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Abstract

We show that many existing tests for time-series predictability are special cases of a general

nonparametric test based on the OLS estimator of the slope coefficient in a bivariate linear

regression of certain type. By manipulating the features of this regression one can construct

numerous new predictability tests. It turns out that some of the tests existing in the literature

are asymptotically equivalent, and differ only by what kind of pivotization is applied to the

core statistic. In addition, we show that the same tests may be constructed via reverse

regressions. We also provide an extension to multiple null hypotheses and, respectively, tests

based on multiple regressions. Among other things, we pay special attention to the issue of

correct pivotization, discuss interpretation of regression-based tests, and argue against some

widespread misconceptions.
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1 Introduction

Applied researchers in macroeconomics and empirical finance routinely utilize various tests

for time-series predictability. Often these tests are used to evaluate the quality of a partic-

ular predictor, in other cases are they used to verify whether a particular series is mean or

sign predictable, sometimes they are used to test for serial dependence. There are many of

such tests that are dispersed throughout the literature: among them are market timing tests

of Henriksson and Merton (1981), Cumby and Modest (1987), Breen, Glosten and Jagan-

nathan (1989), and Bossaerts and Hillion (1999), the directional accuracy test of Pesaran

and Timmermann (1992), the excess profitability test developed recently in Anatolyev and

Gerko (2005), and a generalization of the Henriksson and Merton test proposed by Pesaran

and Timmermann (1994). Some of these tests are based on testing for the nullity of slope

coefficients in linear regressions, some are Hausman type tests based on contrasts, some are

based on contingency tables. Some of the tests are designed for the null of conditional mean

independence, others – for the null of conditional sign independence, although most are used

to detect predictability in general rather than that of one or another specific type.

In this paper, we show that most of aforementioned tests are special cases of a nonpara-

metric test based on the OLS estimator of the slope coefficient in a certain bivariate linear

regression. The left side variable in this regression is determined by what feature of the given

series is tested for conditional independence, while the right side variable can be chosen as an

arbitrarily function of the predictor. This implies that many new predictability (or “market

timing”) tests can be designed (i) by manipulating this function whose choice has an impact

only on the power of the test, and (ii) by manipulating the feature tested for conditional

independence. In addition, it turns out that some of the tests existing in the literature are

asymptotically equivalent and differ only by what kind of pivotization is used for the core

statistic. In particular, the directional accuracy test of Pesaran and Timmermann (1992)

is asymptotically equivalent to market timing tests of Henriksson and Merton (1981) and
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Breen, Glosten and Jagannathan (1989), and the (suitably robustified) excess profitability

test of Anatolyev and Gerko (2005) is asymptotically equivalent to the market timing test

of Cumby and Modest (1987). Moreover, we show that the same tests may be constructed

via reverse regressions, i.e. those where the left side and right side variables switch places,

but the standard errors must be computed very carefully. Theoretically such equivalences

of various tests are very important, while in practice they may facilitate testing via use of

standard regression packages.

We also provide an extension to multiple null hypotheses and, respectively, tests based

on multiple regressions. As one example, we analyze tests for independence in (larger than

2× 2) contingency tables, both the classical χ2-tests and the one considered in Pesaran and

Timmermann (1994). It turns out that these tests can also be interpreted as tests for the

nullity of coefficients in linear regressions, which may be straight or reverse, but now these

are multiple and multivariate. As another example, we discuss joint testing for conditional

mean and conditional variance independence of returns, also considered in Marquering and

Verbeek (2004).

Throughout, we pay special attention to the important issue of constructing standard

errors for the OLS estimate, whether it should or may not be a heteroskedasticity and auto-

correlation consistent (HAC) one. As a by-product, we prove that the directional accuracy

test (originally developed under the assumption of total independence between predictands

and predictors) is robust to serial correlation and conditional heteroskedasticity, and derive

a HAC version of the excess profitability test (also originally developed under the same in-

dependence assumption). Finally, among other things, we devote a separate section to a

discussion of issues pertinent to the regression-based tests, such as their interpretation and

nonparametric nature, and argue against some widespread misconceptions.

The paper is organized as follows. We start in Section 2 by considering existing tests

based on contrasts, and provide a generalization to other null hypotheses. In Section 3 we

develop regression-based tests, show that they are asymptotically equivalent to contrast-
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based tests of Section 2, and provide a further generalization. In Section 4 we discuss tests

based on reverse regressions. Section 5 contains an extension to multiple null hypotheses and

tests based on multiple regressions. In Section 6 we present a discussion of some conceptual

testing issues. Finally, Section 7 concludes. All proofs and lengthy derivations are contained

in appendices.

2 Contrast-based tests

Let yt represent some stationary economic variable, such as GNP growth, change in some

commodity’s log price, log return from some financial market, etc. Let xt be a continuously

distributed forecast of yt that depends only on the data from It−1 = {yt−1, yt−2, · · · }, or,

more generally, from the extended information set It−1 ⊃ {yt−1, yt−2, · · · } which may include

other historical variables. Let us introduce the following notation for future use assuming

that these moments exist:

mx = E [sign(xt)] ,

my = E [sign(yt)] ,

My = E [yt] ,

Vy = var [yt] .

We start by reviewing two market timing tests which are known in the literature and have

a similar structure. We will discuss what null hypotheses these tests assume, and how their

asymptotic distributions are derived. Then we will extend the structure of these two tests to

a more general framework that nests both tests. In subsequent sections, we will generalize

this class of tests further, and look at it at various other angles.

The directional accuracy (DA) test of Pesaran and Timmermann (1992) is routinely used

as a predictive-failure test in constructing forecasting models; see, among others, Pesaran

and Timmermann (1995), Gençay (1998), Qi (1999), Franses and van Dijk (2000), Granger

and Pesaran (2000), Qi and Wu (2003). Formally, the DA test is a test for sign predictability,
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i.e. for the null

HDA
0 : E [sign(yt)|It−1] = const.

It is shown in Anatolyev and Gerko (2005) that the original DA test statistic (based on the

contrast between the empirical frequency of correct directional predictions and an efficient

estimate of the frequency under independence between yt and xt) is asymptotically equivalent

to the following one where recentered and renormalized components are used1:

DA =
√
T
ADA −BDA√

V̂DA

d→ N(0, 1), (2.1)

where

ADA −BDA =
1

T

∑
t

sign (xt) sign (yt)−

(
1

T

∑
t

sign (xt)

)(
1

T

∑
t

sign (yt)

)
, (2.2)

V̂DA =
(
1− m̂2

x

) (
1− m̂2

y

)
,

and

m̂y =
1

T

∑
t

sign(yt)
p→ my, m̂x =

1

T

∑
t

sign(xt)
p→ mx.

Pesaran and Timmermann (1992) also indicate that the DA test is asymptotically equivalent

to the well-known Henriksson and Merton (1981) test of market timing, which is an exact

test for independence in a 2×2 contingency table (for more about such relations, see Sections

4 and 5). The latter popular test has been used in a deal of finance and macroeconomic

papers on forecasts evaluation (e.g., Havenner and Modjtahedi, 1988, Lai, 1990), sometimes

together with the DA test (e.g., Ash, Smyth and Heravi, 1998, Greer, 2003). Interestingly,

Granger and Pesaran (2000) show that the DA test statistic is also a standardized version

of “Kuipers score” used in the meteorological literature.

An important fact is that even though the DA test is a test for sign predictability, the

asymptotic distribution of the DA test statistic is derived under a much stronger presumption

1This transformation entails a linear operation of switching from indicators to signs, and omitting a term

of higher order of negligence in the variance formula.
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that under HDA
0 there is independence of yt and xt at all lags and leads (see the manipula-

tions below equation (4) in Pesaran and Timmermann, 1992, p. 462; these manipulations

aim at computation of finite-sample variances of “predecessors” of ADA and BDA). This

independence evidently does not hold whenever a predictor is related to the series being

predicted. For example, a simple moving average forecast contains lags of yt and hence

is correlated with lags of the series itself. It will not be an exaggeration to say that this

presumption is never satisfied in practice when past information is used for prediction.

The similar in spirit excess profitability (EP) test for mean predictability, i.e. for the null

HEP
0 : E [yt|It−1] = const,

is developed in Anatolyev and Gerko (2005), and is based on the contrast

AEP −BEP =
1

T

∑
t

sign(xt)yt −

(
1

T

∑
t

sign(xt)

)(
1

T

∑
t

yt

)
. (2.3)

The EP test statistic and its asymptotic distribution are

EP =
√
T
AEP −BEP√

V̂EP

d→ N(0, 1), (2.4)

where

V̂EP =
(
1− m̂2

x

)
V̂y,

and

V̂y =
1

T

∑
t

(yt − ȳ)2 p→ Vy.

When yt represents a logarithmic return on some financial asset or index, the EP statistic can

be interpreted as a normalized return of the position implied by a simple trading strategy that

issues a buy signal if a forecast of next period return is positive and a sell signal otherwise,

over a certain benchmark (see Anatolyev and Gerko, 2005 for details).

Similarly to the DA test, the asymptotic distribution of the EP test in the original paper

is derived under the same strong presumption that xt is independent from yt for all lags

and leads, by computing the finite-sample variances of AEP and BEP . The consequences of
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this presumption can be clearly seen in the expressions for V̂DA and V̂EP the components of

which do not take the form of autocorrelation and even heteroskedasticity consistent variance

estimators.

To emphasize that the DA and EP tests test different nulls which is important for further

discussion, let us look at two examples of data generating processes implying different types

of nonpredictability. These examples are inspired by the analysis in Christoffersen and

Diebold (2003).

Example 1 In a pure ARCH model yt = µ+ εt, where εt|It−1 ∼ N (0, σ2
t ) and µ 6= 0, condi-

tional mean independence follows because E [yt|It−1] = µ = const. There is sign predictability

because

E [sign(yt)|It−1] = Pr [yt > 0|It−1]− Pr [yt < 0|It−1]

= Pr

[
εt
σt
> − µ

σt
|It−1

]
− Pr

[
εt
σt
< − µ

σt
|It−1

]
= 2Φ

(
µ

σt

)
− 1 6= const.

Example 2 In a simple variant of an ARCH-M model yt = γσt + εt, where γ > 0 and

εt|It−1 ∼ N (0, σ2
t ) , there is mean predictability because E [yt|It−1] = γσt 6= const. Condi-

tional sign independence follows because

E [sign(yt)|It−1] = Pr [yt > 0|It−1]− Pr [yt < 0|It−1]

= Pr

[
εt
σt
> −γ|It−1

]
− Pr

[
εt
σt
< −γ|It−1

]
= 2Φ (γ)− 1 = const.

In what follows, we will be concerned with conditional independence and predictability

of a more general type. In the rest of this Section, we

a) consider a class of predictability tests that contains DA and EP as special cases, and

b) derive an autocorrelation and heteroskedasticity consistent version of this general test.
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Let us consider testing the null hypothesis

Hg
0 : E [g(yt)|It−1] = const,

where g(u) is a given time non-varying function. In contrast to the two preceding papers,

we require that only the conditional independence of g(yt), together with certain regularity

conditions to be specified below, can be used in deriving the distribution of statistics of

interest under Hg
0 . By analogy to the DA and EP tests, consider the contrast

Ag −Bg ≡
1

T

∑
t

sign(xt)g(yt)−

(
1

T

∑
t

sign(xt)

)(
1

T

∑
t

g(yt)

)
. (2.5)

Setting g(u) = sign(u) leads to testing for conditional sign predictability and the DA test

statistic, while setting g(u) = u leads to testing to conditional mean predictability and the

EP test statistic. Let us additionally introduce the notation

Mg = E [g(yt)] ,

Vg = var [g(yt)] ,

and impose

Assumption 1

(i) The series yt and its forecast xt are continuously distributed, strictly stationary, and

strongly mixing with mixing coefficients α (j) satisfying
∑∞

j=1 α (j)1−1/ν <∞ for some ν > 1.

(ii) The forecast xt is It−1-measurable.

(iii) The function g(u) is measurable, and E [g(yt)
2ν ] exists and is finite for ν from (i).

The asymptotic distribution of the contrast (2.5) is given in the following theorem.

Theorem 1 Suppose the regularity conditions specified in Assumption 1 hold. Then, under

Hg
0 : E [g(yt)|It−1] = const, we have

√
T (Ag −Bg)

d→ N(0, V g),

where

V g =
(
1−m2

x

)
Vg − 2mxcov

[
sign(xt), g(yt)

2
]
.
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Beside the DA and EP tests, Theorem 1 may be used to construct other tests for pre-

dictability of various moments. For example, a null of conditional second moment inde-

pendence and a corresponding test for second moment predictability will result if one takes

g(u) = u2.

A remarkable feature of the result in Theorem 1 is that the expression for the asymptotic

variances does not contain long-run variances and/or long-run covariances despite their pres-

ence in the asymptotic variances of Ag and Bg separately. Why this is so will be transparent

in Section 3. The asymptotic variance V g does, however, include a term associated with a

contemporaneous correlation of predictor’s sign and (the square of) the predicted feature.

Specialization of Theorem 1 to the two special cases of interest yields

Corollary 1

(i) Under the null of conditional sign independence, i.e. HDA
0 : E [sign(yt)|It−1] = const,

√
T (ADA −BDA)

d→ N(0, VDA),

where

VDA =
(
1−m2

x

) (
1−m2

y

)
.

(ii) Under the null of conditional mean independence, i.e. HEP
0 : E [yt|It−1] = const,

√
T (AEP −BEP )

d→ N(0, VEP ),

where

VEP =
(
1−m2

x

)
Vy − 2mx cov

[
sign(xt), y

2
t

]
.

It immediately follows that the directional accuracy statistic (2.1) is robust to serial de-

pendence between the predicted series and the series of predictands, and has correct asymp-

totic size under such departures from the strong assumptions under which this test was

initially derived. In contrast, the EP test (2.4) will have wrong asymptotic size unless
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cov [sign(xt), y
2
t ] = 0, which is not likely to hold under conditional heteroskedasticity, and

unless mx = 0. The form of the asymptotic variance VEP suggests that a heteroskedasticity-

robust version of the EP test statistic can be easily constructed by replacing V̂EP in (2.4)

by

V̂EP =
(
1− m̂2

x

)
V̂y − 2m̂xĈ,

where, for example,

Ĉ =
1

T

∑
t

(sign(xt)− m̂x) y
2
t .

3 Regression-based tests

Note that Ag − Bg in (2.5) is a sample covariance between g(yt) and sign(xt). A sample

covariance arises in a formula for the OLS estimator of a slope coefficient in a bivariate

regression with a constant. Hence, consider the regression

g(yt) = αg + βg sign(xt) + ηt. (3.1)

The OLS estimator of βg,

β̂g =

T−1
∑
t

sign(xt)g(yt)−
(
T−1

∑
t

sign(xt)

)(
T−1

∑
t

g(yt)

)
1−

(
T−1

∑
t

sign(xt)

)2 ,

is proportional to Ag − Bg in (2.5). The t-ratio for β̂g is in turn proportional to β̂g. Hence,

a valid t-test for βg = 0 is asymptotically equivalent to an appropriate test of section 2,

although the test statistics may be different in value in finite samples. Conversely, the

test statistic developed in Section 2, of which the DA and EP statistics are special cases,

can be interpreted as (possibly up to a multiplicative term that is asymptotically equal to

unity) a t-ratio in bivariate predictive regression (3.1). In particular, such interpretation

immediately provides a rationale to the observation made in Section 2 that the asymptotic

variance of Ag−Bg does not contain long-run variances and/or long-run covariances. Indeed,
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when E [g(yt)|It−1] = const, a linear regression of g(yt) on any It−1-measurable variable will

provide a zero slope coefficient and does not require autocorrelation-consistent estimation of

asymptotic variance because the problem is a single-period one.

Linear predictive regressions similar to (3.1) have been developed and extensively used

in the finance literature. Breen, Glosten and Jagannathan (1989, section II, bottom of

subsection A) proposed running a bivariate regression of the indicator that a realized return

is positive on the indicator that a return prediction is positive. Provided that forecasts

do not have a probability atom at zero, up to a linear transformation of variables this is

equivalent to the regression (3.1) with g(u) = sign(u), and, as we already know, the t-test

for a zero slope coefficient (BGJ test henceforth) is asymptotically equivalent to the DA

test. Cumby and Modest (1987) in turn proposed running a bivariate regression of a realized

return itself on the indicator that a return prediction is positive. Analogously, up to a

linear transformation of the right-hand side variable this is equivalent to the regression (3.1)

with g(u) = u, and, as we already know, the t-test for a zero slope coefficient (CM test

henceforth) is asymptotically equivalent to the EP test. To our knowledge, the asymptotic

equivalence of the BGJ and CM tests to the DA and EP tests, respectively, has not yet

been widely recognized in the literature. The BGJ and CM tests have been applied to many

financial time series like stock index returns, as well as to macroeconomic series such as GNP

growth (Stekler and Petrei, 2003) and petroleum price changes (Sadorsky, 2002). Along with

g(u) = sign(u), the literature displays an interest to the choice g(u) = sign(u− κ) for some

fixed known constant κ. For example, Schnader and Stekler (1990) use g(u) = sign(u − κ)

with several choices of κ to see if forecasts can distinguish between periods of low and high

levels of GNP growth.

The need to correct for heteroskedasticity was recognized in the finance literature pretty

early; see Breen, Jagannathan and Ofer (1986) who emphasized the importance of correcting

for heteroskedasticity in predictive regressions, and found that using conventional standard

errors may lead to severe size distortions. At the same time, some papers, e.g., Breen,
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Glosten and Jagannathan (1989), used autocorrelation-consistent variance estimators even

though there is no need for that correction, while others, e.g., Cumby and Modest (1987),

correct only for heteroskedasticity.

Remark 1 Consider again the special case g(u) = sign(u) leading to the DA test. Because

under the null E [sign(yt)|It−1] = const we have

var [sign(yt)|It−1] = E
[
sign(yt)

2|It−1

]
− E [sign(yt)|It−1]2 = 1−m2

y = const,

the regression is conditionally homoskedastic. This implies that the White and conventional

forms of asymptotic variance are equivalent. This conclusion parallels the one made in Sec-

tion 2 about the robustness of the DA test to conditional heteroskedasticity. Hence, one may

use conventional standard errors to construct a regression-based test for sign predictability.

Thus, in C-panels of their tables IV and V, Breen, Glosten and Jagannathan (1989) did

not have to use correction for heteroskedasticity in constructing the standard errors. This

also explains why some authors obtained nearly identical conventional and White t-statistics

(e.g., Marquering and Verbeek, 2004).

Now we take a further step in extending the constructed class of tests. One may think

that it may not be optimal to use sign(xt) as a regressor in the predictive regression (3.1) as

this variable may not be a strong predictor when there is predictability. Indeed, a regression

on a more general regressor h (xt) can be used to construct an analogous test:

g(yt) = αg,h + βg,hh(xt) + ηt. (3.2)

In applied literature, it is a common practice to use predictive regressions (3.2) with g(u) =

h(u) = u. For instance, see a finance application in Hartzmark (1991) where the author calls

this technology testing for the “big hit” forecast ability. Such predictive regressions are also

familiar from the literature on testing whether one macroeconomic variable has information

about another, as in, for example, Hansen and Hodrick (1980) and Mishkin (1990), and from
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the literature on time-series model selection, as in, for example, Pesaran and Timmermann

(1995) and Bossaerts and Hillion (1999). When the task is testing for predictability, the null

is Hg
0 : E [g(yt)|It−1] = const, as before. We replace Assumption 1(iii) with

Assumption 2 The functions g(u) and h(u) are measurable, and E [|g(yt)|2νq] and E [|h(xt)|2νp]

exist and are finite for ν from Assumption 1, and for some q and p such that q−1 + p−1 = 1.

The moment condition is sufficient, but not necessary. With a choice of bounded h(u),

as is the case for the DA and EP tests, it is possible to set p = ∞ and q = 1, so that the

moment condition on g(yt) is quite mild.

For the regression (3.2) an appropriate test statistic is the White-corrected t-ratio for the

OLS estimator β̂g,h of βg,h:

β̂g,h =

T−1
∑
t

h(xt)g(yt)−
(
T−1

∑
t

h(xt)

)(
T−1

∑
t

g(yt)

)
T−1

∑
t

h(xt)2 −
(
T−1

∑
t

h(xt)

)2 . (3.3)

Theorem 2 Suppose the regularity conditions specified in Assumptions 1 and 2 hold. Con-

sider the regression (3.2), the OLS estimator (3.3) of βg,h, and the corresponding White-

corrected t-ratio tg,h. Then under Hg
0 : E [g(yt)|It−1] = const, we have

√
T β̂g,h

d→ N

(
0,
V g,h

V 2
h

)
,

where

V g,h = VhVg + cov
[
h(xt)

2, g(yt)
2
]
− 2Mhcov

[
h(xt), g(yt)

2
]
, (3.4)

and

tg,h
d→ N(0, 1).

Note that the formula for V g,h has one more term compared to that of V g which is

non-zero under conditional heteroskedasticity.
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As we already know, an alternative (asymptotically equivalent) form of the same test can

be directly based on the contrast

Ag,h −Bg,h =
1

T

∑
t

h(xt)g(yt)−

(
1

T

∑
t

h(xt)

)(
1

T

∑
t

g(yt)

)
.

To construct the test statistic, this contrast may be pivotized using

V̂ g,h = V̂hV̂g + Ĉ1 − 2M̂hĈ2,

where, for example,

M̂h =
1

T

∑
t

h(xt), V̂h =
1

T

∑
t

(
h(xt)− M̂h

)2

,

M̂g =
1

T

∑
t

g(yt), V̂g =
1

T

∑
t

(
g(yt)− M̂g

)2

,

Ĉ1 =
1

T

∑
t

h(xt)
2g(yt)

2 − 1

T

∑
t

h(xt)
2 1

T

∑
t

g(yt)
2,

Ĉ2 =
1

T

∑
t

(
h(xt)− M̂h

)
g(yt)

2.

We want to emphasize that the comparable contrast-based and regression-based tests are

asymptotically equivalent to the degree that the difference between the two test statistics is

op(1).

It is interesting to know which function h(u) one should use in (3.2) to get as much as

possible from this test, that is, for the emerging test to be as powerful as possible. To this end,

we analyze the power of the test under sequences of local alternatives Hg
δ : E [g(yt)|It−1] =

δ (xt) /
√
T . It is possible to show (see Appendix B) that the maximal local power is reached

when h(xt)−Mh is proportional to

δ (xt)−Mδ

var [g(yt)|It−1]
,

where Mδ = E [δ (xt)] . In particular, if g(yt) is conditionally homoskedastic (as we know is

the case when g(u) = sign(u), see Remark 1), to construct the most powerful test, one should

take the regressor in (3.2) as close as possible to the direction of a suspected deviation from
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non-predictability. Application of these results in practice, however, is problematic because

δ (xt) is unknown; a model selection approach is possible but lies beyond the scope of this

paper.

Before concluding this section, we discuss the following question which also concerns the

previous and all subsequent sections. From the start, we have been assuming, and will be

assuming further, that the frequency of the data coincides with the forecast horizon, so

that yt ∈ It, and the regression errors in (3.2) are non-overlapping. This is not the case

in numerous papers on forecasts evaluation, such as Havenner and Modjtahedi (1988), Ash,

Smyth and Heravi (1998), Greer (2003), Stekler and Petrei (2003), among others, where

long-term forecasts are evaluated so that the spacing of the data falls short of the forecast

horizon, and the regression errors in (3.2) are overlapping. The consequence is that some of

the tests in the cited and many other papers become asymptotically wrongly sized. These

mistakes probably would not have happened if the authors utilized the regression-based

approach where the community recognized the necessity of using HAC correction long ago,

instead of blindly copying the tests (the exact Henriksson and Merton, 1981, and the DA

test of Pesaran and Timmermann, 1992) created for a different environment, and where the

need of correcting for autocorrelation is concealed.

4 Reverse regression-based tests

To test for forecasting ability, Breen, Glosten and Jagannathan (1989, section II, subsection

B) advise to run a linear regression of sign(xt) on sign(yt), i.e. a reverse to (3.2) regression

with h(u) = g(u) = sign(u). The authors note that testing for a zero slope coefficient in such

reverse regression is asymptotically equivalent to the asymptotic version of the Henriksson

and Merton (1981) test of market timing (referred to as HM henceforth). In this Section, we

clarify whether this and similar suggestions are valid, and how tests so constructed relate to

the class of tests under consideration.

Note that the sample covariance between g(yt) and h(xt) in (3.3) can also arise in a
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formula for the OLS estimator of a slope coefficient in a bivariate regression of h(xt) on

g(yt), instead of a bivariate regression of g(yt) on h(xt), with a constant. Consider this

reverse regression:

h(xt) = αh,g + βh,gg(yt) + θt. (4.1)

The OLS estimator β̂h,g of βh,g is

β̂h,g =

T−1
∑
t

h(xt)g(yt)−
(
T−1

∑
t

h(xt)

)(
T−1

∑
t

g(yt)

)
T−1

∑
t

g(yt)2 −
(
T−1

∑
t

g(yt)

)2 . (4.2)

For the reverse regression, we obtain the following interesting results.

Theorem 3 Suppose h(u) and g(u) satisfy the regularity conditions specified in Assumptions

1 and 2. Consider the reverse regression (4.1), the OLS estimator (4.2) of βh,g, and the

corresponding t-ratio th,g. Then under Hg
0 : E [g(yt)|It−1] = const, we have:

(i)
√
T β̂h,g

d→ N

(
0,
V g,h

V 2
g

)
,

where V g,h is given in (3.4);

(ii) if the t-ratio th,g for βh,g is constructed using White-corrected standard errors, then

th,g
d→ N(0, 1);

(iii) if the t-ratio th,g for βh,g is constructed using conventional standard errors, then th,g is

not asymptotically standard normal unless V g,h = VhVg;

(iv) if the t-ratio th,g for βh,g is constructed using a heteroskedasticity and autocorrelation

consistent formula, then th,g is not asymptotically standard normal unless h(xt) has a mar-

tingale difference structure.

Perhaps surprisingly, running the predictability test based on the reverse regression (4.1),

that of a (function of) predictor on a (function of) predictand, is as valid as running the
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predictability test based on the straight regression (3.2). Another surprise comes from the

fact that, unless in special circumstances, in constructing the standard errors it is erroneous

to use a HAC asymptotic variance estimate, and only correction for heteroskedasticity is

needed to provide the correct standard errors. This seemingly contradicts the common

experience that autocorrelation-consistent forms are necessary when the estimated regression

is not a single-period one; the reverse regression (4.1) is not a single-period one if h(xt)

exhibits serial correlation, which is likely to be the case with non-trivial predictors. The

explanation is that the reverse regression (4.1) is not a regression in a strict sense (i.e. in the

sense of conditional expectation of left side variable given right side variables) even under

the null hypothesis.

Returning to the suggestion in Breen, Glosten and Jagannathan (1989, section II, subsec-

tion B), we can now say that it is valid provided that the standard errors are appropriately

constructed. In their reverse regressions, however, Breen, Glosten and Jagannathan (1989)

used the autocorrelation consistent asymptotic variance estimate when constructing stan-

dard errors (see D-panels of their tables IV and V), which, as follows from Theorem 3(iv),

is incorrect. The standard errors there should have been either heteroskedasticity-corrected

according to Theorem 3(ii), or conventional, as in the special case h(u) = g(u) = sign(u)

there is conditional homoskedasticity and V g,h equals VhVg, according to Theorem 3(iii).

We also want to emphasize that the regression-based and corresponding reverse regression-

based tests are asymptotically equivalent to the degree that the difference between the two

test statistics is op(1). In spite of this asymptotic equivalence, sometimes both test statistics

are reported even though they are indeed very close in value (e.g., Sadorsky, 2002).

5 Extension to multiple hypotheses

So far we considered the tests where a researcher tests one feature for conditional indepen-

dence using one function of a predictor. In this section we extend this framework to testing

for conditional independence of more than one feature of yt, as well as to using more than
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one function of a predictor. In addition to the importance of this extension per se, we will

see that this extended framework encompasses some of tests that exist in the literature and

have not yet been considered here so far in this paper.

Consider the following multiple multivariate linear regression

g(yt) = αg,h + Bg,hh(xt) + ηt, (5.1)

where boldface characters represent vectors: g(yt), αg,h and ηt are `× 1, and h(xt) is k× 1.

The `× k matrix of coefficients Bg,h equals

Bg,h = cov [g(yt),h(xt)] (var [h(xt)])
−1 .

The null hypothesis of interest

Hg
0 : E [g(yt)|It−1] = const (5.2)

can be tested by testing if some or all coefficients in Bg,h are zero using the Wald test and

equation-by-equation OLS estimates. The OLS estimator equals

B̂g,h =

(
1

T

∑
t

g(yt)h(xt)
′ − 1

T

∑
t

g(yt)
1

T

∑
t

h(xt)
′

)

×

(
1

T

∑
t

h(xt)h(xt)
′ − 1

T

∑
t

h(xt)
1

T

∑
t

h(xt)
′

)−1

.

The first factor in B̂g,h is a familiar contrast, which is now an `× k matrix.

Previously, we have discussed the case ` = k = 1. Using ` > 1 and keeping k = 1,

one can test for conditional independence of more than one feature of yt. For example, it

can be a joint test for conditional mean and conditional variance independence, to which

we will return shortly. Using k > 1 and keeping ` = 1, one can increase the power of the

tests discussed previously, as several regressors have a better chance to be collinear with

the direction implied by the alternative hypothesis. Below we pay special attention to a

particular case where ` = k and g(u) = h(u), but, of course, the relationship between ` and

k may be any, and g(u) and h(u) need not coincide.
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A leading example of tests with ` = k > 1 that can be encountered in the literature

corresponds to

g(u) = h(u) =



sign(u− κ1)

sign(u− κ2)

...

sign(u− κ`)


(5.3)

for a fixed set of constants κ1 < κ2 < · · · < κ`. Testing in this context can be mapped

to χ2-tests for independence (or, more precisely, for no association) using the following

(`+ 1)× (`+ 1) contingency table with identical categorizations (for a review of the theory

of contingency tables see, for instance, Kendall and Stuart, 1973, chapter 33):

yt

κ0 < yt ≤ κ1 κ1 < yt ≤ κ2 · · · κ`−1 < yt ≤ κ` κ` < yt ≤ κ`+1

κ0 < xt ≤ κ1 p11 p12 · · · p1` p1,`+1

κ1 < xt ≤ κ2 p21 p22 · · · p2` p2,`+1

xt
...

...
...

. . .
...

...

κ`−1 < xt ≤ κ` p`1 p`2 · · · p`` p`,`+1

κ` < xt ≤ κ`+1 p`+1,1 p`+1,2 · · · p`+1,` p`+1,`+1

where κ0 ≡ −∞, κ`+1 ≡ +∞, and

pij =
1

T

∑
t

I (κi−1 < xt ≤ κi, κj−1 < yt ≤ κj) .

Let us also denote

pi· =
1

T

∑
t

I (κi−1 < xt ≤ κi) ,

p·j =
1

T

∑
t

I (κj−1 < yt ≤ κj) .

The classical χ2-test statistic for no association equals

X2 = T
`+1∑
i=1

`+1∑
j=1

(pij − pi·p·j)2

pi·p·j
,
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and is asymptotically distributed as χ2 (`2) .

It is shown in Anatolyev and Kosenok (2006) that this test is asymptotically equivalent to

an OLS-based Wald test for the nullity of all slope coefficients in a linear multiple regression

of I (κj−1 < yt ≤ κj) on I (κi−1 < xt ≤ κi) with a constant in each equation, i.e. for the null

H0 : βji = 0, i = 1, · · · , `, j = 1, · · · , `

in the regression system

I (κj−1 < yt ≤ κj) = α̃j +
∑̀
i=1

βjiI (κi−1 < xt ≤ κi) + η̃j, j = 1, · · · , `. (5.4)

Because the sign and indicator function are linked linearly to each other, this regression

system is also equivalent to the following one:

sign (yt − κj) = αj +
∑̀
i=1

βji sign (xt − κi) + ηj, j = 1, · · · , `.

which is the system (5.1) with (5.3). Thus we can conclude that the classical χ2-test for

no association is equivalent to the test for predictability of signs of shifted arguments via

testing for the nullity of all slope coefficients in the multiple multivariate linear regression of

the type (5.1).

Pesaran and Timmermann (1992, Section 2, and 1994) propose a generalization of the DA

test that was discussed previously. This test is applied, aside from Pesaran and Timmermann

(1992, 1994), in Lane, Peel, and Raeburn (1996). After its components are recentered and

renormalized as before, their test statistic is based on the sum of `+ 1 contrasts:

`+1∑
i=1

(pii − pi·p·i) . (5.5)

It is shown in Anatolyev and Kosenok (2006) that this test applies to the same regression

system (5.4), but the null hypothesis is the following restriction placed on the coefficients:

H0 : Υ′vec
(
VxB

′
g,h

)
= 0,
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where Υ = ι`2 − vec (I`) , Vx = diag {πi,·}`i=1 − πxπ
′
x, πi,· = Pr {κi−1 < xt ≤ κi} , πx =

‖πi,·‖`i=1 . Why this particular linear combination is used for testing the null

Hsign
0 : E [sign(yt − κj)|It−1] = const for j = 1, · · · , `,

is not obvious from the statistical standpoint.

Now we will discuss, as another illustration, the construction of a joint test for conditional

mean and conditional variance independence of returns. The nullHE,var
0 : E [yt|It−1] = const,

var [yt|It−1] = const can be reformulated as HE,var
0 : E [yt|It−1] = const, E [y2

t |It−1] = const.

Then the above framework applies with g(yt) = (yt, y
2
t )
′
. If, for example, one naturally

chooses h(xt) = (xt, x
2
t )
′
, the null hypothesis HE,var

0 can be tested by running OLS on the

system

yt = αy + βy,xxt + βy,x2x2
t + ηy,t,

y2
t = αy2 + βy2,xxt + βy2,x2x2

t + ηy2,t,

and testing βy,x = βy,x2 = βy2,x = βy2,x2 = 0 using the Wald test. In a similar manner one

can construct a joint test for directional non-predictability of returns and their volatility;

then g(yt) = (sign (yt) , sign (y2
t − κ))

′
, where κ is a chosen positive benchmark, and a natural

choice for h(xt) then is h(xt) = (sign (xt) , sign (x2
t − κ))

′
. The second entry in both vectors

is not exactly the sign of shifted volatility, but it is quite close to it given that for a near-

zero mean series rt, var [rt] = E [r2
t ] − E [rt]

2 ≈ E [r2
t ] . Recently, Marquering and Verbeek

(2004) have developed an analog of the BGJ test aimed at testing jointly for directional

non-predictability of returns and their volatility, which may also be implemented by using

the chi-square test discussed above for a 4 × 4 contingency table. The authors suggest a

4-equation multiple regression of indicators of events related to both returns and observed

volatility, on indicators of events related to both return and volatility predictors. In order to

implement such test, one needs an observable measure of volatility; the authors use a monthly

realized volatility measure calculated from daily returns. Note that in our approach one need

not observe the volatility to test essentially the same directional hypothesis; and in the case
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of mean independence of returns and their squared the procedure is totally clean of any

approximations.

Returning to the general regression formulation (5.1), we can also see by the logic of

Section 4 that the null (5.2) can also be tested via the Wald test in the reverse regression

h(xt) = αh,g + Bh,gg(yt) + θt (5.6)

and the OLS estimate of the slope coefficients

B̂h,g =

(
1

T

∑
t

g(yt)h(xt)
′ − 1

T

∑
t

g(yt)
1

T

∑
t

h(xt)
′

)′

×

(
1

T

∑
t

g(yt)g(yt)
′ − 1

T

∑
t

g(yt)
1

T

∑
t

g(yt)
′

)−1

,

because both B̂g,h and B̂h,g are based on the same contrast.

6 Discussion

A natural question that may arise at this point is: given that Hg
0 may be tested by one of

three asymptotically equivalent ways, which one provides better finite-sample performance?

Of course, it is impossible to answer this question using first order asymptotic tools, but

intuition suggests that contrast based tests must be advantageous relative to this criterion,

because they use pivotization expressions that are much more compact than those implicit

in t or Wald statistics, and as a result contain less estimation noise. If however the available

sample is truly small, it is worthwhile to use exact predictability tests such as the Henriksson

and Merton (1981) test whose statistic is distributed hypergeometrically.

In the rest of this Section we discuss some issues pertinent to the regression-based tests

such as their interpretation and nonparametric nature, and argue against some widespread

misconceptions.

We have established that the three ways of constructing a test for conditional indepen-

dence of g(yt) are asymptotically equivalent, and their numerical values depend, holding the
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choice of h(xt) constant, only on how the contrast Ag,h − Bg,h is pivotized. This implies,

in particular, that any valid interpretation given to such test, that is reliant on the form of

pivotization, can also be extended to other forms. The same is true regarding the choice of

h(xt), as this choice impacts only the power of the test. On the other hand, any interpre-

tation should not rely on the relationship not implied by the null hypothesis of conditional

independence. Let us, for example, recall how the simple Henriksson and Merton (1981) test

of market timing corresponding to h(u) = g(u) = sign(u), is interpreted in the literature:

1. Rejection means that returns forecasts have value to an investor (Merton, 1981).

2. Rejection means that an investor’s prior probability density over returns is changed

when the investor obtains a returns forecast (Henriksson and Merton, 1981).

3. Rejection means that return forecasts are independent of observed returns (Pesaran

and Timmermann, 1992).

4. Rejection means that a set of return forecasts differs significantly from a naive model

that consistently predicts up or consistently predicts down (Schnader and Stekler,

1990).

Some of these interpretations, however, assume much more than just the relationship implied

by the null hypothesis Hg
0 : E [g(yt)|It−1] = const.

Another warning concerns the out-of-sample interpretation of tests. The EP test of Ana-

tolyev and Gerko (2005) was constructed as explicitly tied to a virtual investor’s simple

trading strategy. The DA test of Pesaran and Timmermann (1992) can possibly also be tied

an analogous, albeit a more complicated, trading strategy involving options in the spirit of

Breen, Glosten and Jagannathan (1989, section 2B). In spite of these facts, the EP or DA

tests should not be given an interpretation that they test out-of-sample predictive ability

of an underlying forecasting model. As follows from their asymptotic equivalence to cor-
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responding regression-based tests, no comparison of out-of-sample measures is involved in

their construction.

In the rest of this Section, we comment on a series of misconceptions that often accompany

the use of the tests under consideration in the applied literature.

The first misconception concerns a sometimes awkward comparison of tests that belong

to different null hypotheses. Often one can encounter claims that successful sign predictions

may be of smaller value than successful mean predictions for an investor concerned with

maximizing profits (Skouras, 2000, Stekler and Petrei, 2003, Anatolyev and Gerko, 2005).

These claims are perfectly valid. A related claim, however, that this implies that a test for

one null is more powerful than a test for another null, is questionable. Power of tests can be

compared if they test the same feature, as in our analysis of local power at the end of Section

3 where we hold the null Hg
0 : E [g(yt)|It−1] = const fixed and vary choices of h(xt). Which

null to test depends on the researcher’s objective, be it profit maximization or something

else, but given the null, it is legitimate to compare only tests that test this particular null.

Hence, the critique of the HM test in Cumby and Modest (1987, pp.177–178) should actually

be viewed as a critique of the null that is tested, not of the HM test itself.

Regarding the power, claims that one test (say, the EP or CM test) is powerful and

another test (say, the DA or HM test) is weak as done, for example, in Cumby and Modest

(1987, pp.175–177) and repeated in many applied papers, are also questionable. Indeed,

in example 1 of Section 2 where the series exhibits conditional mean independence but

sign predictability, the EP (CM) test will not have power at all, while the DA (HM) test

will. Analogously, in example 2 of Section 2 where the series exhibits conditional sign

independence but mean predictability, the DA (HM) test will not have power at all, while

the EP (CM) test will.

One may, on the other hand, view predictability in principle (i.e. absence of serial depen-

dence) as a “universal” null hypothesis, and compare ability of different tests to detect this

predictability. One should make sure, however, that the predictability extends in directions
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away from all the nulls assumed by the tests under consideration. Such exercise is performed

in Anatolyev and Gerko (2005, section 3) who compare the DA and EP tests in this way.

Implementation of a test for the absence of serial dependence by running simultaneous tests

with different choices of g(u), however, does not seem effective2; probably other tools should

be used instead, e.g. the Ljung–Box test for linear predictability, the BDS test (Brock,

Dechert, Scheinkman and LeBaron, 1996) for nonlinear predictability.

Another serious misconception concerns attempts in the literature to give predictive re-

gressions (3.2) and (4.1) a status of a parametric model [cf., for example, the following pas-

sages: “The Henriksson–Merton test ... treats realized returns as a dichotomous variable...”

and “the more restrictive assumption that the forecast is independent of the magnitude of

subsequent realized return” in Cumby and Modest (1987, p.178), or “... CM assumes that

the magnitude of the price change ... depends linearly on the forecast” in Hartzmark (1991,

p. 54).] As follows from our analysis, the choice of the function g(u) is dictated only by what

feature a researcher wants to test, and the choice of the function h(u) is pretty arbitrary,

although it has an impact on the power and interpretability. Although (3.2) or (4.1) de-

ceivingly look as regressions, in fact they are not (except that (3.2) is a regression but only

under the null Hg
0 ) in a strict sense (i.e. in the sense of conditional expectation of left side

variable given right side variables), and they do not admit any “causality” or “dependence”

interpretation. The fact that we estimate linear equation (3.2) or (4.1) does not mean that

we assume some structural linear relationship between g(yt) and h(xt). In reality, all tests

we consider in this paper are nonparametric tests, even though some may appear as tests on

coefficients in a linear “parametric” regression. This appearance is only a part of a conve-

nient device that allows one to apply the regression theory for one very specific purpose – to

test for zeroness of slope coefficients. In particular, this device facilitates testing in practice

2Schnader and Stekler (1990) repeat the HM procedure changing g(u) = sign(u) to g(u) = sign(u − κ)

with several choices of κ to determine whether the results of the HM test are robust. A more appropriate

procedure is one described in Section 5.
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via use of standard regression packages such as, for example, Econometric Views.

7 Conclusion

We have discovered that many existing tests for time-series predictability are special cases

of a general nonparametric test based on the OLS estimator of the slope coefficient in a

bivariate linear regression of certain type. The class of such tests is big and extends in at

least two directions: one is indexed by the feature whose conditional expectation is tested

for independence, and the other is indexed by the function of the given predictor. Of course,

this class, albeit big, is restricted in several respects; for example, all variables are assumed

stationary. The class considered does not include some other existing tests. For example, the

BDS test statistics (Brock, Dechert, Scheinkman and LeBaron, 1996) used as a portmanteau

test for neglected nonlinearity, also has a form of a pivotized contrast, but the components of

this contrast are Wilcoxon-type averages rather than simple averages. Sometimes literature

suggests using even more complicated statistics like the Spearman rank correlation coefficient

as in Chance and Hemler (2001), or a certain U-statistic as in Jiang (2003). It is possible

that such tests may also be outcomes of some estimators in linear regressions, but those

estimators do not take a form of a function of simple empirical averages but rather take

some fancier forms.
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A Appendix: proofs

Lemma 1 Under assumptions 1 and 2, the infinite summation

+∞∑
j=−∞

E [h(xt)g(yt)h(xt+j)g(yt+j)]

absolutely converges.

Proof. Using Ibragimov’s (1962) and Hölder’s inequalities, for all j > 0, the quantity
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|E [h(xt)g(yt)h(xt+j)g(yt+j)]| equals

|E [h(xt)g(yt) (E [h(xt+j)g(yt+j)|It]− E [h(xt+j)g(yt+j)])]|

≤
(
E
[
|h(xt)g(yt)|2ν

])1/2ν
(
E
[
|E [h(xt+j)g(yt+j)|It]− E [h(xt+j)g(yt+j)]|2ν/(2ν−1)

])1−1/2ν

≤
(
E
[
|h(xt)g(yt)|2ν

])1/2ν · 8α (j)1−1/ν (E [|h(xt)g(yt)|2ν
])1/2ν

≤ 8α (j)1−1/ν (E [|h(xt)|2νp
])1/νp (

E
[
|g(yt)|2νq

])1/νq
.

Hence,

+∞∑
j=−∞

|E [h(xt)g(yt)h(xt+j)g(yt+j)]| ≤ 8
(
E
[
|h(xt)|2νp

])1/νp (
E
[
|g(yt)|2νq

])1/νq
+∞∑
j=−∞

α (|j|)1−1/ν <∞.

Lemma 2 Suppose h(u) and g(u) satisfy the regularity conditions specified in Assumptions

1 and 2. Consider the contrast

Ag,h −Bg,h ≡
1

T

∑
t

h(xt)g(yt)−

(
1

T

∑
t

h(xt)

)(
1

T

∑
t

g(yt)

)
. (A.1)

Under Hg
0 : E [g(yt)|It−1] = const,

√
T (Ag,h −Bg,h)

d→ N(0, V g,h),

where

V g,h = VhVg + cov
[
h(xt)

2, g(yt)
2
]
− 2Mhcov

[
h(xt), g(yt)

2
]
.

Proof. Note that

√
T (Ag,h −Bg,h) =

√
T

(
T−1

∑
t

h(xt)g(yt)−MhMg

)

−T−1
∑
t

h(xt)
√
T

(
T−1

∑
t

g(yt)−Mg

)

−Mg

√
T

(
T−1

∑
t

h(xt)−Mh

)
.
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Under the conditions of the theorem,

√
T


T−1

∑
t

h(xt)g(yt)−MhMg

T−1
∑
t

g(yt)−Mg

T−1
∑
t

h(xt)−Mh


d→ N




0

0

0

 ,


V11 V12 V13

V12 V22 V23

V13 V23 V33


 ,

where, using repeatedly the CLT for stationary and mixing sequences, the result of Lemma

1, the condition E [g(yt)|It−1] = Mg, and the law of iterated expectations,

V11 =
+∞∑
j=−∞

cov [h(xt)g(yt), h(xt+j)g(yt+j)]

= var [h(xt)g(yt)] + 2Mg

+∞∑
j=1

cov [h(xt)g(yt), h(xt+j)] ,

V22 =
+∞∑
j=−∞

cov [g(yt), g(yt+j)] = Vg,

V33 =
+∞∑
j=−∞

cov [h(xt), h(xt+j)] = Vh + 2
+∞∑
j=1

cov [h(xt), h(xt+j)] ,

V12 =
+∞∑
j=−∞

cov [h(xt)g(yt), g(yt+j)]

= cov
[
h(xt), g(yt)

2
]

+MhVg +Mg

+∞∑
j=1

cov [g(yt), h(xt+j)] ,

V13 =
+∞∑
j=−∞

cov [h(xt)g(yt), h(xt+j)]

= MgVh +Mg

+∞∑
j=1

cov [h(xt), h(xt+j)] +
+∞∑
j=1

cov [h(xt)g(yt), h(xt+j)] ,

V23 =
+∞∑
j=−∞

cov [g(yt), h(xt+j)] =
+∞∑
j=1

cov [g(yt), h(xt+j)] .
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Now, using the Delta method and Slutsky’s lemma,

√
T (Ag −Bg)

A∼


1

−Mh

−Mg


′

√
T


T−1

∑
t

h(xt)g(yt)−MhMg

T−1
∑
t

g(yt)−Mg

T−1
∑
t

h(xt)−Mh



d→ N




0

0

0

 ,


1

−Mh

−Mg


′

V11 V12 V13

V12 V22 V23

V13 V23 V33




1

−Mh

−Mg




∼ N(0, V g,h),

where

V g,h = cov
[
h(xt)

2, g(yt)
2
]

+ VhVg +M2
hVg +M2

gVh

−2Mhcov
[
h(xt), g(yt)

2
]
−M2

hVg −M2
gVh

= VhVg + cov
[
h(xt)

2, g(yt)
2
]
− 2Mhcov

[
h(xt), g(yt)

2
]
,

because

var [h(xt)g(yt)] = E
[
h(xt)

2g(yt)
2
]
−M2

hM
2
g

= cov
[
h(xt)

2, g(yt)
2
]

+ VhVg +M2
hVg +M2

gVh.

Proof. [of Theorem 1] Specialization of Lemma 2 to the case h(u) = sign(u) gives Vh =

1−m2
x, Mh = mx, cov [h(xt)

2, g(yt)
2] = 0, cov [h(xt)

2, g(yt)] = 0, so

V g,h =
(
1−m2

x

)
Vg − 2mxcov

[
sign(xt), g(yt)

2
]

= V g.

Proof. [of Corollary 1] (i) Substitute g(u) = sign(u), then

Vg = var [sign(yt)] = E
[
sign(yt)

2
]
− E [sign(yt)]

2 = 1−m2
y = (1−my) (1 +my) .
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Next,

cov
[
sign(xt), sign(yt)

2
]

= cov [sign(xt), 1] = 0.

The desired result follows.

(ii) Substitute g(u) = u, then the desired result follows.

Proof. [of Theorem 2] By Lemma 2, the asymptotics of β̂g,h under the null Hg
0 is

√
T β̂g,h

d→ N(0, V g,h)

Vh
.

Under Hg
0 , (3.2) is a single-period regression on stationary and mixing variables. From

the regression theory, the t-ratio using White-corrected standard errors is asymptotically

standard normal.

Proof. [of Theorem 3] By Lemma 2, under the null Hg
0 , β̂h,g converges in probability to

zero, and
√
T β̂h,g

d→ N(0, V g,h)

Vg
.

Similarly to the previous lemma, the White-corrected asymptotic variance estimate for β̂h,g

is

V̂h,g =

T−1
∑
t

g(yt)
2θ̂

2

t +

(
T−1

∑
t

g(yt)

)2

T−1
∑
t

θ̂
2

t − 2

(
T−1

∑
t

g(yt)

)(
T−1

∑
t

g(yt)θ̂
2

t

)
(
T−1

∑
t

g(yt)2 −
(
T−1

∑
t

g(yt)

)2
)2 .

The denominator converges in probability to V 2
g . The numerator – to

E
[
g(yt)

2 (h(xt)−Mh)
2]+M2

gVh − 2MgE
[
g(yt) (h(xt)−Mh)

2] .
Straightforward computations yield that under Hg

0 this is exactly V g,h. Similarly, it is

straightforward to show that when conventional standard errors are used, V̂h,g
p→ Vh/Vg.When

a HAC asymptotic variance is used, the numerator in V̂h,g contains in addition sample cor-

relations that are zeros only when h(xt) has is a martingale difference.
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B Appendix: power computations

Let ζt = g(yt) − δ (xt) /
√
T . We have E [ζt|It−1] = 0 under Hg

δ . Let us first look at the

asymptotics of the normalized contrast
√
T (Ag,h −Bg,h) . We have

√
TAg,h =

1√
T

∑
t

h(xt)g(yt) =
1√
T

∑
t

h(xt)

(
δ (xt)√
T

+ ζt

)
d→ N(E [δ (xt)h(xt)] , E

[
h(xt)

2ζ2
t

]
),

√
TBg,h =

√
T

(
1

T

∑
t

h(xt)

)(
1

T

∑
t

g(yt)

)
=

(
1

T

∑
t

h(xt)

)(
1

T

∑
t

δ (xt) +
1√
T

∑
t

ζt

)
d→ E [h(xt)] N(E [δ(xt)] , E

[
ζ2
t

]
),

and

√
T

 T−1
∑
t

h(xt)g(yt)

T−1
∑
t

g(yt)

 d→ N


 E [δ (xt)h(xt)]

E [δ(xt)]

 ,

 E
[
h(xt)

2ζ2
t

]
E
[
h(xt)ζ

2
t

]
E
[
h(xt)ζ

2
t

]
E
[
ζ2
t

]

 .

Together, these give

√
T (Ag,h −Bg,h)

d→ N(E [δ (xt)h(xt)]− E [h(xt)]E [δ(xt)] , E
[
(h(xt)−Mh)

2 ζ2
t

]
).

Next, the pivotization factor:

V g,h = E
[
(h(xt)−Mh)

2]E [ζ2
t

]
+ E

[
h(xt)

2ζ2
t

]
− E

[
h(xt)

2
]
E
[
ζ2
t

]
−2MhE

[
h(xt)ζ

2
t

]
+ 2M2

hE
[
ζ2
t

]
= E

[
(h(xt)−Mh)

2 ζ2
t

]
.

Hence, in total

T
d→ N

 cov [δ (xt) , h(xt)]√
E
[
(h(xt)−Mh)

2 ζ2
t

] , 1
 .
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The local power is maximized when the square of the noncentrality parameter is maximized.

Denote σ2
t−1 = var [g(yt)|It−1] . Then

cov [δ (xt) , h(xt)]
2

E
[
(h(xt)−Mh)

2 ζ2
t

] =

cov

[
δ (xt)−Mδ

σt−1

, (h(xt)−Mh)σt−1

]2

E
[
(h(xt)−Mh)

2 σ2
t−1

]
≤

var

[
δ (xt)−Mδ

σt−1

]
var [(h(xt)−Mh)σt−1]

E
[
(h(xt)−Mh)

2 σ2
t−1

]
= var

[
δ (xt)−Mδ

σt−1

]
.

This bound does not depend on h(xt) and is attained when the Cauchy–Schwatz inequality

binds, that is, when (h(xt)−Mh)σt−1 and
δ (xt)−Mδ

σt−1

are linearly dependent. Since the

means of both random variables are zero, this implies that the maximal local power is reached

when h(xt)−Mh is proportional to
δ (xt)−Mδ

σ2
t−1

.
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