Autoregression and redundant instruments

Stanislav Anatolyev*

April 1, 2002

Problem

Consider a zero mean stationary autoregressive model of order k with IID innovations having variance σ^2 :

$$y_t = \rho_1 y_{t-1} + \rho_2 y_{t-2} + \dots + \rho_k y_{t-k} + \varepsilon_t.$$

It is well known that the efficient GMM estimator of $\rho = (\rho_1 \ \rho_2 \ \cdots \ \rho_k)'$ based on the instrumental vector $z_t = (y_{t-1} \ y_{t-2} \ \cdots \ y_{t-k} \ y_{t-k-1} \ \cdots \ y_{t-\ell})'$ consisting of the last $\ell > k$ lags of y_t , effectively exploits information in the most recent k lags of y_t (see, for example, Kim, Qian and Schmidt, 1999). In other words, the instruments $y_{t-k-1}, \cdots, y_{t-\ell}$ are redundant (see Breusch, Qian, Schmidt and Wyhowski, 1999) given y_{t-1}, \cdots, y_{t-k} .

Prove the following more general proposition: when one uses the instrumental vector $z_t = (y_{t-p} \ y_{t-p-1} \ \cdots \ y_{t-p-k+1} \ y_{t-p-k} \ \cdots \ y_{t-p-\ell+1})'$ for $p \ge 1$, the instruments $y_{t-p-k}, \cdots, y_{t-p-\ell+1}$ are redundant given $y_{t-p}, \cdots, y_{t-p-k+1}$.

References

Breusch, T., H. Qian, P. Schmidt & D. Wyhowski (1999) Redundancy of moment conditions. *Journal of Econometrics* 91, 89–111.

Kim, Y., H. Qian & P. Schmidt (1999) Efficient GMM and MD estimation of autoregressive models. *Economics Letters* 62, 265–270.

^{*}New Economic School, Nakhimovsky prospect, 47, room 1721, Moscow, 117418, Russia. E-mail: sanatoly@nes.ru

Suggested Solution

The vector of regressors is $x_t = (y_{t-1} \ y_{t-2} \ \cdots \ y_{t-k})'$. Let $\gamma_j = \gamma_{-j} = \mathrm{E}[y_t y_{t-j}]$ and $\Gamma_j = (\gamma_j \ \gamma_{j-1} \ \cdots \ \gamma_{j-\ell+1})'$. The matrix of cross-covariances of x_t and z_t is

$$Q_{xz} = \begin{pmatrix} \gamma_{p-1} & \gamma_p & \cdots & \gamma_{p+k-2} & \cdots & \gamma_{p+\ell-2} \\ \gamma_{p-2} & \gamma_{p-1} & \cdots & \gamma_{p+k-3} & \cdots & \gamma_{p+\ell-3} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ \gamma_{p-k} & \gamma_{p-k+1} & \cdots & \gamma_{p-1} & \cdots & \gamma_{p+\ell-k-1} \end{pmatrix}$$
$$= (I_k O_{k \times (\ell-k)}) (\Gamma_{p-1} \Gamma_p \cdots \Gamma_{p+\ell-2}),$$

where I_m denotes $m \times m$ identity matrix, and $O_{m_1 \times m_2}$ – zero $m_1 \times m_2$ matrix. The covariance matrix of $z_t \varepsilon_t$ is

$$V_{z\varepsilon} = \sigma^2 \begin{pmatrix} \gamma_0 & \gamma_1 & \cdots & \gamma_{\ell-1} \\ \gamma_1 & \gamma_0 & \cdots & \gamma_{\ell-2} \\ \vdots & \vdots & \ddots & \vdots \\ \gamma_{\ell-1} & \gamma_{\ell-2} & \cdots & \gamma_0 \end{pmatrix} = \sigma^2 \left(\Gamma_0 \; \Gamma_1 \; \cdots \; \Gamma_{\ell-1} \right).$$

The efficient GMM estimator based on the instrumental vector z_t effectively uses the instrument optimal in the class of linear transformations of z_t . This optimal instrument is $Q_{xz}V_{z\varepsilon}^{-1}z_t$ (see, for example, West, 2001). We will show that in the matrix $Q_{xz}V_{z\varepsilon}^{-1}$ the right $k \times (\ell - k)$ submatrix is zero, so that the optimal combination of elements of z_t involves only first k entries.

Recall that the Yule–Walker equations for an $\mathrm{AR}(k)$ model contain the following recursion:

$$\gamma_i = \rho_1 \gamma_{i-1} + \rho_2 \gamma_{i-2} + \dots + \rho_k \gamma_{i-k}, \quad j \ge 1.$$

This implies that

$$(\Gamma_{p-1} \Gamma_p \cdots \Gamma_{p+\ell-2}) = P(\Gamma_{p-2} \Gamma_{p-1} \cdots \Gamma_{p+\ell-3})$$

$$= \cdots$$

$$= P^{p-1}(\Gamma_0 \Gamma_1 \cdots \Gamma_{\ell-1}),$$

where

$$P = \begin{pmatrix} \rho' & 0'_{\ell-1-k} \\ & I_{\ell-1} \end{pmatrix},$$

and 0_m denotes zero $m \times 1$ vector. Thus

$$Q_{xz} = \left(I_k O_{k \times (\ell - k)} \right) \left(\Gamma_{p-1} \Gamma_p \cdots \Gamma_{p+\ell-2} \right)$$
$$= \sigma^{-2} \left(I_k O_{k \times (\ell - k)} \right) P^{p-1} V_{z\varepsilon}.$$

It follows that $Q_{xz}V_{z\varepsilon}^{-1}$ equals $\sigma^{-2}\left(I_k O_{k\times(\ell-k)}\right)P^{p-1}$, a matrix whose right $k\times(\ell-k)$ submatrix is indeed zero.

Reference

West, K.D. (2001) On Optimal Instrumental Variables Estimation of Stationary Time Series Models. *International Economic Review* 42, 1043-1050.