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Abstract

We develop and evaluate sequential testing tools for a class of nonparametric tests for

predictability of financial returns that includes, in particular, the directional accuracy and

excess profitability tests. Our sequential methods consider in a unified framework both

retrospection of a historical sample and monitoring newly arriving data. To this end, we

focus on linear monitoring boundaries that are continuations of horizontal lines corresponding

to retrospective critical values, elaborating on both two-sided and one-sided testing. We

run a simulation study and illustrate the methodology by testing for directional and mean

predictability of returns in young stock markets in Eastern Europe.

Key words: Predictability testing, sequential tests, retrospection, monitoring, stock in-

dexes.
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1 Introduction

Economists have been getting more and more concerned with possible structural instabili-

ties in economic relationships which may invalidate conclusions obtained using conventional

econometric tools. More than a decade ago, econometricians revived old CUSUM-type fluctu-

ation tests allowing one to track structural shifts in model parameters in time (e.g., Ploberger,

Krämer and Kontrus, 1989). More recently, there has been a new burst of interest to devel-

oping tools of sequential testing for practitioners who make decisions in real time. This was

started by Chu, Stinchcombe, and White (1996) and Chu, Hornik, and Kuan (1995), and

continued in Leisch, Hornik, and Kuan (2000), Altissimo and Corradi (2003), Zeileis, Leisch,

Kleiber, and Hornik (2005), Inoue and Rossi (2005), and Andreou and Ghysels (2006), among

others. This resulted in a number of sequential tests designed for both static and dynamic

models, for both conditional means and conditional variances. Most of this work is targeted

towards parametric models.

In this paper, we develop and evaluate sequential testing tools for a certain class of non-

parametric tests for predictability of financial returns. This class is quite large and allows

testing for hypotheses of non-predictability of various features of a series of interest. Two

representatives of this class are the directional accuracy test of Pesaran and Timmermann

(1992) and the excess profitability test of Anatolyev and Gerko (2005), but also there are

others. The importance of testing for stability of predictability is discussed in Pesaran and

Timmermann (2004) who show that ignoring structural instability may have serious conse-

quences for the quality of directional forecasting. Testing for predictability in a sequential

manner allows one to see the evolution of predictability over time, while the nonparametric

nature of the test statistic allows one to use model-free inference.

We consider both retrospective tests where a researcher wants to track predictability over

time in a historical sample, and monitoring tests where a researcher conducts testing as new

observations arrive. The literature does not usually consider these tasks together; consid-

ering both in a unified manner is the first novelty introduced in this paper. Underlying it

is a scenario that a researcher after having carried out a retrospective test goes on to the

monitoring stage. Moreover, the retrospective boundaries (horizontal lines corresponding

to retrospective critical values) continuously translate into the monotonically growing mon-

itoring boundaries. The continuity of the boundaries is an appealing property as the first
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observation of the monitoring period should not affect dramatically the inference about the

null. Our second novelty is that we develop both two-sided and one-sided testing, with the

emphasis put on the latter as more appropriate in the context of testing for predictability (cf.

Inoue and Rossi, 2005). We focus on the use of the supremum functional over the sequential

statistic, which is most widely used functional in the rest of the literature.

In the monitoring context, a widely discussed issue is the shape of monitoring bound-

aries. Some authors follow Chu, Stinchcombe, and White (1996) who suggest complicated

“parabolic” boundaries which however lead to an analytical form of critical values. Zeileis,

Leisch, Kleiber, and Hornik (2005) proposed more intuitively appealing linear boundaries

which tend to distribute the size throughout the monitoring period more evenly. In Monte–

Carlo exercises reported in Zeileis, Leisch, Kleiber, and Hornik (2005) and Andreou and

Ghysels (2006) the linear boundaries performed well. We concentrate on such linear bound-

aries for two reasons: first, the possibility of considering retrospection and monitoring in a

unified framework, and second, because linear boundaries lead to analytical critical values.

It is worth noting that the tools developed here may be applied to other contexts, parametric

or non-parametric, where testing on the basis of t-statistics is performed.

Note that in most of the work on sequential stability testing, the emphasis is usually put

on testing for stability rather than testing whether a particular hypothesis holds throughout

the sample. In this sense, the closest to the present work is the paper by Inoue and Rossi

(2005) who sequentially track deviations of parameter combinations from hypothesized val-

ues. The main consequence is that the asymptotic analog of sequential statistic paths is the

Wiener process (and functions thereof) rather than the Brownian Bridge. Inoue and Rossi

(2005), however, do not consider one-sided testing, adapt “parabolic” boundaries, and their

framework is, as mentioned above, parametric, albeit nonlinear.

We run a number of simulation experiments to verify the size and power properties of the

tests, both in terms of rejection rates and delay lags. Simulations show good size properties

but indicate that sometimes the power of sequential tests may be low when the time span

in which the tests operate is small, or when predictability is concentrated on short time

periods far from the beginning of the historical interval. We also illustrate our methodology

by testing for directional and mean predictability of returns in ten young stock markets

in Eastern Europe. Such markets are an ideal polygon for applying predictability tests as

it is documented using other econometric tools that the pattern of predictability there is
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changing (e.g., Rockinger and Urga, 2000). It turns out that the markets differ from each

other a lot by whether tests signal predictability or not, by whether one or both tests indicate

predictability, and by timing of boundary crossings if any.

The paper is organized as follows. In Section 2 we review the class of one-shot tests for

predictability and its special cases. Sequential tests are developed in Section 3. In Section

4, simulation evidence is discussed, while the empirical application is presented in Section 5.

Proofs and other auxiliary material are collected in Appendixes. Throughout, bac denotes

taking an integer part of a, and⇒ denotes weak uniform convergence in the space of cadlag

functions.

2 One-shot predictability tests

Let yt represent some economic variable, and denote by It−1 the information set {yt−1, yt−2, · · · }

of past values of yt. We are interested in testing the null hypothesis

Hg
0 : E [g(yt)|It−1] = const,

where g(u) is a given function that depends on which feature is tested for predictability. Let

xt be a forecast of yt that depends only on the data from It−1, and T denote the sample

size. The predictability test is based on the contrast

Ag,h −Bg,h ≡ 1

T

∑
t

h(xt)g(yt)−

(
1

T

∑
t

h(xt)

)(
1

T

∑
t

g(yt)

)
, (1)

where h(u) is an arbitrary measurable function. The motivation for basing the test on the

contrast (1) is that, under Hg
0 , the population analog of the constant is zero:

E [h(xt)g(yt)]− E [h(xt)]E [g(yt)] = E [h(xt)E [g(yt)|It−1]]− E [h(xt)]E [g(yt)]

= E [h(xt)c]− E [h(xt)] c

= 0,

where c is the const in the null.

The function h(u) is chosen by the researcher. A popular choice is h(u) = sign(u), where

sign(·) takes value −1 when its argument is negative, and value +1 when its argument is

non-negative. In this case setting g(u) = sign(u) leads to the directional accuracy (DA) test

for conditional sign independence of Pesaran and Timmermann (1992), or an asymptotically
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equivalent parametric test in Breen, Glosten and Jagannathan (1989). The DA test is

routinely used as a predictive-failure test in constructing forecasting models, or for evaluating

the quality of predictors; see, for example, Pesaran and Timmermann (1995), Franses and van

Dijk (2000), and Qi and Wu (2003). Setting h(u) = sign(u) and g(u) = u leads to the excess

profitability (EP) test for conditional mean independence of Anatolyev and Gerko (2005),

or an asymptotically equivalent parametric test in Cumby and Modest (1987). When yt is

a logarithmic return on some financial asset or index, the EP statistic can be interpreted as

a normalized return of the position implied by a simple trading strategy that issues a buy

signal if a forecast of next period return is positive and a sell signal otherwise, over a certain

benchmark (see Anatolyev and Gerko, 2005 for details). These two examples of special

interest will be intensively tackled throughout, although we develop testing algorithms for

the general framework.

While the choice of function g(u) is driven by what feature is tested for predictability, the

function h(u) is pretty arbitrary. Of course, the choice of h(u) affects the power of the test,

and this can be taken into account in practice if the researcher has a priori beliefs about

possible deviations from non-predictability. For example, setting h(u) = u in the context of

testing for mean predictability may well be reasonable, and in fact leads to testing for the

“big hit” forecast ability from Hartzmark (1991). A similar arbitrariness applies to the choice

of the predictor xt, which may be simply set to yt−1, but alternatively may be constructed

as fitted values from a parametric or non-parametric autoregression.

Let us impose

Assumption 1 Under Hg
0 ,

(i) the series yt and its forecast xt are strictly stationary and strongly mixing with mixing

coefficients α (j) satisfying
∑∞

j=1 α (j)1−1/ν <∞ for some ν > 1;

(ii) the functions g(u) and h(u) are measurable, and E [|g(yt)|2νq] and E [|h(xt)|2νp] exist and

are finite for ν from (i), and for some q and p such that q−1 + p−1 = 1.

Absolute regularity, which is a stronger notion than strong mixing posited in assumption

1(i), is shown to hold for various GARCH and stochastic volatility models often fit to financial

returns (Carrasco and Chen, 2002). The moment condition in assumption 1(ii) is sufficient,

but not necessary. With a choice of bounded h(u), as is the case for the DA and EP tests,

it is possible to set p =∞ and q = 1, so that the moment condition on g(yt) is quite mild.
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Let us introduce the following notation for future use:

Mg = E [g(yt)] , Vg = var [g(yt)] ,

Mh = E [h(xt)] , Vh = var [h(xt)] ,

and

my = E [sign(yt)] , mx = E [sign(xt)] , Vy = var [yt] .

We will base our tests on the following result which we will generalize to the context of

sequential testing in the next Section.

Lemma 1 Suppose g(u) and h(u) satisfy the regularity conditions specified in Assumption

1. Consider the contrast (1). Under Hg
0 : E [g(yt)|It−1] = const,

√
T
(
Ag,h −Bg,h

) d→ N(0, V g,h)

as T →∞, where

V g,h = VhVg + C1 − 2MhC2,

where C1 = cov [h(xt)
2, g(yt)

2] and C2 = cov [h(xt), g(yt)
2] .

Specialization of Lemma 1 to the two special cases of DA and EP tests yields

Corollary 1

(i) Under the null of conditional sign independence, i.e. HDA
0 : E [sign(yt)|It−1] = const,

√
T
(
ADA −BDA

) d→ N(0, V DA)

as T →∞, where

V DA =
(
1−m2

x

) (
1−m2

y

)
.

(ii) Under the null of conditional mean independence, i.e. HEP
0 : E [yt|It−1] = const,

√
T
(
AEP −BEP

) d→ N(0, V EP )

as T →∞, where

V EP =
(
1−m2

x

)
Vy − 2mx cov

[
sign(xt), y

2
t

]
.
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To construct the test statistic, the contrast (1) may be pivotized using

V̂ g,h = V̂hV̂g + Ĉ1 − 2M̂hĈ2,

where M̂h, V̂h, V̂g, Ĉ1 and Ĉ2 are empirical analogs of corresponding population quantities.

For example, for the DA and EP tests,

V̂ DA =
(
1− m̂2

x

) (
1− m̂2

y

)
,

V̂ EP =
(
1− m̂2

x

)
V̂y − 2m̂xĈ,

where

my =
1

T

∑
t

sign(yt), mx =
1

T

∑
t

sign(xt),

V̂y =
1

T

∑
t

y2
t −

(
1

T

∑
t

yt

)2

,

Ĉ =
1

T

∑
t

(sign(xt)− m̂x) y
2
t .

The analogs of the DA and EP tests in the case h(u) = u are derived in Appendix C.

3 Sequential tests

3.1 Sequential testing and boundaries

In the sequential context, the null hypothesis of interest is the conditional independence of

g(yt) throughout the entire period, i.e. that

Hg
0 : E [g(yt)|It−1] = const for all t. (2)

Note that we do not require that the const in (2) be the same across time; all we want to test

is that g(yt) cannot be predicted by information at t − 1 at all times. Thus, the emerging

tests may not be able to detect deviations of the risk premium from a constant value.

Let us continue denoting the size of the historical sample by T . Then, if we do retro-

spective testing of Hg
0 on the historical sample, t in (2) runs from 1 to T. If we monitor Hg

0

further, t in (2) runs from T + 1 to infinity. We manage to set the boundaries so that hor-

izontal lines corresponding to retrospective critical values continuously translate into linear

monitoring boundaries going upward (see Fig.1).
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The underlying scenario is the following: a researcher has a historical sample in hands

and carries out a retrospective test; then he/she goes on to the monitoring stage as new

observations begin to arrive. The continuity of the boundaries makes sense as first several

observations in the monitoring period should not affect dramatically the inference about the

null. With linear boundaries, this continuity is possible to impose provided that the test

sizes are equal in the retrospective and monitoring stages. Technically, this happens due to

the property

Pr

{
sup
r≥1

(w (r)− λr) ≥ 0

}
= Pr

{
sup
r≥1

w (r)

r
≥ λ

}
= Pr

{
sup

0<r≤1
w (r) ≥ λ

}
,

and to a similar property for |w (r)| , where λ > 0 is a constant, and w (r) is a univariate

standard Wiener process on [0,+∞), a limiting process for the sequential test statistic to be

developed below.

3.2 Asymptotics for partial contrasts

For a generic series at, t = 1, 2, · · · , T, T +1, · · · , let us introduce the notation for a sequence

of partial averages

āτ =
1

bTτc

bTτc∑
t=1

at,

where τ ≥ 0. When at is a product of several series, at = btct, say, then we write āτ also as

bcτ .

Kuan and Chen (1994) discovered that fluctuation tests are better sized in finite samples

when variance estimators use the data from the same window over which the contrast is

computed (rather than all available data), and we follow this strategy throughout. To this

end, let us denote by V̂ g,h
τ the value of V̂ g,h computed using the data from 1 to bTτc:

V̂ g,h
τ =

(
h2

τ − h̄2
τ

)(
g2
τ − ḡ2

τ

)
+ h2g2

τ − h2
τg2

τ − 2h̄τ

(
hg2

τ − h̄τg2
τ

)
.

In particular,

V̂ DA
τ =

(
1− sign(x)

2

τ

)(
1− sign(y)

2

τ

)
and

V̂ EP
τ =

(
1− sign(x)

2

τ

)(
y2
τ − ȳ2

τ

)
− 2sign(x)τ

(
sign(x)y2

τ − sign(x)τy
2
τ

)
.
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The sequence of partial contrasts corresponding to the one-shot test based on g(u) and h(u),

is

Pt/T =
t√
T V̂ g,h

t/T

(
ght/T − ḡt/T h̄t/T

)
. (3)

The following theorem describes the asymptotic distribution of the sequence of partial

contrasts which will serve as a basis for constructing the sequential tests. Recall that the

conventional time t is related to τ by t = bTτc .

Theorem 1 Suppose the null hypothesis

Hg
0 : E [g(yt)|It−1] = const for all t

holds, and h(u) and g(u) satisfy the regularity conditions specified in Assumption 1. Then

we have that as T →∞,

Pτ ⇒ w(τ),

where w(r) is a univariate standard Wiener process on [0,+∞).

Thus, in large samples, deviations of partial contrasts Pt/T from zero may be classified

as statistically significant evidence of predictability if the associated path is unusual for the

standard Wiener process.

Note that the methods proposed in this paper can be applied to other contexts, parametric

or non-parametric. One may want to track the importance of a particular variable of interest

in a time series parametric model (for example, unemployment or output gap in the Phillips

curve, or some instrument in the monetary policy rule). One may alternatively want to

track the significance of some nonparametric measure of time series data (for example, an

autoregressive coefficient, a skewness coefficient, or a BDS statistic). In a more complex

setting, one may want to track which of two competing models better fits the data as

time progresses (for example, using the weighted likelihood ratio statistic of Amisano and

Giacomini, 2007). In order to perform any of these exercises, one has to establish a functional

central limit theorem similar to Theorem 1 for the sequential version of the t-statistic (i.e.

the sequence of suitably scaled partial estimates) for the parameter or measure of interest,

and then to apply the sequential tools developed in the present paper.
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3.3 Retrospective tests

By computing the EP statistic from data in a moving window, Anatolyev and Gerko (2005)

track the historical evolution of mean predictability in the American stock market. However,

the comparison of the statistic with conventional critical values is an invalid testing procedure

because the overall size of the sequential test has little to do with the intended nominal size

(see Inoue and Rossi, 2005, for illustrations of this point). In this subsection we develop a

formal sequential procedure that correctly controls the overall size of the test using historical

data.

Using the supremum functional, we obtain the asymptotic size α one-sided test

Reject if max
t=2,...,T

Pt/T ≥ q(1)
α ,

and the asymptotic size α two-sided test

Reject if max
t=2,...,T

∣∣Pt/T ∣∣ ≥ q(2)
α ,

where q
(j)
α is a critical value for the j-sided test with significance level α.

It is widely known (e.g., Karatzas and Shreve (1988, problem 8.2)) that for λ > 0,

Pr

{
sup

0≤r≤1
w (r) ≥ λ

}
= 2 (1− Φ (λ)) ,

where Φ (◦) is the CDF of the standard normal distribution. Hence, q
(1)
α can be easily found

as a solution to the equation

Φ
(
q(1)
α

)
= 1− α

2
,

so the α-level critical values for the one-sided test are equal to conventionally used α-level

critical values for two-sided one-shot tests. Next, from Erdös and Kac (1946),

Ψ(λ) ≡ Pr

{
sup

0≤r≤1
|w (r)| ≤ λ

}
=

4

π

∞∑
k=0

(−1)k

2k + 1
exp

(
−π

2 (2k + 1)2

8λ2

)
.

Hence, q
(2)
α can be easily found as a solution to the equation

Ψ
(
q(2)
α

)
= 1− α.

In Table 1 we list the critical values for popular levels of significance. Note that for small

α, as typically is the case, q
(1)
α ≈ q

(2)
2α . This reflects a low probability of the standard Wiener

process’ hitting both −λ and +λ when λ is large enough (i.e. when α is small enough).
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3.4 Monitoring tests

In this subsection we proceed to testing using newly arriving data. Using the supremum

functional, we obtain the asymptotic size α one-sided test

Reject if max
t=T+1,T+2,...

(
Pt/T − b(1)

α (t)
)
≥ 0,

and the asymptotic size α two-sided test

Reject if max
t=T+1,T+2,...

(∣∣Pt/T ∣∣− b(2)
α (t)

)
≥ 0,

where b
(1)
α (t) and b

(2)
α (t) are upper boundaries.

We base our recursive monitoring one-sided tests on the boundaries of the type

b(j)
α (t) = λ(j)

α

t

T
,

which tend to distribute the size throughout the monitoring period more evenly when the

underlying process has growing variance that the so called “parabolic” boundaries (Zeileis,

Leisch, Kleiber, and Hornik, 2005), see Appendix B. From the results of Robbins and Sieg-

mund (1970, example 1) we obtain that for λ > 0,

lim
T→∞

Pr

{
max

t=T+1,T+2,...

(
Pt/T − λ

t

T

)
≥ 0

}
= 2 (1− Φ (λ)) .

Hence, λ(1)
α can be found as a solution of the equation

Φ
(
λ(1)
α

)
= 1− α

2
.

For the two-sided test,

b(2)
α (t) = λ(2)

α

t

T
,

and λ(2)
α solves

Ψ
(
λ(2)
α

)
= 1− α.

Note that the same equations are used by the retrospective tests in the previous subsection.

Hence, we can consult Table 1 to get values of λ(j)
α . The property b

(j)
α (T ) = q

(j)
α , j = 1, 2,

provides the continuity of the boundaries.

11



4 Simulation evidence

In this Section, we use Monte–Carlo simulations to check on actual sizes of the developed

tests in finite samples and to study their power properties. Throughout we set the predictor

xt to the total return from two previous periods, i.e. xt = yt−2 + yt−1. This is an easy way to

construct a predictor, and it is always available. In what follows, we report actual rejection

frequencies for the sequential DA and EP tests corresponding to the nominal size of 5%.

The simulation results are collected in Tables 2a and 2b for the retrospective tests, and in

Tables 3a, 3b and 3c for the monitoring tests. All experiments are based on 10, 000 draws

of time series of yt according to the data generating processes (DGPs) described below; in

each experiment we read off whether the sequential statistic crosses the boundary or not,

and in which period the crossing occurred if this is informative. We consider a few values

of T that approximately match sample sizes in the empirical application in Section 5, and

one relatively big T . Namely, when we study the size, T is set to 50, 100, 150, or 500, and

when we investigate the power, T is either 100 or 500. The parameters in DGPs A, B below

that are used to verify actual sizes are calibrated using the Hungarian stock index returns,

while all other DGPs are created artificially using as benchmarks the parameters calibrated

to the Ukrainian stock index returns. This choice is motivated by the fact that no test has

detected predictability in the Hungarian market, while almost all tests agree that there is

high level of predictability in the Ukrainian data.

The first two DGPs are

DGP A yt = 0.00289 + εt, εt ∼ iid N(0, 0.00166), (4)

DGP B yt = 0.00481 + εt, εt = σtηt, ηt ∼ iid N(0, 1), (5)

σ2
t = 8.70 · 10−5 + 0.129 ε2

t−1 + 0.820σ2
t−1.

DGP A possesses no sign or mean predictability, while DGP B contains only sign predictabil-

ity: Christoffersen and Diebold (2006) recently showed that conditional heteroskedasticity

alone can induce sign predictability. This means that rejection rates in simulations will de-

scribe the actual size in the cases A/DA, A/EP and B/EP, and as a by-product we will have

evidence in the B/DA case of how big directional predictability can be induced by (quite

strong) conditional heteroskedasticity.

The following DGPs C, D and E in several variations calibrated to the Ukrainian stock
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index data are used to investigate power of retrospective tests. While in DGP C there is the

same non-zero amount of predictability throughout the sample, in DGPs D it is observed

only during subperiods in the middle or towards the beginning or the end of the sample.

Finally, in DGPs E there is a continuous transition from no predictability to higher and even

higher predictability, or vice versa. Extra factors 3 and 2 attached to the autoregressive

parameter serve to equalize the “amount” of predictability across the DGPs.

DGP C yt = 0.00300 + 0.192 yt−1 + εt, (6)

DGP Dk yt = 0.00300 + 3 · 0.192 I{t∈Tk} yt−1 + εt, k = 1, 2, 3, (7)

DGP Ek yt = 0.00300 + 2 · 0.192
tI{k=1} + (T − t) I{k=2}

T
yt−1 + εt, k = 1, 2, (8)

where in all cases

εt = σtηt, ηt ∼ iid N(0, 1), σ2
t = 4.35 · 10−5 + 0.092 ε2

t−1 + 0.894σ2
t−1, (9)

I{◦} is an indicator function, and Tk contains time periods from the k’s third of the sample.

That is, T1 contains observations from the first third of the sample, T2 – those from the

second third of the sample, and T3 – those from the last third of the sample. Hence, in

DGPs D1 through D3 the predictability is observed during one of the three periods, and is

not observed during the other two. In contrast, the predictability is continuously escalating

as time passes in DGP E1, but is vanishing as time passes in DGP E2.

The following DGPs F and G are used to investigate power of monitoring tests. In DGP

F there is temporary predictability lasting for T periods from the start of the monitoring

interval. In DGPs G predictability is permanent: in DGP G1 it is constant, while in DGP

G2 it is escalating.

DGP F yt = 0.00300 + 0.192 I{T+1≤t≤2T} yt−1 + εt, (10)

DGP Gk yt = 0.00300 + 0.192
T I{k=1} + (t− T ) I{k=2}

T
I{t≥T+1} yt−1 + εt, k = 1, 2, (11)

and in all cases εt follows (9).

First let us look at panel A of Table 2a which contains actual sizes when data are serially

independent. One can immediately see that the sequential tests are very well-sized, especially

for larger samples. The DA tests tend to be a little undersized in very short samples, but

distortions quickly diminish as T grows. Next consider panel B corresponding to the GARCH
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process which is mean non-predictable. While the EP test is very well sized, the DA tests

display practically the same sizes as for DGP A, even though under DGP B the series is,

in contrast to DGP A, sign predictable. It follows that directional predictability induced

by volatility clustering alone is very weak. Next, if we compare size distortions across

alternatives, those for one-sided tests a bit exceed those for two-sided tests for both DA and

EP.

Let us now turn to power figures in Table 2b which reports, along with rejection frequen-

cies, boundary crossing dates averaged over those experiments where crossings did take place.

Overall, the EP tests are more powerful than the DA analogs in detecting predictability in all

DGPs, which is in line with the analytical results in Anatolyev and Gerko (2005, section 3).

Naturally, power increases quickly with the sample size. Also, power figures are significantly

higher for one-sided tests than for two-sided ones, and tend to detect predictability earlier.

For DGPs D1, D2 and E2 testing for mean predictability allows one to detect predictability

much earlier than does testing for sign predictability. In DGP C where predictability is uni-

formly distributed, the tests detect predictability on average after 3
4

of the historical period

are over when T = 100, but this measure changes to about 2
3

when T = 500. Of course,

the detection dates shift significantly in DGPs D and E where the same “amount” of pre-

dictability is unevenly distributed. For DGP D1, for example, the tests detect predictability

on average after a half of the historical period is over when T = 100, but only after its first

1
3

is over when T = 500; in the latter case detection is practically inevitable, especially by

the EP test. When predictability is concentrated towards the end of a historical interval

(D2 and D3 in contrast to D1), the tests detect it relatively faster after the moment when

predictability becomes in effect. On average, the power figures tend to get larger along the

following sequences of DGPs: E1 ≺ E2 and D3 ≺ D2 ≺ D1, showing comparatively better

performance against DGPs where predictability is concentrated towards the beginning of a

historical sample.

Tables 3a, 3b and 3c provide analogous information for monitoring tests. The numbers

in the tables are rejection frequencies during the periods [T + 1, τT ] with τ equaling 3
2
, 5

2
,

and 5, i.e. from the beginning of the monitoring period up to the point where a half, or

two and a half, or four times the length of the historical interval pass. One can see from

Table 3a that the monitoring tests are very well sized, with sizes at τ = 5 strictly smaller

than 5%; the total size is exhausted pretty rapidly. Other observations confirm conclusions
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for retrospective tests: there is slight underrejection for small samples, the directional pre-

dictability induced by conditional heteroskedasticity alone is very weak (panel B/DA), size

distortions for one-sided tests a little exceed those for two-sided tests. Table 3b presents

rejection frequencies together with how much time passes before the monitoring procedure

detects predictability provided that it does detect it. From panel F one can infer that a

short (up to τ = 2) period of temporary predictability is very rarely detected when T = 100,

especially when the alternative is two-sided, and is moderately frequently detected when

T = 500. On the other hand, when detection does take place, it does so quite quickly, at τ

smaller or around 3
2

when T = 500. When predictability is ever-lasting or even escalating

(panel G), the power figures are naturally much higher. For DGP G1, the power numbers

when T = 100 are not great either, but when T = 500, the detection occurs pretty frequently

(especially with the EP test), and it does so at τ around or a bit higher than 5
2
. For DGP

G2, tests detect predictability quite often even when T = 100, and with certainty when

T = 500; the corresponding detection times are concentrated around τ = 4 and τ from 3

to 7
2
, respectively. Overall, one-sided tests turn out to be more powerful, sometimes quite

appreciably, than two-sided tests, and EP tests appear more powerful than DA analogs,

just as in the case of retrospective testing. Finally, Table 3c contains information on test

performance using “parabolic” boundaries; the two-sided version was previously considered

in Chu, Stinchcombe, and White (1996) and Inoue and Rossi (2005), and the one-sided ver-

sion is similarly derived from the results in Robbins and Siegmund (1970); see Appendix B.

The upper linear boundary lies below the parabolic one for smaller values of τ and above

it for larger values of τ ; hence, early instances of predictability are easier to detect with a

linear boundary. Panel A reflects the shape of “parabolic” boundaries: the size is “eaten

up” more slowly than in the case of linear boundaries; even accounting for possible slight

underrejection, there is more size remaining after τ = 5. From panels F and G it is clear

that “parabolic” boundaries allow one to detect more successfully predictability that goes

on permanently, but temporary episodes of predictability are sensed less successfully. Com-

parison of corresponding rows in Tables 3b and 3c reveals that linear boundaries tend to

detect predictability earlier than “parabolic” ones; the exception is DGP G2 with escalating

predictability for which the results on boundary crossing dates are comparable.

The experiments with sequential tests indicate that the power of such tests may be quite

low when the time span in which the tests operate is small. Further, retrospective tests may
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miss predictability concentrated towards the end of the historical interval; however, this

predictability may be captured by the subsequent monitoring test. Monitoring tests in turn

may have low power when predictability is limited to a relatively short time period provided

that there is no predictability in the historical interval. Also, we would like to again draw

attention to the attractive property of the sequential tests (see remark under (2)) of not

being able to detect structural breaks not associated with predictability. For example, an

introduction of a big change in the intercept term (“risk premium”) of DGP A in the middle

of the historical interval leads to the same rejection frequencies by the sequential EP test as

without the break.

5 Application to returns from Eastern European stock markets

In this Section we apply the developed methodology to the analysis of predictability of weekly

stock market indexes in ten former communist countries in Eastern Europe. The indexes are

listed in Table 4. They start on January of the year 1997 (7 series), 1998 (2 series), or 1999

(1 series), and end on January 2005. The data are taken from Bloomberg. The literature

has documented a significant amount of predictability in such markets at the end of 20th

century when these markets were very young, but one could observe a movement towards

non-predictability in most of them; see Zalewska-Mitura and Hall (1999) and Rockinger

and Urga (2000, 2001), subsequently R&U. Note that in the literature, predictability is

sometimes referred to as the absence of (weak form) “efficiency”. However, in these markets

there are a few market limitations that do not support such interpretation; see Pesaran and

Timmermann (1995) and Timmermann and Granger (2004).

Our empirical strategy is the following. We consider a virtual researcher who at the

beginning of the year 2000 is given the data available at that moment and who is interested

in retrospectively testing the ten returns for predictability and in further monitoring their

predictability in the new millennium. Hence, T is different for different series (it corresponds

to one, two, or three years of historical data), while the monitoring interval is the same for

all series; precise subsample sizes are listed in Table 4. In Tables 5a and 5b we document the

dates when the sequential statistic paths hit the boundaries if they do. Our main strategy

remains using the two-week return yt−2 + yt−1 for the predictor xt and the sign function

sign(u) for h(u), but we also give complementary results from using other choices of xt and
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h(u), as well as from using the “parabolic” type of monitoring boundaries. All boundaries

correspond to one-sided testing, and all conclusions are drawn based on 5% test sizes.

Figure 2 presents graphs of evolution of the sequential DA and EP statistics in four

selected markets: Russian, Polish, Czech, and Estonian. Superimposed are horizontal ret-

rospective and linear monitoring boundaries. The columns “Linear” in Table 5a contain

information on whether the sequential statistics hit the boundaries and when if they do,

relative to the beginning of the monitoring interval (i.e. Jan 2000). One can see that only

the Ukrainian and Estonian stock indices show a clear indication of strong predictability

of both types. For Ukraine, both retrospective statistics sense that directional and mean

predictability appeared at least half a year ago, in the middle of 1999. For Estonia, the

EP-statistic felt mean predictability about a year and a half ago, while the DA-statistic did

not detect sign predictability in the historical period but does detect it after 7 weeks of

monitoring. For the Polish stock index, mean predictability was sensed a year ago, at the

beginning of 1999, although no sign predictability is found neither in the historical nor in

the monitoring period. Finally, the Czech and Slovenian stock indices display the presence

of predictability of only one type in about 3 to 4 months of monitoring, mean predictability

in the Czech market and sign predictability in the Slovenian market.

For comparison purposes, we also consider “parabolic” monitoring boundaries. Recall

that unlike the approach of this paper monitoring schemes usually considered rely on the

stability, or non-predictability in the present context, during the historical period. The

columns “Parabolic” in Table 5a contain dates of crossings the parabolic boundaries. One can

see that the alternative procedure detects the same types of predictability as our procedure in

the Ukrainian, Polish and Estonian stock markets, in four out of five cases it senses early the

predictability which presumably appeared in the historical period; in one case (DA/Estonia)

it feels sign predictability only after two years while our procedure feels it after less than two

months. For the Czech and Slovenian markets, the alternative procedure does not detect

predictability during the whole monitoring period while our procedure does it quite early.

Note that in no case the alternative procedure senses predictability not detected by our

procedure, or senses it earlier.

In turn, Table 5b contains similar information in cases when one uses alternative predictors

in place of xt or an alternative popular choice of function h(u). Namely, xt is set to the
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one-week return yt−1 (“shortest” predictor), or to the four-week (nearly one-month) return∑4
j=1 yt−j (“long” predictor), or to the to the “OLS” predictor z′tβ̂ = β̂0 +

∑4
j=1 β̂jyt−j,

instead of the two-week return yt−2 + yt−1 (“short” predictor); an alternative choice for h(u)

is natural h(u) = u (see Appendix C). One can see that the DA and EP tests continue to

detect predictability of both types in the Ukrainian stock market, albeit the EP test with the

“long” predictor finds it only during the monitoring stage, and both tests detect it much later

when the alternative h(u) is used. Moreover, when h(u) = u, neither test senses deviations

from the null for all other markets. Alternative predictors, however, sometimes make the tests

more sensitive to the presence of predictability. For example, the DA test with the “shortest”

predictor in the Estonian market finds retrospectively that sign predictability appeared in

the same early week as the mean predictability, while it detected sign predictability only

during the monitoring stage when based on the “short” predictor; the EP test based on

either the “shortest” or “long” predictor detects retrospectively mean predictability in the

stock market in Slovakia, while it fails to do so during both retrospective and monitoring

stages when based on the “short” predictor. However, there are opposite examples, like the

EP/Czech case.

It is interesting to compare our empirical evidence to studies that describe evolution of

mean predictability by means of regression models with time-varying parameters. R&U

(2000, 2001) consider Russian, Polish, Czech, and Hungarian stock markets, the former

article using the data from early 1994 to mid-1999, the latter – from early 1994 to mid-

1997. (The results in the two studies are somewhat contradictory which can be explained

by different regression specifications reflecting different focus of investigation.) Zalewska-

Mitura and Hall (1999) study, in particular, the Hungarian market from early 1990s till late

1997. For the Russian market, R&U (2000, 2001) find strong predictability shortly after

1994 for which one can blame institutional imperfections in early stages and low liquidity,

then one observes convergence towards no predictability; there is a peak in predictability in

late 1998, however. From the bottom panel of Figure 2a one can see that this peak did affect

the EP sequential statistic, but the (1998 Russian financial crisis) period was short, and the

statistic touched the 10% boundary at the end of 1999. After that, the market became much

more liquid because of a rise in oil prices, so predictability did evaporate as is clear from

the further path of the EP empirical process. Regarding the Polish market, R&U (2000)
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state that by the end of 1994 predictability caused by panic sells and initial restrictions on

foreign participation vanished; however, R&U (2001) document strong mean predictability

in the Polish market up to the end of their sample (mid-1997). The latter evidence is more

in agreement with the behavior of the sequential EP statistic which shows strong mean

predictability from presumably the second half of 1998; however, a subsequent upward trend

in its path may be entirely due to a temporary period of predictability rather than its being

permanent. For the Czech market, R&U (2000, 2001) document temporary periods of mean

predictability between June 1996 and March 1997 and between March 1998 and mid-1999,

and no predictability at other times. The behavior of the sequential EP statistic clearly

reflects the presence of both periods of predictability, exhibiting a hike at early 1997 and a

series of upward trends from early 1998, and even touching the 10% level boundary in the

first half of 1999. It is presumably the second predictability period that caused the crossing

the 5% boundary during the monitoring stage. As long as the Hungarian stock market is

concerned, Zalewska-Mitura and Hall (1999) find no movement towards non-predictability

throughout their sample that end in late 1997. However, R&U (2000, 2001) claim that this

market could not be predicted from at least 1994, the reasons being that this market was

founded earlier than the others, and it had independent supervisory authority. It seems that

the behavior of our sequential EP statistic is more consistent with the former view, as its

upward trend during 1997 leads to crossing the 10% boundary and nearly touching the 5%

boundary in the second half of 1998.

Of other countries, Ukraine and Estonia exhibit persistently high predictability in their

stock markets. In Ukraine, this may be caused by initially poor legislation concerning

financial markets, which subsequently lead to premature centralization and inefficient stock

market functioning accompanied by heavy insider trading and low liquidity. Among other

things, the market turned out to be unattractive for foreign investors (and closed to them

until 2001), in contrast to, for example, the historically related Russian market. In Estonia,

for a long time the stock market was spontaneous with no formal rules and no market

infrastructure, and only in June 1996 the Tallinn stock exchange started functioning, after

which the legislation strengthening the regulatory framework continued being polished up.

The causes of high predictability apparently lie in the absence of stimuli for stock issuers to

be listed at the exchange and of attractiveness for foreign investors, and as a consequence,

low liquidity and thin trading.
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Conclusion

We have developed tools for nonparametrically testing predictability of financial returns (or,

for that matter, of any stationary variable) in a sequential context, where both retrospection

of a historical sample and monitoring newly arriving data are conducted in a unified frame-

work. The size and power of sequential tests for mean and directional predictability are

analyzed. The technique is illustrated using stock return indexes from developing Eastern

European markets.
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A Appendix: proofs

Proof. [of Lemma 1] Follows as a special case of Theorem 1 by setting τ 1 = 0 and τ 2 = 1.

Lemma 2 Suppose h(u) and g(u) satisfy the regularity conditions specified in Assumption

1. Then under

Hg
0 : E [g(yt)|It−1] = const,

as T →∞, we have

1√
T

V−1/2

[τT ]∑
t=1


htgt −MhMg

gt −Mg

ht −Mh

⇒W(τ)
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where W(τ) is a trivariate standard Brownian motion, and the elements of V are given by

V11 = var [h(xt)g(yt)] + 2Mg

+∞∑
j=1

cov [h(xt)g(yt), h(xt+j)] ,

V22 = Vg,

V33 = Vh + 2
+∞∑
j=1

cov [h(xt), h(xt+j)] ,

V12 = cov
[
h(xt), g(yt)

2
]

+MhVg +Mg

+∞∑
j=1

cov [g(yt), h(xt+j)] ,

V13 = MgVh +Mg

+∞∑
j=1

cov [h(xt), h(xt+j)] +
+∞∑
j=1

cov [h(xt)g(yt), h(xt+j)] ,

V23 =
+∞∑
j=1

cov [g(yt), h(xt+j)] .

Proof. The conclusion follows directly from Phillips and Durlauf (1986, corollary 2.2),

with the elements of the long-run covariance V given by

V11 =
+∞∑
j=−∞

cov [h(xt)g(yt), h(xt+j)g(yt+j)]

= var [h(xt)g(yt)] + 2Mg

+∞∑
j=1

cov [h(xt)g(yt), h(xt+j)] ,

V22 =
+∞∑
j=−∞

cov [g(yt), g(yt+j)] = Vg,

V33 =
+∞∑
j=−∞

cov [h(xt), h(xt+j)] = Vh + 2
+∞∑
j=1

cov [h(xt), h(xt+j)] ,

V12 =
+∞∑
j=−∞

cov [h(xt)g(yt), g(yt+j)]

= cov
[
h(xt), g(yt)

2
]

+MhVg +Mg

+∞∑
j=1

cov [g(yt), h(xt+j)] ,

V13 =
+∞∑
j=−∞

cov [h(xt)g(yt), h(xt+j)]

= MgVh +Mg

+∞∑
j=1

cov [h(xt), h(xt+j)] +
+∞∑
j=1

cov [h(xt)g(yt), h(xt+j)] ,

V23 =
+∞∑
j=−∞

cov [g(yt), h(xt+j)] =
+∞∑
j=1

cov [g(yt), h(xt+j)] ,
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where the law of iterated expectations and the statement of the null hypothesis are intensively

used.

Proof. [of Theorem 1] Let us denote

µ = (1,−Mh,−Mg)
′ .

From Lemma 2, it follows that

√
T
(
ghτ − ḡτ h̄τ

)
⇒ µ′V1/2W(τ)

τ
.

When pivotized,

Pτ ⇒
µ′V1/2W(τ)√

µ′Vµ

d
= w(τ),

because V̂ g,h
τ

p→ V g,h = µ′Vµ.

B Appendix: “parabolic” boundaries

For one-sided testing we deduce from Robbins and Siegmund (1970, example 2) that

Pr
{
w (r) ≥

√
rδ−1 (δ (%) + log r) for some r ≥ 1

}
= 1− Φ (%) + ϕ (%)

(
%+

ϕ (%)

Φ (%)

)
,

where δ (u) = u2 + 2 log Φ (u) . Using numerical methods, we obtain that the 5% level of

significance of the monitoring test corresponds to % = 2.503.

For two-sided testing we deduce from Robbins and Siegmund (1970, example 3) that

Pr
{
|w (r)| ≥

√
r (%2 + log r) for some r ≥ 1

}
= 2 (1− Φ (%) + ϕ (%) %) .

From Inoue and Rossi (2005, Table 1), the 5% level of significance of the monitoring test

corresponds to % = 2.796.

C Appendix: testing with h(u) = u

Using Lemma 1, we set for the DA-analog

V̂ DA′ = V̂x
(
1− m̂2

y

)
with

V̂x =
1

T

∑
t

x2
t − M̂2

x ,

M̂x =
1

T

∑
t

xt,
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because C1 = cov [h(xt)
2, g(yt)

2] = 0 and C2 = cov [h(xt), g(yt)
2] = 0. For the EP-analog,

V̂ EP ′ = V̂xV̂y + Ĉ1 − 2M̂xĈ2

with

Ĉ1 =
1

T

∑
t

x2
ty

2
t −

(
1

T

∑
t

x2
t

)(
1

T

∑
t

y2
t

)
,

Ĉ2 =
1

T

∑
t

(
xt − M̂x

)
y2
t .

Table 1. Critical values for the retrospective and monitoring tests.

Test type (j) One-sided Two-sided

Test size (α) 10% 5% 1% 10% 5% 1%

Critical values 1.645 1.960 2.576 1.960 2.241 2.807

Notes: The table shows the parameters of boundaries: the height of horizontal lines q(j)
α for retro-

spective tests and the slope of monotonically increasing lines λ(j)
α for monitoring tests.

Table 2a. Size for retrospective tests with nominal size 5%.

Directional accuracy Excess profitability

DGP T One-sided Two-sided One-sided Two-sided

A 50 3.0 4.4 3.9 4.8

100 3.8 4.6 4.1 4.6

150 4.0 4.7 4.2 5.1

500 4.7 5.0 4.4 4.7

B 50 3.4 4.4 4.6 5.0

100 4.0 4.7 4.4 4.9

150 4.2 4.6 4.4 4.8

500 4.9 4.7 4.4 4.8

Notes: Figures in the table show actual rejection (boundary crossing) frequencies corresponding to

test nominal size of 5%.
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Table 2b. Power for retrospective tests with nominal size 5%.

Directional accuracy Excess profitability

DGP T One-sided Two-sided One-sided Two-sided

C 100 17.8 (75) 11.3 (79) 25.7 (73) 17.5 (76)

500 59.9 (339) 47.7 (362) 76.1 (320) 66.6 (347)

D1 100 34.0 (56) 22.5 (62) 52.8 (47) 40.1 (51)

500 92.8 (143) 85.6 (165) 99.0 (113) 97.5 (130)

D2 100 28.9 (70) 19.1 (73) 43.3 (67) 32.2 (70)

500 85.1 (293) 76.9 (307) 94.7 (269) 91.2 (280)

D3 100 19.8 (87) 13.7 (87) 32.2 (87) 24.1 (88)

500 68.8 (434) 59.8 (441) 85.7 (422) 80.3 (430)

E1 100 17.5 (81) 11.6 (83) 23.4 (80) 15.9 (83)

500 57.9 (395) 46.4 (412) 74.4 (386) 65.4 (405)

E2 100 21.4 (68) 13.6 (73) 30.2 (63) 20.9 (67)

500 70.6 (263) 58.7 (291) 86.4 (228) 78.2 (259)

Notes: Unbracketed figures in the table show actual rejection (boundary crossing) frequencies

corresponding to test nominal size of 5%. Figures in brackets show average observation numbers

where boundary crossing takes place, conditional on crossings.
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Table 3a. Size for monitoring tests with nominal size 5%.

Directional accuracy Excess profitability

DGP T τ One-sided Two-sided One-sided Two-sided

A 50 3
2

2.9 3.8 2.7 3.5

5
2

3.0 3.9 2.8 3.6

5 3.0 3.9 2.8 3.6

100 3
2

3.6 4.1 3.3 3.9

5
2

3.8 4.3 3.5 4.1

5 3.8 4.3 3.5 4.1

150 3
2

3.5 4.0 3.3 4.0

5
2

3.7 4.2 3.5 4.1

5 3.8 4.2 3.5 4.1

500 3
2

3.8 4.3 4.1 4.5

5
2

4.0 4.4 4.3 4.8

5 4.0 4.4 4.3 4.8

B 50 3
2

2.9 3.8 2.8 3.4

5
2

3.0 4.0 2.9 3.5

5 3.1 4.0 2.9 3.5

100 3
2

3.6 4.2 3.2 3.8

5
2

3.9 4.3 3.4 4.0

5 3.9 4.3 3.4 4.0

150 3
2

3.8 4.2 3.4 4.2

5
2

4.1 4.4 3.7 4.4

5 4.1 4.5 3.7 4.4

500 3
2

4.3 4.7 4.0 4.5

5
2

4.4 4.8 4.3 4.7

5 4.4 4.8 4.3 4.7

Notes: Figures in the table show actual rejection (boundary crossing) frequencies corresponding to

nominal test size of 5%.

27



Table 3b. Power for monitoring tests with nominal size 5%.

Directional accuracy Excess profitability

DGP T τ One-sided Two-sided One-sided Two-sided

F 100 3
2

4.9 4.5 5.3 4.7

5
2

6.3 5.0 7.4 5.4

5 6.3 5.1 7.5 5.4

(29) (15) (36) (19)

500 3
2

10.2 6.9 13.5 9.0

5
2

17.7 10.8 26.1 16.9

5 17.5 10.9 26.4 17.0

(230) (196) (257) (236)

G1 100 3
2

4.9 4.5 5.3 4.7

5
2

6.7 5.1 8.1 5.8

5 7.6 5.3 10.1 6.3

(58) (25) (82) (43)

500 3
2

10.2 6.9 13.5 9.0

5
2

22.0 13.2 34.2 22.3

5 41.0 23.5 66.6 46.6

(774) (733) (807) (841)

G2 100 3
2

3.8 4.1 3.5 4.0

5
2

4.7 4.4 4.8 4.5

5 32.5 17.4 69.4 51.1

(299) (267) (312) (318)

500 3
2

4.8 4.6 4.7 4.6

5
2

9.3 6.5 13.9 9.3

5 100 100 100 100

(1179) (1290) (1023) (1115)

Notes: Unbracketed figures in the table show actual rejection (boundary crossing) frequencies

corresponding to nominal test size of 5%. Figures in brackets show how much time on average

passes before boundary crossing takes place.
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Table 3c. Size and power for monitoring tests with nominal size 5% and T = 100,

alternative parabolic boundaries.

Directional accuracy Excess profitability

DGP τ One-sided Two-sided One-sided Two-sided

A 3
2

1.1 1.3 1.1 1.3

5
2

1.8 2.2 1.7 1.9

5 2.5 2.9 2.2 2.5

F 3
2

2.2 1.7 2.3 1.6

5
2

5.5 3.4 6.8 4.1

5 7.2 4.5 8.5 5.3

(107) (100) (107) (107)

G1
3
2

2.2 1.6 2.3 1.6

5
2

6.7 4.1 8.7 5.6

5 20.9 14.1 31.2 22.7

(215) (219) (223) (232)

G2
3
2

1.4 1.3 1.3 1.2

5
2

3.8 2.8 4.6 3.3

5 83.6 77.3 95.8 94.1

(303) (314) (280) (293)

Notes: See notes to Table 3b.
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Table 4. Series of stock indexes.

Country Series name Historical period begins Historical period size Total sample size

Russia RUX Jan 1998 103 369

Ukraine PFTS Jan 1998 103 367

Poland WIG Jan 1997 155 423

Czech Rep PX50 Jan 1997 155 422

Slovakia SKSM Jan 1997 151 404

Hungary BUX Jan 1997 155 422

Croatia CROBEX Jan 1997 154 418

Slovenia SBI Jan 1997 155 422

Romania ROL Jan 1999 53 309

Estonia TALSE Jan 1997 155 423

Notes: Irrespective of the initial date in a sample, the first week of 2000 is the end of the historical

period and the start of the monitoring period.
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Table 5a. Dates of hitting different boundaries.

Statistic DA EP

Boundary Linear Parabolic Linear Parabolic

Russia

Ukraine −26 1 −26 1

Poland −48 7

Czech Republic 16

Slovakia

Hungary

Croatia

Slovenia 14

Romania

Estonia 7 103 −81 2

Notes: Dates are measured with respect to the beginning of the monitoring period. Thus, if the

figure is negative, it denotes the number of weeks before the monitoring period starts when the

sequential statistic path crosses the 5% retrospective boundary; if it is positive, it denotes the

number of weeks after the monitoring period starts when the sequential statistic path crosses the

5% monitoring boundary provided that it does not cross the 5% retrospective boundary.
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Table 5b. Dates of hitting the linear boundary for various predictors and their functions.

xt or h(u) xt = yt−1 xt =
∑4

j=1 yt−j xt = z′tβ̂ h(u) = u

Statistic DA EP DA EP DA EP DA EP

Russia

Ukraine −24 −26 −25 11 −16 −5

Poland 0 0

Czech Republic

Slovakia −51 −81

Hungary

Croatia 3

Slovenia −33

Romania

Estonia −80 −80 2 −120

Notes: See notes to Table 5a.
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Figure 1. Sequential testing: periods and boundaries.
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Figure 2. Sequential tests for some Eastern European stock indexes.

34



Figure 2 (continued). Sequential tests for some Eastern European stock indexes.
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