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Abstract There coexist two popular autoregressive conditional density model
classes for series of positive financial variables such as realized volatility. One is
a class of multiplicative error models (MEM), where the conditional mean is mod-
elled autoregressively, while the specified shape of conditional distribution imposes
evolution on higher order moments. The other class contains LogARMA models—
ARMA models for logarithms of the original series, with a possibly time varying
conditional distribution imposed on top of it. For MEMmodels, generating forecasts
is straightforward, while for LogARMA models, additional numerical integration
may be required. We compare small and big models from the two classes, along with
their combinations, in terms of in-sample fit and out-of-sample predictability, using
real data on realized volatility. The forecast combination weights show that both
model classes are able to generate competitive forecasts, but the class of LogARMA
models appears more reliable in forecasting than the class of MEM models.

1 Introduction

When the notion and analysis of realized volatility came to play in Andersen et al.
(2003), the leading idea of how to model it was the use of LogARMAmodels, i.e., the
class of ARMAmodels applied to the logarithm of the original series. Andersen and
coauthors (Andersen et al. 2003) employed a LogARMA-spirited VAR-RV model
for logarithmic volatility, somewhat motivated by the fact that the realized volatility
is approximately log-normally distributed (see also Andersen et al. (2001)). Later,
the LogARMA model took various fancy forms, such as the heterogeneous autore-
gressive (HAR) model (Corsi 2009) and its extensions.

However, realized volatility is a positive series. There is another option for mod-
eling the dynamics of positive series. The story started developing from the work
of Engle (Engle and Russell 1998) who proposed a class of autoregressive con-
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ditional duration (ACD) models for intradaily trade durations, a positive variable.
Later, Engle (2002) renamed the class as multiplicative error models (MEM) noting
that these models are convenient to use for any serially correlated stationary positive
series. Various more generalized MEM-based models for realized volatility in levels
were introduced into empirical work (e.g., Engle and Gallo (2006), Hautsch (2011)).

Nowadays, both approaches to modeling realized volatility coexist. Engle (Engle
2002) made a quick comparison of attractive and unpleasant features of MEM with
LogARMA models, while Allen and coauthors (Allen et al. 2008) showed how
the two model classes overlap (see also Sect. 2.3). Below we list in comparison
four separate aspects related to both classes, the first two important for modeling
decisions, and the other two less critical.

1. The MEM class is targeted primarily to model the conditional mean of the series,
and hence is natural and sufficient for modeling the dynamics for the purposes
of forecasting. At the same time, a model for the conditional mean of a log-
transformed variable such as LogARMA needs to model the whole conditional
distribution if one wants to eventually forecast the volatility in levels. This may be
cumbersome to do, except under conditional homoskedasticity and/or conditional
normality—the situations, when the conditional mean can be easily translated to
the conditional mean of an exponent.

2. The simplest MEMmodel (so called exponential MEM) describing the dynamics
of the conditional mean of the series automatically describes its higher order con-
ditional moments, at least when the multiplicative innovation’s conditional distri-
bution is time-independent. The class of LogARMA models, in contrast, allows
independent modeling higher order moments, at least its conditional variance by,
for instance, an ARCH-type evolution, even when the standardized innovation’s
conditional distribution is time-independent. Thus, all else equal, the dynamics
of conditional distribution is more flexible within the LogARMA framework.

3. If the support of the variable modelled contains values close to zero, construction
of an LogARMAmodelmay be problematic because of taking a logarithm of very
small values, and zero values are totally prohibitive. At the same time, the MEM
model successfully adapts for zeros in the support of the conditional distribution
even in a logarithmic version that we use here. Moreover, Hautsch and coauthors
(Hautsch et al. 2014) show how to take care of a probability mass at zero if zero
values have a non-zero probability of occurrence.

4. Extensions of a scalar heteroskedastic LogARMA to amultivariate framework are
familiar: the mean equation extends from ARMA to VARMA, and the variance
equation from GARCH to multivariate GARCH. Extensions of a scalar MEM
to a multivariate MEM are trickier and require the copula machinery (see, for
example, Engle and Gallo (2006)).

The first two critical aspects suggest a trade-off between flexibility of modeling
and complexity of two types: the usual one—degree of parameterization, and another
one—producing forecasts. In this paper, we play onemodel class off against the other,
using real data on realized volatility, to try to determine the ‘optimal’ modeling
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strategy. We specify two members of each class of models—one is a ‘small’ model
and the other a ‘big’ model. Both use plausible specifications of volatility dynamics,
but differ in specifications of the conditional distribution. The ‘small model’ uses a
baseline conditional distribution that, in particular, allows quasi-maximum likelihood
estimation, while the ‘big model’ uses a sophisticated conditional distribution with
additional shape parameters—not the fanciest that one can find in the literature but
one that is likely to be exploited by a practitioner. For the MEM class, these are the
exponential andBurr distributions, respectively, while for the LogARMAclass, these
are the normal and skewed Student distributions. Both sophisticated distributions—
Burr and skewed Student—possess two additional shape parameters.

We compare the in-sample and out-of-sample performance of the resulting four
models, paying special attention to forecasting quality. Towards this end, we compare
forecasts produced by the four models together with two types of model combina-
tions, and construct the model confidence sets (MCS, Hansen et al. (2011)) of the
best performing models. To do the numerical evaluation, we use a popular data-set of
realized stock market volatility on ten stocks. We find that in terms of in-sample fit,
the ‘small’ MEM model does not fit well compared to the other three, while among
these three, usually two of three models tend to stand out, depending on the stock.
In terms of forecasting quality, the four models perform quite similarly, and usu-
ally multiple models can be deemed the best in terms of MCS. Overall, the class of
LogARMA models seems to be more reliable in forecasting than the class of MEM
models, and small models tend to dominate big models from the same class. While
model averaging using in-sample quality of fit does not tend to improve forecasting
performance above the performance of best individual best models, model averaging
using out-of-sample quality of fit is able, sometimes, to slightly improve forecasts.

The article is organized as follows. Section2 describes the models, together with
estimation and forecasting methods. Section3 contains empirical results. Section4
concludes.

2 Models

Denote the realized volatility by rvt .Wewill compare four individual (‘pure’)models
and two combinations of those. The individual models are: two MEMmodels based
on the conditional exponential (‘small’) and Burr (‘big’) distributions and a linear
dynamics in logs for the conditional mean of rvt , and two LogARMAmodels based
on the conditional normal (‘small’) and skewed Student (‘big’) distributions and an
ARMA-EGARCH dynamics for logs of rvt . The two model combinations are based
on individual model performance: one on the in-sample performance as judged by
the smoothed Takeuchi information criterion, and the other on the out-of-sample
performance as judged by the forecasting quality in a validation subsample. For
simplicity, all dynamic models have orders (1,1).
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2.1 MEM

In both MEM models, rvt = μtεt , where μt is the conditional mean of rvt , and
εt has a positive distribution with conditional mean unity. The dynamics of μt is
logarithmic:

logμt = ω + α log rvt−1 + β logμt−1.

A small MEM is represented by the ExpMEM model

εt |It−1 ∼ E ,

where E denotes standard exponential distribution having the density

fE (ε) = exp (−ε) .

A big MEM is represented by the BurrMEM model1

εt |It−1 ∼ B(ζ, �),

where B(ζ, �) denotes Burr distribution with mean unity and shape parameters
ζ and �, thus having the density

fB (ε) = ζ

χζ
εζ−1

(
1 + �

(
ε

χ

)ζ)−1−�−1

, (1)

where

χ = Γ (1 + �−1)�1+ζ−1

Γ (1 + ζ−1)Γ (�−1 − ζ−1)
, ζ, � > 0.

For both ExpMEMandBurrMEM, the one-step forecast of realized volatility then
has the following form:

r̂vt+1 = μ̂t+1 = exp
(
ω̂ + α̂ log rvt + β̂ log μ̂t

)
.

2.2 LogARMA

In both LogARMA models, log rvt follows an ARMA dynamics

1 This distributionwas proposed inGrammig andMaurer (2000) forACDmodels for trade durations
in order to account for non-monotonicity of the conditional hazard function. An alternative flexible
distribution is normalized generalized gamma (see Hautsch (2011)). We utilize Burr because it
exhibits much higher stability than the generalized gamma in experiments with real data.
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log rvt = μ + φ log rvt−1 + et + θet−1,

with semi-strong white noise innovations et = σtηt , whose conditional variance
(‘volatility of volatility’) follows EGARCH dynamics:

log σ 2
t = ω + α|ηt−1| + γ ηt−1 + β log σ 2

t−1,

where ηt is standardized innovation with conditional mean zero and conditional
variance unity.

A small LogARMA is represented by the NormLogARMA model

ηt |It−1 ∼ N ,

where N denotes standard normal distribution having the density

fN (η) = 1√
2π

exp

(
−η2

2

)
.

A big LogARMA is represented by the SkStLogARMA model2

ηt |It−1 ∼ SS (λ, ν).

whereSS (λ, ν) denotes standardized (to have zeromean and unit variance) skewed
Student distribution (Hansen 1994) with shape parameters λ (responsible for asym-
metry) and ν (degrees of freedom, responsible for tail thickness), thus having the
density

fS S (η, λ, ν) = c0c1

(
1 + ξ 2

ν − 2

)−(ν+1)/2

, (2)

where ξ = (c1η + c2)/(1 − λ) if η < −c2/c1 and ξ = (c1η + c2)/(1 + λ) other-
wise, c0 = Γ ((ν + 1)/2)/Γ (ν/2)/

√
π(ν − 2), c2 = 4c0λ(ν − 2)/(ν − 1), and c1 =√

1 + 3λ2 − c22.
For both LogARMAmodels, the one-step forecast of logarithmic realized volatil-

ity is given by
̂log rvt+1 = μ̂ + φ̂ log rvt + θ̂et ,

while the volatility prediction is

σ̂ 2
t+1 = exp

(
ω̂ + α̂|η̂t | + γ̂ η̂t + β̂ log σ̂ 2

t

)
.

2 An alternative flexible distribution is normalized skewed generalized error distribution (SGED)
(see, e.g., Anatolyev and Petukhov (2016)). We utilize skewed Student because it exhibits much
higher stability than the SGED in experiments with real data.
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For the NormLogARMAmodel, because of conditional normality, these forecasts
are translated into the forecast for realized volatility via

r̂vt+1 = Ê[rvt+1|It ] = exp

(
̂log rvt+1 + 1

2
σ̂ 2
t+1

)
.

For the SkStLogARMA model, the conditional expectation E[rvt+1|It ] does not
have a closed form. Therefore, we form the forecasts using

r̂vt+1 = exp
(
̂log rvt+1

)
̂E

[
exp (σt+1ηt+1) |It

]
,

where the integral ̂E
[
exp (σt+1ηt+1) |It

] = ∫ +∞
−∞ exp

(
σ̂t+1η

)
fS S (η, λ̂, ν̂)dη is

computed using the Gauss-Chebychev quadrature (see, e.g., Judd (1998)):

∫ b

a
g(x)dx ≈ π(b − a)

2n

n∑
i=1

(1 − x2i )
1
2 g

(
a + (xi + 1)(b − a)

2

)
,

where xi = cos
(
(2i − 1)π/(2n)

)
, i = 1, . . . , n. We set n = 100, a = −8, and

b = 8; these values deliver sufficient computational precision.

2.3 Reconciliation of MEM and LogARMA

Let us reconcile the dynamics of realized volatility in the two model classes. From
the MEM multiplicative structure, it follows that

log rvt = logμt + log εt = (1 − βL)−1 (ω + α log rvt−1) + log εt ,

or
log rvt = ω + (α + β) log rvt−1 + log εt − β log εt−1,

which has a homoskedastic ARMA(1,1) for log rvt . On the other hand, in the Log-
ARMA model class, log rvt follows a heteroskedastic ARMA dynamics

log rvt = μ + φ log rvt−1 + et + θet−1,

with innovations et ,whose conditional variance followsEGARCHdynamics.Hence,
as viewed from the perspective of themean logarithmic volatility dynamics, theMEM
and LogARMA models are equally flexible, but are different in the flexibility of the
volatility-of-volatility dynamics; LogARMA is more flexible in this respect.

However, even if the heteroskedasticity was shut down in LogARMA, the models
would still not be equivalent in conditional distributional features, as the exponen-
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tial/Burr distribution of εt does not correspond to normal/skewed Student distribution
of et . Thus, neither model is a special case of the other.

2.4 Model Averaging

Along with the four pure models, we use their combinations and corresponding
combined forecastswithweights based on in-sample andout-of-sample performance.
In both cases, predictions are formed as a linear combination of predictions from
individual models:

r̂vt+1 =
M∑
i=1

wi r̂vt+1,i ,

whereM is number of puremodels (4 in our case), andwi and r̂vt+1,i , i = 1, . . . , M ,
are the model weights and individual forecasts, respectively.

The first model averaging combination based on an in-sample smoothed infor-
mation criterion (Buckland et al. 1997), which is a convenient tool to track relative
in-sample fit of several models. Denote by ft−1(rvt |θ) the conditional density of
realized volatility at period t, where θ is a vector of all parameters in a given model,
and let �n(θ̂) = ∑

t log ft−1(rvt |θ̂ ) be the loglikelihood function. The 5th set of
predictions is produced by model averaging using smoothed Takeuchi information
criterion (STICMA). The Takeuchi information criterion (TIC, Takeuchi (1976))
is a more general version of the familiar Akaike information criterion (AIC) that
acknowledges misspecification of the conditional density, which is important in our
setup:

T IC = −2�n
(
θ̂
) + 2tr

(
Ĵ−1 Î

)
,

where Ĵ and Î are empirical analogs of J = −E
[
∂2 log ft−1(rvt |θ)/∂θ∂θ ′] and

I = E
[
∂ log ft−1(rvt |θ)/∂θ ∂ log ft−1(rvt |θ)/∂θ ′], the ingredients of the asymp-

totic variance of the quasi-ML estimator. When the given model is correctly spec-
ified, J = I and tr

(
J−1 I

) = K , and TIC reduces to AIC, AIC = −2�n(θ̂) + 2K ,

where K = dim (θ) is a total number of parameters in themodel under consideration.
Implementationwise, we compute Ĵ and Î by using numerical derivatives (see, e.g.,
Judd (1998)). For theMEMmodels, formulas for theTICs are straightforward, but for
LogARMA models formulated for log-transformed variables, the TIC that contains
densities of observables should be adjusted, according to the relation between densi-
ties of original and transformed variables: if z = exp(x), then fZ (z) = f (log z)/z,
and so E[log fZ (z)] = E[log f (x) − x]. The STICMA weights wi are given by

wi = exp(−T ICi/2)∑M
j=1 exp(−T IC j/2)

, i = 1, . . . , M.
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The second model averaging combination, which produces the 6th set of predic-
tions, is based on the out-of-sample performance of individual models. To this end,
we adapt the jackknifemodel averaging (JMA)machinery (Hansen andRacine 2012)
to the nonlinear modeling setup. Here, the weightswi , i = 1, . . . , M, are determined
by minimizing the cross-validation (CV) criterion, which is computed from all M
models’ forecast errors on the validation subsample; for exact formulation, see equa-
tions (5) and (6) in Hansen and Racine (2012). The quadratic optimization problem
subject to the constraint that all the M weights are non-negative and sum to unity, is
a nice easily implementable problem even when numerically solved repeatedly in a
rolling window.

3 Empirical Evaluation

3.1 Data

We perform the estimation and forecasting exercises using the popular elsewhere
data-set of realized stock market volatility from (Noureldin et al. 2012). This data-
set contains daily realized volatilities on 10 stocks: BAC, JPM, IBM, MSFT, XOM,
AA, AXP, DD, GE, KO, and covers the period from February 1, 2001 to December
31, 2009. Because towards the end of the sample volatilities exhibit turbulence, we
cut it at May 31, 2007. This leaves 1589 observations, of which the last 589 we use
for forecast evaluation, and estimate the models in a 1000-observations window. The
length of the validation subsample is set at 100 observations. The ten volatility series
are depicted in Fig. 1.

3.2 Model Estimation

Box 1 shows estimation results for BAC, as a typical example, in the first estima-
tion window. For the two MEM models, there is a stark difference in the degree of
in-sample fit between the small and big models. The large gap between the corre-
sponding loglikelihood values and information criteria is delivered by the two shape
parameters of the Burr density sharply different from those implied by the standard
exponential density. The parameters between the two conditional mean equations
are very similar and well identified.

In contrast, the differences in the degree of fit between the two LogARMAmodels
are modest at most, even though the density shape parameters of the skewed Stu-
dent distribution statistically significantly differ from those implied by the standard
normal density. The two conditional mean equations are very similar and pretty well
identified, while some estimates in the variance equation differ quite a lot and have
big standard errors. Evidently, the dynamics of ‘volatility of volatility’ is quite hard
to identify.
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Fig. 1 Data on realized volatilities (shaded is out-of-sample period)
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3.3 Model Average Weights

Figures2 and 3 depict, correspondingly, the values of STICMA and JMA weights in
a rolling window for all the stocks. When the weights are formed from the in-sample
performance (Fig. 2), the small MEM model (ExpMEM) always has zero weights
as a result of its having a much smaller in-sample quality than the big MEM model
(BurrMEM).

ExpMEM model

εt |It−1 ∼ E

logμt = 0.0420
(0.0096)

+ 0.363
(0.193)

log rvt−1 + 0.615
(0.215)

logμt−1

LL = −1165.7, T IC = 2333.8

BurrMEM model

εt |It−1 ∼ B

(
3.081
(0.159)

, 1.277
(0.198)

)

logμt = 0.0438
(0.0117)

+ 0.371
(0.140)

log rvt−1 + 0.611
(0.150)

logμt−1

LL = −675.0, T IC = 1361.2

NormLogARMA model

log rvt = −0.00267
(0.00569)

+ 0.977
(0.009)

log rvt−i + et − 0.611
(0.040)

et−1

log σ 2
t = −0.155

(2.375)
+ 0.071

(0.275)
|ηt−1| − 0.013

(0.021)
ηt−1 + 0.938

(0.979)
log σ 2

t−1

ηt |It−1 ∼ N

LL = −625.6, T IC = 1383.4

SkStLogARMA model

log rvt = −0.00077
(0.00591)

+ 0.981
(0.009)

log rvt−1 + et − 0.611
(0.033)

et−1

log σ 2
t = − 0.809

(10.231)
+ 0.112

(0.179)
|ηt−1| − 0.000

(0.046)
ηt−1 + 0.545

(5.810)
log σ 2

t−1

ηt |It−1 ∼ S S

(
0.0927
(0.0370)

, 1.546
(0.102)

)

LL = −615.3, T IC = 1361.4

Box 1: Results of estimation of the four models for BAC in the first window.
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Fig. 2 Values of STICMA weights in rolling window
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Fig. 3 Values of JMA weights in rolling window
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The big MEM and both LogARMA models perform in-sample on par with each
other, though the parity depends on the asset under consideration. For most stocks,
two of the three models stand out—for example, for MSFT, only the two LogAR-
MAs have nontrivial weights, while, for example, for IBM, it is the two big models
that perform better. For other stocks, for example, for GE, all the three models are
balanced. The balance between the non-trivially weighted models usually varies in
time in clusters, with weights for one model being able to take values close to zero
at times and values near unity at other times. Table1 presents the average, together
with standard deviations, STICMA weights from different models. Any of the mod-
els other than ExpMEM is able to dominate on average, although BurrMEM seems
to be doing it most often.

When the weights are formed from the out-of-sample performance (Fig. 3), the
role of the small MEMmodel (ExpMEM) ceases to be trivial, and for some stocks in
some periods this models dominates. The other three models are keeping up, so for
each of the four models there are combinations of stocks and periods, albeit short,
when this model dominates the other three. There are much fewer instances when
twomodels are on par with each other, thanwhen the weights are driven by in-sample
performance. Table2 presents the average, together with standard deviations, JMA
weights from different models. Each of the four models is able to exhibit average
weights of 50% or higher for some of the stocks, and at the same time average
weights close to zero for others. The standard deviations also point at the instability
of weights as functions of a position of the validation subsample.

Table 1 Average (and standard deviations of) STICMA weights from different models
BAC JPM IBM MSFT XOM AA AXP DD GE KO

ExpMEM 0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

BurrMEM 0.56
(0.33)

0.87
(0.24)

0.86
(0.26)

0.02
(0.10)

0.86
(0.19)

0.70
(0.26)

0.85
(0.23)

0.22
(0.29)

0.51
(0.43)

0.10
(0.20)

NormLogARMA 0.03
(0.11)

0.02
(0.11)

0.00
(0.02)

0.72
(0.26)

0.00
(0.04)

0.06
(0.12)

0.00
(0.00)

0.25
(0.26)

0.26
(0.31)

0.21
(0.24)

SkStLogARMA 0.41
(0.31)

0.12
(0.22)

0.14
(0.26)

0.26
(0.24)

0.13
(0.19)

0.24
(0.21)

0.15
(0.23)

0.53
(0.29)

0.23
(0.25)

0.69
(0.28)

Table 2 Average (and standard deviations of) JMA weights from different models
BAC JPM IBM MSFT XOM AA AXP DD GE KO

ExpMEM 0.15
(0.33)

0.16
(0.36)

0.56
(0.48)

0.24
(0.39)

0.01
(0.08)

0.07
(0.20)

0.29
(0.42)

0.40
(0.48)

0.50
(0.49)

0.15
(0.33)

BurrMEM 0.02
(0.09)

0.03
(0.14)

0.01
(0.09)

0.00
(0.00)

0.33
(0.45)

0.54
(0.49)

0.35
(0.45)

0.12
(0.32)

0.00
(0.03)

0.00
(0.02)

NormLogARMA 0.80
(0.39)

0.79
(0.39)

0.10
(0.29)

0.50
(0.49)

0.15
(0.33)

0.17
(0.35)

0.32
(0.46)

0.15
(0.36)

0.02
(0.13)

0.40
(0.47)

SkStLogARMA 0.03
(0.17)

0.02
(0.13)

0.33
(0.46)

0.26
(0.42)

0.51
(0.50)

0.22
(0.39)

0.04
(0.17)

0.33
(0.46)

0.47
(0.49)

0.45
(0.50)



266 S. Anatolyev

3.4 Forecasting Performance

Now we turn to comparing the forecasting performance of individual models and
their model averages. Table3 contains out-of-sample average squared errors from
different models for all the stocks, and Table4 reports model confidence sets (MCS)
for the 25% confidence level, which is a conventional level in volatility analysis (see
Laurent et al. (2012)). The MCS machinery (Hansen et al. 2011) allows statistically
correct multiple hypotheses testing, and the MCS is a subset of models from the
pool of all predictive models under consideration that are statistically insignificanly
different by their forecasting performance. The null hypothesis states that all the
models inside the MCS perform equally well, while any model outside of the MCS
performs worse; for more details, see Hansen et al. (2011).

One can immediately see that the four ‘pure’models are very similar in forecasting
performance, and for most stocks multiple models can be deemed the best. Often,
it is two or three models out of the four, but it may be also all four. The model
that always belongs to the MCS at the 25% level is the NormLogARMA model, i.e.
small LogARMA. This happens despite the estimation noise in barely identifiable
volatility-of-volatility dynamics. Also, recall that an additional advantage of this
particular LogARMA model is that forecasts can be computed without numerical
integration. The SkStLogARMAmodel, i.e. big LogARMA, is a bit less likely to be
among the best, so theMCS contains this model for 7 out of 10 stocks. The ExpMEM
model, i.e. small MEM, is much less likely to be among the best, and only for half of
the stocks is this model contained in the MCS. Finally, the BurrMEMmodel, i.e. big
MEM, enters the MCS only for 3 out of 10 stocks. Overall, the class of LogARMA

Table 3 Average out-of-sample losses from different models
BAC JPM IBM MSFT XOM AA AXP DD GE KO

ExpMEM 0.4364 0.2097 0.1538 0.1537 0.4946 1.4307 0.3422 0.4118 0.0748 0.0570

BurrMEM 0.4376 0.2090 0.1541 0.1555 0.4926 1.4329 0.3423 0.4136 0.0758 0.0571

NormLogARMA 0.4372 0.2070 0.1536 0.1525 0.4922 1.4318 0.3423 0.4136 0.0752 0.0565

SkStLogARMA 0.4378 0.2076 0.1532 0.1527 0.4907 1.4349 0.3424 0.4133 0.0754 0.0564

STICMA 0.4377 0.2084 0.1540 0.1525 0.4928 1.4325 0.3421 0.4136 0.0756 0.0564

JMA 0.4376 0.2069 0.1534 0.1527 0.4932 1.4332 0.3426 0.4121 0.0750 0.0563

Table 4 Predictive model confidence sets for 25% confidence level
BAC JPM IBM MSFT XOM AA AXP DD GE KO

ExpMEM * * * * *

BurrMEM * * * *

NormLogARMA * * * * * * * * * *

SkStLogARMA * * * * * * * *

STICMA * * * * * *

JMA * * * * * * * * *
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models seems to be more reliable in forecasting than the class of MEM models.
There is a slight tendency of small models to dominate big models from the same
classes.

The two bottom lines in Tables3 and 4 show the figures for the model averaging
forecasts that are based on STICMA and JMA. The model average combinations
do sometimes, though not always, improve the forecasting performance relative to
individual models, confirming the common wisdom. It is also intuitive that model
averaging based on out-of-sample performance fairs better than model averaging
based on in-sample criteria. In fact, the JMA forecasts entered the 25% MCS for
almost all stocks—9 out of 10, in contrast to STICMA, which is contained in the
MCS only for 6 stocks.

4 Concluding Remarks

We have run a mini-competition among several models from two popular model
classes—MEM and LogARMA—for realized volatility of ten liquid stocks, paying
main attention to the forecasting quality. Overall, the class of LogARMA models
seems to be more reliable in forecasting than the class of MEMmodels, while small
models tend to dominate big models from the same class. The small LogARMA
model and the model average based on forecasting performance have more chances
to yield best predictions than the other individual models or the information criterion
based model average, although this tendency is unstable through time and across
stocks. For some stocks, the difference across all the models seems to be immaterial.
The decision about which model class to select and how complex a model within the
class to use does not seem empirically that big of a deal.
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assistance.

References

Allen, D., Chan, F., McAleer, M., Peiris, S.: Finite sample properties of the QMLE- for the LogACD
model: application to Australian stocks. J. Econometr. 147, 163–185 (2008)

Anatolyev, S., Petukhov, A.: Uncovering the skewness news impact curve. J. Financ. Econometr.
14(4), 746–771 (2016)

Andersen, T.G., Bollerslev, T., Diebold, F.X., Labys, P.: The distribution of realized exchange rate
volatility. J. Amer. Stat. Assoc. 96, 42–55 (2001)

Andersen, T.G., Bollerslev, T., Diebold, F.X., Labys, P.:Modeling and forecasting realized volatility.
Econometrica 71(2), 579–625 (2003)



268 S. Anatolyev

Buckland, S.T., Burnham, K.P., Augustin, N.H.: Model selection: an integral part of inference.
Biometrics 53, 603–618 (1997)

Corsi, F.: A simple approximate long-memory model of realized volatility. J. Financ. Econometr.
7(2), 174–196 (2009)

Engle, R.F.: New frontiers for ARCH models. J. Appl. Econometr. 17(5), 425–446 (2002)
Engle, R.F., Russell, J.R.: Autoregressive conditional duration: a new model for irregularly spaced
transaction data. Econometrica 66(5), 1127–1162 (1998)

Engle, R.F., Gallo, G.M.: A multiple indicators model for volatility using intra-daily data. J.
Econometr. 131(1–2), 3–27 (2006)

Grammig, J., Maurer, K.-O.: Non-monotonic hazard functions and the autoregressive conditional
duration model. Econometri. J. 3, 16–38 (2000)

Hansen, B.E.: Autoregressive conditional density estimation. Int. Econ. Rev. 35(3), 705–730 (1994)
Hansen, B.E., Racine, J.: Jackknife model averaging. J. Econ. 167, 38–46 (2012)
Hansen, P.R., Lunde, A., Nason, J.M.: The model confidence set. Econometrica 79(2), 453–497
(2011)

Hautsch, N.: Econometrics of Financial High-Frequency Data. Springer Science&BusinessMedia,
Berlin/Heidelberg, Germany (2011)

Hautsch,N.,Malec, P., Schienle,M.:Capturing the zero: a newclass of zero-augmented distributions
and multiplicative error processes. J. Financ. Econometr. 12(1), 89–121 (2014)

Judd, K.: Numerical Methods in Economics. MIT Press, Cambridge, MA (1998)
Laurent, S., Rombouts, J.V.K., Violante, F.: On the forecasting accuracy of multivariate GARCH
models. J. Appl. Econometr. 27(6), 934–955 (2012)

Noureldin, D., Shephard, N., Sheppard, K.: Multivariate high-frequency-based volatility (HEAVY)
models. J. Appl. Econometr. 27(6), 907–933 (2012)

Takeuchi, K.: Distributions of information statistics and criteria for adequacy of models (in
Japanese). Suri-Kagaku (Math. Sci.) 153, 12–18 (1976)


