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Overview

Regression tests (F, Wald) do not work properly when number of regressors
and restrictions is large (e.g., Berndt and Savin, 1977)

– Many regressors/controls/covariates at RHS

– Many restrictions to test (joint significance of controls, panel group effects)

Recent literature on inference with many regressors:

♣ Corrected classical tests developed for many regressors and many restrictions
(e.g., Calhoun, 2011; Anatolyev, 2012) fail under heteroskedasticity

♣ Corrected classical tests (t, Wald) developed for many regressors and
heteroskedasticity (e.g., Cattaneo, Jansson, and Newey, 2018) fail with
many restrictions
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Feature presentation

♥ We propose new corrected classical test (based on F) that works with both
many restrictions and heteroskedasticity

♥ Corrected F test: new critical value for good old F-statistic

♥ We use new leave-two-out and leave-three-out technology as extension of
leave-one-out (a.k.a. jackknife)
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Framework
Linear regression:

yi = x′iβ + εi E[εi |xi] = 0

– n observations are independent across i

– full rank m of design matrix Sxx =
∑n
i=1 xix

′
i = X ′X

Hypothesis of interest:

H0 : Rβ = q

where matrix R ∈ Rr×m has full row rank r, and q ∈ Rr

Key point: number of regressors and restrictions may be large relative to
sample size and error term may be heteroskedastic
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Repeating setup

Linear regression:

yi = x′iβ + εi E[εi|xi] = 0

– n observations are independent across i

– full rank m of design matrix Sxx =
∑n
i=1 xix

′
i = X ′X

– heteroskedasticity in errors

E[ε2
i |xi] = σ2(xi) ≡ σ

2
i

Hypothesis of interest:

H0 : Rβ = q

where matrix R ∈ Rr×m has full row rank r, and q ∈ Rr



F-statistic
Define
– OLS estimator of β

β̂ = S−1
xx

n∑
i=1

xiyi

– residual variance

σ̂2
ε = 1

n−m

n∑
i=1

(yi − x
′
iβ̂)2

F-statistic is

F =
(
Rβ̂ − q

)′(
RS−1

xxR
′)−1(

Rβ̂ − q
)

rσ̂2
ε

– let F denote numerator of F , i.e., F = rσ̂2
εF
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Conventional critical value

“Exact” F test of size α ∈ [0, 1] reads

φEF(α) = 1
{
F > q1−α(Fr,n−m)

}

Centering and scaling yields

φEF(α) = 1

 F − 1√
2/r + 2/(n−m)

>
q1−α(Fr,n−m)− 1√

2/r + 2/(n−m)


Here,

– rσ̂2
ε estimates null mean of F

– 2rσ̂4
ε + 2r2σ̂4

ε/(n−m) estimates null variance of F − rσ̂2
ε

– these estimators are inconsistent, in general
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New critical value

Change red quantities to robust versions:

φLO(α) = 1
{
F − ÊF
V̂F

1/2 >
q1−α(Fr,n−m)− 1√

2/r + 2/(n−m)

}

where
– ÊF is (conditionally) unbiased for null mean of F
– V̂F is unbiased for null variance of F − ÊF

With many restrictions and heteroskedasticity, φLO(α) controls size

Expressed in terms of F , we have φLO(α) = 1 {F > cα} where

cα = 1
rσ̂2
ε

(
ÊF + V̂

1/2
F

q1−α(Fr,n−m)− 1√
2/r + 2/(n−m)

)
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Leave-out estimability
Usually imposed assumption of leave-one-out full rank:∑
` 6=i x`x

′
` is invertible for every i ∈ {1, . . . , n}

equivalent to Pii = x′iS
−1
xx xi < 1 for all i

Here, we assume “leave-three-out full rank” of design matrix

Assumption 1∑
6̀=i,j,k x`x

′
` is invertible for every i, j, k ∈ {1, . . . , n}

♥ allows us to construct β̂−ijk =
(∑

` 6=i,j,k x`x
′
`

)−1∑
` 6=i,j,k x`y`

♥ if not satisfied, we relax it to “leave-one-out full rank” at expense of smaller
test size



Location problem

Null mean of F is
n∑
i=1

Biiσ
2
i

where Bii = B(xi,Sxx,R) is observable

Unbiased estimator of σ2
i from Kline, Saggio, and Sølvsten (2020) is

σ̂2
i = yi

(
yi − x

′
iβ̂−i

)
We therefore define

ÊF =
n∑
i=1

Biiσ̂
2
i
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Variance problem

Null variance of F − ÊF is
n∑
i=1

∑
j 6=i

Uijσ
2
i σ

2
j +

n∑
i=1

(∑
j 6=i

Vijx
′
jβ
)2
σ2
i ,

where Uij = U(xi,xj ,Sxx,R) and Vij = V (xi,xj ,Sxx,R) are observable

Issue: σ̂2
i σ̂

2
j is systematically biased due to dependence between σ̂2

i and σ̂2
j

Solution: use leave-three-out estimates of individual variances

σ̂2
i,−jk = yi

(
yi − x

′
iβ̂−ijk

)
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n∑
i=1

∑
j 6=i

Uijσ
2
i σ

2
j +

n∑
i=1

(∑
j 6=i

Vijx
′
jβ
)2
σ2
i ,

where Uij = U(xi,xj ,Sxx,R) and Vij = V (xi,xj ,Sxx,R) are observable

Issue: σ̂2
i σ̂

2
j is systematically biased due to dependence between σ̂2

i and σ̂2
j

Solution: use leave-three-out estimates of individual variances

σ̂2
i,−jk = yi

(
yi − x

′
iβ̂−ijk

)



Variance problem

Null variance of F − ÊF is
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Leave-three-out

So we introduce leave-three-out estimators of individual variances

σ̂2
i,−jk = yi

(
yi − x

′
iβ̂−ijk

)

and analogous leave-two-out estimator

σ̂2
i,−j := σ̂2

i,−jj = yi
∑
k 6=j

M̌ik,−ijyk

where M̌ik,−ij = M(xi,xk,xj ,Sxx) is observable

Combining these for different i and j leads to product estimator

σ̂2
i σ

2
j = yi

∑
k 6=j

M̌ik,−ijyk · σ̂
2
j,−ik
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Variance estimator

We use these leave-out estimators to construct

V̂F =
n∑
i=1

∑
j 6=i

(
Uij − V

2
ij

)
· σ̂2

i σ
2
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jβ
)2
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i

Note: product of (j = k)-th terms in second component of V̂F generate bias
of V 2

ijσ
2
i σ

2
j ⇒ Uij − V

2
ij instead of Uij in first component of V̂F
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Recap
We propose test

φLO(α) = 1 {F > cα}

where

cα = 1
rσ̂2
ε

(
ÊF + V̂

1/2
F

q1−α(Fr,n−m)− 1√
2/r + 2/(n−m)

)

ÊF =
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Biiσ̂
2
i
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Regularity conditions

Assumption 2
(i) maxi

(
E[ε4

i |xi] + σ−2
i

)
= Op(1)

(ii) maxi (x′iβ)2 = Op(1)
(iii) maxi

(∑
j 6=i Vijx

′
jβ
)2
/r = op(1)

(iv) maxi 6=j 6=k 6=iD
−1
ijk = Op(1)

– (i) and (ii) place tail restrictions on data

– (iii) is high-level condition on weight each observation receives
– (iv) is slight strengthening of Assumption 1, as construction of V̂F involves
division by

Dijk =

∣∣∣∣∣∣
Mii Mij Mik

Mij Mjj Mjk

Mik Mjk Mkk

∣∣∣∣∣∣ where Mij = 1{i = j} − x′iS
−1
xx xj



Size and power

Theorem 1
If Assumptions 1 and 2 hold, then under H0

lim
n,r→∞

Pr (F > cα) = α

Theorem 2
Consider sequence of local alternatives

Hδ : Rβ − q = (RS−1
xxR

′)1/2 · δ

If Assumptions 1 and 2 hold, then

lim
n,r→∞

Pr (F > cα)− Φ
(

Φ−1 (α) + V0
[
F − ÊF

]−1/2||δ||2
)

= 0
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Simulation setup

Inspired by MacKinnon (2013), outcome equation is

yi = β1 +
m∑
k=2

βkxik + εi

where
– data is drawn i.i.d. across i
– sample sizes take values 80, 160, 320, 640 and 1280
– number of unknown coefficients is m = 0.8n
– coefficient of determination R2 is equal to 0.16
– homo-/heteroskedastic errors are εi |xi ∼ N(0, σ2

i ) with

σi = zζ (1 + si)
ζ

for complex si = f(xi2, . . . , xim) and ζ ∈ {0, 2} and E[σ2
i ] = 1



Two designs and alternatives

Regressor design: xi2, . . . , xim are products of i.i.d. log-normals and 0.5 + ui
where ui is standard uniform

The hypothesis of interest restricts values of last r = 0.6n coefficients

Two types of alternatives:
– Sparse: a single coefficient deviates
– Dense: all coefficients deviate in equal proportions



Size
Nominal size

1%

5%

10%

Test

LO EF W

LO EF W

LO EF W

%V̂F < 0

Homoskedasticity

n = 80 r = 48

1 1 7

3 5 9

6 10 11

19.9
n = 160 r = 96

2 1 97

5 5 98

10 10 98

6.7
n = 320 r = 192

1 1 68

6 5 69

11 10 69

1.8
n = 640 r = 384

1 1 100

5 5 100

10 10 100

0.2
n = 1280 r = 768

1 1 100

5 5 100

10 10 100

0.0

Heteroskedasticity

n = 80 r = 48

1 22 13

4 47 18

7 62 23

13.4
n = 160 r = 96

1 33 84

5 62 89

9 76 92

4.4
n = 320 r = 192

1 57 100

5 82 100

10 90 100

0.9
n = 640 r = 384

1 87 100

5 97 100

11 99 100

0.2
n = 1280 r = 768

1 99 100

5 100 100

10 100 100

0.0



Size
Nominal size 1% 5% 10%

Test LO EF W LO EF W LO EF W %V̂F < 0

Homoskedasticity

n = 80 r = 48 1 1 7 3 5 9 6 10 11 19.9
n = 160 r = 96 2 1 97 5 5 98 10 10 98 6.7
n = 320 r = 192 1 1 68 6 5 69 11 10 69 1.8
n = 640 r = 384 1 1 100 5 5 100 10 10 100 0.2
n = 1280 r = 768 1 1 100 5 5 100 10 10 100 0.0

Heteroskedasticity

n = 80 r = 48 1 22 13 4 47 18 7 62 23 13.4
n = 160 r = 96 1 33 84 5 62 89 9 76 92 4.4
n = 320 r = 192 1 57 100 5 82 100 10 90 100 0.9
n = 640 r = 384 1 87 100 5 97 100 11 99 100 0.2
n = 1280 r = 768 1 99 100 5 100 100 10 100 100 0.0



Power

Deviation

Sparse

Dense

Nominal size

5% 10%

5% 10%

Test

LO EF LO EF

LO EF LO EF

Homoskedasticity

n = 80 r = 48

6 15 12 25

4 15 9 25
n = 160 r = 96

15 23 25 35

13 22 21 35
n = 320 r = 192

28 35 42 48

24 34 37 48
n = 640 r = 384

48 54 62 67

44 56 58 71
n = 1280 r = 768

74 80 85 89

68 84 80 92



Power

Deviation Sparse Dense

Nominal size 5% 10% 5% 10%

Test LO EF LO EF LO EF LO EF

Homoskedasticity

n = 80 r = 48 6 15 12 25 4 15 9 25
n = 160 r = 96 15 23 25 35 13 22 21 35
n = 320 r = 192 28 35 42 48 24 34 37 48
n = 640 r = 384 48 54 62 67 44 56 58 71
n = 1280 r = 768 74 80 85 89 68 84 80 92



Summary and prospects

We propose new test (or new critical value for standard F statistic) with
heteroskedasticity and many restrictions

– Size is controlled asymptotically and also in quite small samples

– There is acceptable loss in power from robustness to heteroskedasticity

– We extend to discrete regressors when invertability of
∑
` 6=i,j,k x`x

′
` fails

for some i, j, k by intentionally increasing V̂F resulting in smaller test size

– We have also developed extension robust to few regressors and restrictions
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