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Abstract

Oil traders find it challenging to process all information and choose which sources to follow.

Inventories represent a perfect source, as they provide important information regarding real

agents’ intertemporal decisions and can easily be observed in real time. However, inventories

do not contain full information about the state of the oil market. We show that financial

traders fail to acquire additional information and treat inventories as a sufficient statistic. As

a result, the financial market fails to distinguish realized shocks from news shocks, and treats

all shocks as persistent. To confirm this hypothesis, we use oil inventory announcements

to identify market inventory surprises; and we estimate a model of the joint dynamics of

returns and return volatilities around announcements using high frequency data on oil futures

contracts with short and long maturities.
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1 Introduction

Clearly, the financial market does not have perfect information about the state of the real economy.

It is challenging, however, to characterize the processes through which information is updated

and document specific informational frictions. We use the unique structure of the oil market to

investigate how the financial market updates beliefs about the shocks that hit the real economy.

What is unique about the oil market is the dynamic behavior of oil inventories.1 Inventories

provide important information about real agents’ intertemporal decisions. The U.S. Energy In-

formation Administration (EIA) aggregates dispersed information about thousands of individual

inventory decisions and makes public official announcements every week, which are closely moni-

tored by the financial market. However, we argue that changes in inventories, taken alone, cannot

uniquely identify the shock that hit the oil market. The futures market reaction to inventory

news reveals whether financial traders acquire additional information to distinguish the shocks, or

simply treat inventory changes as a sufficient statistic.

The real agents with access to storage use inventories to optimally respond to different shocks.

Shocks that can trigger inventory response, may include not only the shocks that affect current

market conditions (we call them realized shocks), but also shocks that change agents’ expectations

about future economic fundamentals without affecting current fundamentals (news shocks).2 The

key mechanism is that oil should flow in or out of storage until current and expected future oil

prices are equalized (up to all the costs and a risk premium). However, equalization of prices

requires inventories to be unconstrained. When the spare capacity is near exhaustion or when the

inventories have been depleted, temporary shocks can no longer be smoothed out, and the prices

have to adjust. We rely on this intuition to develop a number of empirical predictions on the joint

behavior of oil prices and inventories in response to various shocks.
1Other commodities could be studied in this way as well, including natural gas, metals, some agricultural

commodities etc. However, the oil futures market is more liquid and thus better serves our purposes.
2The theory of storage was developed by Deaton & Laroque (1992), Pindyck (1990), Fama & French (1987), Ng

& Pirrong (1994), Nielsen & Schwartz (2004), Alquist & Kilian (2010), Kilian & Murphy (2014), Wen (2005).
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If the financial traders achieve full information following inventory announcement, we should

observe a large variety of market responses that conform with our theoretical predictions. In

contrast, if the financial traders do not acquire all relevant information, the joint dynamics of

inventories and returns may lack certain variation that can be detected and analyzed. In particular,

if information acquisition is costly, the financial agents may optimally decide to not distinguish the

shock by type (realized and news shocks), as theoretically predicted by Mackowiak et al. (2018),

or by persistence.3

To estimate the market response to inventory surprises, we use weekly oil inventory announce-

ments provided by the EIA and released at a pre-specified time. We carefully model market

expectations about the upcoming inventory announcement using a standard Bloomberg survey

forecast and the American Petroleum Institute (API) inventory report released one day prior to

the EIA report. To estimate the market impact of news, we develop a model of the joint high-

frequency dynamics of futures returns and return volatilities around the EIA announcements. The

model is estimated using ultra high frequency (5-second time intervals) data on short and long

maturity oil futures contracts on the WTI oil traded at the NYMEX. To account for illiquidity of

long term futures contracts, we model trading inactivity directly following Hautsch et al. (2013).

For the benchmark case, we estimate the model for the two periods of unconstrained inventories,

2010-2014 and 2017-2019, and for a period of constrained inventories, 2015-2016. As a separate

exercise, we identify the exact moment of both transitions.

Our results indicate a strong negative link between inventory surprises and returns.4 More-

over, the negative comovement of returns and surprises is observed in overwhelming 94% of large

surprises. The predominance of the negative relationship suggests that the market treats all inven-

tory changes as mainly reflecting realized shocks, rather than the shocks to expectations of future

oil market conditions (which lead to a positive relationship). Our results are consistent with the

theoretical prediction of Mackowiak et al. (2018) that the financial traders do not distinguish the

shocks by type. Interestingly, in a different setting, Crouzet & Oh (2016) do not find a negative
3Mackowiak et al. (2018) argue that it can be optimal for rationally inattentive agents not to distinguish carefully

between current increases in productivity and news about future increases in productivity.
4This result is robust and confirms previous findings of Bu (2014), Halova Wolfe & Rosenman (2014), Halova

et al. (2014), and Miao et al. (2018).
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comovement of sales and finished-goods inventories in the data, and interpret this as evidence of

the insignificance of news shocks in business cycle fluctuations. We offer an alternative explana-

tion for this result. We also carefully discuss the evidence of the presence and significance of news

shocks in the oil market.

Our second main finding is a lack of any effect of inventory surprises on the term spread on

the shorter end of the curve. When inventories are unconstrained, this result is consistent with

the behavior of the real agents. However, the lack of term structure adjustments when inventories

are high is a striking result and contradicts conventional wisdom. Indeed, the near-term prices are

expected to respond stronger to shocks when inventories are constrained, thus diverging from the

more distant end of the curve. All recent episodes of high inventories in the oil market have been

accompanied by a widening term premium, especially at the shorter end of the term structure

curve. The co-occurrence of high inventories and a steep term structure curve is a robust and

general phenomenon, observed for many commodities; see Gorton et al. (2012). Despite that,

when inventory news announcements come, traders do not revise their expectations accordingly.

Our results do indicate a muted response of longer maturity contracts to inventory news when

inventories are constrained. However, the reaction is still stronger than in normal times, while one

would expect the opposite.

We argue that the lack of term premium adjustments (or the overreaction of longer maturity

contracts) is observed because financial agents do not acquire enough information to identify the

persistence of shocks precisely. Intuitively, agents are not accustomed to doing this. During normal

times, no term structure adjustments are needed, and thus traders may rationally develop a habit

of disregarding the persistence, and trading as if all shocks were permanent. When suddenly

inventories become constrained, traders fail to adapt. Such history dependence is a known feature

of dynamic information acquisition, discussed by Mackowiak et al. (2018).

It could also be that the lack of term structure adjustments reflects an unawareness of the

financial sectors of the constrained state of inventories. However, we believe that this is unlikely

to be the case. Our transition result indicates that the market reaction to inventory surprises

abruptly intensified in February 2015, exactly when inventories spiked. Moreover, the media had
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been following the evolution of inventories quite closely.5

Finally, our results also show negative asymmetry when inventories are high. The market

responds more strongly to negative inventory surprises, though the theory predicts the opposite.

This result may suggest that financial traders do not fully comprehend what the state of constrained

inventories implies for equilibrium prices.

Failure to identify the true underlying reasons for changes in inventories can have long-term

consequences. One example is an oil futures liquidity shock related to the rollover of the United

States Oil Fund. Mou (2010) and Selezneva (2015) argue that the rollover practice of such funds

could temporarily steepen the term structure curve. In response, owners of oil storage facilities

engaged in physical arbitrage, further increasing oil inventories.6 However, financial traders inter-

preted the rise in inventories as reflecting additional already realized positive supply or negative

demand shock, and thus put additional downward pressure on the current and expected oil prices.

The lower current prices lead to additional increases in oil stored, and the spiral continued. Al-

though the mispricing can be only temporal, the resulting additional increase in oil inventories is

more long-lived, as it affects the oil supply in both current and future periods. Our results thus

suggest that the decreases in the price of oil in 2008/9 and 2015 could have been amplified by the

inability of the financial market to correctly identify the underlying reasons for inventory changes.

It is common in the literature to use survey data to test for the presence of information fric-

tions.7 Our approach is complementary to these studies. We provide a framework that integrates

inventories data and ultra high frequency futures prices data into an analysis of the formation of

beliefs of financial traders. Our paper is also related to Li (2019), who tests the rational inattention

assumption by comparing bond price underreactions to default-relevant and interest rate news.

Our study is not the first to estimate the market impact of oil inventory announcements.

However, we are the first to conduct the analysis and interpret the results through the prism of the

theory. First, we argue that is it crucial to distinguish periods of constrained and unconstrained

inventories, though none of the existing studies do.8 We also emphasize the importance of the upper
5See, for example, https://www.reuters.com/search/news?blob=EIA+inventory+report.
6Ederington et al. (2020) empirically document the effect of price spreads on crude oil inventories.
7See Froot (1989), Coibion & Gorodnichenko (2012), Andrade & Le Bihan (2013), Mankiw et al. (2013), Green-

wood & Shleifer (2014), Gennaioli et al. (2016).
8See Bu (2014), Halova Wolfe & Rosenman (2014), Halova et al. (2014), Miao et al. (2018).
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bound on inventory storage, whereas earlier literature mainly focuses on the lower bound following

Deaton & Laroque (1992). Second, we investigate longer maturity contracts, while existing studies

mostly focus on the nearby futures contract. One exception is Miao et al. (2018), who analyze

the first six continuous contracts and documents weakening of the magnitude of the price response

with maturity, but these results cannot be meaningfully interpreted without distinguishing periods

of constrained and unconstrained inventories.

Methodologically, our study also differs in a number of important ways. Most importantly, we

sharpen the identification of market surprises by estimating the weights placed by the market on

survey information and on API information. Most studies only use various median survey forecast:

Reuters, Bloomberg, or Platt’s.9 One exception is Armstrong et al. (2017) who define an inventory

surprise as the difference between EIA and API reported values, but neglect information in initial

surveys. Another exception is Ye & Karali (2016) who define inventory shocks sequentially and

include both shocks in the regression model. In this paper, we directly model the formation of

market expectations, and estimate the weights on different signals along with the other parameters

of the model.

To the best of our knowledge, our study is the first to use trading intensity data to account

for illiquidity of long maturity futures contracts. The literature on the impact of inventory shocks

most frequently uses daily returns; see Bu (2014) and Miao et al. (2018). Halova et al. (2014)

calculate continuously compounded returns in an intraday event window surrounding the EIA

announcement.10 One exception is Ye & Karali (2016), who work with 5-minute returns and use

the methodology developed in Andersen et al. (2003). Finally, our sample covers 10 years, from

2010 to 2019, thus including the shale oil boom, the proliferation of ETFs, and one of the most

dramatic oil price collapses in the recent history.11

The remainder of this article is organized as follows. In Section 2 we briefly outline the theory

of storage and use the theory to formulate testable implications. Our empirical methodology is

described in Section 3. Our main findings are presented in Section 4. We discuss our findings and
9See footnote 8; see also Crego (2020) who estimates the effect of EIA announcements on the stock market.

10Halova et al. (2014) also address the issue of measurement error in inventory changes.
11For comparison, Bu (2014) covers 2006-2011; Ye & Karali (2016) – mid-2012 to 2013; Halova Wolfe & Rosenman

(2014) – mid-2003-2010; Halova et al. (2014) – mid-2003-2012; Miao et al. (2018) – mid-2003-2011.
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conclude in Section 5. An online Appendix contains auxiliary results and discussions.

2 What can be identified from joint behavior of inventories

and futures prices?

In this section we show how the inventories data can be useful to characterize the beliefs of financial

traders about the changes in the current and future state of the oil market. We begin by illustrating

the role of inventories in oil price determination, then talk about the disaggregated nature of the

oil market, and finally discuss the information aggregation role of the financial market. Rather

than developing a full scale model of the interaction of the real and financial sectors, we aim to

identify a number of robust empirical predictions that can be tested.

2.1 Role of inventories in oil price determination

The theory of storage governs the behavior of the real agents in response to shocks that hit the

oil market. We begin by briefly outlining a toy model to illustrate the role of inventories in oil

price determination. For simplicity, we consider a single isolated oil market and abstract from the

existence of the financial market.

Illustrative example

Imagine a two period economy, t = 1, 2. There is a single risk neutral producer of oil. The oil

production is exogenously given and equals to qst = 1 + εt in period t, where εt is a zero mean iid

random variable with variance σ2. This assumption is a limiting case of inelastic production. We

abstract from modeling the demand side, and simply assume that the demand for oil is given by

a downward sloping function qdt (pt) = 2− pt.

Current vs. expected future prices Start from the case when oil is a non-storable commodity.

Imagine that a positive supply shock hits the market, ε1 > 0. When oil cannot be stored, this

shock depresses the current spot price, p1 = 1− ε1, but as shocks are independent, the expectation
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of the second period price is unaffected, and an upward sloping term structure curve is observed:

Case 1: p1 = 1− ε1 < Ep2 = 1.

The total expected profit conditional on the realization of a positive supply shock is π(ε1) =

2− ε2
1 − σ2.

Now imagine that oil is a storable commodity. Let us denote by x an amount of oil that the

oil producer decides to put in storage after observing the supply shock.12 In response to a positive

supply shock, ε1 > 0, the producer may put oil in storage, let us denote it by x > 0. Extra barrels

oil stored away from the market, increase the current price, p1 = 1 − ε1 + x, while decrease the

expected future price, Ep2 = 1− x.

The maximum total expected profit over the two periods is achieved at x = ε1/2. By smooth-

ing production optimally over time, the oil producer achieves a higher profit. One can think of

inventories as of a mechanism that helps producers to transform a large one time supply shock ε1

(a.k.a. temporary shock), into a smaller shock ε1/2 that hits the market in both periods (a.k.a.

permanent shock). In equilibrium, perfect equalization of current and expected future price of oil

is observed:

Case 2: p1 = Ep2 = 1− ε1

2
.

Imagine now that inventories cannot exceed ε1/4, for example due to a capacity constraint. In

this case, producers can only partially increase expected profits by storing maximum amount of

oil allowed. As a result, perfect equalization of prices cannot be achieved:

Case 3: p1 = 1− 3

4
ε1 < Ep2 = 1− ε1

4
.

We see that relative to no inventories case (case 1), the first period price is now higher, but it is

lower than the price in the unconstrained case (case 2).

We can make our first main observation. As long as the inventory constraint does not bind,
12We do not put any restrictions on x. To avoid negative inventories stored in equilibrium, one can assume that

the producer owns an initial stock of oil, x0 > 0, and restrict the range of εt.
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inventories serve to smooth out temporary shocks. Oil flows in or out of storage until current and

expected future prices are equalized.13 However, in the absence of inventories or when inventories

are constrained, temporary shocks strongly affect the spot price.14 More generally, when the storage

capacity is limited, expected long term prices should be less sensitive to the current shocks. Only

truly persistent shocks should move the expectations of the prices many periods ahead.

Similar analysis, of course, can be conducted for negative ε1.We then immediately see that when

inventories are not constrained, the market response to positive and negative shocks is symmetric.

In contrast, when inventories reach the capacity constraint, an additional positive ε1 cannot be

fully stored away, while a negative ε1 can still be fully smoothed out by taking oil from existing

storage. Thus, the price reaction is stronger to a positive shock, that is, a shock in the direction

of currently binding constraint.15 This is our second insight from the theory of storage.

News shocks vs. realized shocks The final prediction of the model compares the outcomes

of the two different types of shocks. Note that in response to current shocks ε1, inventories and

prices move in the opposite direction. Indeed, oil flows into (out of) the storage to be sold at a

relatively higher future (higher current) price, when a positive (negative) supply shock or negative

(positive) demand shock hits the economy in the current period. This result holds irrespective of

whether inventories are constrained or not. We will call shocks such as ε1 as realized shocks.

Let us now investigate an arrival of a news shock. We assume that in period t = 1, the agent

receives news about a negative supple shock in the future, in period t = 2. In our model that

means that the agent observes ε2 already in period t = 1.16 To be specific, assume that the agent

observes ε2 < 0, and there are no other shocks today, ε1 = 0.17 The total expected profit over the
13So far we have abstracted from storage costs, this is a straightforward extension. Also, if agents are risk averse

the main argument still holds. The only difference is that if, for example, prices are expected to be only a little bit
higher in the future, risk averse agents would not find it worthwhile to put extra oil in storage because it is risky.
Hence, equalization of prices is observed up to a risk premium.

14We do not model investments in storage capacity. Construction of additional tanks is a slow and expensive
process. Moreover, most of the time capacity utilization is low, hence additional investment to storage capacity is
likely to be unprofitable. If we look at the storage in Cushing, Oklahoma, its working storage capacity increased
from 46 mln bbls in September 2010 to 77 mln bbl in March 2016 and remained constant afterwards.

15This effect is similar to consumers having a larger marginal propensity to consume out of unexpected wealth
shocks, when they sit on the borrowing constraint.

16We could assume that the agent receives a noisy signal about ε2, but that would not change the argument.
17We separately analyze news and realized shocks for the sake of exposition only. An arrival of two shocks

simultaneously can be considered accordingly. The inventory response depends on the direction and relative size of
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two periods equals 2−x2− (ε2 +x)2. The maximum of this function is achieved at x = −ε2/2 > 0.

The equilibrium price in the first period is p1 = 1− ε2/2 > 1, and thus is equal to p2 = 1− ε2/2.

Hence, an arrival of a negative news shock is associated with a build up inventories today and

an increase in the equilibrium price; in other words, both inventories and prices move in the same

direction. The result continues to hold when inventories are constrained. In this case, producers

can only partially increase expected profits by storing a maximum amount of oil allowed, and thus

the first period price still increases, but by a smaller amount that in an unconstrained case.18

Our final observation is the following. Realized shocks and news arrivals about future funda-

mentals lead to opposite predictions about the joint behavior of inventories and prices. We can

use the data on the comovement of inventories and prices to identify the types of shocks that hit

the market.

It should be noted that the first two predictions (about the term structure response and asym-

metry) continue to hold for news shocks as well. We have already shown that when inventories

are unconstrained, current and expected future oil prices are equalized and the market response is

symmetric. When inventory capacity is limited, equalization of price may not be achieved. Indeed,

a large negative ε2 would make the expected future price higher, than the current price (see foot-

note 18). Finally, the current price reaction to a negative ε2 shock that cannot be fully smoothed

out is now smaller than the reaction to a positive ε2 shock that can be smoothed out. This is be-

cause the only channel through which future shocks can affect current prices is via the equilibrium

response of inventories. If inventories are constrained, the response can only be relatively small.

Empirical predictions of theory of storage

Our toy model is extremely stylized; however, it captures the role of inventories in shaping the

equilibrium behavior of oil prices. A more general model with endogenous convex production and

uncertain demand generates similar empirical predictions; see Deaton & Laroque (1992) or Wen

(2005).19 We summarize these predictions below.

the shocks.
18If inventories cannot exceed −ε2/4, then x = −ε2/4, and p1 = 1− ε2/4, p2 = 1− 3ε2/4.
19In Appendix A.2, we discuss how our approach relates to the notion of the convenience yield.

9



Summary of empirical predictions If the real agent’s behavior conforms with the theory of

storage, then

1. Realized shocks lead to a negative correlation between changes in inventories and returns,

while news shocks lead to a positive correlation.

2. When inventories are unconstrained, current and expected future oil prices are equalized.

When inventories are constrained, the relative response of current and expected future oil prices

is defined by the persistence of shocks and by the expected date of the shock (realized or news).

3. The lack of spare storage capacity is associated with an increase in the oil price sensitivity

to shocks and asymmetry.

The last prediction requires a short discussion. In the model above we assume a linear demand

function. In reality, the demand for oil is likely to become less elastic for higher volumes, as it

becomes increasingly harder for the refineries to process an additional barrel of oil and market

the products. Larger adjustments of the spot price may be needed to clear the already abundant

market. Hence, when inventories are high and approach the capacity level, we may expect to see

a larger reaction of the oil price to shocks, both positive and negative. Moreover, the convexity of

the demand function creates an additional reason for asymmetry, as positive shocks require even

larger adjustments of the spot price to clear the market than negative shocks.

2.2 From spot to futures prices: aggregation of dispersed information

The empirical predictions above have been derived for a single isolated oil market. In reality,

the oil market represents a union of a large number of local markets spread all over the country.

Recent technological advances in oil extraction have opened oil production fields in many isolated

and distant locations such as North Dakota. The complexity of oil production and transportation

networks (and also the diversity of oil grades) makes it infeasible for a centralized market place

for oil trading to exist. There does not exist a single oil spot price, instead, each oil grade in each

location has a separate price negotiated by local market participants. It is natural to expect some

variation in local prices, as every local market is not only hit by common aggregate shocks, but
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may also experience changes in local conditions.

Each producer must form expectations about the dynamics of the local price to make optimal

decisions. The inability to observe prices at all other locations, may prevent producers from

acquiring full information about aggregate shocks. To clarify intuition, we further extend our toy

model to introduce dispersed beliefs, see Appendix A.1.

The oil pricing can be greatly facilitated by the financial market, especially by the oil futures

market. The financial market not only provides risk sharing opportunities, but also aggregates dis-

persed information.20,21 Indeed, the trading activity of the real agents reflects their oil production

and consumption decisions; moreover, the financial traders have expertise, technical possibilities,

and incentives to acquire dispersed information.

In this paper, we investigate whether the financial market is able to perfectly identify the type,

magnitude and persistence of the aggregate shock that hits the oil market. We suggest a reduced

form analysis using public inventory announcements.

2.3 Understanding market response to public inventory announcements

Inventory announcements reveal aggregate information about past inventory decisions of a large

number of the real agents. Clearly, individual inventory decisions are potentially observable. If the

market could perfectly aggregate information and incorporate it into prices, such announcements

would bring zero new information and would have absolutely no effect on the oil futures prices.

In contrast, under dispersed information, inventory announcements are informative; see Ap-

pendix A.1 for intuition on the role of inventory announcements and the connection between

’inventory’ shocks and underlying demand and supply shocks that hit the real economy. Not being

able to collect information about each and every local market, the financial traders may form biased

beliefs, such as under- or overestimate the magnitude of a shock, incorrectly assess its persistence,

misclassify news and realized shocks. The main question, however, is whether observing aggregate
20It has become a common practice to use the WTI futures price as a reference or a benchmark price, while

each oil grade in each location is then traded at a local pre-specified price discount, which can be revised occa-
sionally. See crude oil bulletins published by the Plain All American that specify spot prices for each location:
https://www.plainsallamerican.com/customer-center/crude-oil-bulletins. The discounts are revised monthly.

21See the recent paper Goldstein & Yang (2019) for an analysis of various roles of the financial market and a
feedback effect on the real economy.
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information is sufficient for the financial traders to perfectly identify the aggregate shock.

It should be noted that we will maintain an assumption that risk premium is not directly

affected by information conveyed in the inventory reports. This is a standard assumption in the

event study literature; see for example, Bianchi et al. (2019).22 However, we will later show that

allowing for time varying risk premium only makes our results stronger.

Full information is achieved after inventory announcement Our analysis is based on the

following main insight. When aggregate inventory information fully completes the information set

of the financial agents, the updates of their beliefs and the corresponding changes in the futures

prices should embed the empirical predictions derived above. As a result, we should observe a large

variety of market responses, especially diverse when inventories are constrained.

To illustrate, we show two examples of beliefs updates that can generate both positive and

negative comovement of inventory surprises (unexpected part of total inventory change) and the

futures price changes following the announcement.

1. Imagine that the oil market is hit by a one-period positive supply shock. The real agents

increase total inventories by x barrels, decreasing the average spot price by y $/bbl. Imagine

that the financial market underestimates the magnitude of the shock by half. The financial agents

believe that total inventories will increase by 0.5x barrels, and the average spot price decrease

by 0.5y $/bbl. Accordingly, the front month futures price decreases by 0.5y $/bbl. Once the

announcement is made, the market finds out that the change in total inventories is actually higher

than expected, and the futures price decreases by additional 0.5y $/bbl.

2. Imagine that the market receives news about a one-period negative supply shock in the next

period. Total inventories increase by x barrels and the price increases by y $/bbl. Imagine that the

financial market misclassifies the shock as a positive current supply shock and underestimates its

magnitude. It expects the total inventories to increase by 0.5x barrels and the average spot price to

fall by 0.5y $/bbl. The futures price decreases accordingly by 0.5y $/bbl. Once the announcement

is made, the market observes that the combined change in inventories is higher than expected. If
22We would like to emphasize, that we do not assume that risk premium is zero and thus the futures price equals

expected future price. We assume that risk premium is constant in a short window around inventory announcement.
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at that moment the market finally learns the type of the shock, then the futures price dramatically

increases by 1.5y $/bbl to offset the initial incorrect reaction.

Other combinations of aggregate shocks and mistakes reflected in pre-announcement beliefs can

be considered in a similar way.

Full information is not achieved even after inventory announcement The lack of certain

market responses could suggest that the market fails to identify certain shocks even after observing

the total inventory change. We have seen already that inventories do not contain full information

about the oil market.23 Of course, the financial traders may acquire additional information from

other sources. However, information acquisition is costly. The cost may be so large that the

financial agents may optimally decide not to distinguish between shocks of certain types, leading

to the following empirical predictions:

1. Not distinguishing shocks by type (news vs realized) leads to the same observed sign of the

correlation between inventory changes and returns.

2. Not distinguishing shocks by persistence leads to parallel shifts of the term structure curve

in response to all inventory surprises even when inventories are constrained.

The first prediction follows the theoretical result of Mackowiak et al. (2018) who solve the

problem of rationally inattentive agents facing news shocks in a standard macro setting. Intuitively,

if the realized shocks are more prevalent than news shocks, then rationally inattentive agents would

treat all shocks as realized and react accordingly.

Similarly, the financial agents may not acquire enough information to precisely identify the

persistence of shocks. When inventories are not constrained, no term structure adjustments are

needed as inventories smooth out all the shocks. As a result, traders may rationally develop a habit

of disregarding the persistence, and trading as if all the shocks were permanent. When suddenly

inventories become constrained, traders may take time or fail to adapt.24

23The same increase in inventories may reflect an arrival of a current positive supply shock or a future negative
supply shock.

24One may also wonder if the financial traders are aware of the status of inventories. However, as long as the
financial traders place a positive probability on the inventories being constrained, the longer end of the futures
curve should respond less than the current price to a temporary shock.
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3 Methodology

Our goal is to analyze the market reaction to inventory surprises and using the empirical predic-

tions outlined above, test if the financial traders acquire additional information or simply treat

inventories as a sufficient statistic. In this section, we describe identification of oil market surprises,

outline how we estimate market response to these surprises, and discuss our data sources and data

preparation.

3.1 Institutional background

Weekly estimates of crude oil inventories in the U.S. are provided by the U.S. Energy Information

Administration (EIA), a statistical and analytical agency within the U.S. Department of Energy.

Any company which carries or stores more than 1000 barrels of oil may be selected into the EIA

weekly sample based on a procedure that assures coverage of 90% of the market. Typically, the

sample includes gathering and pipeline companies, and storers of crude oil. The selected firms

are required to report the end-of-week amount of oil in their storage facilities. On the following

Wednesday, a summary report is released in the form of an EIA publication, the Weekly Petroleum

Status Report.25 The report becomes available to the public at 10:30am Eastern time and is closely

followed by the media.

However, what is less known is that there is an alternative reporting agency that collects

and disseminates information about oil stocks on a weekly basis privately to its subscribers. An

association of oil producers known as the American Petroleum Institute (API) surveys energy

firms using exactly the same weekly survey forms that the EIA uses. While reporting to the EIA is

mandatory, reporting to the API is voluntary, but despite this, the association claims its coverage

is close to 90% of the industry. The API releases the data in the Weekly Statistical Bulletin on

Tuesdays at 4:30 pm Eastern time, the day before the official EIA announcement. In contrast

to the publicly observable EIA report, access to the API requires a costly subscription available

only through Thompson Reuters. Thus, for less sophisticated traders and traders whose main

interests are outside the energy market, the purchase of API information may be prohibitively
25For some weeks which include holidays, releases are delayed by one day and released at 11 am.
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costly. However, for more specialized traders, API reports represent quite valuable information,

as historically, API and EIA estimates tend to be close to each other. Discrepancies are believed

to occur due to different procedures utilized to estimate the remaining 10% of the market.

Figure 1 gives a glimpse of the market reaction to EIA and API announcements. It depicts

average (across days) returns over each 5 minute interval of the trading day. The red line takes the

average over non-report days which are Monday, Thursday, and Friday. The blue lines correspond

to report days: the top panel represents Wednesdays when an EIA report is released, while the

bottom panel stands for Tuesdays and API reports. We see that for most part the blue and red

line coincide, but at times of report releases (10:30 and 4:30), we observe considerable spikes in

absolute returns, meaning that the market reacts quite strongly on average to inventory news.

The market reaction to API reports is comparable in magnitude to the market reaction to an EIA

release, despite its restricted access and the late time of a release. Hence, neglecting information

reported by API may significantly bias the identified surprises and thus distort the estimates of

market impact.

Figure 1: Market reaction to oil inventory announcements.
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3.2 Definition of market surprises

Let us denote by ∆InvEIAτ the change of inventories (normalized by the total oil inventories for the

prior week) released by the EIA on Wednesday of week τ . The market surprise is defined as the

difference between the realized and expected value at a moment just before the announcement:

xτ = ∆InvEIAτ − EM [∆InvEIAτ ]. (1)

In other words, surprises represent unexpected by the market changes in inventories. A positive

value of xτ implies that the market underestimated the change in inventories during week τ .

Unfortunately, we cannot directly observe market expectations and thus have to make assump-

tions on how the market forms expectations. It has become common in the literature to use

surveys of professional forecasters to proxy for market expectations. Given general public interest

in oil inventories, various surveys are available that directly ask about agents’ expectations of EIA

announced changes, including the surveys conducted by Reuters, Bloomberg, and Platt’s.26 The

pairwise correlations between the three median forecasts are well above 0.97, which suggests that

the information content of these three surveys is the same. Thus, we follow the literature and

use the Bloomberg survey; we denote the median forecast of the survey of professional analysts

conducted by Bloomberg and released on Monday of week τ by ∆InvBBGτ . In contrast to other

studies, we also use the numbers released by the American Petroleum Institute. We denote the

reported change in total inventories on Tuesday of week τ by ∆InvAPIτ . Finally, we assume that

the market forms expectations according to the following linear function:

EM [∆InvEIAτ ] = α + ω∆InvAPIτ + γ∆InvBBGτ . (2)

Under the normality assumption, the linear form is optimal and the weights simply reflect precision

of the two available signals; otherwise, the linear function can be viewed as an approximation. The

weight placed on API information by the market as a whole should depend on the relative quality
26Halova Wolfe & Rosenman (2014), Halova et al. (2014), Miao et al. (2018) use the Bloomberg survey. Bu (2014)

uses Reuters.
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of the API signal, as well as on the overall access of investors to API reports.

We suggest estimating {α, ω, γ} jointly with other parameters of the model. Our approach has

two main advantages over the standard two step procedure. First, the standard errors of the market

response coefficients of interest automatically account for the estimation uncertainty of {α, ω, γ}.

Even more importantly, we impose fewer assumptions on how the market forms expectations. For

example, one could estimate the best linear forecast of the actual changes of inventories using a

reasonable rolling window, and then use the estimated values of {α, ω, γ} to form the surprises.

However, one may have doubts that the market correctly estimates the precision of signals and

chooses the best linear forecast to form expectations.27,28 Later we will argue that even though the

quality of the API signal was improving over time, the market was slow adjusting the weight placed

on the API report accordingly. It should be noted that our approach does not create identification

issues, as the variables used to model expectations are predetermined at the time of announcement.

3.3 Econometric framework

To estimate the market response to inventory surprises defined above, we develop an econometric

model of joint high frequency dynamics of returns, return volatility and trading activity around

announcements.

Let us use the time index τ to denote announcement days (the EIA reports are weekly, so we

have about 50 announcements per year). The market surprise in week τ identified according to

our procedure outline above is denoted by xτ .

Our analysis focuses on one hour around EIA announcements, that is, from 10 to 11 am. The

sampling is done at a 5-second frequency, which yields 720 data points for each announcement day

τ . We use the time index t = 1 : 720 to denote 5-second intervals.

Trading inactivity We need a model flexible enough to be applied to both short and long

maturity oil futures contracts. The problem with long maturity contracts is their illiquidity; we
27There is ample evidence of various behavioral mistakes that the traders tend to make, including underreaction

to news and overreaction to stale information.
28We could also estimate a simple time series model of weekly inventory changes, and use it to make the forecast,

see Roesch & Schmidbauer (2011). However, that would again imply making strong predictions about the way the
market forms expectations.
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observe substantial periods with no recorded transactions. To illustrate the severity of this issue,

we calculate the fraction of 5-second intervals with zero trading volume over the entire sample,

separately for each contract. We find that the first four contracts by maturity have 22%, 55%, 82%,

and 91% of intervals with no trading, respectively. Clearly, trading activity decreases dramatically

with maturity. Thus, we aim to build a model that can handle illiquidity of long maturity contracts

by explicitly accounting for trading inactivity. For that purpose, we use data on trading volumes,

though we do not model their evolution.

Returns and volatility To simplify the notation we drop the index τ when describing the

intraday dynamics of returns; we denote the return over the 5-second interval t of announcement

day τ by rt, not rt,τ .

To investigate the effects of oil inventories on returns, we use the AR-ARCH framework aug-

mented for trading inactivity. That is, with probability 1 − πt, no trading occurs, and thus the

return is equal to zero: rt = 0. With the opposite probability πt, trading occurs, and the return rt

is drawn from the gaussian distribution with the conditional mean

µt = µ+

qr∑
k=1

ρkrt−k +

q0r∑
k=1

ρ0
kI{Vt−k=0} + I{t=t?}R(xτ )στ,S, (3)

where the return response function is given by piecewise linear schedule

R(xτ ) = I{−x̄≤xτ≤x̄}c0
rxτ + I{xτ>x̄}

(
c+
r (xτ − x̄) + c0

rx̄
)

+ I{xτ<−x̄}
(
c−r (xτ − (−x̄)) + c0

r(−x̄)
)
, (4)

and the conditional variance with the following augmented EGARCH (Nelson, 1991) dynamics:

lnσ2
t = w + φ lnσ2

τ,S +

pσ∑
k=1

ψ1,k lnσ2
t−k +

qσ,1∑
k=1

ψ2,kηt−k +

qσ,2∑
k=1

ψ3,k|ηt−k|+ I{t=t?}
(
c0
σ + c1

σ|xτ |
)
, (5)

where ηt = rt/σt are standardized returns.

In the benchmark case, we classify inventory announcements into large positive (negative)

surprises, if xτ > x̄ (< x̄). The main coefficients of interest are {c0
r, c

+
r , c

−
r } that define the return

response function R(xτ ). If the surprise is relatively small, the conditional mean jumps by c0
rxτ .
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Large positive surprises increase the conditional mean by c+
r (xτ−x̄)+c0

rx̄, and similarly for negative

surprises. Thus, we allow for asymmetry and non-linearity in the return response to surprises.29

The adjustment of the conditional variance is proportional to the magnitude of the surprise:

c0
σ + c1

σ|xτ |. The EGARCH equation has a number of advantages among ARCH models with

leverage (see Rodriguez & Ruiz, 2012), one of which is positiveness of conditional variances. We

include in the right hand side the daily level of volatility, σ2
τ,S, for day τ to account for slow moving

changes in volatility. We compute σ2
τ,S as filtered realized volatility for day τ (see Appendix A.4).

We also normalize the reaction of the conditional mean of returns to news by filtered realized

volatility, στ,S. The purpose is to simplify the comparison of the results over time. Without

normalization we would not be able to meaningfully interpret the intensification of returns reaction

to inventory news. This could be misleading, as the market could have become more sensitive to

all types of news, not just to inventories. We choose the volatility level as the normalizing factor,

because volatility increases when prices respond more strongly to each news arrival.30,31

Time varying probability Following Hautsch et al. (2013), we assume that the probability of

inactivity may also vary over time. We define the conditional log odds ratio as ht = ln πt
1−πt , and

adopt the following specification for the time varying probability of inactivity:

ht = wh + κτ +

ph∑
k=1

ζkht−k +

qh∑
k=1

ξkI{Vt−k>0}, (6)

where κτ is a daily component meant to pick up changes in the average probability of trading.

Estimation Our model describes the trading dynamics of a single futures contract. The only

parameters that are the same across the contracts are {α, ω, γ}, which drive the formation of

expectations. We assume that both trading activity and returns conditional on trading are drawn

independently across contracts. This is a reasonable simplification for the following reasons. First,
29We have experimented with different forms of the return function. The results remain similar.
30Of course, alternatively, volatility can increase simply due to more frequent news arrivals, which is really the

logic behind the (G)ARCH approach to volatility modeling. Thus, we can overestimate an increase in market
sensitivity to news.

31We use filtered realized volatility because the realized variance itself is extremely volatile. Although it is
reasonable to attribute changes in volatility regimes to changes in market responsiveness to news, it would be hard
to argue that high frequency fluctuations also reflect changes in responsiveness.
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we are working with ultra high frequencies, hence arbitrage conditions are unlikely to hold precisely

at each time period. Second, trading inactivity differs significantly even across the first three most

liquid futures contracts (fractions of zero trading intervals are 22%, 52% and 82%). Finally, the

moment of an announcement, when we expect all three contracts to be traded simultaneously, is

captured directly; while the joint informational content is captured via requiring market surprises

to coincide across contracts.

We estimate the model jointly for the first three futures contracts. This means that {α, ω, γ}

are estimated using the observed responses of the three most liquid contracts. To account for pos-

sible time variation in trading patterns and thus in parameters, we perform estimation separately

for each calendar year.32 Our approach slightly differs for longer maturity contracts, as will be

discussed below.

The model is estimated using the quasi-maximum likelihood approach, with the standard errors

constructed using the “sandwich” Bollerslev &Wooldridge (1992) form and computed via numerical

derivatives.

3.4 Data sources and preparation

Data We utilize changes in weekly U.S. ending stocks excluding SPR and including lease stocks

of crude oil before September 2016 and U.S. ending stocks excluding SPR afterwards as published

by the Energy Information Administration.33 For identification of market surprises we use the

estimates of inventory changes published by the American Petroleum Institute, as well as the

median consensus forecast from the Bloomberg survey of analysts.

The high frequency data on WTI oil futures traded at NYMEX (CME group) was obtained

from TickData. Our sample covers the period from 2010 to 2019 and contains 521 announcement

days. We focus on one hour around EIA announcements, from 10 to 11 am. A one hour long

interval is long enough to provide a reasonably precise parameter estimates of our dynamic model.
32This is necessary due to dramatic changes in trading intensity over time. If we take the second-month futures

contract, the empirical probability of no-trading over 5-second intervals decreased from 0.6 in 2014, to 0.45 in 2015,
and to 0.4 in 2016.

33The EIA terminated publication of the first series in September 2016. Lease stocks have been relatively stable
with a range of 30.6 mln barrels to 33.1 mln barrels from January 2014 through June 2016.
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The sampling is done at a 5-second frequency.34

Figure 2: Weekly U.S. ending stocks of crude oil and capacity utilization.
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Notes: Left panel: weekly U.S. ending stocks of crude oil excluding SPR (mln barrels). Right panel: Capacity
Utilization = U.S. ending stocks of crude oil excluding SPR / U.S. commercial crude oil stocks and storage capacity
(available biannually since March 2011).

Identifying times of binding inventories For the benchmark exercise, we identify the period

of binding inventories using the level of total inventories in the U.S. Weekly estimates of crude oil

inventories in the U.S. are shown in Figure 2. Until about the end of 2014, oil inventories had been

fluctuating around 350 mln barrels. At the beginning of 2015, inventories skyrocketed and reached

unprecedented levels. Over the next two years the oil stocks remained high, at about 500 mln

barrels, and only gradually decreased in 2017. Figure 2 also displays capacity utilization. We see

elevated levels in 2015-2016, and perhaps over a first few months of 2017. Finally, we also analyze

the stocks at Cushing, Oklahoma, the world’s largest crude oil storage facility and the main deliver

hub for the oil futures contracts. By April 2015, the oil stock reached 60 mln barrels, getting close

to the maximal 70 mln barrels of reported capacity, and remained high at this level for the next

two years.35 Thus, for our purposes we will consider the period from 2015 to 2016 as a period of

constrained inventories, and the year 2017 as a transition year. Finally, in section 4.3 we identify
34The results remain qualitatively unchanged if we use 5-minute frequency and are available upon request.
35See the EIA working storage capacity data as of March 31, 2015, which are available from

https://www.eia.gov/petroleum/storagecapacity/.
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the moment and the speed of the transitions from unconstrained to constrained regimes and back.

Of course, the spare capacity was still available even in 2015, but at much higher prices. For

example, storing oil in tankers is significantly more expensive than in on shore facilities, but it can

definitely be used as a facility of last resort. In 2015, storing oil even in crude oil tankers became

profitable. E.A. Gibson Shipbrokers Ltd and Frontline Ltd document that up to 20 VLCCs were

used for temporary storage by the end of January, 2015, which is equivalent to 30-40 mln barrels

of oil in storage. The tanker rates spiked, the cost of renting a VLCC for 1 year increased from

$33,000/day at the beginning of 2014 to $65,000/day by mid January 2015.36 Therefore, our

assumption on the exhaustion of spare capacity in 2015-2016 seems reasonable.

Choice of futures contracts and data preparation We need to deal with a number of issues

specific to the futures market. One such feature is expiration. We follow a standard approach in

the literature and rely on a rolling procedure to create continuous futures contracts (the details

can be found in Appendix A.3).37

Another issue is illiquidity. The estimation of market responses for long-maturity futures con-

tracts requires a modification of our approach. Even though our model is specifically designed to

handle a certain level of illiquidity, once we move beyond the first three futures contracts, liquid-

ity drops considerably and precludes any meaningful analysis. Fortunately, we find that certain

contracts maintain reasonable liquidity throughout the year: the December and June contracts.

Disproportional interest in these contracts perhaps reflects the convenience that mid year and end

of the year expiry brings to reporting of hedging procedures; it may also reflect certain market

coordination over time. However, if we plan to utilize contracts with fixed maturity dates rather

than continuous contracts, we have to revisit the stationarity issue. As the expiration date ap-

proaches, the contracts are used for different trading strategies, but we do not allow the model

parameters to vary over time.

We could restrict the sample to only a few months, e.g., to consider only three months from

January to March of 2015, and thus limit the variation in maturity.38 However, we would not have
36Hellenic Shipping News from January 19, 2015 and March 16, 2015.
37See, for example, Halova et al. (2014) or Gorton et al. (2012).
38The resulting maturities of each contract at the start of each quarter are displayed in Table A.1 in Appendix A.3.
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enough weekly inventory announcements to perform meaningful estimation. To compensate for

that, when working with longer maturity contracts, we combine the same quarters of different years

into one sample.39 Given the evolution of inventories, it is reasonable to combine years 2010-2012,

2013-2014, 2015-2016, and 2018-2019. We exclude 2017 as a year of gradual transition from one

regime to another (see Section 4.3).

We also simplify the return response function when dealing with longer maturity contracts.

In particular, we do not distinguish large or small surprises, and do not separate positive and

negative surprises, so that R(xτ ) = crxτ . This is due to the insufficient number of large surprises

over some quarters. In this exercise, we also consider the values of {α, ω, γ} as given and equal to

the estimated values for the first three most liquid contracts.

Other details In the benchmark exercise, we fix x̄ = 0.006. This value was chosen as optimal

for the front month contract for the vast majority of years, and also generates a reasonable number

of large surprise as will be discussed below. We decide to fix x̄, rather than allow it to vary across

years, to facilitate the comparison of the magnitude of the market reaction over years and also

over maturities.40

The number of lags is chosen using BIC information criterion for the front month futures

contract. This result in qr = 7, q0
r = 0, pσ = 2, qσ,1 = 2, qσ,2 = 2, ph = 8, and qh = 7.41

4 Results

To facilitate the comparison, we present our results separately for the periods of unconstrained

and constrained inventories. However, because the predictions made by the theory of storage are
39For example, we combine the first quarters of 2015 and 2016 into one sample and call it ‘Q1,15-16’. Over this

period of time, we analyze the trading activity of the so called ‘current December contract’, which is constructed by
combining the data on the CLZ 15 contract during 2015Q1 and on the CLZ 16 contract during 2016Q1. Similarly,
the ‘next year June contract’ is constructed by combining the data on CLM 16 for 2015Q1 and CLM 17 for
2016Q1. The ‘next year December contract’ similarly combines CLZ 16 and CLZ 17. We use the standard NYMEX
terminology, where CLZ T denotes the crude light futures contract that expires in December of year T, and CLM
T is the contract that expires in June of year T.

40The results remain unchanged when we allow x̄ to be chosen optimally for the first three futures contracts, or
when we fix it at other reasonable levels. The results are available upon request.

41We do not do complete search over all possible combinations of the number of lags of each kind; instead, we
check that a change in one number at a time is not improving the objective function.
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Figure 3: Estimated weight of API signal and correlation of realized inventories.
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Notes: Left panel: Estimated weight ω of the API signal. The solid blue line corresponds to ω estimated jointly
for the first three most liquid contracts. The black dotted line displays the value of ω representing the best linear
forecast. Right panel: Correlation of EIA realized inventories changes and API estimates (solid line); of EIA and
Bloomberg median forecast (dashed line).

all conditional on a shock, a key element of our analysis is the identification of oil shocks. Thus,

we start by describing the evolution of market perception of API information and characterize the

distribution of realized market surprises.

4.1 Formation of expectations and market surprises

Market perception of API information

The left panel of Figure 3 displays the estimated value of ω, the weight that the market places on

API reports for the first month futures contract. We can see that the weight increases from 0.3 in

2010 to 0.85 in 2016, but falls below 0.7 again in 2018.

To analyze the actual accuracy of the two signals over time, the right panel of Figure 3 shows

yearly pairwise correlations of announced and predicted values. The precision of the Bloomberg

signal fluctuates quite a lot over time, but no apparent trend is visible. In contrast, the precision

of the API signal seems to have been improving over time; the correlation increases from 0.6 in

2010 to over 0.8 in 2016. However, we also can see a sizable decline in accuracy in 2018.

To provide a more formal argument and facilitate the comparison, we calculate the weight to
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Table 1: Distribution of realized market surprises, x.

Number of surprises Magnitude of large surprises (absolute values)

Conditional on I+ Conditional on I−
year I+ I0 I− mean q1 median q3 mean q1 median q3

2010 12 34 6 0.010 0.007 0.008 0.011 0.012 0.010 0.011 0.013
2011 11 28 13 0.009 0.008 0.009 0.011 0.012 0.007 0.013 0.016
2012 12 33 7 0.011 0.009 0.011 0.013 0.009 0.009 0.010 0.010
2013 7 35 10 0.009 0.007 0.007 0.010 0.010 0.007 0.009 0.012
2014 9 36 8 0.010 0.008 0.009 0.011 0.007 0.006 0.007 0.008
2015 8 37 7 0.010 0.007 0.008 0.012 0.007 0.007 0.007 0.008
2016 11 35 6 0.009 0.007 0.007 0.009 0.009 0.007 0.009 0.011
2017 5 40 7 0.010 0.007 0.008 0.013 0.009 0.007 0.008 0.011
2018 17 27 8 0.013 0.008 0.011 0.017 0.010 0.007 0.008 0.012
2019 15 26 11 0.010 0.008 0.009 0.012 0.011 0.008 0.010 0.014

Total 107 331 83 0.010 0.007 0.009 0.012 0.010 0.007 0.008 0.012

Notes: The table provides descriptive statistics on the identified market surprise. I+(I−) corresponds to large
positive (negative) inventory surprises x > x̄ (< −x̄), with x̄ = 0.006, all other smaller surprises both negative
and positive are denoted by I0. The inventory surprise, x, is defined as the difference between the realized and
the expected value of a change in oil inventories (normalized by the total oil inventories for the prior week). We
take absolute values of negative surprises to facilitate exposition.

be placed of API reports that would consistent with the best linear projection or the best linear

forecast in year t. We plot it on the same graph with the estimated weight. Although both lines

display a clear upward trend, there are also noticeable differences. The market used to significantly

underweight API signals in the early years. One reason for this can be the relatively low accuracy

of API signals in early years. As the API subscription is costly, the benefits of additional noisy

signal may had not outweigh the cost. However, as the accuracy improved, potentially larger

fraction of people became willing to pay for API reports.42 The subsequent decrease in 2018 is

roughly consistent with the decreased accuracy of API signals. It should also be noted that the

estimated weight was changing over time gradually, which may be consistent with the behavior of

market participants who only infrequently reevaluate the precision of available signals.
42If markets are efficient, API information has to be fully revealed in prices. In reality, information percolation

may be slow, especially given that API reports come long after main trading hours end. The only problem with
this explanation is the fact that the highlights of the API report, at least in terms of total crude oil stocks, tend
to be published by major independent news providers, and thus can be freely accessed 5 minutes after the release
of the API report. An alternative explanation may be related to heterogeneity in sophistication. Some traders,
especially those who do not specialize in oil trading, may be unaware of the existence of this additional private
source of information.
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The results of this subsection have two important implications. First, it is crucial to account for

API information when modeling market expectations. The weight place on API is large, especially

in recent years. Second, it is also important to account for its time-variability. Sharpening of

identification of market surprises is one of the methodological contributions of our paper.

Distribution of surprises

Panel A in Table 1 reports the number of market surprises of each type realized in each calendar

year. We do not see any significant changes over time; the number of surprises of both types stays

roughly constant, about 20 per year. Panel B provides further information about the magnitude

of realized surprises by depicting the mean, median, and two additional quantiles for each type.

We do not see that one type of surprises (positive or negative) is systematically larger than the

other. We will rely on this result when we analyze asymmetry of market responses. Our results

also do not indicate any particular trend in the magnitude of surprises over time, which allows

us to compare market responses over time. Overall, we do not find any evidence of systematic

mistakes made by the market participants.

4.2 Market response to inventory shocks

Before we proceed to our main results, let us formally establish the importance of the EIA an-

nouncements. For each year in our sample we perform a Wald test for the joint significance of

the coefficients associated with the arrival of EIA reports, which corresponds to the 15 exclusion

restrictions in total (5 coefficients, {c+
r , c

−
r , c

0
r, c

0
σ, c

1
σ}, for each of the first three contracts). The

null hypothesis is rejected for all years with p-values less than 0.01%.

We first outline our results separately for the periods of unconstrained and constrained inven-

tories, and then interpret our findings.

Period of unconstrained inventories

The 2010-2014 period and the period after 2017 are characterized by unconstrained inventories,

when oil can be easily moved in or out of storage in response to a temporary shock. Our findings
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Table 2: Returns reaction to inventory surprises.

year c+
r c0

r c−r στ,S P-value

2010 −0.10 −0.32 −0.09 0.016 0.95
(0.07) (0.05) (0.06)

2011 −0.07 −0.21 −0.10 0.018 0.73
(0.11) (0.04) (0.03)

2012 −0.18 −0.26 −0.10 0.013 0.32
(0.05) (0.04) (0.08)

2013 −0.10 −0.19 −0.11 0.011 0.91
(0.10) (0.03) (0.06)

2014 −0.11 −0.15 −0.22 0.014 0.59
(0.05) (0.04) (0.19)

2015 −0.04 −0.30 −0.89 0.026 <0.01
(0.06) (0.05) (0.22)

2016 −0.12 −0.57 −0.78 0.024 <0.01
(0.11) (0.04) (0.15)

2017 −0.17 −0.42 −0.08 0.015 0.73
(0.11) (0.08) (0.24)

2018 −0.12 −0.41 −0.14 0.016 0.71
(0.03) (0.03) (0.03)

2019 −0.27 −0.29 −0.16 0.017 0.16
(0.10) (0.07) (0.05)

Notes: The table displays the estimated values of {c+r , c0r, c−r } for each year for the front month futures
contract. The return response to xτ , the inventory surprise in week τ, is given by the function R(xτ ) =
I{−x̄≤xτ≤x̄}c

0
rxτ + I{xτ>x̄}

(
c+r (xτ − x̄) + c0rx̄

)
+ I{xτ<−x̄}

(
c−r (xτ − (−x̄)) + c0r(−x̄)

)
where x̄ = 0.006. The

average effect on returns is given by R(xτ )στ,S ; R(xτ ) is also plotted on Figure 4. P-value is a probability
value for the null H0 : c+r = −c−r against HA : c+r 6= −c−r . Bollerslev–Wooldridge standard errors are in
parenthesis.

for these periods can be summarized as follows:

Summary I. The results for the unconstrained period:

1. Negative and significant relation between inventories and returns.

2. Market responses are symmetric.

3. No effects of inventory news on the term premium on the short end of the curve and only a

weak effect for longer maturity contracts.

1. Effect of inventory surprises on returns

Table 2 displays the estimated coefficients on inventory surprises in the return equation for the front

month contract, {c+
r , c

0,
r , c

−
r }; Figure 4 plots the resulting response function, R(xτ ), for xτ = ±0.01.
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Figure 4: Return reaction to inventory surprises for the first three futures contracts by maturity.
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Notes: The solid line corresponds to the front month contract and depicts R(xτ ) for xτ = 0.01 in black (1% positive
inventory surprise) and xτ = −0.01 in green (1% negative inventory surprise). The average effect on returns is given
by R(xτ )στ,S , where στ,S is given in Table 2. For example, an unexpected decline of inventories by 1% in 2010 would
cause the oil price to immediately increase by (−0.32 · (−0.006)− 0.09 · (−0.01− (−0.006))) · 0.016 · 100 = 0.4%.

The results indicate a strong negative link between oil inventory surprises and returns during this

period. The coefficients corresponding to large inventory surprises are all statistically significantly

different from zero. As for the magnitude of the effects, we find that an unexpected decline of

inventories by 1% in 2010 would cause the oil price to immediately increase by 0.4%.

The negative link between oil futures returns and inventory surprises is observed not just on

average. If we consider large positive or negative announcements, the negative comovement of

returns and surprises is observed in 137 weeks out of 146 (94%).

2. Asymmetry of market responses

Even though on average the market is equally likely to underestimate or overestimate oil inventories

(as can be seen from Table 1), the market reaction to these surprises can be different. To investigate

if that is indeed the case, the last column in Table 2 presents the p-values for testing the equality

of coefficients on negative and positive surprises. For all years from 2010 to 2014 and from 2018 to

2019 we see that the null hypothesis cannot be rejected. Thus, our results indicate similar reaction

to similar shocks at times of normal inventories.
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3. Effect of inventory surprises of term premium

Our estimation approach differs slightly for short and long maturity contracts, thus we split our

results into two parts.

Short maturities Figure 4 displays the estimated reaction of returns to 1% inventory surprises,

both positive and negative, for the first three futures contracts by maturity, for each calendar year.

We are interested in the part of the curve corresponding to the periods before 2014 and after 2018.

The solid and dashed lines depict the estimates for the first two contracts. We can see that these

lines are almost indistinguishable, implying that the prices of the first two contracts adjust by

exactly the same amount in response to inventory news. The dotted line shows the estimates for

the third month contract. It slightly diverges from the other two lines at times, but clearly follows

the same adjustments. Hence, we can say that the term premium remains constant at the short

end of the term structure curve.

Long maturities Next we analyze the adjustments of the contracts with longer maturities.

Panel A in Table 3 compares the return reaction of the first month futures contract with reaction

of the most liquid long maturity contracts; the results are presented for each quarter of each of the

three unconstrained periods: 2010-2012, 2013-2014, and 2018-2019.

We observe a similar magnitude of price adjustments in response to inventory surprises. The

prices of the front month and the current December contracts, in particular, adjust to news by

the same amount. The difference in the estimated announcement returns for these contracts is

only visible in the first quarters when the liquidity of the December contract is still relatively low.

The reaction of the two longest maturity contracts, which are the next June and next December

contracts, is also similar to the front month contract. Moreover, in some quarters the relationship

is even reversed and we find that the long maturity contracts respond stronger to news than the

front month contract, for example in the second quarter of 2012-2013 period.

Overall, the futures curve shifts in parallel in response to news, without any term structure

adjustments. The reaction is especially uniform in the 2013-2014 period.
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4. Effect on volatility

Finally, we briefly discuss volatility results (the tables are not included, but available on request).

We find that volatility jumps on announcement; c0
σ is positive and significant for all years and

all contracts. The effect is quite large, on average, |lnσ2| increases on announcement by about

20%. At the same time, we find that the announcement jump in volatility is not proportional to

the size of the announcement surprise; c1
σ is insignificant for almost all years and all contracts.

Period of constrained inventories

The 2015-2016 period is characterized by constrained inventories, when positive supply or negative

demand shocks cannot be easily smoothed out by putting oil in storage. Our findings for this period

can be summarized as follows:

Summary II. The results for the constrained period:

1. Negative and significant relation between inventories and returns. The market responds more

strongly to inventory news when inventories are constrained.

2. Market responses are asymmetric, but the response is stronger to negative shocks.

3. No effects of inventory news on the term premium on the short end of the curve. However, the

prices of longer maturity contracts are less reactive to news.

1. Effect of inventory surprises on returns

We have already established a negative link between market surprises and returns reaction irre-

spective of the status of inventories, see Figure 4. It is worth emphasizing, however, that the

negative comovement of inventory surprises and returns is observed in every single one of the 32

large inventory surprises.

Figure 4 also clearly shows intensification of the market reaction to inventory news in 2015 and

2016 relative to earlier and later years. In absolute terms, the difference in magnitudes is striking:

the returns reaction to negative shocks is 3 times larger in 2016 than in 2014, despite that the

average magnitude of the shocks remains roughly the same over time (see Table 1). Moreover, the
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normalization of returns reaction by volatility allows us to attribute this increase to the greater

sensitivity to inventory information, and not just higher overall market sensitivity to news.43

2. Asymmetry of market responses

Figure 4 also reveals asymmetry. The market reacts stronger when a negative surprise is realized

in 2015 and 2016. To formally test this for asymmetry, the last column in Table 2 presents the p-

values for testing the equality of coefficients on negative and positive surprises. The null hypothesis

of symmetry is rejected at the 0.01% level in both 2015 and 2016.

3. Effect of inventory surprises of term premium

Short maturities Now we are interested in the part of the curve on Figure 4 that corresponds

to the period from 2015 to 2016. Our results indicate absolutely no difference in the reaction of

the first three futures contracts. The formal tests cannot reject the null hypothesis.

Long maturities Panel B in Table 3 displays estimation results for longer maturity contracts.44

We can see that the period of constrained inventories is characterized by muted reaction of the long

maturity contracts relative to the front month contract. Moreover, the results indicate a robust

decline in the magnitude of reaction with maturity. It could be natural to argue that muted reaction

is observed because the long maturity contracts become unresponsive to news when inventories

become constrained. We would like to emphasize that this is not the case. Quite the opposite,

in absolute terms, the reaction of all long maturity contrast actually becomes stronger relative

to unconstrained years (which can be seen by comparing the results in Panels A vs B for each

contract and each quarter).
43To illustrate that fluctuations in market sensitivity to news may be substantial, Figure A.1 in Appendix A.4

shows realized variance estimated using high-frequency returns on the front month futures contracts. We can see
a distinct change in the volatility regime at the end of 2014, when volatility increased dramatically and remained
high for a long period of time.

44The results remain the same when we consider negative and positive surprises separately.
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4. Effect on volatility

The volatility results are similar relative to the period of unconstrained inventories. We find that

volatility jumps on announcement; c0
σ is positive and significant for all years and all contracts;

however the size of the surprise has no significant effect on the volatility response.

We also find intensification of volatility reaction when inventories become constrained. The

volatility responses becomes about 20% larger in 2015 relative to 2014, and decreases back to

original levels in 2018.

Interpretation of results

So what do our findings tell us about beliefs of financial traders?

Identifying the effective date of the shocks (news shocks vs realized shocks) Our results

indicate a strong negative link between inventory surprises and returns. This result is robust and

confirms previous findings of Bu (2014), Halova Wolfe & Rosenman (2014), Halova et al. (2014),

and Miao et al. (2018). This negative relationship is observed not only on average; we document

negative comovement in 94% of weeks with large positive or negative surprises. The negative sign

of the relationship implies that the market views inventory changes as reflecting already realized

demand or supply shocks, rather than shocks to expectations of future oil market conditions. Not

distinguishing between realized shocks and news shocks does not necessarily reflect irrationality. As

shown recently by Mackowiak et al. (2018), rationally inattentive agents may optimally decide to

economize on information processing costs needed to distinguish current changes in fundamentals

from future changes in fundamentals.

The negative sign of the relationship could also be explained by the absence of insignificance

of news shocks. However, there is substantial empirical evidence against this assumption. Arezki

et al. (2017) use giant oil discoveries as directly observed news shocks and find a significant an-

ticipation effect on the current accounts of small open economies through saving and investment

channels. Kilian & Murphy (2014) show that shifts in expectations play a sizable role in the

monthly fluctuations of the real price of oil. The news of coronavirus outbreak outside mainland
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China in 2020 decreased the price of oil to below 30 $/bbl as the market started to expect a mas-

sive collapse in demand. Interestingly, in a different setting, Crouzet & Oh (2016) do not find a

negative comovement of sales and finished-goods inventories, and interpret this as evidence of the

insignificance of news shocks in business cycle fluctuations. However, we suggest an alternative

explanation for this result.

Identifying the state of inventories and the persistence of shocks Our second main

finding is a lack of any effect of inventory surprises on the short end of the curve. When inventories

are unconstrained, this result is consistent with the behavior of the real agents who smooth out

all temporary shocks by moving oil into or out of storage. In addition to a weak effect on the term

premium on longer maturity contracts (or no effect at all in some years), our results are consistent

with uniform revision of expectations of current and future oil prices. Our results can be viewed as

yet another evidence that in the presence of inventories, all oil price movements become permanent

and unpredictable as conjectured by Hamilton (2009). The symmetry in market responses at times

of unconstrained inventories is also consistent with theoretical predictions.

However, when inventories are constrained, we would expect to see term structure adjustments,

especially at the shorter end of the futures curve. As our model illustrates, the near-term prices

should respond stronger to shocks, thus diverging from the more distant end of the curve. The

lack of such adjustments is a striking result and contradicts conventional wisdom. The steep term

structure curve is often observed at times of high inventories; see Figures 2 and 5. The slope

is especially pronounced at the shorter end of the curve for maturities below four months. In

particular, we can see a huge buildup of inventories in 2015. In 2008/09, the increase in inventories

was less dramatic, but still quite sizable. In both cases, a steep term structure curve was attributed

to the realization of a large temporary shock. In 2008, a negative demand shock was believed to

have created an abundance of oil and depressed spot oil prices. In 2015, the market was believed

to have hit by a positive supply shock due to rising shale oil production in the U.S. and by a

negative demand shock due to slowdown of the Chinese economy. The association between steep

term structure curve and high inventories turns out to be a more general phenomenon, not limited

to the oil market as documented by Gorton et al. (2012).
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The reaction of longer maturity contracts may seem to be more consistent with the theory.

Indeed, we do observe muted reaction of longer maturity contracts relative to the front month

contract in the period of constrained inventories. However, to be completely consistent with

conventional theory, this muted reaction should be the result of the unresponsiveness of longer

maturity contracts to news when inventories become constrained. Whereas in reality, the reaction

of all long maturity contrast actually intensifies when inventories become constrained. This is

puzzling, because if inventories can no longer smooth out temporary shocks, the longer end of the

curve should become less sensitive to news, because only truly persistent shocks should be able to

affect it, but that is not what we observe.

The lack of term structure adjustments may reflect an unawareness of the financial sectors of

the constrained state of inventories. However, we believe that this is unlikely to be the case. The

oil market reaction to inventory surprises abruptly intensified in February 2015 (we identify the

exact moment of transition in the next section), exactly when inventories spiked. Moreover, the

media had been following the evolution of inventories quite extensively.

We argue that the lack of term premium adjustments is observed because financial agents

do not acquire enough information to precisely identify the persistence of shocks. Intuitively,

agents are not accustomed to doing this. During normal times, inventories help to smooth out

all temporary shocks (basically the real agents transform all shocks into permanent ones). No

matter what kind of shock triggers the change in inventories, no term structure adjustments are

needed, and the futures curve simply moves up or down as we see in 2013-2014, for example.

As a result, traders may rationally develop a habit of disregarding the persistence, and trading

as if all shocks were permanent. When suddenly inventories become constrained, traders fail to

adapt. Such history dependence is a known feature of dynamic information acquisition, discussed

by Mackowiak et al. (2018). In a different setting, Mackowiak & Wiederholt (2018) show that when

a rare event occurs, rationally unprepared agents tend to take suboptimal actions, as they prefer

to prepare for contingencies that are more likely to occur. Therefore, when inventories suddenly

become constrained, traders may not be prepared to distinguish the shocks by their persistence.

Finally, our results also show negative asymmetry when inventories are high. The market
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Figure 5: The slope of the term structure at the shorter end.
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Notes: The figure displays the monthly series of the price difference between the three futures contracts with the
shortest maturities and the front month futures contract, normalized by the price of the front month contract,
(Fn,t − F1,t)/F1,t, where n = 2, 3, 4 months.

responds more strongly to negative inventory surprises, though the theory predicts the opposite.

This result may suggest that financial traders do not fully comprehend what the state of constrained

inventories implies for equilibrium prices.

Trading activity on announcements Our results indicate that the actual size of an inventory

surprise is irrelevant for the volatility response to news. Volatility spikes even following uninforma-

tive announcements.45 The finding that trading activity intensifies even following uninformative

releases is not new and has been documented numerous times in the earlier literature. Conven-

tional interpretation of volatility and/or volume spikes on announcements is that both reflect

idiosyncratic information processing and convergence of beliefs through trading. In a pioneer pa-

per, Kandel & Pearson (1995) develop a theoretical difference-in-opinion model. In the model, the

agents disagree about the interpretation of the public signal at the time of announcement, and thus

trade occurs until all individual posterior beliefs converge. Recently the model has been extended

and tested using high frequency data by Bollerslev et al. (2018). An alternative explanation is

proposed by Crego (2020), who argues that a public signal may endogenously alter the composition
45The earlier version of the model also included a dynamic model of trading volumes. Similarly to volatility,

trading volume also increases even following uninformative announcements.
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of traders in the market. To provide empirical evidence, Crego (2020) studies the effect of EIA

oil inventory announcements on the stock market, and shows a lack of the effect of unexpected

component of news on volume and spreads of oil-related firms relative to less dependent on oil

firms (even though volumes and spreads spike at the moment of announcement) consistent with

the proposed model, and in line with our results.

Overall, our results may suggest the presence of significant disagreement among market par-

ticipants about the meaning of inventory reports. The intensification of volatility response in

2015-2017 period is also consistent with the disagreement interpretation, as the oil market uncer-

tainty clearly spiked during this time period.

Alternative identifying assumptions and discussion The lack of term structure adjust-

ments at the shorter end of the curve is puzzling. It should be noted, that allowing for a time

varying risk premium does not resolve this puzzle. If we assume that the expectations of the

more distant future oil prices are not revised (or revised significantly less with maturity), than

the change in the risk premium must account for the documented change in prices. Hence, we

necessarily have to assume that the risk premium decreases when the price of oil falls (and the

more so the larger the maturity); however, this assumption is unlikely to be true.

The second concern might be that in our exercise we do not distinguish supply shocks from the

demand shocks. However, Kilian (2009) shows that the distinction matters: both the real price

of oil and the macroeconomy react differently to these shocks. However, our approach makes this

labeling less important. Importantly, we do not assume that all the shocks are the same; quite

the opposite, the oil supply and demand shocks are likely to differ by their size and persistence,

and thus should trigger different responses of inventories on average. However, what we study is

the market reaction to inventory changes, the elasticity, and thus the source of the shock becomes

irrelevant.

Another potential criticism of our approach is that the narrow window around the EIA an-

nouncement cannot capture the full market reaction to inventory news. Perhaps it takes longer

for the market to fully process information and react. To provide further support for our findings,

we perform additional estimation using daily data on futures returns and following a standard
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approach, outlined, for example, in Miao et al. (2018). The results are similar and confirm our

main findings (see Appendix A.6).

4.3 Transition from unconstrained to constrained inventories and back

In our analysis so far we have split the sample at the end of 2014 to distinguish the periods of

constrained and unconstrained inventories. We also have considered 2017 as a transition year from

high inventories back to normal. In this last exercise, we aim to identify the transition moments

more precisely.

To model the evolution of the parameters, we use a threshold autoregression (TAR) and smooth

transition autoregression (STAR), with time as the threshold/transition variable. We carefully

control for ‘background’ changes in parameters associated with the proliferation of new trading

strategies. Full description of our approach and results can be found in Appendix A.5, here we

only briefly comment on the main findings.

Our results suggest that despite the dramatic fall of oil prices and steepening of the term

structure curve since November 2014, the market responded to inventory shocks in 2014 in exactly

the same way as before. The break in the market response to inventory news only occurred in

the last week of February 2015, precisely when the term structure curve spiked (see Figure A.2),

potentially indicating that inventories reached a certain critical level.

Our transition results further reinforce the term structure puzzle. The spike in the term struc-

ture curve coincides with an abrupt intensification of the market response to inventory news.

However, when oil inventory announcements come, traders do not revise expectations accordingly

and do not adjust the term premium.

In contrast, the transition back to normal regime occurred gradually from March to September

of 2017 and was consistent with the dynamics of the total oil inventories and the term spreads.

The gradual transition may reflect the heterogeneity of traders’ beliefs and overall uncertainty

regardless the state of inventories. As more traders update their beliefs and place higher probability

on capacity no longer being maxed out, we observe more and more muted reaction to news.
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5 Conclusion

We provide a framework that integrates inventories data and ultra high frequency futures prices

data into an analysis of the formation of beliefs of financial traders. Our results imply that financial

traders fail to acquire additional information and treat inventories as a sufficient statistic. As a

result, they fail to distinguish already realized shocks and news shocks, and they also treat all

shocks as persistent.

The most surprising result is the lack of any effect of inventory news on the term premium

at the shorter end of the futures curve when inventories are constrained. This result contradicts

conventional wisdom, as all recent episodes of high inventories in the oil market have been accom-

panied by a widening term premium, especially at the shorter end of the term structure curve.

However, surprisingly, we see that when inventory news announcements come, traders do not revise

expectations accordingly.

The evolution of coronavirus fears outside mainland China provides an excellent example of a

news shock. Consider a short period of time from the end of February until March 13, right before

the national state of emergency was finally declared in the U.S. Although the virus had already

affected China, the worst was yet to come for the U.S. and most European countries. Early in March

general hopes to contain the virus outside the US were gradually replaced with expectations of

soon-to-be-imposed harsh social distancing measures.46 Even before the U.S. government imposed

a lockdown, the public voluntary decided to follow social distancing measures. Indeed, a voluntary

drop in mobility as measured by the GPS locations of US cellphones was documented by Simonov

et al. (2020); similarly, an early drop in restaurants reservations was documented by an online

restaurant-reservation service company OpenTable. Thus, although some changes in economic

activity already started to occur, they were relatively mild compared to what were to happen

next. Not surprisingly, the short term forecasts began to deteriorate quickly as the governments

were expected to issue harsh measures to curtail the spread of the virus. Therefore, coronavirus

can be seen as a shock with a sizable news component.

The response of the oil market was largely consistent with the narrative above. Since mid-
46Despite efforts of some controversial news outlets such as Fox News to convince the public otherwise; see

Simonov et al. (2020).
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January the oil price had been falling reflecting drop in demand from China. However, it was

not until March 9 when the price of oil plunged by historical 25% in a single day, potentially

reflecting a sudden reassessment of the severity of pandemic coming to the U.S, and partially

the announcement by Saudi Arabia on March 6 to keep the production unchanged. Somewhat

puzzling, however, was again the behavior of the oil futures term structure curve. Given pessimistic

projections of economic activity, one could expect to see backwardation in March, as the worst

was clearly yet to come. The economic activity was expected to plummet in the next few months.

In reality, however, the oil market moved into a deep contango (see Figure A.4)47.

Analyzing the oil market response to coronavirus news is a fruitful topic for future research.

Our findings suggest that one could need to consider alternative drivers of the term structure

curve.48
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