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Abstract

In models with many instruments, the asymptotic variance of the LIML estimator
contains four components. Apart from the traditional variance, one term is due to in-
strument numerosity, and the last two appear if the model errors are non-normal. For
a stylized instrumental variables model, we compute numerical values of these compo-
nents to uncover how the four components are related to each other in magnitude.

1 Introduction

In the original Bekker (1994) framework of an instrumental variables regression with many
instruments and normal errors the asymptotic variance of the limited information maximum
likelihood (LIML) estimator is composed of two components, one is the traditional asymp-
totic variance, and the other is due to numerosity of instruments. Later it was shown (Hansen
et al, 2008; van Hasselt, 2010) that under error non-normality there are two additional terms
involving third and fourth moments of errors. While the �instrument numerosity�term may
be appreciable (Newey, 2004), there is a perception in the literature (e.g., Anderson et al,
2010; Anatolyev and Gospodinov, 2011) that the �higher order moments�terms are impalpa-
ble. We compute the asymptotic variance components of the LIML estimator for a stylized
instrumental variables model and discover that in fact the correction terms may be quite
noticeable.

2 Setup

The standard model is given by

Y = X� + U;

X = Z�+ V;
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with one endogenous variable, K instruments, N observations, and random sampling. The
errors u and v are independent of instruments z, have mean zero and variances �2u and �

2
v

and covariance �vu: We adopt the Bekker (1994) many instrument asymptotic framework:
K=N = �+ o(1=

p
N): We consider the LIML estimator

�̂ = argmin
b

(Y �Xb)0P (Y �Xb)
(Y �Xb)0(Y �Xb) ;

where P is the projector matrix associated with Z: Under homoskedasticity LIML, un-
like 2SLS, provides consistent estimation under many instruments (Bekker, 1994; Newey,
2004), and is asymptotically e¢ cient in a certain class (Anderson et al, 2010). Even though
the LIML estimator is non-robust to heteroskedasticity in contrast to recently developed
jackknife-type estimators (Hausman et al, 2012), it is very popular and easy to compute via
a certain eigenvalue problem, while it is not unambiguously dominated by these estimators
in terms of asymptotic e¢ ciency (see Hausman et al, 2012). The structure of the asymptotic
variance of the LIML estimator is

V�̂ = W1 +W2 +W3 +W4;

whereW1; W2; W3; W4 are the �traditional�LIML variance, �instrumental numerosity e¤ect�,
�skewness e¤ect�, and �kurtosis e¤ect�, respectively (Hansen et al, 2008; van Hasselt, 2010).
When the errors are normal, W3 = W4 = 0:

We model the distribution of each error of the pair (u; v) as Skewed Student (Azzalini
and Capitanio, 2003) adjusted to have zero mean and unit variance (the latter is a convenient
normalization) with � degrees of freedom, setting � to 9 in order for eighth moments to exist
so that asymptotic variance estimation (Hansen et al, 2008) goes through. The degree of
asymmetry and leptokurtocity of each error is described by parameters u and v. In our
experiments, we set each  to take values in the set � = f�1; �0:5; 0g, which correspond
to the same values of skewness and values f2:6; 1:6; 1:2g of excess kurtosis. Note that these
numbers indicate deviations from normality that are not drastic.

To separately control the dependence between u and v; we impose a Gaussian copula on
the pair which is given by C(u; v) = �G(��1(u);��1(v); �), where �(�) is the standard normal
CDF, and �G(�; ��; �) is the bivariate standard normal CDF with correlation parameter � 2
(�1; 1). We set � to take values in the set P = f�0:9; �0:6; �0:1g which correspond to
values f�0:88; �0:59; �0:10g of the covariance �vu: Note that � and �vu are approximately
equal.

It is very important how to design the reduced form. We have tried several designs
for instruments that can be encountered in various simulation studies. Many of them re-
sult in W3 and/or W4 equaling zero (while the ratio W2=W1 is approximately as reported
below). For instance, if z � IID D(0; IK) and � = ��K=

p
K; where D is standard

normal, scaled lognormal or scaled recentered chi-squared, then W3 = W4 = 0; and if
z = (1; �; �2; �3; �4; �D1; : : : ; �DK�5)

0; where � � D(0; 1) and Dk � IID B(1
2
); then W4 6= 0

but W3 = 0: Therefore, we follow Bekker and van Ploeg (2005) and assume that the obser-
vations are split into groups, whose number K grows linearly with the sample size. Denote
the size of the kth group size by Nk and the corresponding group mean by �k. The instru-
ment matrix is comprised of dummy variables: Z = diag f�Nkg

K
k=1 ; and the reduced form

2



coe¢ cients are � = (�1; �2; : : : ; �K)
0. Bekker and van Ploeg (2005, p. 251) show that when

group sizes are equal, W3 = W4 = 0; but these components are non-zero otherwise.
We generate the group means �k as IID U [0; �] and group sizes Nk as IID Uf1; : : : ; ng,

where n = 2N=K � 1; assuming that K and N are such that n is integer, and induce the
dependence between Nk and �k via a copula (without dependence W3 = 0). Technically, we
let the pair (nk; pk) � IID CG(�); the Gaussian copula with correlation parameter �; and
set Nk = dnnke and �k = �pk: The random design of group sizes induces non-zero impact
of skewness and excess kurtosis, while the parameter � is set to 0:99 to amplify the e¤ect of
the skewness term.

For the described design,

V�̂ = Q
�2 (Q+�2�2 +�3�3 +�4�4) :

Here, the quantities Q = limN�1(Z�)0(Z�) = ��2E [Nkp
2
k] ; �2 = �(1 � )=(1 � �)2;

�3 = 2��=(1��) and�4 = �(��)=(1��)2; where  = limK�1�Ni=1P
2
ii = n

�1Pn
j=1 j

�1 and
� = �

�
1
2
� �E [Nkpk]

�
, depend on the reduced form design, while the quantities �2 = 1��2vu;

�3 = E [u
2w] and �4 = E [u2w2] ; where w = v � �vuu; depend only on error moments.

3 Results

In evaluating various moments, we used Monte Carlo integration. Relative magnitudes of
instrument numerosity, error skewness and error kurtosis corrections are given in Table 1.
We reportW2=W1; maxu2�;v2� jW3j=W1 and maxu2�;v2�W4=W1 as functions of � and the
reduced form R2, for the values of � from P.

Table 1: Relative (to W1) magnitudes of the other asymptotic variance components
K=N R2 � = �0:1 � = �0:6 � = �0:9

W2 W3 W4 W2 W3 W4 W2 W3 W4

0:05 0:001 48:84 0:043 3:455 32:39 0:241 3:646 10:89 0:383 3:462
0:010 4:840 0:014 0:342 3:209 0:076 0:361 1:079 0:121 0:343
0:100 0:440 0:004 0:031 0:292 0:023 0:033 0:098 0:036 0:031
0:500 0:049 0:001 0:003 0:032 0:008 0:004 0:011 0:012 0:003

0:10 0:001 99:34 0:090 11:31 65:90 0:496 11:93 22:16 0:789 11:33
0:010 9:845 0:028 1:120 6:529 0:156 1:182 2:196 0:248 1:123
0:100 0:895 0:008 0:102 0:594 0:047 0:107 0:200 0:075 0:102
0:500 0:099 0:003 0:011 0:066 0:016 0:012 0:022 0:025 0:011

0:20 0:001 212:0 0:190 37:72 140:6 1:056 39:81 47:28 1:678 37:80
0:010 21:01 0:060 3:738 13:93 0:332 3:945 4:686 0:528 3:746
0:100 1:910 0:018 0:340 1:267 0:100 0:359 0:426 0:159 0:341
0:500 0:212 0:006 0:038 0:141 0:033 0:040 0:047 0:053 0:038

The ratio W2=W1 is increasing in K=N and decreasing in R2 and �. It is indeed sizeable
even for relatively strong relatively few instruments. For instance, W2 is half the size of the
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leading term when R2 = 0:1, � = 0:1 and K=N = 0:05. Further, the instrument numerosity
correction is of di¤erent order of magnitude for pathologically weak instruments than for
relatively strong ones. This agrees with simulation resuls in Hahn and Inoue (2002) who
show that the Bekker asymptotic approximation is of most value for weaker instruments,
and with the theoretical results given in Chao and Swanson (2006).

The excess kurtosis correction turns out to be quite sizable. It varies from roughly one
tenth (for smaller �) of instrument numerosity correction to comparable magnitudes (for
larger �). It remains perceptible even for relatively strong instruments when compared to
the leading term. In contrast, the error skewness has, on average, a much smaller impact,
but still should not be excluded from consideration, especially when K=N and/or � are high.
Moreover, observe that when instruments are pathologically weak, i.e., when R2 = 0:001,
the relative size of W3 is negligible, which is also consistent with the many weak instrument
results of Hansen et al (2008). Interestingly, the �kurtosis e¤ect�hardly varies with �; unlike
the �skewness e¤ect�which is roughly proportional to �.
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