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A Online Appendix

A.1 Dispersed beliefs and inventory announcements

To clarify the role of inventory announcements and the connection between ’inventory’ shocks and

underlying demand and supply shocks that hit the economy, we further extend our toy model. Our

goal is to parsimoniously introduce dispersion of beliefs to create informational role of inventory

announcements. We do that using a simple island framework.

Imagine two regions, A and B. Each region is inhabited by a risk neutral oil producer and

unmodelled oil consumers. The two regions are completely separated, meaning that each producer

delivers oil to his region only, and consumers only purchase oil locally. The regions are nonetheless

subject to a common supply shock (for instance, due to similarities in oil extracting technolo-

gies). Therefore, any signals about current or future supply shocks received by one producer are

informative to the other.

Let the supply of oil in region i ∈ {A,B} in period t be given by qsi,t = 1 + εt + ηi,t, where

εt denotes a common supply shock that hits both regions simultaneously, while ηi,t denotes id-

iosyncratic shock that hits region i only; all shocks are independent both across regions and time,

εt ∼ iid N(0, σ2
ε) and ηi,t ∼ iid N(0, σ2

η). As before, the demand for oil in each region is given by a

simple function qdi,t = 2−pi,t, where pi,t is the local price of oil. Each producer solves his optimiza-

tion problem by optimally choosing the level of inventories, xi. Note that our island assumption

eliminates all strategic concerns, because actions of one producer have no direct impact on the

other.

For the sake of exposition, we introduce an extreme version of dispersion of beliefs. We assume

that Producer A receives private information about productivity shocks (current or future), and

chooses optimal inventories conditional on that information. In contrast, Producer B does not

observe any private signals. We will then allow Producer B to observe optimal inventory decision

of Producer A. The opportunity for Producer B to observe inventory level xA before choosing it

own inventory level is exactly our reduced-form way to model inventory announcements.
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We can now explore how higher or lower than expected level of announced inventories xA shapes

the optimal inventory choice of Producer B and how it affects current and future prices in region

B.

Realized shock First, let us assume that Producer A observes the combined current period

supply shock, ε1+ηA,1, which is a combination of common and idiosyncratic components. Producer

A’s problem coincides with the one solved in the main text, thus we know that the optimal level

of inventories is to save half of the shock, xA = 1
2

(
ε1 + ηA,1

)
.

Now let us solve Producer B’s problem. Clearly, when xA is not observed, Producer B receives

no information about any of the shocks. In that case, there is no reason to hold inventories, as the

producer expects the same level of productivity in both periods. Thus, xB = 0, and the expected

current and future prices in region B are equal to their unconditional means:

E [pB,1] = E [1 + xB − ε1 − ηB,1] = 1,

E [pB,2] = E [1 + xB − ε2 − ηB,2] = 1.
(1)

In contrast, when xA is observed, Producer B updates his beliefs about ε1, as E [ε1|xA] 6= 0, and

thus can make more informed inventory decision. Producer B’s expected profit becomes

πB(xB) = E [(1 + xB − ε1 − ηB,1)(1− xB + ε1 + ηB,1)|xA]

+ E [(1− xB − ε2 − ηB,2) (1 + xB + ε2 + ηB,2) |xA]

= 2xBE [ε1|xA]− E
[
ε21|xA

]
+ 2− 2σ2

η − 2x2B − σ2
ε ,

which attains maximum at xB = 1
2
E [ε1|xA], where E [ε1|xA] = 2σ2

ε

σ2
ε+σ

2
η
xA ≡ αxA, with α > 0.

Thus, if Producer B observes higher than initially expected inventories, xA > 0,1 then he revises

his beliefs upwards, E [ε1|xA] > E [ε1] = 0. Therefore, it is optimal for Producer B to also store a

1The unconditional expectation of xA is zero.
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positive amount of oil, xB > 0.

Of course, higher expected oil supply depresses both expected current and future prices in

region B (relative to the pre-announcement unconditional level):

E [pB,1|xA] = 1− 1
2
E [ε1|xA] < 1 = E [pB,1] ,

E [pB,2|xA] = 1− 1
2
E [ε1|xA] < 1 = E [pB,2] .

(2)

As usual, availability of storage allows smoothing current period shocks over time and equalization

of expected prices across periods.

In sum, higher than initially expected inventories, xA > 0, trigger additional oil accumulation

and depress both expected current and future prices in region B.

News shock An arrival of a news shock can be considered similarly. Now we assume that

Producer A receives news about future productivity, he perfectly observes ε2 + ηB,2. As usual, the

optimal decision is to spread out the shock equally across periods, thus xA = −1
2

(
ε2 + ηA,2

)
.

The chosen level of inventories, xA, now contains information about ε2 which is relevant to

Producer B. Thus, E [ε2|xA] = −αxA 6= 0, where α > 0 is the same signal-to-noise ratio as before.

The expected profit becomes

πB(xB) = E [(1 + xB − ε1 − ηB,1)(1− xB + ε1 + ηB,1)|xA]

+ E [(1− xB − ε2 − ηB,2) (1 + xB + ε2 + ηB,2) |xA]

= 2− σ2
ε − 2σ2

η − 2x2B − E
[
ε22|xA

]
− 2xBE [ε2|xA] ,

which attains maximum at xB = −1
2
E [ε2|xA].

Thus, if Producer B observes higher than initially expected inventories, xA > 0, then he revises

his next period productivity expectations downwards, because E [ε2|xA] < E [ε2] = 0. Therefore,

it is optimal for Producer B to also store a positive amount of oil, xB > 0.

Naturally, lower future productivity increases prices (relative to the pre-announcement uncon-
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ditional level):

E [pB,1|xA] = 1− 1
2
E [ε2|xA] > 1 = E [pB,1] ,

E [pB,2|xA] = 1− 1
2
E [ε2|xA] > 1 = E [pB,2] .

(3)

As usual, availability of storage allows to smooth shocks over time and equalizes expected prices.

Overall, in case of news shocks we can see that higher than initially expected inventories, xA > 0,

trigger additional storage accumulation and increase both expected current and future prices in

region B.

Constrained cases So far we have not imposed any restrictions on the size of oil inventories.

Given that we have two regions in the model, in principle, we have to consider 4 different cases,

depending on whether the constraint binds in one region or another, or both, or none. The

analysis of all these cases is similar, and the results follow the ones in the main text and the

ones that we just derived. For example, imagine that Producer A is unconstrained and responds

optimally to a realized shock, but after observing xA, Producer B exhausts available inventory

capacity, xB = xB,max. Then, as before, both expected current or future prices fall relative to

their unconditional levels; however, perfect equalization would not be achieved. In particular, the

expected current price would decrease by more.

In cases when Producer A exhausts spare capacity, the inference problem of Producer B

changes, because now he has to compute E [ε1|xA = xmax] or E [ε2|xA = xmax]. But that is the only

change, and the optimal choice of xB and the corresponding effect on prices in region B remain

the same. Intuitively, when, for example, Producer B knows that a realized shock has arrived

and observes inventories in region A at the highest possible level, he naturally needs to revise his

beliefs about the common current supply shock upwards, thus increasing his own inventories and

expecting higher prices both now and tomorrow. Other cases can be considered in a similar way.
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A.2 Convenience yield

In this section we would like to comment on the role of convenience yield in our analysis. In short,

we analyze the changes in the real convenience yield following inventory announcement, we just

do not use the term itself to avoid confusions.

Real benefits of holding inventories or the real convenience yield Inventories bring cer-

tain benefits to the owners. This benefits can be modeled in a more or less reduced way. Typically,

the structural or microfounded way of modeling would be to assume uncertainty of demand and

some convexity of production, which leads to positive inventories being held in equilibrium to meet

the demand shocks. See Wen (2005). The benefits of this approach are apparent; however, the

models are typically hard to solve.

Instead, many papers choose a less microfounded, reduced form approach. For example, Byun

(2017), directly includes inventories into the refinery production function f(qt, it−1) = (1−e−it−1)qαt ,

and the storage costs also include a term proportional to i2t to achieve interior solution. By

assumption, the refinery has a direct benefit of holding inventories in equilibrium. The assumptions

are more ad hoc; however, the models become tractable.

In any case, the convenience yield is an equilibrium object that defines the benefits of having

extra barrel of oil in storage (more or less easily derived).

The difference between the long and short term futures contracts vs the convenience

yield In energy finance literature, however, it became customary to define the ’convenience yield’

as the difference between long and short futures prices. Unfortunately, the futures prices are driven

by many other factors. Under this approach, the interpretation of the ’convenience yield’ becomes

convoluted, as it can no longer be interpreted as the benefits of having an extra barrel of oil in

storage (which we continue to call the true convenience yield).

In a nutshell, in equilibrium there cannot be arbitrage opportunities of any kind, which means

that all no-arbitrage conditions must be jointly satisfied. This means that the no physical arbitrage

condition can be satisfied as a strict inequality. In other words, the benefits of buying and holding
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an extra barrel of oil can be strictly smaller than the costs in equilibrium. Formally, let us denote

by bt the benefits of holding an extra barrel of oil (the true convenience yield); rt + ct denotes the

combined borrowing and storage costs; and, finally, F2,t − F1,t is the futures price difference. In

equilibrium, we may observe that F2,t − F1,t + bt︸ ︷︷ ︸
benefits

− (rt + ct)︸ ︷︷ ︸
costs

< 0, and it will still be consistent with

no arbitrage. Hence, in general, b̃t ≡ − (F2,t − F1,t) + rt + ct is not equal to the ’true convenience

yield’, b̃t 6= bt. See Hamilton (2009) for further discussion.

Relation to our approach In sum, the marginal benefit of storing extra oil is an endogenous

object defined in equilibrium. It is fully driven by the real side of the economy, either due to the

stock out avoidance motive, or smoothing out of production costs etc. In contrast, the difference

between the long and the short term futures contracts is not only driven by the real side of the

economy, but also shaped by a number of additional factors, including the risk bearing capacity of

the financial traders.

Thus, we do analyze the changes in the true convenience yield in response to various shocks,

we just don’t use the term itself to avoid confusions.

A.3 Dealing with futures contracts: expiration

At any moment in time, NYMEX offers a set of contracts that differ by delivery month. The

expiry dates range from one month up to nine years in the future, thus constituting more than

100 contracts at any given moment. Trading in the current delivery month ceases on the third

business day prior to the twenty-fifth calendar day of the month preceding the delivery month (for

example, the last trading day of a February-2018 contract is January 22, 2018).2

We follow a standard approach in the literature and rely on a rolling procedure to create

continuous futures contracts.3 In particular, we replace the expiring contract with the next one

2See contract specifications at the CME website.
3See, for example, Halova et al. (2014) or Gorton et al. (2012).
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Table A.1: Maturity of a particular contract at the beginning of the period in months.

Quarter F1 Current December Next June Next December

Q1 1 11 17 23
Q2 1 8 14 20
Q3 1 5 11 17
Q4 1 2 8 14

Notes: The table shows that, for example, when we consider the first quarters, ’Q1’, we are dealing with
contracts that have maturity ranging from 11 months to 9 months (the current December contract), from
17 months to 15 months (the next year June contract), and from 23 months to 21 months (the next
December contract).

on the 5th day of each month. Thus, the maturity of what we call the first month contract in our

sample ranges from 5 weeks to 2 weeks, when the soon-to-expire contract is replaced with the next

one, and a new maturity cycle commences. As long as oil traders follow the same procedure and

shift their trading from one market to another at about the same time, stationarity concerns are

alleviated.

A.4 Realized variance

We use the high-frequency returns on the front-month futures contract. For each announcement

day, we calculate realized variances using a range of sampling frequencies from 5 seconds to 10

minutes, and then take an average. Volatility signature plots for most days are flat in that region of

frequencies. Figure A.1 shows the resulting estimates. We can see a distinct shift in the volatility

regime at the end of 2014, when volatility increased dramatically and remained high for a long

period of time. As was discussed in text, the trading intensity increased at that time as well.

A.5 Time variation in parameters

To parsimoniously model the evolution of some parameters of our model, we utilize threshold

autoregression (TAR, see, e.g., Hansen, 1997) and smooth threshold autoregression (STAR, see,

e.g., Teräsvirta, 1994) models, with time as the threshold/transition variable (see also Lin &
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Figure A.1: Realized variance, annualized.
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Notes: The blue line: daily realized variance of returns on the first futures contract. The red line: a smoothed
filtered series using the HP filter with a smoothing parameter of 1600.

Teräsvirta, 1994, for such possibilities).4

As before we denote the announcement weeks by τ . The parameter cτ varies over time according

to

cτ = c0 + (c1 − c0)G(τ, τ ?, δ),

where time variability is driven by a non decreasing transition function G(τ, τ ?, δ) that lies between

zero and one. The arguments of the transition function, apart from the time index, are the

threshold τ ? and a vector of parameters δ, which control the timing and speed of adjustment,

respectively. The simplest example of the transition is the indicator function: G(τ, τ ?) = Iτ≥τ? ,

which assumes a structural break in week τ ?.

In principle, we could allow all parameters to jump simultaneously and search for the optimal

timing of the break. This approach, however, is problematic, as the oil market may be subject to

other structural changes at the same time. One potential source of a ‘background’ change could

4An alternative class of models, Markov switching autoregressions, based on dynamic latent state variables,
could instead be used; see, in particular, Hamilton (1990) and Chang et al. (2017).
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be a dramatic growth of exchange traded funds tracking oil futures prices.5 An investment flow to

ETFs could alter the composition of trading strategies utilized. Thus, as our dynamic model is a

direct reflection of oil traders’ behavior, any changes in the strategies inevitably lead to changes

in model parameters. As a result, this simplistic approach might pick up the wrong transition.

To disentangle changes in parameters related to proliferation of new trading strategies, from

the changes in market perception of inventory news, we allow some parameters to follow a more

complicated dynamics:

cτ = c0 + (c1 − c0)GI(τ, τ
?
I , δI) + (c1 − c0)GH(τ, τ ?H , δH),

where GI(τ, τ
?
I , δI) and GH(τ, τ ?H , δH) define the two separate transition dynamics: I-transition

corresponds to market perception of inventory news and H-transition corresponds to shifts in the

composition of trading strategies. In our notation, the coefficients that govern market reaction to

inventory news,{c0r, c+r , c−r , c0σ, c1σ}, follow the I-transition only. In contrast, the parameters in the

probability equation, {ζ, ξ}, the coefficients in the conditional mean equation for returns, {ρ, ρ0}

and the coefficients in the conditional variance equation, {ψ2, ψ3}, will all follow H-transition only.

The constants and certain coefficients in the conditional variance equation follow both transitions,

{µ,w,wh, φ, ψ1}.

We perform two exercises. The first employs the indicator functions, GI(τ, τ
?
I , δI) = Iτ≥τ?I and

GH(τ, τ ?H , δH) = Iτ≥τ?H , and we search over all possible combinations of (τ ?I , τ
?
H) in the time range

we are interested in. In the second exercise, we fix the thresholds, keep the indicator function for

GH(τ, τ ?H , δH), but replace GI(τ, τ
?
I , δI) with the following specification

GI(τ, τ
?
I , δI) =

1

1 + e−δ1(τ−τ
?
I )

Iτ<τ?I +
1

1 + e−δ2(τ−τ
?
I )

Iτ≥τ?I .

5Four largest oil ETFs (USO, OIL, UCO, DBO) held approximately 13k first month contracts or only 4% of the
open interest at the end of June 2014. Their holdings increased to 58k contracts or 20% of open interest by early
January 2015, and to 113k or 32% by early March 2015. At the peak, in March 2016 their holdings reached 196k
contracts or 42% of open interest.
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This specification allows for different speeds of adjustments before and after the threshold.

Our results also indicate a break in the trading pattern,τ ?H , around the first week of December

2014. The time of the change is consistent with observed changes in volatility, see Figure A.1 and

intensity of trading as measured by the fraction of intervals with no trading (available on request).

We believe that the break in trading patterns can be attributed to immense monetary inflows to

exchange traded funds, such as the United States Oil Fund, that track short-term crude oil futures

contracts. Similarly, the mid February 2017 was identified for the second transition.

Identifying moment of transition to constrained inventories, 2014-2015

We use the period from 2013 to 2016, long enough for informative estimation, but not too long to

raise the issue of stationarity.6

When we use a one time jump specification, our results suggest that the break in the market

response to inventory news occurred precisely in the last week of February 2015! This is exactly

when the term structure curve spiked, see Figure A.2, where the last week of February is marked

by the vertical line; potentially indicating that inventories reached a certain critical level.

Figure A.2 depicts the estimated evolution of returns reactions to inventory surprises when we

use the smoothed specification of the transition function. Despite the dramatic fall of oil prices and

steepening of the term structure curve since November 2014, the market responded to inventory

shocks in 2014 in exactly the same way as before. Only in February 2015 we observe a distinct

increase in the market reaction followed by further gradual adjustments afterwards.

To put our findings in perspective, let us briefly describe the chronology of events in the oil

market around the end of 2014. By 2014, US oil production exploded, reaching almost 9 mln

barrels per day, and it was expected to grow even further. Struggling economies in China and

Europe raised doubts that it would be possible to maintain the same pace of demand growth as

6For robustness, we repeat the exercise for a shorter sample, from 2014 to 2015; the results are similar and are
available upon request.
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Figure A.2: The slope of the term structure and evolution of returns responses to inventory news.
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Notes: Left panel: The slope of the term structure at the shorter end at the end of 2014 and beginning of 2015
(see Figure 5 for description). The vertical line marks Friday, February 20, 2015. Right panel: Evolution of returns
responses to inventory news. The solid line depicts Rτ (xτ ) for xτ = 0.01 in black (1% positive inventory surprise)
and xτ = −0.01 in green (1% negative inventory surprise), x̄ = 0.006, (see Figure 4 for description).

before, despite the fact that the oil prices remained high. However, in July of 2014, the price

of oil started to decline. By November the oil price had fallen by 30%, and the term structure

of oil prices became upward sloping. On November 27, 2014, OPEC announced their decision

to maintain production levels, and soon afterwards the price of oil crashed even further. By the

beginning of 2015, oil inventories reached unprecedented levels and were interpreted as a sign of

an immense oil oversupply (see Figure 2).

The surprising behavior of OPEC suppliers represents a shock to expectations of future supply.

The growing oil production and potentially weakening demand had been observed long before the

November meeting and had been reflected in falling oil prices. But even though overall oil produc-

tion was expected to grow, the market maintained the belief that OPEC producers would adjust,

by cutting production to give way to shale oil producers. However, after the meeting in Novem-

ber, it became clear that OPEC producers were not willing to sacrifice their share of production.

Hence, the expectations of the future path of the oil supply were reconsidered. Moreover, the

possibility of temporary oversupply in the nearest future became substantial. However, as long as
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spare capacity in oil storage facilities is available, such a revision of expectations should not lead

to any substantial effects on the term structure, especially at the shorter end. Only the level of the

curve should be adjusted to reflect higher than expected supply of oil. That is exactly what we

find: we do not see any changes in the market reaction to inventory news in 2014. It was not until

inventories reachτ ?H ,ed extremely high levels, the market reaction to inventory news intensified! In

other words, both the moment and the speed of transition are consistent with observed dynamics

of inventories. Thus, we can reject the hypothesis that the financial market was unaware of the

constrained state of inventories.

Our transition results further reinforce the term structure puzzle. The spike in the term struc-

ture curve coincides with an abrupt intensification of the market response to inventory news.

Moreover, the futures curve became upward sloping well before inventories spiked, potentially

indicating the transition to constrained regime. However, we find that when oil inventory an-

nouncements come, traders do not revise expectations accordingly and do not adjust the term

premium.

Identifying moment of transition back to normal, 2017

We use the sample from 2016 to 2018 to study the second transition. Figure A.3 shows a relatively

gradual decline of the term spreads. The oil inventories had been rising until March 2017, but

were sharply falling afterwards until the end of the year.

We follow the same approach as described above to characterize the transition process. The

results for the smooth specification are presented on Figure A.3. Now we document a relatively

gradual transition. The market reaction to shocks was slowly decreasing from March to September

of 2017, consistent with the dynamics of the total oil inventories and the spreads.

The gradual transition may reflect the heterogeneity of traders’ beliefs and overall uncertainty

regardless the state of inventories. As more traders update their beliefs and place higher probability

on capacity no longer being maxed out, we observe more and more muted reaction to news.

a.12



Figure A.3: The slope of the term structure and evolution of returns responses to inventory news.
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Notes: Left panel: The slope of the term structure at the shorter end from 2016 to 2018 (see Figure 5 for description).
Right panel: Evolution of returns responses to inventory news. The solid line depicts Rτ (xτ ) for xτ = 0.01 in black
(1% positive inventory surprise) and xτ = −0.01 in green (1% negative inventory surprise), x̄ = 0.006, (see Figure
4 for description).

A.6 Long term effects

One potential criticism of our identification approach is that the narrow window around the EIA

announcement cannot capture the full market reaction to inventory news. Perhaps it takes longer

than half an hour for the market to fully process information and react. To provide further

support for our findings, we perform additional estimation but now using daily data and following

a standard approach, outlined, for example, in Miao et al. (2018). However, we continue to split

the sample into three periods to facilitate the comparison with our benchmark results.

To facilitate comparison of the results, we follow the methodology (and notation) used in Miao

et al. (2018). In particular, we do not use API information when calculating market surprises. For

most of the announcement days, that would not be a problem, because the API report is released

at 4:30 pm on Tuesday when the futures market is already closed. When we calculate the daily

return as Rt = lnPt − lnPt−1, where Pt is the settlement price as of Wednesday and Pt−1 is the

settlement price as of Tuesday, we automatically capture the cumulative market reaction to both

announcements. Hence, we only need to measure market expectations before the market closes on
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Table A.2: Estimation results for the 2010-2014 period.

Panel A: Rt = α +
∑3

i=1 βiRt−i + γ0SSIt + εt

F1 F2 F3 F4 F5 F6

α −0.035 −0.035 −0.035 −0.035 −0.034 −0.034
(0.047) (0.046) (0.045) (0.044) (0.043) (0.042)

Rt−1 −0.033 −0.034 −0.035 −0.037 −0.037 −0.038
(0.036) (0.036) (0.036) (0.036) (0.036) (0.036)

Rt−2 0.026 0.036 0.036 0.035 0.033 0.033
(0.038) (0.039) (0.040) (0.040) (0.041) (0.041)

Rt−3 0.002 −0.010 −0.015 −0.016 −0.017 −0.018
(0.031) (0.032) (0.032) (0.033) (0.033) (0.033)

SSIt −0.361 −0.345 −0.326 −0.306 −0.290 −0.269
(0.109) (0.108) (0.105) (0.103) (0.100) (0.098)

Adjusted R2 0.013 0.014 0.014 0.013 0.013 0.012
N 1257 1257 1257 1257 1257 1257

Panel B: Rt = α +
∑3

i=1 βiRt−i + γ+SSI
+
t + γ−SSI

−
t + εt

F1 F2 F3 F4 F5 F6

α −0.032 −0.031 −0.030 −0.029 −0.027 −0.026
(0.050) (0.049) (0.048) (0.047) (0.046) (0.045)

Rt−1 −0.033 −0.034 −0.035 −0.036 −0.037 −0.038
(0.036) (0.036) (0.036) (0.036) (0.036) (0.036)

Rt−2 0.026 0.036 0.036 0.035 0.033 0.033
(0.038) (0.039) (0.040) (0.040) (0.041) (0.041)

Rt−3 0.002 −0.010 −0.015 −0.017 −0.017 −0.018
(0.031) (0.032) (0.032) (0.033) (0.033) (0.033)

SSI+t −0.379 −0.372 −0.359 −0.347 −0.341 −0.325
(0.150) (0.151) (0.148) (0.145) (0.143) (0.140)

SSI−t −0.345 −0.321 −0.295 −0.270 −0.244 −0.220
(0.167) (0.161) (0.157) (0.153) (0.148) (0.144)

Adjusted R2 0.014 0.015 0.015 0.014 0.014 0.013
P-value 0.882 0.824 0.774 0.723 0.646 0.615
N 1257 1257 1257 1257 1257 1257

Notes: Standard errors in parentheses. P-value is a probability value for the null
hypothesis H0 : γ+ = γ− against HA : γ+ 6= γ−.
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Tuesday. However, sometimes the EIA delays the release due to a holiday. So occasionally, there

can be more than 24 hours between the announcements, in which case the market surprise will be

calculated incorrectly. But for the sake of the comparison of results, we abstract from this issue.

We estimate the following regression:

Rt = α +
3∑
i=1

βiRt−i + γ0SSIt + εt,

where Rt refers to the daily return on a futures contract, SSIt = At−Et
σ

refers to the announcement

surprise standardized by its unconditional standard deviation (in our notation, on the day of

announcement, the announced value is At = ∆InvEIAt and expected value is the median Bloomberg

forecast Et = ∆InvBBGt ). If there is no announcement on day t, SSIt = 0. To analyze asymmetry,

we repeat the estimation with positive and negative surprises used separately according to SSI+t =

SSIt · I{SSIt>0} and SSI−t = SSIt · I{SSIt<0}. For our purposes, we again split the sample into the

2010-2014, the 2015-2016, and the 2018-2019 periods. In line with Miao et al. (2018), we focus on

the first 6 futures contracts by maturity.

The results are presented in Tables A.2, A.3 and A.4.7 We see that the results are very similar

to ours. Consider the 2010-2014 period. We observe a significant negative link between inventory

surprises and returns. We also see that the first four futures contracts by maturity react to

news by the same amount. The point estimates show some weakening of the reaction for longer

maturity contracts, the coefficient drops from −0.361 to −0.269, but the difference is small while

the standard errors are extremely large (0.109 and 0.098). Moreover, Panel B displays a symmetric

market reaction to negative and positive market surprises; the null hypothesis for the equality of

coefficients cannot be rejected. The results for the second unconstrained period from 2018 to 2019

are similar.

Now, consider the 2015-2016 period. We clearly observe intensification of the marker reaction to

7Our tables should be compared to tables 9 and 11 (panel A) in Miao et al. (2018). The sample in their paper
covers the 2003-2011 period.
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Table A.3: Estimation results for the 2015-2016 period.

Panel A: Rt = α +
∑3

i=1 βiRt−i + γ0SSIt + εt

F1 F2 F3 F4 F5 F6

α −0.040 −0.042 −0.041 −0.040 −0.038 −0.035
(0.131) (0.124) (0.119) (0.115) (0.112) (0.109)

Rt−1 −0.082 −0.096 −0.105 −0.108 −0.120 −0.121
(0.059) (0.056) (0.056) (0.056) (0.055) (0.055)

Rt−2 −0.003 0.021 0.030 0.037 0.048 0.051
(0.057) (0.055) (0.055) (0.054) (0.054) (0.054)

Rt−3 −0.041 −0.053 −0.061 −0.067 −0.066 −0.065
(0.053) (0.052) (0.052) (0.052) (0.052) (0.053)

SSIt −0.873 −0.868 −0.843 −0.815 −0.794 −0.762
(0.227) (0.213) (0.200) (0.191) (0.183) (0.177)

Adjusted R2 0.044 0.052 0.056 0.059 0.063 0.063
N 495 495 495 495 495 495

Panel B: Rt = α +
∑3

i=1 βiRt−i + γ+SSI
+
t + γ−SSI

−
t + εt

F1 F2 F3 F4 F5 F6

α 0.002 0.002 0.000 −0.003 −0.005 −0.007
(0.131) (0.130) (0.125) (0.121) (0.118) (0.115)

Rt−1 −0.085 −0.098 −0.107 −0.110 −0.121 −0.123
(0.060) (0.057) (0.057) (0.056) (0.055) (0.055)

Rt−2 0.000 0.024 0.035 0.042 0.053 0.056
(0.057) (0.055) (0.055) (0.054) (0.054) (0.054)

Rt−3 −0.041 −0.053 −0.061 −0.067 −0.066 −0.065
(0.053) (0.052) (0.052) (0.052) (0.052) (0.053)

SSI+t −0.678 −0.667 −0.630 −0.598 −0.579 −0.548
(0.351) (0.328) (0.308) (0.293) (0.281) (0.271)

SSI−t −1.072 −1.074 −1.061 −1.039 −1.015 −0.981

Adjusted R2 0.047 0.055 0.060 0.062 0.067 0.067
P-value 0.407 0.360 0.305 0.269 0.253 0.238
N 495 495 495 495 495 495

Notes: Standard errors in parentheses. P-value is a probability value for the null
hypothesis H0 : γ+ = γ− against HA : γ+ 6= γ−.
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Table A.4: Estimation results for the 2018-2019 period.

Panel A: Rt = α +
∑3

i=1 βiRt−i + γ0SSIt + εt

F1 F2 F3 F4 F5 F6

α 0.014 0.013 0.012 0.010 0.009 0.007
(0.089) (0.088) (0.087) (0.085) (0.083) (0.081)

Rt−1 −0.092 −0.106 −0.110 −0.110 −0.110 −0.110
(0.049) (0.049) (0.048) (0.047) (0.046) (0.045)

Rt−2 −0.033 −0.028 −0.029 −0.029 −0.028 -0.026
(0.050) (0.052) (0.053) (0.053) (0.054) (0.054)

Rt−3 −0.012 −0.016 −0.016 −0.011 −0.009 −0.006
(0.049) (0.051) (0.051) (0.052) (0.052) (0.052)

SSIt −0.479 −0.471 −0.457 −0.439 −0.423 −0.409
(0.147) (0.144) (0.141) (0.140) (0.139) (0.137)

Adjusted R2 0.036 0.038 0.038 0.037 0.037 0.036
N 512 512 512 512 512 512

Panel B: Rt = α +
∑3

i=1 βiRt−i + γ+SSI
+
t + γ−SSI

−
t + εt

F1 F2 F3 F4 F5 F6

α −0.002 −0.005 −0.004 −0.004 −0.004 −0.004
(0.096) (0.095) (0.093) (0.091) (0.089) (0.087)

Rt−1 −0.093 −0.107 −0.111 −0.111 −0.110 −0.111
(0.048) (0.049) (0.048) (0.047) (0.046) (0.045)

Rt−2 −0.033 −0.028 −0.029 −0.029 −0.028 −0.027
(0.050) (0.052) (0.053) (0.053) (0.054) (0.054)

Rt−3 −0.013 −0.017 −0.016 −0.012 −0.009 −0.007
(0.049) (0.051) (0.051) (0.051) (0.052) (0.052)

SSI+t −0.414 −0.400 −0.393 −0.384 −0.374 −0.364
(0.175) (0.172) (0.170) (0.170) (0.169) (0.168)

SSI−t −0.557 −0.556 −0.534 −0.505 −0.481 −0.463
(0.260) (0.255) (0.246) (0.244) (0.241) (0.239)

Adjusted R2 0.038 0.040 0.040 0.040 0.039 0.039
P-value 0.659 0.622 0.648 0.695 0.724 0.743
N 512 512 512 512 512 512

Notes: Standard errors in parentheses. P-value is a probability value for the null
hypothesis H0 : γ+ = γ− against HA : γ+ 6= γ−.
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news, the estimate for the front month contracts now becomes−0.873. But even when inventories

are constrained, we see that longer maturity contracts react in exactly the same way as the front-

month contract: the point estimates for the first and fourth month contracts are −0.873 and

−0.762, an extremely small difference considering the standard errors. Finally, when we split the

surprises, we see that negative surprises trigger a larger market reaction. However, the difference

is statistically insignificant and symmetry cannot be rejected. However, when we consider only the

year of 2016, the asymmetry is rejected for every contract.

Overall, the estimation results of this section confirm our previous findings. The only difference

is the precision of the estimates. Standard errors blow up, which is not that surprising, because

focusing on daily returns inevitably introduces noise which masks the true market reaction to

inventory news. Our approach offers much more precise estimates.

A.7 Oil market during pandemic

Figure A.4 displays the response of the oil market to coronavirus news in the first quarter of 2020.
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Figure A.4: The term structure and oil inventories dynamics from January to April 2020.
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Notes: Top left panel: The term structure of futures prices. The figure displays the daily series of the price difference
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SPR (mln barrels). Bottom right panel: Weekly Cushing, OK Ending Stocks excluding SPR of Crude Oil (mln
barrels).

a.19



Wen, Y. (2005). Understanding the inventory cycle. Journal of Monetary Economics, 52(8),

1533–1555.

Additional references

Byun, S. J. (2017). Speculation in commodity futures markets, inventories and the price of crude

oil. Energy Journal, 38(5), 93–113.

Chang, Y., Choi, Y. & Park, J. Y. (2017). A new approach to model regime switching. Journal

of Econometrics, 196, 127–143.

Hamilton, J. D. (1990). Analysis of time series subject to changes in regime. Journal of Econo-

metrics, 45, 39–70.

Hansen, B. (1997). Inference in TAR models. Studies in Nonlinear Dynamics and Econometrics,

2(1), 1–14.

Teräsvirta, T. (1994). Specification, estimation, and evaluation of smooth transition autoregressive

models. Journal of the American Statistical Association, 89, 208–218.

Lin, C.-F. J. & Teräsvirta, T. (1994). Testing the constancy of regression parameters against

continuous structural change. Journal of Econometrics, 62, 211–228.

a.20


	Online Appendix
	Dispersed beliefs and inventory announcements
	Convenience yield 
	Dealing with futures contracts: expiration
	Realized variance 
	Time variation in parameters 
	Long term effects
	Oil market during pandemic 

	References

