criteria in the simulation experiment

powers may harm the predictive power in heteroskedastic environments enormously.

Table 3 with self-explaining labels contains the out-of-sample criteria values for the

heteroskedastic experiment, with alternative variance estimates from Section 4.3 The

CJN variance estimates lead to a bit less attractive performance than the modified KSSJ

variance estimates (6) do. The modal selected model is no. 4 in both cases, with a bit

more right-skewed distribution for CJN. The variance estimates based on the Eicker-White

formula, in accordance to theory, lead to worse performance of the generalized criterion

in model selection, with HC3 yielding highest improvements. The modal selected model

is no. 6 with all HCK variations, the same as what the classical criterion yields.

3We omit the results for the non-modified HC0 estimates; these are terrible.
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Table 3: Values of predictive measures under different variance estimates (GCp-KSSJ

copied from Table 2), heteroskedastic design

measure GCp-KSSJ GCp-CJN GCp-HC1 GCp-HC2 GCp-HC3

n−1R (q̂) 2.85 3.04 4.32 4.20 3.25

MSPE (q̂) 3.37 3.65 5.92 5.47 3.80

6 Concluding remarks

In modern, conditionally heteroskedastic, many-regressor linear regression setups, one

needs to use correct tools of model selection, those which are compatible with het-

eroskedasticity and the presence of numerous explanatory variables. The presented fea-

sible form of the generalized Mallows criterion should be used in such setups, for both

model selection and model averaging.

We should stress that the method outlined here may be valid only for linear models.

In nonlinear setups, conventional estimation in the presence of many regressors leads to

severe biases (see, e.g., Cattaneo, Jansson, and Ma, 2018; Sur and Candés, 2019), and so

requires additional adjustments. This is a promising avenue for future research.

References

Andrews, D.W.K. (1991). Asymptotic optimality of generalized CL, cross-validation,

and generalized cross-validation in regression with heteroskedastic errors. Journal of

Econometrics, 47, 359-377.

Cattaneo, M., M. Jansson, and X. Ma (2018) Two-step estimation and inference with

possibly many included covariates. Review of Economic Studies, 86(3), 1095-1122.

Cattaneo, M., M. Jansson, and W.K. Newey (2018a) Inference in linear regression mod-

els with many covariates and heteroscedasticity. Journal of the American Statistical

Association, 113(523), 1350-1361.

10



Cattaneo, M., M. Jansson, and W.K. Newey (2018b). Alternative asymptotics and the

partially linear model with many regressors. Econometric Theory, 34(2), 277-301.

Jochmans, K. (2021). Heteroscedasticity-robust inference in linear regression models with

many covariates. Journal of the American Statistical Association, forthcoming.

Kline, P., R. Saggio, and M. Sølvsten (2020). Leave-out estimation of variance compo-

nents. Econometrica, 88(5), 1859-1898.

Li, K.-C. (1987) Asymptotic optimality for Cp, CL, cross-validation, and generalized cross-

validation: Discrete index set. Annals of Statisttcs, 15, 958-975.

Liu, Q. and R. Okui (2013). Heteroscedasticity-robust Cp model averaging. Econometrics

Journal, 16, 463-472.

Mallows, C.L. (1973). Some comments on Cp. Technometrics, 15, 661-675.

MacKinnon, J. G. (2012). “Thirty years of heteroskedasticity-robust inference.” In: Chen,

X. and N. R. Swanson, eds., Recent Advances and Future Directions in Causality,

Prediction, and Specification Analysis, 437-461, Springer, New York.

Sur, P. and E.J. Candés (2019). A modern maximum-likelihood theory for high-dimensional

logistic regression. PNAS, 116(29), 14516-14525.

11


