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Abstract

We propose a market timing test for conditional mean independence of financial returns.

The new excess predictability (EP) test statistic has an interpretation of a properly normal-

ized return of a certain trading strategy. We discuss similarities of the EP test to the popular

directional accuracy (DA) test of Pesaran and Timmermann (1992). Power properties of the

EP test are advantageous, and size properties are comparable to those of the DA test. We

illustrate application of the test using weekly data on the S&P500 index.
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1 Introduction

It is a common perception nowadays that predictability of financial returns should be judged

by how successful out-of-sample exercises are rather than by in-sample fit and coefficient sig-

nificance. Out-of-sample exercises should in turn be tied to profitability of virtual investors’

decisions rather than to simple statistical measures like the mean squared prediction error

(MSPE). Such measures aim at minimizing an unrelated to profitability loss function rather

than at getting a significant outcome from the viewpoint of profit maximization, the ulti-

mate goal of making predictions of returns in financial markets (e.g., see Leitch and Tanner

(1991), Brock, Lakonishok and LeBaron (1992), Pesaran and Timmermann (1995), Satchell

and Timmermann (1995)). The proportion of correctly predicted signs of returns at the

heart of the popular directional accuracy (DA) test of Pesaran and Timmermann (1992)

also belongs to the class of such statistical measures.

In this paper we show that the trading approach can be used to construct a formal test

for mean predictability. We develop a market timing test that is explicitly tied to a virtual

investor’s simple trading strategy. This trading strategy issues a buy signal if a forecast of

next period return is positive and a sell signal otherwise. Our excess profitability (EP) test is

based on a suitably normalized profitability of the position implied by the trading strategy

above a certain benchmark. The EP statistic is asymptotically distributed as a standard

normal.

A close inspection of how the EP and DA statistics are constructed reveals certain sim-

ilarities. In particular, both are Hausman type tests, and both are derived under stronger

assumptions placed on the relationship between predictors and predictands than the tested

features presume. However, in addition to economic interpretability of the EP statistic, the

EP test formally tests for mean predictability rather than sign predictability (see Christof-

fersen and Diebold (2003) for subtle differences between the two concepts). We show ana-

lytically that the EP test exhibits strictly higher power against some local alternatives with

either linear or nonlinear predictability. The power dominance is also confirmed via simula-

tions in realistic setups. We also discuss the issue of possible size distortions, and conduct

a simulation experiment to assess them numerically. Even though the size distortions may

come from a number of sources, they are likely to be small in practice.

We illustrate the application of the test using half a century of weekly data on the
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S&P500 index. By computing the EP statistic from data in a moving time window, we

observe a remarkable pattern of dynamics of the level of mean predictability throughout the

last half of the 20th century. In particular, we provide some evidence that it has substantially

increased during the last decade.

The paper is organized as follows. In Section 2 we introduce the trading strategy, build

the EP test and compare its form to that of the DA test. In Section 3 we study power and

size properties of the two tests. Section 4 describes the empirical illustration, and Section 5

concludes. Three appendices contain technical derivations.

2 Trading strategy and test for mean predictability

Let the variable yt represent the return on some financial asset or index, and ŷt be a

continuously distributed forecast of yt. The forecast ŷt is allowed to depend only on the

data from It−1 = {yt−1, yt−2, · · · }, or, more generally, from the extended information set

It−1 ⊃ {yt−1, yt−2, · · · } which may include other historical variables. Consider the following

trading rule based on ŷt: buy shares worth current wealth, if ŷt ≥ 0,

sell shares worth current wealth, otherwise.
(1)

That is, an investor goes long if the prediction of the next period return is positive, and goes

short otherwise. For brevity, we will call this rule the trading strategy. Equipped with the

trading strategy, the investor modifies her position each trading period closing it at the end

of the period. Then the one period return of the trading strategy is

rt = sign(ŷt)yt, (2)

where sign(·) takes value −1 when its argument is negative, and value +1 when its argument

is non-negative. We implicitly assume that the distribution of sign(ŷt) is non-degenerate.

The trading strategy (1) describes the behavior of a risk neutral “artificial technical

analyst”, in the terminology of Skouras (2001). The profitability of the trading strategy

(1) was evaluated by Gençay (1998) to measure whether forecasts have economic value in

practice. Using two and a half decades of DJIA data Gençay (1998) finds that this trading

strategy is able to provide perceptible profits relative to the “buy-and-hold” strategy. We
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instead use this trading approach to construct a formal test of mean predictability of returns

which is based on the out-of-sample profitability of the trading strategy. The reader should

keep in mind that the trading process is only a thought experiment, and it makes no difference

whether or not market limitations (like transactions costs and short selling constraints) allow

that the trading strategy is exercised. However, market limitations weaken the links to the

notion of market efficiency, as the presence of predictability is equivalent to inefficiency under

the strong assumption of constant risk premia and no operational market imperfections.

Formally, the null hypothesis is that of conditional mean independence, H0 : E[yt|It−1] =

const. Technically, we require that under the null a stronger property holds, that ŷt be

independent from yt for all lags and leads (see the discussion of this technical issue in the

next section). The expected one period return of the trading strategy (1) is E[rt], which is

consistently estimable under the null by the following two estimators:

AT =
1

T

∑
t

rt (3)

and

BT =

(
1

T

∑
t

sign(ŷt)

)(
1

T

∑
t

yt

)
. (4)

Indeed, under the null, AT
p→ E[rt] and

BT
p→ E[sign(ŷt)] E[yt] = E[sign(ŷt) E[yt]]

H0= E[sign(ŷt) E[yt|It−1]] = E[sign(ŷt)yt] = E[rt].

While AT is the average return resulting from use of the trading strategy, BT is (an estimate

of) the average return of a benchmark strategy that issues buy/sell signals at random with

probabilities corresponding to the proportion of “buys” and “sells” implied ex post by the

trading strategy. When yt is predictable, real-time forecasting and investing according to the

trading strategy will generate a higher return than the benchmark, the difference between

AT and BT will be sizable, and the test will have power.

To complete the construction of the test, it remains to compute the variance of AT −BT

under the null. Let pŷ = Pr{sign(ŷt) = 1}, then (see appendix A)

var(AT −BT ) = 4
T − 1

T 2
pŷ(1− pŷ) var(yt). (5)

The most straightforward way to estimate this variance is

V̂EP =
4

T 2
p̂ŷ(1− p̂ŷ)

∑
t

(yt − ȳ)2,
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where we corrected for degrees of freedom when estimating the variance of yt, and where

p̂ŷ =
1

2

(
1 +

1

T

∑
t

sign(ŷt)

)

is a consistent estimator of pŷ. The estimate V̂EP is positive by construction unless by chance

all forecasts have the same sign. The Hausman-type excess profitability (EP) test statistic

and its asymptotic distribution are

EP ≡ AT −BT√
V̂EP

d→ N(0, 1). (6)

The EP statistic (6) is reminiscent of the directional accuracy (DA) statistic of Pesaran

and Timmermann (1992) that is routinely used as a predictive-failure test in constructing

forecasting models (e.g., see Pesaran and Timmermann (1995) and Qi (1999)). Let us have

a look at the construction of the DA statistic that results after a change of variables. When

the forecasts do not have predictive power, the (recentered and renormalized) success ratio

(see appendix B)

ÃT =
1

T

∑
t

sign (ŷt) sign (yt) ,

does not differ much from the expected success ratio that would obtain in case yt and ŷt

were independent. A natural estimate of the latter is

B̃T =

(
1

T

∑
t

sign (ŷt)

)(
1

T

∑
t

sign (yt)

)
.

Let

p̂y =
1

2

(
1 +

1

T

∑
t

sign(yt)

)
be a consistent estimate of py = Pr{sign(yt) = 1}. Under independence of ŷt and yt at all lags

and leads, the Hausman-type DA test statistic, an appropriately scaled difference between

ÃT and B̃T , is asymptotically standard normal:

DA ≡ ÃT − B̃T√
V̂DA

d→ N(0, 1), (7)

where (see appendix B)

V̂DA = 16
T − 1

T 2
p̂ŷ(1− p̂ŷ)p̂y(1− p̂y).

The DA test is not unrelated to the possibility of obtaining excess profits, as the ability

to predict market’s direction is certainly useful for investors. However, as Skouras (2000)
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argues, the ability of an investor to predict the market’s direction may not necessarily lead to

extracting excess profits if at times when mistakes on direction are made returns are greater

in absolute value than at times when no mistakes on direction are made. While the DA

statistic will likely be significant under these circumstances, the EP statistic based on the

profitability itself will not be significant.

Further note that a typical summand in ÃT equals

sign(ŷt) sign(yt),

while that in AT equals

sign(ŷt) sign(yt)|yt|.

This implies that if the series of returns yt is predictable, the EP test takes fuller advantage

of this predictability, while the DA test ignores the fact that higher returns are associated

with better forecasts. This is likely to lead to a higher power of the EP test, which will be

confirmed in the next section. Also note that the DA test will successfully detect deviations

from the null of no predictability when yt exhibits sign predictability, while the profitability

statistic (6) will when yt exhibits conditional mean dependence. Christoffersen and Diebold

(2003) show that the sign predictability may be merely a result of volatility dependence in the

absence of mean predictability, and that sign dependence does not imply violation of market

efficiency. Thus, our EP statistic is better suited for mean predictability considerations.

3 Power and size

Consider simple departures from the null, a linear autoregression of first order

yt = αyt−1 + εt, εt ∼ iid N(0, 1), (8)

with the optimal forecast ŷt = αyt−1, and a threshold model with a mean shift

yt =

 −α, yt−1 ≤ 0

α, yt−1 > 0
+ εt, εt ∼ iid N(0, 1) (9)

with the optimal forecast ŷt = α sign (yt−1) . For simplicity, unconditional means are set to

zero and conditional variances to unity, and we abstract from parameter uncertainty (see

the discussion of test sizes below). Under the null of no predictability, α = 0.
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We investigate the power of the EP and DA tests for these models under the sequence of

local alternatives Hδ
A : α = δ/

√
T , δ > 0. In appendix C it is shown that for the linear model

(8), EP
d→ N (δ E [|y|] , 1) and DA

d→ N (2φ(0)δ E [|y|] , 1) , and for the nonlinear model (9),

EP
d→ N (δ, 1) and DA

d→ N (2φ(0)δ, 1) . One can see that under both local linear and local

nonlinear predictability, the power of the EP test is strictly larger than that of the DA test,

as the noncentrality parameters differ by the factor 2φ(0) =
√

2/π < 1 in both cases.

Next, we investigate the power of both tests in a Monte–Carlo experiment with a more

realistic setup. We use the following two data generating processes (DGPs) that exhibit

different types of predictability and whose coefficients are calibrated using the S&P500 index

during the period from 1954 to 1973 (when the index seems to be most predictable):

“AR” yt = 0.1256 · yt−1 + εt, εt ∼ iid N(0, 0.000249); (10)

“SETAR” yt =

 0.000844 + 0.2453 · yt−1, |yt−1| ≤ 0.01848

0.002679 + 0.0664 · yt−1, |yt−1| > 0.01848
+ εt, (11)

εt ∼ iid N(0, 0.000245).

The sample length is 1, 000. In each of 10, 000 simulations, estimation is performed over

a rolling window of 100 observations. The EP and DA statistics are computed over 900

predictions. The top panel of Table 1 shows actual rejection frequencies corresponding to

nominal ones of 10%, 5%, and 1% for two-sided alternatives. We use the least squares

linear predictor (labeled OLS) and nearest neighbors local regression (labeled NN), which

are detailed in section 4. The power of the EP test appreciably exceeds that of the DA test,

sometimes by a factor greater than 1.5. One can also see how much the power of either test

may vary with the choice of a forecasting model. When the DGP is truly linear, fitting a

linear model has a much greater predictive power than a nonparametric method, which in

turn (slightly) increases power when the series is nonlinearly predictable.

Another concern is actual sizes of the tests. It should be noted that the asymptotics

for the EP and DA tests is derived under the strong presumption that under H0 there is

independence of yt and ŷt at all lags and leads. (For the DA, see the manipulations below

equation (4) in Pesaran and Timmermann (1992, p. 462).) This presumption is evidently

stronger than the tested features. Indeed, even under no mean or sign predictability it is

highly unlikely that the forecast is completely unrelated to the variable being forecast. For

example, when a lagged value yt−1 is used to make a prediction of yt, this prediction is by
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construction not independent from yt at lag one. The only case when the serial independence

of predictors and predictands holds under the null is when predictor variables are strictly

exogenous, and no estimated model is used to generate predictions. In reality, however, rarely

either condition holds. Thus, in practical situations both tests may have wrong asymptotic

sizes.

A typical parametric or nonparametric forecast ŷt that possibly uses estimated param-

eters can be viewed as a complicated function of observations dated by t − 1 and earlier

provided that no future observations are employed in estimating unknown parameters. The

complicatedness of such forecasts precludes analytical evaluation of possible size distortions.

In cases when an estimated model is used to construct forecasts, one may separate size dis-

tortion arising from the use of predictors that are serially dependent on the predictand, and

size distortions arising from the presence of parameter uncertainty (apart from distortions

due to model uncertainty and, of course, due to the approximating nature of the asymp-

totic approach). The former distortion may be zero as in the examples used for local power

computations. In a more complicated setup, however, its absence is not guaranteed. The

type of distortion that is due to estimated parameters has been recently discussed in the

econometric literature. West and McCracken (2002) attest that the parameter uncertainty

is largely ignored in the applied literature. West (1996) provides formulae for corrections

that can be used to attain the asymptotic standard normal distribution for statistics that

are differentiable in parameters; McCracken (2000) repeats this for statistics that are not

differentiable but whose expected values under the null are differentiable and allow a mean

value expansion. Unfortunately, both the EP and DA statistics involve functions that are

not differentiable in either sense (see McCracken 2000, discussion following assumption 4).

Hence, in the absence of a tractable theory an applied researcher is advised to evaluate

possible size distortions via simulations.

To assess size distortions that are likely to arise in practice, we perform a Monte–Carlo

experiment using the following DGPs (again, calibrated using the S&P500 index):

“Const” yt = 0.001526 + εt, εt ∼ iid N(0, 0.0000250); (12)

“GARCH” yt = 0.002483 + εt, εt = σtηt, ηt ∼ iid N(0, σ2
t ), (13)

σ2
t = 0.0000223 + 0.1773 · ε2

t−1 + 0.7397 · σ2
t−1.

Note that both parametric and nonparametric methods estimate a correct model for the
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conditional mean. Under the DGP “Const”, the impact of serial dependence is brought to

a minimum; under the DGP “GARCH”, we deliberately invoke strong GARCH effects to

exacerbate the dependence between returns and their forecasts. The bottom panel of Table

1 shows actual sizes corresponding to nominal ones of 10%, 5%, and 1%. For the DGP

“Const”, both tests exhibit negligible size distortions. This indicates that the parameter

uncertainty and asymptotic approximation do not have significant effects with the estima-

tion design used. For the DGP “GARCH”, size distortions are larger but still are small.

Note that the distortions are smaller when a nonparametric method is used rather than a

parametric one, even though the former provides less precise estimates during the estima-

tion stage. This can be explained by a sort of the “whitening by windowing” effect (Hart

1996) of local nonparametric estimation in time series: kernel estimates evaluated at dif-

ferent histories employ different observations and hence are less dependent than parametric

estimates that employ the entire estimation sample. The power results, however, indicate

that nonparametric methods capture linear predictability less successfully.

4 Empirical illustration

We provide an application of the test using the weekly S&P500 stock market index for the

period from January 03, 1950 to May 05, 2003, totaling 2783 observations, which we obtained

from finance.yahoo.com. Before the analysis we take first differences of logarithms of the

index to obtain a series of returns. We construct one step ahead forecasts using rolling

regressions with a window of 104 observations corresponding to two years. This scheme

results in 2677 (= 2783− 1− 1− 104) predictions.

We use the “naive” random walk (RW) forecasts as a benchmark (note that the trading

strategy (1) and the RW forecasts (i.e. ŷt are zero for all t) generate the “buy-and-hold”

strategy). Parametric forecasts are provided by a linear OLS model, and nonparametric

forecasts are provided by the nearest neighbor (NN) local linear regression (Härdle 1990,

Section 3.1.1). Both parametric and nonparametric regressions use the first lag of returns

as a regressor. Forecasts on the basis of simple OLS regressions are quite intensively used

in applied work (e.g., in Pesaran and Timmermann 1995). Among nonparametric methods,

nearest neighbor methods seem to be most popular in empirical work (e.g., Diebold and

Nason 1990, Meese and Rose 1991, Mizrach 1992), and the number of neighbors is usually
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selected manually. We follow the tradition and set it to n = 10 (the number of neighbors

selected by cross-validation tends to be too large). The normal kernel is employed.

Test results are reported in Table 2. As follows from its column 2, no model succeeded in

improving upon RW forecasts in terms of MSPE, which is in line with the empirical literature.

However, the results of EP and DA tests in columns 3 and 4 show strong predictability even

in the case of the linear model. It is clear that the conditional mean independence hypothesis

is strongly rejected for the weekly S&P500 index. Illuminating patterns unfold on Figure

1 which shows graphs of log cumulative returns on positions based on our trading strategy

and different forecasting models. That the NN local regression dominates the linear OLS

model makes one think that nonlinear features prevail in the predictable component of the

S&P500 index.

Recent literature points out that the degree of predictability may be different in different

periods (e.g., Timmermann and Granger 2004). It is interesting to track its evolution through

time using the EP statistic computed from data in a moving time window of fixed length.

We set the length of the moving time window to 520 which corresponds to approximately

10 years. As the NN local regression showed most promise, we report the results with this

predictor. The track of the EP statistic along with the upper 5% critical value line is depicted

on Figure 2 where values of the EP statistic over periods of 10 years should be interpreted as

measures of mean predictability over whole periods. One can clearly observe two points when

the structural breaks in the market efficiency may have occurred. The first corresponds to

the global maximum of the EP statistic over the whole sample, which occurs for the period

from 1963 to 1973. Starting from the end of this period and up to the year 1992 one can

see an apparent trend towards conditional mean independence, and during the period from

1982 to 1992 the EP statistic is close to zero. However, after 1992 this trend is reversed, and

for the period from 1993 to 2003 the hypothesis of conditional mean independence can be

only marginally accepted. If this 11-year trend continues, we may see the evidence of strong

mean predictability of the S&P500 index in the near future.

5 Conclusions

We have proposed a new test for mean predictability of returns based on a properly nor-

malized excess return of a simple trading strategy over the return of a certain benchmark.
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The new statistic is similar to that of the popular directional accuracy test of Pesaran and

Timmermann (1992), but exhibits higher power against alternatives with linear or nonlinear

predictability. We have illustrated application of the test using the weekly S&P500 index

for which the hypothesis of conditional mean independence is strongly rejected, and discov-

ered interesting patterns in the degree of predictability throughout the last half of the 20th

century.

A Appendix: Computation of variance of AT −BT

Observe that E[sign(ŷt)] = 2pŷ − 1 and var[sign(ŷt)] = 4pŷ(1− pŷ). Recall that it is assumed

that under H0 the series ŷt and yt are independent for all lags and leads. We have

var(AT ) =
1

T
E[sign(ŷt)

2y2
t ]−

1

T
E[sign(ŷt)yt]

2 H0=
1

T
E[y2

t ]−
1

T
(2pŷ − 1)2

E[yt]
2,

var(BT ) = E[(
1

T

∑
t

sign(ŷt))
2(

1

T

∑
t

yt)
2]− E[(

1

T

∑
t

sign(ŷt))(
1

T

∑
t

yt)]
2

H0= E[(
1

T

∑
t

sign(ŷt))
2] E[(

1

T

∑
t

yt)
2]− E[

1

T

∑
t

sign(ŷt)]
2

E[
1

T

∑
t

yt]
2

=
1

T
(2pŷ − 1)2 var(yt) +

4

T
pŷ(1− pŷ)

(
1

T
E[y2

t ] + (1− 1

T
) E[yt]

2

)
.

cov(AT , BT ) = E[(
1

T

∑
t

sign(ŷt)yt)(
1

T

∑
t

sign(ŷt))(
1

T

∑
t

yt)]

−E[(
1

T

∑
t

sign(ŷt)yt)] E[(
1

T

∑
t

sign(ŷt))(
1

T

∑
t

yt)]

H0=
1

T 2 E[sign(ŷt)
2y2
t ] +

T − 1

T 2 E[sign(ŷt)
2yt] E[yt]

+
T − 1

T 2 E[sign(ŷt)y
2
t ] E[sign(ŷt)] +

(T − 1)2

T 2 E[sign(ŷt)]
2

E[yt]
2

−E[sign(ŷt)]
2

E[yt]
2

=
1

T
(2pŷ − 1)2 var(yt) +

4

T
pŷ(1− pŷ)

(
1

T
E[y2

t ] + (1− 1

T
) E[yt]

2

)
= var(BT ).

Taking things together, we obtain (5). That the test is of the Hausman type can be seen from

the following argument: the estimator BT is semiparametrically efficient for E[sign(ŷt)] E[yt]

as it is a product of independent semiparametrically efficient estimators of E[sign(ŷt)] and

E[yt]. However, this argument is based on asymptotic considerations, while we showed above

explicitly that cov(AT , BT ) equals var(BT ) in finite samples.
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B Appendix: Another representation of DA statistic

Let

ĀT =
1

T

∑
t

I[ytŷt > 0],

B̄T =

(
1

T

∑
t

I[yt > 0]

)(
1

T

∑
t

I[ŷt > 0]

)
+

(
1− 1

T

∑
t

I[yt > 0]

)(
1− 1

T

∑
t

I[ŷt > 0]

)
.

Using the change of variables I[x > 0] = 1
2

(1 + sign(x)) when Pr[x = 0] = 0, and the

property sign(x1x2) = sign(x1) sign(x2), one can see that the numerator of the DA test is

ĀT − B̄T =
1

2

(
1

T

∑
t

sign(ŷt) sign(yt)−

(
1

T

∑
t

sign(yt)

)(
1

T

∑
t

sign(ŷt)

))
=
ÃT − B̃T

2
.

The denominator of the DA test is a square root of v̂ar(ĀT ) − v̂ar(B̄T ). But (Pesaran and

Timmermann (1992), equations below (6))

T v̂ar(ĀT ) = (p̂ŷp̂y + (1− p̂ŷ)(1− p̂y)) (1− p̂ŷp̂y − (1− p̂ŷ)(1− p̂y)) ,

T v̂ar(B̄T ) = (2p̂y − 1)2p̂ŷ(1− p̂ŷ) + (2p̂ŷ − 1)2p̂y(1− p̂y) + 4T−1p̂ŷp̂y(1− p̂ŷ)(1− p̂y).

Expanding and subtracting, we get

v̂ar(ĀT )− v̂ar(B̄T ) = 4
T − 1

T 2
p̂ŷ(1− p̂ŷ)p̂y(1− p̂y).

C Appendix: Local power computations

It is easy to see that under Hδ
A, for both models (8) and (9), T V̂EP

p→ 1, T V̂DA
p→ 1,

√
TBT

p→ 0 and
√
TB̃T

p→ 0. For the linear model (8),

AT = α
1

T

∑
t

sign(yt−1)yt−1 +
1

T

∑
t

sign(yt−1)εt,

ÃT =
1

T

∑
t

sign (yt−1) sign (αyt−1 + εt) .

Under Hδ
A,
√
TAT and hence EP converge in distribution to N (δ E [|y|] , 1) . For ÃT , we have

E
[
ÃT

]
= Pr [yt−1 (αyt−1 + εt) ≥ 0]− Pr [yt−1 (αyt−1 + εt) < 0] =

=

∫ +∞

−∞
(Pr [yt−1 (αyt−1 + εt) ≥ 0|yt−1]− Pr [yt−1 (αyt−1 + εt) < 0|yt−1]) f (yt−1) dyt−1

=

∫ +∞

0

(Φ(αy)− Φ(−αy))φ (y) dy +

∫ 0

−∞
(Φ(−αy)− Φ(αy))φ (y) dy

=

∫ +∞

0

2φ(0)αyφ (y) dy −
∫ 0

−∞
2φ(0)αyφ (y) dy + o (α) = 2φ(0)αE [|y|] + o (α)
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and var
(
ÃT

)
= T−1 + o(T−1), so that under Hδ

A,
√
TÃT and hence DA converge in distri-

bution to N (2φ(0)δ E [|y|] , 1). For the nonlinear model (9),

AT = α +
1

T

∑
t

sign(yt−1)εt,

ÃT =
1

T

∑
t

sign (α + sign (yt−1) εt) .

Under Hδ
A,
√
TAT and hence EP converge in distribution to N (δ, 1) . For ÃT , we have

E
[
ÃT

]
= Pr [α + sign (yt−1) εt ≥ 0]− Pr [α + sign (yt−1) εt < 0] =

= Pr [εt ≥ −α]− Pr [εt < −α] = Φ(α)− Φ(−α) = 2φ(0)α + o (α)

(where the second equality follows from independence of yt−1 and εt and symmetry of εt), and

var
(
ÃT

)
= T−1 + o(T−1), so that under Hδ

A,
√
TÃT and hence DA converge in distribution

to N (2φ(0)δ, 1).
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Table 1

DA statistic EP statistic

Model 10% 5% 1% 10% 5% 1%

OLS NN OLS NN OLS NN OLS NN OLS NN OLS NN

Power

AR 40.7 25.0 30.1 16.3 13.5 5.8 51.9 32.5 40.9 22.6 21.5 9.15

SETAR 39.3 39.8 29.3 29.6 14.3 13.9 50.2 52.1 40.1 41.1 22.6 22.1

Size

Const 9.8 10.1 4.6 4.8 1.1 1.0 9.8 10.4 5.1 5.2 1.7 1.1

GARCH 9.3 9.9 4.5 4.9 0.7 1.0 14.1 11.3 7.9 6.1 2.5 1.2

Notes: Entries are actual rejection frequencies from 10, 000 simulations of series with sample

size 1, 000, corresponding to nominal rejection frequencies of 10%, 5%, and 1%. In each

simulation, estimation is performed over a rolling window of 100 observations. The DA and

profitability statistics are computed over 900 predictions. DGPs (10) and (11) are used for

power, DGPs (12) and (13) – for size comparisons. OLS refers to the OLS linear regression,

NN – to the nearest neighbors local regression. The EP and DA statistics defined in (6) and

(7), respectively, are asymptotically distributed as N(0,1) under the null of no predictability.

Table 2

Predictor Sum of squared prediction errors DA statistic EP statistic

RW 1.07

OLS 1.10 2.52 2.48

NN 1.14 4.24 4.03

Notes: RW refers to the “buy-and-hold” strategy, OLS – to the OLS linear regression, NN –

to the nearest neighbors local gression. Estimation is performed over a rolling window of 104

observations. The EP and DA statistics are computed over 2677 predictions. The EP and

DA statistics defined in (6) and (7), respectively, are asymptotically distributed as N(0,1)

under the null of no predictability.
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Figure 1: Log cumulative returns, weekly S&P500 index.

Figure 2: Evolution of mean predictability, weekly S&P500 index.
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