Durbin—Watson Statistic and Random Individual Effects

Stanislav Anatolyev*

March 11, 2002

Problem

Consider the standard one-way error component model with random effects (Baltagi, 2001):
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where 3 is k x 1, p, are random individual effects, p;, ~ I1 D(O,ai), vy are idiosyncratic
shocks, vy ~ 11D(0, 012}), and p, and v;; are independent of z;; for all < and ¢ and mutually.
The equations are arranged so that the index ¢ is faster than the index i. Consider running
OLS on the original regression (1); running OLS on the Within regression
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where z;. = TS| 2 for 2z = y, z,v; running OLS on the Between regression

with T replications of the equation for each individual ¢; and running OLS on the GLS-
transformed regression
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where 0 is a consistent (as n — oo and T stays fixed) estimate of § = 1 — 0,,/,/02 + To?.
When each OLS estimate is obtained using a typical regression package, the Durbin—Watson
statistic is provided among the regression output. Derive the probability limits of the four
Durbin—Watson statistics, as n — oo and T stays fixed. Using the obtained result, propose
an asymptotic test for individual effects based on the Durbin-Watson statistic.
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Suggested Solution

In all regressions, the residuals consistently estimate corresponding regression errors. There-
fore, to find a probability limit of the Durbin-Watson statistic, it suffices to compute the
variance and first-order autocovariance of the errors across the stacked equations:
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and u;’s denote regression errors. Note that the errors are uncorrelated where the index ¢
switches between individuals, hence summation from ¢ = 2 in p,.

Consider the original regression (1) where w;; = p1; 4 viy. Then gy = o2 + 02 and
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Consider the Within regression (2) where u;; = v — v;.. Then
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Consider the Between regression (3) where u; = p; + ;.. Then
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The GLS-transformation orthogonalizes the errors, therefore
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Since all computed probability limits except that for DW s do not depend on the variance

components, the only way to construct an asymptotic test of Hy : 02 =0 vs. Hy : 03, > 0

is by using DWors. Under Hy, vnT (DWors —2) -5 N (0,4) as n — oo (estimation of 3
does not affect the limiting distribution). Under H4, plim DWyrs < 2. Hence a one-sided

n—oo

asymptotic test for UZ = 0 for a given level « is:

2
Reject if DWorg < 2 ),
) OLS ( m)

where z, is the a-quantile of the standard normal distribution.



