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Abstract

We consider estimation of dynamic joint distributions of large groups of assets. Conventional likelihood
functions based on ‘off-the-shelf’ distributions quickly become inaccurate as the number of parameters
grows. Alternatives based on a fixed number of parameters do not permit sufficient flexibility in
modelling asymmetry and dependence. This chapter considers a sequential procedure, where the joint
patterns of asymmetry and dependence are unrestricted, yet the method does not suffer from the curse
of dimensionality encountered in non-parametric estimation. We construct a flexible multivariate
distribution using tightly parameterized lower-dimensional distributions coupled by a bivariate copula.
This effectively replaces a high-dimensional parameter space with many simple estimations with
few parameters. We provide theoretical motivation for this estimator as a pseudo-MLE with known
asymptotic properties. In an asymmetric GARCH-type application with regional stock indexes, the
procedure provides excellent fit when dimensionality is moderate, and remains operational when the
conventional method fails.

8.1 INTRODUCTION

The problem of estimating conditional, or dynamic, distributions for a group of assets is very
important to a wide range of practitioners, in particular in the areas of risk management and portfolio
optimization. The key problem is how to allow for arbitrary asymmetry and dependence in high
dimensions while preserving a feasible parameterization. Traditional multivariate likelihood-based
estimators are often impractical in these settings due to high dimensionality or small samples, or both.
The existing multivariate densities that allow for asymmetric shapes tend to be tightly parameterized.
For example, the multivariate skewed Student-¢ distribution of Bauwens and Laurent (2005) allows for
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different degrees of asymmetry along each dimension, but the degrees of freedom are constrained to be
the same along all dimensions. Thus, a more natural benchmark is provided by the copula approach,
which allows for greater flexibility as far as the density shape is concerned.

Now consider the problem of constructing a high-dimensional distribution using the copula
approach. Suppose we wish to estimate a d-dimensional Student-# distribution. This is equivalent
to estimating d univariate Student- marginals and a Student-¢ d-copula. The problem has at least
d(d — 1)/2 parameters. The conventional approach is to construct a joint log-density from this
d-dimensional distribution and use it in a maximum likelihood (ML) routine. However, for large d
and moderate sample sizes, the likelihood is highly unstable, Hessians are near singular, estimates are
inaccurate and global convergence is hard to achieve.

One solution is to use copulas which have tighter parameterizations. However, the functional form
of such copulas limits the nature of dependence they can accommodate (Nelsen, 2006, Section 4.6).
Another solution is to use ‘vine copulas’ (Aas et al., 2009) when the d-variate density is decomposed
into a product of up to d(d — 1)/2 bivariate densities. However, there are still O(d?) parameters in
the joint likelihood; in addition, the required ordering of components is rarely available, especially in
the time-series context. Yet another alternative is to use the factor copula approach (Oh and Patton,
2013). However, the joint density obtained lacks a close form; in addition, it is unclear whether the
convolution of distributions imposed by the factor copula covers all classes of joint distributions one
may wish to model.

The method we describe in this chapter replaces the initial estimation problem with a sequence of
bivariate problems. This procedure was first outlined by Anatolyev et al. (2014) and can be thought
of as recovering the joint distribution from the distributions of all lower-dimensional sub-vectors com-
prising the original random vector. We start with univariate distributions and estimate all copula-based
bivariate distributions that can be constructed from them. Then we couple each univariate marginal
with one of the bivariate distributions to get all possible trivariate distributions involving three given
marginals. Then we model the average. At every subsequent step we couple each univariate marginal
with a lower-dimensional distribution from the previous step and average over these combinations. This
provides sufficient flexibility as we can model asymmetry and dependence differently in each step.

Theoretical justification for this procedure comes from the theory of composite and quasi-
likelihoods (see, e.g., Varin ef al., 2011 for a review) and the theory of compatible copulas (see, e.g.,
Nelsen, 2006). The averaging over combinations comes from the theory of model average estimators
(see, e.g., Clemen, 1989 for an early review). The procedure is related to the work by Sharakhmetov
and Ibragimov (2002) and de la Pena et al. (2006), who provide a representation of multivariate
distributions in terms of sums of U-statistics of independent random variables, where the U-statistics
are based on functions defined over all subvectors of the original random vector. The procedure is also
somewhat similar in spirit to Engle’s (2009) approach of estimating a vast-dimensional DCC model
by merging estimates of many pairwise models, either all of them or a number of selected ones. In
contrast to Engle (2009), we reconstruct the dynamics of the entire multivariate distribution, rather
than focusing on the dynamics of the conditional second moment.

Our method uses many individual optimization problems at each step. However, each such problem
involves substantially fewer parameters than the conventional estimation problem where the entire
dependence structure is parameterized. For the Student-t example above, we will show in the application
section that the conventional MLE will have difficulty even when dimensions are moderate (i.e., when d
is between 5 and 10). In contrast, our procedure requires running MLEs for only bivariate Student-#’s.

In parametric estimation, fewer parameters means functional form biases. If we take an
‘off-the-shelf” distribution with a high d and a tight parameterization, it will typically be tied to
a convenient functional form indexed by a handful of parameters and the patterns of asymmetry
and dependence it can accommodate will be limited. As an example, consider a one-parameter
Gumbel-Hougaard d-copula. This is a multivariate Archimedean copula with Kendall’s 7 in
the range [0,1), incapable of capturing discordance or lower-tail dependence (see, e.g., Nelsen,
2006, Section 4.6). An important advantage of our approach is greater flexibility in modelling
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asymmetry and dependence — because of the many steps, we have more degrees of freedom in choosing
parameterizations.

In this chapter we look in more detail at the asymptotic properties of our estimator. We show
that this estimator can be viewed as a traditional pseudo-maximum likelihood estimator (PMLE). We
also look at the estimator in the framework of the generalized method of moments (GMM) estimation
in order to study the consequences of multiple-stage estimation on asymptotic efficiency and standard
error construction.

The chapter proceeds by describing the algorithm in Section 8.2. Section 8.3 considers theoretical
properties of our estimator. Section 8.4 describes a typical parameterization that arises in a multivariate
setting with dynamic and skewed distributions. It also gives details on the compounding functions and
goodness-of-fit tests that seem appropriate in this setting. Section 8.5 presents an empirical application
of the sequential method. Section 8.6 concludes.

8.2  SEQUENTIAL PROCEDURE

Suppose the group contains d assets. The new methodology can be described in the following sequence
of steps.

Step 1. Estimate the univariate marginals by fitting suitable parametric distributions
BB, ....E,

where 15/ = F(é\i) for eachj =1, ...,d. This step involves d MLE problems and is standard
for parametric modelling of dynamic multivariate distributions using copulas. The con-
ventional next step would be to apply a d-copula to the marginals but, as discussed in
the Introduction, this often results in an intractable likelihood.

Step 2. Using ’15,-’5, estimate bivariate distributions for all distinct pairs (i, /)

~

Fi.Fi5s oo s P Foss oo JF Ly
using a suitable parametric copula family as follows:
P =co(R.F:6).

where C?(., -;-) is a bivariate symmetric copula.’

In bivariate settings, this step is also standard, and final. For d > 2, we repeat it for
all asset pairs, effectively obtaining all possible contributions of the pairwise composite
likelihood. There are d(d — 1)/2 distinct pairs, as a symmetric copula for (i, ) is identical
to the copula of (j, 7). Hence, this step involves at least that many ML estimations.

An alternative that provides even more flexibility is to use an asymmetric copula, in

which case C(Z)(R,/F\j; @/> + C(2></F\7,IA3- 5) Then, the number of estimations increases

[ 1)

"Here and further a symmetric copula C(.,.) means that C(u, v) = C(v, u). This is the terminology used,
for example, in Nelsen (2006). With reference to copulas it is sometimes equivalent to exchangeable
copulas and not to be confused with radially symmetric copulas, which means that C(u,v) = u + v —
1+ C(1 —u,1 - v). All of the copulas we used, including symmetric in the sense above, are not radially
symmetric so they allow for asymmetry in the joint distribution.
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Step 3.

Step m, m < d.

Step d.

to d(d — 1) and in order to obtain a single distribution involving, say, index 7 and index
j, we use the average of the two copulas as follows:

C<2><F 0. )+c<2>(F B 9)

it i Vi

i~ B
Aside from simple averaging, data-driven weighting schemes (e.g., based on information
criteria) exist (see, e.g., Burnham and Anderson, 2002, Chapter 4), but we leave this
aside for the moment.

It is easy to see that steps 1 and 2 produce pseudo-ML estimators of gf’s and é\i/-’s
So, for each pair (7,j) we have a pseudo-ML estimator of their distribution. It could
be tempting to stop here and to construct the joint distribution over all marginals by
aggregating R/ over i,j =1, ... ,d (e.g., by averaging). This would be similar to other
types of composite likelihood-based estimators (see, e.g., Cox and Reid, 2004; Varin and
Vidoni, 2005, 2006, 2008). However, it will impose a restrictive dependence structure
on the joint distribution and result in a poorer fit. We return to this point in Section
8.3.1.
Using F and F,

;» estimate trivariate distributions for each combination of 7 and (j, k)

CO (B Fsbye):

where C(3)(/15-, /15,-,:; 0. ) is a suitable copula-type compounding function (not necessarily

symmetric) that captures dependence between the ith asset and the (7, k)th pair of assets.
There are d(d — 1)(d — 2)/2 possible combinations of F s with disjoint pairs Fk, so this
is the number of estimations involved in this step.

Similar to step 2, we construct a single distribution for triplet (4,7, k) by averaging
over the three available estimates as follows:

~

c® (p F/Ie’ ) >+C(3> (F F,k, >+C<3> (FkaFt/,elaii>
Fijlz = .

3

This formula is an extension of that for /15,7. It uses triplets of observations to construct the
composite likelihood contributions and it applies equal weights when averaging since
we have no information-theoretic argument to prefer one estimated distribution over
another. R
Using the E’s and F"p»
m-tuple. There are d!/(d —m)!(m — 1)! possible combinations of I/El-’s with disjoint
(m — 1)-variate marginals. Let i, <i, < ... <1i,. Obtain a model average estimate of
the distribution for the (i, 4,, ... ,7,,)th m-tuple:

i1j+1,..i » estimate an 7m-dimensional distribution for each

- = (m) .0
Ei i = ZC <Fl’ ,,l—l,l+1,.,.,im’el,il...,,l—l,l+1,.,.,im)’

where C™ is an mth-order compounding function which is set to be a suitable asym-
metric bivariate copula.
Estimate the d-variate distribution:

d
1 o A ~
- @ .
4 Z C (F/’FL...,l—l,l+1,...,d’01,1,...,/—1,l+1,...,d>v
=1

where C@ is a dth-order compounding function. There are d such functions to be esti-
mated.
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As the compounding functions are regular bivariate copulas, it follows that, by construction,
ﬁu,_”d is non-decreasing on its support, bounded and ranges between 0 and 1. Hence, R,z,...,d can be
viewed as an estimate of the joint cumulative distribution function obtained using sequential composite
likelihoods. In essence this cdf is a result of sequential applications of bivariate copulas to univariate
cdf’s and bivariate copulas.

Nothing guarantees that such a sequential use of copulas preserves the copula properties, that is,
nothing guarantees that the mth-order compounding functions are also m-copulas, m = 3, ..., d. In fact,
there are several well-known impossibility results concerning construction of high-dimensional copulas
by using lower-dimensional copulas as arguments of bivariate copulas (see, e.g., Quesada-Molina and
Rodriguez-Lallena, 1994; Genest et al., 1995b). Basically, the results suggest that copulas are rarely
compatible, that is, if one uses a k-copula and an [-copula as arguments of a bivariate copula, the
resulting (k + [)-variate object does not generally meet all the requirements for being a copula (see, e.g.,
Nelsen, 2006, Section 3.5).

Strictly speaking, the compounding functions constructed in steps 3 to d may fail to be m-copulas
unless we use a compatible copula family. However, the resulting estimator Ez,..d is a distribution
and thus implies a d-copula. Therefore we do not require the compounding functions to qualify for
being m-copulas as long as they can provide a valid pseudo-likelihood. In the theory section, we dis-
cuss the assumptions underlying this estimator. In practice, in order to ensure that we use a valid
pseudo-likelihood we choose in steps 3 to d a flexible asymmetric bivariate copula family that passes
goodness-of-fit diagnostics.

As an alternative we could use copula functions which are compatible. Consider, for example, the
Archimedean copulas. These copulas have the form C(uy, ... ,u;) =y U(w () + ... +y(u,)), where
w(-) is a function with certain properties and w!=!1() is its inverse. Under a certain monotonicity condi-
tion on y sometimes referred to as a nesting condition (see, e.g., Theorem 4.6.2 of Nelsen, 2006) this
functional form allows us to go from C(u,,u,) to the d-copula by repeatedly replacing one of the two
arguments with u,, = C(u,,,,u,,.,), m=2, ... ,d—1. However, as discussed in the Introduction, the
range of dependence such d-copulas can capture is limited and hence we do not use it in the empirical
section.?

In each step of the procedure we operate only with two types of objects: a multivariate distribution
of a smaller (by one) dimension and a univariate distribution. This allows for the number of parameters
used in each compounding function to be really small, while the total number of parameters in the joint
distribution remains rather large and ensures the flexibility needed to model general asymmetry and
dependence. This clarifies the claims made in the Introduction about the advantages of this procedure
over the standard single-copula or full-likelihood-based estimation. The conventional methods often
produce intractable likelihoods due to dimensionality, or they may be overly restrictive due to a tight
parameterization. Our procedure allows us to maintain a high degree of flexibility while trading the
dimensionality of the parameter space for numerous simpler estimations.

Finally, if we are faced with an extremely large number of assets our method permits a reduction
of the number of estimations by following the approach of Engle et al. (2008) and considering random
pairs, triples, etc., instead of all possible pairs, triples, etc., as proposed here.

8.3 THEORETICAL MOTIVATION

8.3.1 Composite Pseudo-likelihood and Model Averaging

Fundamentally, our method of obtaining ﬁn,‘. 4 falls within a subcategory of sequential pseudo-MLE
known as composite likelihood methods (see, e.g., Cox and Reid, 2004; Varin and Vidoni, 2005).
Composite likelihood estimators construct joint pseudo-likelihoods using components of the true data

’In the application, we have considered using the Clayton copula as an Archimedean alternative to
Student’s ¢ copula. However, in spite of being a comprehensive copula, it did not pass our goodness-of-fit
diagnostics and so we do not report these results here.
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generating process such as all pairs (see, e.g., Caragea and Smith, 2007; Varin, 2008) or pairwise differ-
ences (see, e.g., Lele and Taper, 2002), and sometimes employing weights on the likelihood components
to improve efficiency (see, e.g., Heagerty and Lele, 1998).

Unlike existing composite likelihood approaches, we estimate components of the composite likeli-
hood sequentially, for all possible multivariate marginals of the joint distribution, and employ weighting
to combine alternative composite densities. So our estimator is related to the literature on sequential
copula-based pseudo-MLE (see, e.g., Joe, 2005; Prokhorov and Schmidt, 2009b) and to the literature
on Bayesian model averaging and optimal forecast combination (see, e.g., Clemen, 1989; Geweke and
Amisano, 2011).

Consider the sequential procedure for d = 3 and ignore for the moment the combinatorics and
the weighting. Let H(x,,x,,x;) and h(x,, x,,x;) denote the joint distribution and density, respectively.
We wish to estimate these objects. Let F; = F(x)) andf,, = f(x/-),i = 1,2, 3, denote the univariate marginal
cdf’s and pdf’s. Note that the conventional 3-copula factorization would lead to the following expression
for the log joint density:

3
Inh(x,,x,,x5) = 21nﬂ+lnc(F1,F2,F3), (8.1)

=1

where c(u,,u,,u;) is a 3-copula density.

Now let C®(u,,u,) denote the copula function used in step 3 of our procedure, where #, is set
equal to the copula obtained in step 2, and let ¢® (i, u,) denote the copula density corresponding to
C®(u,, u,). The following result shows that the log joint density (without the weighting) has a useful
factorization, analogous to Equation (8.1).

Proposition 8.3.1 Suppose H(x,x,,x;) = CO(F;(x;), CB(F,(x,), F,(x,))). Assume Inc®(u,,u,) is
Lipschitz continuous. Then,

3
InhGx,,%,,x) = Y Inf+1Inc®(F,, F) + Inc® (Fy, CP(F,, Fy))

=1

+0 (2(F,, F))™) (8.2)

Proof: see Appendix 8.A for proofs. ]

In essence, Proposition 8.3.1 shows that under a standard continuity condition, one can reconstruct
a trivariate log density, up to an approximation error, by combining likelihood contributions obtained
from individual marginals using bivariate copulas as in our algorithm. The approximation error is
inversely related to ¢®(F,, F,), so it is small in areas of the support where ¢® concentrates a lot of mass
and is big in flat areas of the copula density.

Now suppose we stop at step 2, as discussed in Section 8.2. Effectively, this means we omit the
third term on the right-hand side of Equation (8.2). The approximation error is now larger and its
magnitude is no longer inversely related to values of copula densities. We also omit a valid contribution
to the likelihood in the form of the log-copula density from step 3. This may have efficiency implications
even if we use model averaging.

Clearly there are many possible combinations of marginals that can be used to form a
joint distribution H(x,,x,,x;). For example, C® can also be formed as C® (F;, C®(F,,Fy)), or as
C® (E,, CP(F,,Fy)). Each such combination of marginals will produce a different log-density so it is
important to pool them optimally. This question of density pooling is central in the literature on com-
bining multiple prediction densities (see, e.g., Hall and Mitchell, 2007; Geweke and Amisano, 2011),
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where optimal weights, also known as scoring rules, are worked out in the context of information

theory. As an example, define c/(.3) as follows:

= (F-, C(2)> ,
j ik

where j,k =1,2,3,j # k and Cf) = C®(F,,F),l # k,1 #j. Then, it is possible in principle to obtain the
optimal weights @, as solutions to the following problem:

max Iny wc?. 8.3

w,:Za)/:l Z Z 7 ( )

sample

Such scoring rules make the ;s a function of the 6;3) ’s and may be worth pursuing in large samples.
However, it has been noted in this literature that often a simple averaging performs better due to the
estimation error in w’s (see, e.g., Stock and Watson, 2004; Elliot, 2011). Moreover, in our setting,
problem (8.3) would need to be solved at each step, imposing a heavy computational burden. Therefore,
in our procedure we use a simple average of C"’s, or equivalently, a simple average of ¢™’s.

8.3.2 Asymptotics

We now turn to the asymptotic properties of our estimator. Let 6 contain all 8’s from the steps described

in Section 8.2. Assume that I?u‘_.d(x], ..., xy) is a proper distribution. Then, by the celebrated Sklar
(1959) theorem, the distribution ﬁlz___d(xl, ... .x,) implies a d-copula K(u,, ... ,u;6) and the corre-
sponding estimator of density f,, 4(x,, ... .x,) implies a d-copula density k(u,., ... ,u,;0). (We denote

the implied copula distribution and density functions by K and k&, respectively, to distinguish them from
the true copula distribution C(uy, ... ,u,) and true copula density c(u,, ... ,u,).) The following result
gives explicit formulas for the implied copula (density).

Proposition 8.3.2 Let ls;nl(um), m =1, ... ,d, denote the inverse of the marginal cdf/ﬁm from step 1 and
let f,, denote the pdf corresponding to ?m Then, the copula implied by /Fu“_d can be written as follows:

Ky, oo sug®)=Fpy F ), . Fl )

?12 d(ﬁfl(”ﬁ )y e ﬁ;l(“d))
I 7, )

k(u,, ... ,ud;b\)z

Proposition 8.3.2 gives the form of the flexible parametric d-variate pseudo-copula implied by
,Flzmd(xl, .o »x).% So if we estimated 0 using the conventional one-step MLE rather than the seq-
uential MLE algorithm of Section 8.2, the asymptotic properties of our estimator would be the
well-studied properties of copula-based pseudo- or quasi-MLE (see, e.g., Genest et al., 1995a; Joe,
2005; Zhao and Joe, 2005; Prokhorov and Schmidt, 2009b). Sequential estimation only affects the
asymptotic variance of 0. The following proposition summarizes these results.

3Here, by pseudo-copula we mean a possibly misspecified copula function. The same term is sometimes
used in reference to an empirical copula obtained using univariate empirical cdf’s and to a copula-type
function that satisfies most but not all copula properties (see, e.g., Fermanian and Wegkamp, 2012;
Fang and Madsen, 2013).
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Proposition 8.3.3 The MLE estimator © minimizes the Kullback-Leibler divergence criterion,

0= argmin E In M,

6 k@uy, ... ,uy;0)
where c is the true copula density and expectation is with respect to the true distribution. Furthermore,
under standard regularity conditions, 0 is consistent and asymptotically normal. If the true copula
belongs to the family k(u,, ... ,u;;0), it is consistent for the true value of 0. If the copula family is
misspecified, the convergence occurs to a pseudo-true value of 0, which minimizes the Kullback-Leibler
distance.

It is worth noting that it is still possible in principle to follow the conventional MLE approach
here. That is, we can still attempt to find 6 by maximizing the log-likelihood based on the following
joint log-density:

d
Inhxy, ... .x) = D Inf,®) +Ink(Fy(6,), ... , F4(6,);6), (8.4)

=1

where 6,’s denote parameters of the univariate marginals. However, the dimension of 6 in this problem
is greater than for the initial problem in Equation (8.1) and so if the initial problem is intractable, this
method will be as well.

Proposition 8.3.3 outlines the asymptotic properties of 8 and thus of F,, . However, it does not
provide the asymptotic variance of 6. In order to address the issue of the relative efficiency of our
procedure, we rewrite our problem in the GMM framework.

It is well known that the MLE can quite generally be written as a method of moments problem
based on the relevant score functions. As an example, we look at the ingredients of our procedure for
d = 3. The first step is the MLE for F; = F,(6)),j = 1,2, 3; the second step is the MLE for cD(E,, Fs:0,5),
where /15/- = F/-(@\,-); the third step is the MLE for ¢3(F,, C?);0,,,), where C® = CO(F,, F,:8,;). The cor-
responding GMM problems can be written as follows:

Vgl In £,(6))
L E| V,,In @) =0,
V93 In £5(65)

2. ELV, In @ (F,, Fy:0,,)] =0,
3. BV, Incd(F,, COF,, Fy); 0,1 =0,

where V denotes the gradient of the score function.

The GMM representation provides several important insights. First, it shows that at steps 2 and 3
we treat the quantities estimated in the previous step as if we knew them. The fact that we estimate them
affects the asymptotic variance of 8,5 and 8,,5, and the correct form of the variance should account for
that. The appropriate correction and simulation evidence of its effect are provided, for example, by Joe
(2005) and Zhao and Joe (2005).

Second, it shows that each estimation in the sequence is an exactly identified GMM problem. That
is, each step introduces as many new parameters as new moment conditions. One important implication
of this is that the (appropriately corrected for the preceding steps) asymptotic variance of the sequential
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estimator is identical to the asymptotic variance of the one-step estimator, which is obtained by solving
the optimal GMM problem based on all moment conditions at once (see, e.g., Prokhorov and Schmidt,
2009a). Such an optimal GMM estimator may be difficult to obtain in practice due to the large number
of moment conditions, but this efficiency bound is the best we can do in terms of relative efficiency with
the moment conditions implied by our sequential MLE problems.

Finally, it is worth noting that this efficiency bound does not coincide with the Fisher bound, implied
by the MLE based on the full likelihood in Equation (8.4), even if the copula k is correctly specified.
The corresponding GMM problem for that likelihood includes moment conditions of the form

[E[vgf In k(F,(0,), ... ,Fd(ed);e)] =0, j=1....d.

which are not used in the sequential procedure. Therefore, the sequential procedure cannot be expected
to be fully efficient.

8.4 PARAMETERIZATIONS

This section describes the models and distributions used in the empirical implementation of our sequen-
tial procedure. The particular choices of parameterizations are tied to our data set and should be
perceived as suggestive. However, we believe that they are flexible enough to produce good fits when
applied to log-returns data — these are models and distributions characterized by asymmetry, skewness,
fat tails and dynamic dependence.

Assume that the following sample of log-returns is available: {y, = {yil}il};, where 1y, is the
individual log-return of the ith asset at time ¢, d is the total number of assets and T is the length of the
sample.

8.4.1 Univariate Distributions

We would like to use skewed and thick-tailed distributions to model univariate marginals. Azzalini
and Capitanio (2003) propose one possible generalization of Student’s ¢-distribution which is able to
capture both these features. Moreover, their transformation does not restrict the smoothness properties
of the density function, which is useful for quasi-maximum likelihood optimization. The pdf of their
skew z-distribution is

1/2
_ y=¢f v+1
=2t T,, r— <v+Qy) ,

where
y-&\°
o (52

T+ 1)/2) )2
L0) = ——— 73 (m)l/ZF(V/Z)(l +0,/v)

and T, (x) denotes the cdf of the standard ¢-distribution with v + 1 degrees of freedom. The parameter
y reflects the skewness of the distribution. Equivalently, denote

Y ~ St w,7,v).
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It is worth noting the first three moments of the distribution when & = 0,

E(Y)=ou,
E(Y})=0? = 0> —~
Y=o =w'——,
- _ 34292y
EY)=7=0’
Y)=i=ow"u 1,72 v_3
where
7= Y <X>1/2r((\/—1)/2)
1/1_,_7,2 T I'(v/2)

The last moment equation indicates that by varying y one can change the skewness of the distribution.
Also, it follows from the first two equations that the first moment of Y is different from 0 and its second
central moment is not equal to 1. It is therefore useful to define the standardized skew #-distribution
by adjusting St, (£, @, y, v) for zero expectation and unit variance through setting & and w in the follow-

ing way:
v —\"/?
w=<v_2—u ) ’

E=—-wu.

Denote the standardized skew #-distribution by St(y, v), its cdf by ), and pdf by £;,. We augment
this distribution with the NAGARCH structure for the conditional variance equation (see, e.g., Engle
and Ng, 1993):

Vi = 1 + A/ b€ €, ~ 1id. St(y;,v),
2
hy,=w;+ ai<yi,t—1 —HtK; hi,t—l) +B8h;,

where the b,,’s are the conditional variances of the y,’s and (u;,7;, v;, ®;, ;, B;, k;) is the set of parameters.
It is worth noting that the parameter «; reflects the leverage effect and is expected to be negative.
Using this structure we can write the cdf of y,, as follows:

Yie — Hi
o=, (%72 )
it

Then, the log-likelihood function for each univariate marginal will have the following form:

T
Yie = Hi 1
InL,=Y {ln > (;17) - E1n/a,,} .
=2 it

There are seven parameters in this likelihood function for each i.

8.4.2 Bivariate Copulas
Here we chose the following p-copula adapted from Ausin and Lopes (2010):

— — _']+[7
Tnl(ul) qu(up) r ('1+P> (1 + V’R’lv) 2
d

C (u u,)= / 2 2
T T L v (2) Vaa - 2R

)
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where T;'(-) is the inverse of the standardized Student # cdf, p is number of assets in the group under
consideration, 7 is the number of degrees of freedom and R is the correlation matrix. Denote the expres-
sion under the integral by f, (v) - it is the pdf of the standardized multivariate Student #-distribution.
Except for comparison with the benchmark involving p = d, we will use only the bivariate version of
this copula (p = 2).

Following Ausin and Lopes (2010), we assume that the dynamic nature of the correlation matrix
R is captured by the following equation:

R,=(1—-a—-b)R+a¥, , +bR, |,

wherea>0,b>0,a+b<1, Risa positive definite constant matrix with ones on the main diagonal
and ¥,_, is such a matrix whose elements have the following form:

m
2o Xit—bXjt—h

b Y )
m 2 m 2
\/Zh:l xiz,h Zh:l ‘x,‘t,h

iit—1 =

where

— ylt i
xit:Tn1<F§t'< 1 >>
Vi /2
hit

The advantage of defining R, in this way is that it guarantees positive definiteness. This circumvents
the need to use additional transformations (see, e.g., Patton, 2006, who uses the logistic transformation).

Substituting the marginal distributions into the assumed copula function, we obtain the following
model for the joint cdf of a vector of financial log-returns y, = (yy,, ... ,¥,,):

F(Yt) = C”,Rz(Fl(ylt)’ e F (ypz)) (85)
We also derive the joint pdf by differentiating Equation (8.5):

fy) = fr (T, Fy 1)) o T (F,(00)

14
Yie = Hi 1
% l—l St .
i { ;1 1(F(y,t))) f, z< h,'lt/z > hllt/Z}

Then, the log-likelihood function for the conventional full ML estimation can be written as follows:

T
InL= Z Infyx (T, Fi ) o T F00))

t=m+1

T p
_ [ Vi i 1
+ Z Z {—lnt” (Tn](Fi(yit))) +In ysm < ;1/2 ) - Elnhit} .
it

t=m+1 i=1

In the conventional one-step full MLE, p = d and the number of parameters in this likelihood is
d(d —1)/2 + 3 from the copula part plus 7d from the marginal parts.

In our sequential alternative to the FMLE, we first estimate the skew t-marginal distributions using
only the last two terms in the likelihood — they do not depend on the copula parameters. Then, the
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likelihoods we use in steps 2 to d are based on the bivariate version of this log-likelihood with given
F,(y,,)’s. This version is simpler; it can be written as follows:

InL,= ZT: In f,,,Rt(T;‘ (R(y,-t)) T, <’F\f(yft)>)

t=m+1

- zT: {ln t, (T;l (R(y,-,))) +Inz, (T»?l@(y/r))) } '

t=m+1

It has only four parameters.

8.4.3 Compounding Functions

The two arguments of the bivariate copula in step 2 are similar objects — they are the marginal distribu-
tions of two assets. This is the reason why we use a symmetric copula for the bivariate modeling in step
2. In contrast, the compounding functions in steps 3 to d operate with two objects of different nature:
one is a marginal distribution of one asset and the other is a joint distribution of a group of assets. Thus,
in general it makes sense to use asymmetric copulas as compounding functions in these steps.

Khoudraji (1995) proposes a method of constructing asymmetric bivariate copulas from symmetric
bivariate copulas using the following transformation:

CUY™ (4, v) = u® VP CY™ (ul"’, Ul’ﬂ) , 0<a,p<1,

where C®")(u,v) is a generic symmetric copula and C@(u,v) is the corresponding asymmetric
copula. We utilize this result to obtain what we call the asymmetrized bivariate standardized #-copula:

1 1—a\ =1 (1 _ni2
Tﬂl(ul )qu(bl ﬁ)r<ﬁ><1+xz+y2‘2/’x}’> p)

v 2 (n-2)(1-p?)
amunmen | =

o e (Y re-2vT=2

where u# denotes the marginal distribution of an asset, v denotes the distribution of a group of assets
and we assume a similar time-varying structure on the correlation coefficient as in Section 8.4.2. The
form of the compounding function in the mth step will then be

dx dy,

m (T . _ ltasym) (0D
C (FI’Fil,...,l—l,l+1,...,im’0!,1'1,...,l—l,l+1,...,im) =Gy <Fl’Fil,...,l—l,l+l,...,im)’

where Oui...icrasn,..q, = (@ Bon,p.a, b)' is the parameter set (the last three parameters come from the
time-varying structure of the correlation matrix R containing in the bivariate case only one correlation
coefficient p). Correspondingly, there are only six parameters to estimate in each optimization problem
of the sequential procedure, regardless of the dimensionality of the original problem.

8.4.4 Goodness-of-Fit Testing

In order to assess the adequacy of distributional specifications, we conduct goodness-of-fit (GoF) testing.
For this purpose we use the conventional approach based on probability integral transforms (PIT) first
proposed by Rosenblatt (1952). The approach is based on transforming the time series of log-returns
into a series that should have a known pivotal distribution in the case of correct specification and then
testing the hypothesis that the transformed series indeed has that known distribution.
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To assess the quality of fit of marginals, we use the approach of Diebold et al. (1998), who exploit
the following observation. Suppose there is a sequence {y,}, which is generated from distributions
{F,1Q)} ], where Q, = {y, ,,y,,, ... }. Then, under the usual condition of a non-zero Jacobian
with continuous partial derivatives, the sequence of probability integral transforms {Ft(yt|Qt)}tT:1 is
i.i.d. U(0, 1). Diebold et al. (1998) propose testing the uniformity property and the independence prop-
erty separately by investigating the histogram and correlograms of the moments up to order 4. We
follow this approach, with the exception that the statistical tests rather than the graphical analyses are
conducted in order to separately test the uniformity and independence properties. In particular, we run
Kolmogorov-Smirnov tests of uniformity and F-tests of serial uncorrelatedness.

The goodness-of-fit tests for bivariate copulas are based on a similar approach proposed by
Breymann et al. (2003), which also relies on PIT. Let X = (X, ... ,X;) denote a random vector
with marginal distributions F,(x;) and conditional distributions F,; ; ,(x;lx;, ... ,x,) for
i=1,...,d. The PIT of vector x is defined as T(x)=T(xy, ... ,x,)=(T,, ... ,T;) such that
Ty =Fx), T,=F,, ;1 (x,lx, 4, ....%), p=2,...,d. One can show that T(X) is uniformly
distributed on the p-dimensional hypercube (Rosenblatt, 1952). This implies that Ty, ..., T, are
uniformly and independently distributed on [0, 1]. This approach has been extended to the time-series
setting (see, e.g., Patton, 2006). Again, we exploit the Kolmogorov—Smirnov tests for uniformity and
F-tests for serial uncorrelatedness. Note, however, that there exist p! ways of choosing conditional
distributions of a p-variate vector. For pairwise copulas, this means two such ways: X, | X; and
X, | X,. We examine both of them for all pairs.

8.5 EMPIRICAL APPLICATION

This section demonstrates how to apply the new sequential technique to model a joint distribution
of DJIA constituents. We have considered larger numbers of stocks but to illustrate the advantage of
our method over conventional ones (and to save space) we start with d = 5. For univariate marginals,
we exploit skewed #-distributions with a NAGARCH structure for conditional variance; for bivariate
distributions, we exploit the asymmetrized time-varying #-copula, which is also the copula we use for
benchmark comparisons when estimating p-variate distributions with p > 2. We have considered other
copulas but found this copula to produce the best fit. The Kolmogorov-Smirnov goodness-of-fit tests
conducted at each step of the procedure show that these parametric distributions provide a good fit
for individual asset returns as well as jointly for their combinations. Eventually, we compare our new
methodology with the conventional benchmark — a single five-dimensional time-varying t-copula-based
estimation.

8.9.1 Data

We choose the following five stocks from among DJIA constituents (as of 8 June 2009): GE — General
Electric Co.; MCD — McDonald’s Corp.; MSFT — Microsoft Corp.; KO — Coca-Cola Co.; PG — Procter
& Gamble Co. The selection is based on a high level of liquidity and availability of historical prices.
Daily data from 3 January 2007 to 31 December 2007 are collected; we focus on this period to avoid
dealing with the turbulence that followed. The stock prices are adjusted for splits and dividends, and
then the log-returns are constructed and used in estimation. The plots of relative price dynamics, his-
tograms of log-returns and sample statistics of log-returns for the five stocks are presented in Figures 8.1
and 8.2 and in Table 8.1. One can see that the unconditional sample distributions in some cases demon-
strate skewness and heavy tails, which justifies the selection of the skew z-distribution for modelling
marginals.
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Relative prices

Returns

FAGURE 8.1 Relative prices and returns dynamics for GE, MCD, MSFT, KO and PG from 3 January to
31 December 2007.

GE MCD MSFT KO PG
40 40 60 40 60
30 30 30
40 40
20 20 20
20 20
10 10 10
0 0 0 0 0
-0.04-0.02 0 0.02 0.04 -0.05 0 0.05 -0.05 0 0.05 -0.02 0 0.02 -0.05 0 0.05

FIGURE8.2 Histograms of the returns.

TABLE8.1 Summary statistics of the returns

GE MCD MSFT KO PG

Minimum —-0.0384 —-0.0298 —-0.0421 —-0.0285 —-0.0506
Maximum 0.0364 0.0589 0.0907 0.0254 0.0359
Mean x 107 0.0248 1.2831 0.7575 1.0363 0.5987
Standard deviation 0.0115 0.0116 0.0143 0.0087 0.0091
Skewness (zero-skewness: -0.0349 0.2617 0.9461 0.0512 -0.6106

p-value) (0.8216) (0.0912) (0.0000) (0.7408) (0.0001)
Kurtosis (zero-ex. kurtosis: 3.9742 4.8977 8.7270 3.6313 9.2954

p-value) (0.0017) (0.0000) (0.0000) (0.0416) (0.0000)
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FIGURE 8.3 Pairwise scatter plots of marginal distributions and sample correlations.

The scatter plots and correlations on Figure 8.3 show that, as expected, all of the stocks are
positively correlated. The correlation between MSFT and PG is smaller than for most of the other
stocks — these two stocks belong to different sectors (Technology and Consumer Goods).* At the same
time, the correlation between KO and PG is greater than between the other stocks, due to the fact that
they both belong to the Consumer Goods sector.

4See http://finance.yahoo.com for a classification.
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8.5.2 Estimates of Univariate Distributions

We use the skew---NAGARCH model for the marginals in order to accommodate the asymmetries,
heavy tails, leverage effects and volatility clustering that are observed in stock log-returns. For marginal
distributions, we choose the initial value of the conditional variance b;; in the GARCH process to be
equal to the sample unconditional variance of log-returns.

The estimates of the parameters of marginal distributions are summarized in Table 8.2. As before,
u denotes mean return, w is unconditional variance, a reflects the ability to predict conditional variance
using current innovations, # is a measure of persistence of conditional variance, x is leverage effect, the
reciprocal of v captures heavy tails and y represents skewness. The mean return y is fairly close to the
sample mean. There is a substantial degree of persistence in the conditional variance process for four
out of the five series. There is excess kurtosis in all series. The skewness parameter y and the leverage
effects are largely insignificant; however, we keep them in the model because of the non-zero skewness
found (see Table 8.1) and because it is now standard in the literature to account for these stylized facts.

The Kolmogorov-Smirnov tests of uniformity applied to the transformed series show that at the
95% confidence level the hypothesis of uniformity is not rejected. The quantitative results along with
the diagrams are presented in Figure 8.4. The model passes these tests.

Next, we conduct the tests for serial correlation of the transformed series. Diebold et al. (1998)
recommend that it is sufficient in practice to investigate the moments up to order 4. We follow this
suggestion and test the hypothesis about the joint insignificance of coefficients in the regression of each

TABLE8.2 Maximum likelihood parameter estimates for marginal distributions (robust standard errors
are in parentheses)

GE MCD MSFT KO PG
px107 -0.032 1.340 0.660 0.750 0.574
(0.615) (0.709) (0.886) (0.673) (0.645)
wx107° 0.569 5.845 0.852 0.667 0.608
(0.581) (1.893) (0.809) (0.740) (0.523)
a 0.106 0.153 0.041 0.142 0.107
(0.062) (0.090) (0.024) (0.082) (0.052)
p 0.861 0.379 0.915 0.787 0.837
(0.084) (0.130) (0.055) (0.139) (0.063)
K —0.074 ~0.530 —0.174 -0.032 ~0.168
(0.364) (0.394) (0.796) (0.740) (0.606)
v 6.482 9.672 5.898 8.098 3.305
(2.325) (4.976) (2.360) (4.046) (0.734)
y —0.014 ~0.431 0.176 -0.236 ~0.106

(0.077) (0.706) (0.533) (0.950) (0.482)
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KS test: GE (0.819)

1 T T T T T T T T
— Empirical CDF
0.5 — True CDF .
0 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
KS test: MCD (0.667)
1 T T T T T T T T
— Empirical CDF
0.5F — True CDF T
0 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
KS test: MSFT (0.972)
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0.5 — True CDF a
O 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
KS test: KO (0.969)
1 T T T T T T
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0.5 — True CDF T
0 1 1 1

0 0.1 0.2 0.3 0.4 0.5 0.6
KS test: PG (0.851)

1 T T T T T
— Empirical CDF
0.5 — True CDF

1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6

0.7

FAGURE 8.4 Kolmogorov-Smirnov tests of marginal distributions (p-values in parentheses).

moment on its 20 lags using the F-test. The results are presented in Table 8.3. The hypotheses of no
serial correlation are not rejected at the 95% confidence level in nearly every case; the exception is the
fourth central moment of the KO stock, for which the hypothesis is not rejected at the 99% confidence

TABLE 8.3 p-values of F-tests for serial correlation

Central moment GE MCD  MSFT KO PG

1 0.701 0.454 0.762 0.336 0.310
2 0.763 0.805 0.448 0.070 0.437
3 0.567 0.672 0.763 0.611 0.657
4 0.887 0.774 0.635 0.032 0.172
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level. In addition, all the Ljung-Box tests carried out to test for autocorrelation in the residuals of the
marginals’ specification do not reject the hypothesis of no serial correlation either. This also indicates a
good fit of the selected parametric forms of the marginal distributions.

8.5.3 Estimates of Pairwise Copulas

The pairwise copula parameter estimates are summarized in Table 8.4 and the results of pairwise
Kolmogorov-Smirnov tests are presented in Figures 8.5 and 8.6. All Kolmogorov-Smirnov tests
are passed at any reasonable confidence level. This indicates that the time-varying #-copula used
for modelling bivariate distributions fits quite well and can be used in step 2 of the sequential
approach.

As before, the hypothesis of no serial correlation can be tested by checking the joint insignificance
of the coefficients in the regression of each of the first four moments on their 20 lags using the F-test.

TABLE8.4 Maximum likelihood parameter estimates for pairwise copulas (robust standard errors are
in parentheses)

GE, MCD GE, MSFT GE, KO GE, PG MCD, MSFT
n 9.627 7.948 6.107 14.236 9.883
(7.732) (3.006) (2.390) (11.290) (8.488)
a 0.074 0.089 0.002 0.038 0.159
(0.075) (0.113) (0.002) (0.023) (0.096)
b 0.399 0.001 0.486 0.913 0.385
(0.241) (0.130) (0.306) (0.031) (0.226)
7 0.418 0.625 0.513 0.557 0.429
(0.062) (0.042) (0.050) (0.076) (0.073)
MCD, KO MCD, PG MSFT, KO MSFT, PG KO, PG
n 11.825 6.011 5.672 6.926 10.760
(9.397) (2.476) (2.226) (2.968) (9.417)
a 0.072 0.170 0.031 0.197 0.053
(0.087) (0.091) (0.225) (0.152) (0.076)
b 0.447 0.394 0.462 0.000 0.342
(0.288) (0.266) (2.057) (0.169) (0.209)
7 0.417 0.368 0.556 0.469 0.504

(0.059) (0.080) (0.056) (0.065) (0.050)
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KS test: MCD | GE (0.635) KS test: GE | MCD (0.993)
1 T T T T 1 T T T T
— Empirical CDF — Empirical CDF
— True CDF — True CDF
0.5 B 0.5 R
0 1 1 1 1 0 1 1 1 1
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
KS test: MSFT | GE (0.665) KS test: GE | MSFT (0.906)
1 T T T T 1 T T T T
— Empirical CDF — Empirical CDF
— True CDF — True CDF
0.5 B 0.5 R
0 1 1 1 1 o 1 1 1 1
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
KS test: KO | GE (0.607) KS test: GE | KO (0.632)
1 T T T T 1 T T T T
— Empirical CDF — Empirical CDF
— True CDF — True CDF
0.5 b 0.5 b
O 1 1 1 1 0 1 1 1 1
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
KS test: PG | GE (0.627) KS test: GE | PG (0.766)
1 T T T T 1 T T T T
— Empirical CDF — Empirical CDF
— True CDF — True CDF
0.5F B 0.5F -
0 1 1 1 1 0 1 1 1 1
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
KS test: MSFT | MCD (0.833) KS test: MCD | MSFT (0.643)
1 T T T T 1 T T T T
— Empirical CDF — Empirical CDF
— True CDF — True CDF
05+ B 0.5F -
O 1 1 1 1 0 1 1 1 1
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

FIGURE 8.5 Pairwise Kolmogorov—Smirnov tests of bivariate copula specification: first five pairs of GE,
MCD, MSFT, KO and PG (p-values in parentheses).

Additionally, in the bivariate setting we included the lagged moments of the other PIT series in the
regression to test for independence. All the results (not shown here to save space) suggest that the
hypotheses of no serial correlation cannot be rejected at any reasonable confidence level in every case
and that the bivariate specification we chose fits well.
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KS test: KO | MCD (0.638) KS test: MCD | KO (0.347)
1 T T T T 1 T T T T
— Empirical CDF — Empirical CDF
— True CDF — True CDF
0.5 - 0.5F B
0 1 1 1 1 O 1 1 1 1
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
KS test: PG | MCD (0.977) KS test: MCD | PG (0.769)
1 T T T T 1 T T T T
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0.5F - 0.5F B
0 1 1 1 1 0 1 1 1 1
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
KS test: KO | MSFT (0.997) KS test: MSFT | KO (0.425)
1 T T T T 1 T T T T
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— True CDF — True CDF
0.5F - 0.5F B
o 1 1 1 1 O 1 1 1 1
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
KS test: PG | MSFT (0.834) KS test: MSFT | PG (0.520)
1 T T T T 1 T T T T
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— True CDF — True CDF
0.5F - 0.5 B
O 1 1 1 1 0 1 1 1 1
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
KS test: PG | KO (0.995) KS test: KO | PG (0.638)
1 T T T T 1 T T T T
— Empirical CDF — Empirical CDF
— True CDF — True CDF
0.5F - 0.5 B
0 1 1 1 1 0 1 1 1 1
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

FIGURE 8.6 Pairwise Kolmogorov—Smirnov tests of bivariate copula specification: second five pairs of
GE, MCD, MSFT, KO and PG (p-values in parentheses).

8.5.4 Estimates of Compounding Functions

Tables 8.5, 8.6 and 8.7 contain parameter estimates in the #-copula-based approach for groups of assets
of different size. We do not present standard errors for the estimates to save space. Also, we omit the
plots and p-values for the Kolmogorov—Smirnov tests. The tests support our choice of the asymmetrized
bivariate #-copula as a compounding function and show an exceptional fit.



Estimating Asymmetric Dynamic Distributions in High Dimensions

189

TABLE8.5 Maximum likelihood parameter estimates of the compounding functions for groups of

three assets (standard errors omitted)

C(5-) a B n P a b

(GE; MCD, MSFT) 0.044 0.322 8.612 0.884 0.004 0.992
(MCDj GE, MSFT) 0.007 0.011 8.557 0.408 0.124 0.351
(MSFT; GE, MCD) 0.008 0.001 8.828 0.503 0.143 0.092
(GE; MCD, KO) 0.002  0.251 8.544 0499  0.001  0.249
(MCD; GE, KO) 0.000 0.112 9.928 0.403 0.059 0.399
(KO; GE, MCD) 0.017 0.008 61.964 0.446 0.048 0.334
(GE; MCD, PG) 0.023 0.114 14.379 0.468 0.109 0.059
(MCD; GE, PG) 0.009  0.028 5197 0338  0.114  0.423
(PG; GE, MCD) 0.001 0.194 5.306 0.472 0.106 0.275
(GE; MSFT, KO) 0.076 0.224 8.508 0.670 0.076 0.128
(MSFT; GE, KO) 0.007 0.007 6.867 0.536 0.036 0.232
(KO; GE, MSFT) 0.031 0.162 8.459 0.602 0.004 0.314
(GE; MSFT, PG) 0.002  0.161 10151 0.638  0.015  0.946
(MSFT; GE, PG) 0.030 0.001 10.296 0.498 0.101 0.034
(PG; GE, MSFT) 0.057 0.251 8.786 0.612 0.060 0.242
(GE; KO, PG) 0.046 0.069 13.185 0.496 0.001 0.033
(KOj GE, PG) 0.009 0.001 23.245 0.497 0.066 0.484
(PG; GE, KO) 0.001  0.234 7505  0.612  0.136 0016
(MCDj; MSFT, KO) 0.005 0.219 6.018 0.469 0.119 0.362
(MSFT; MCD, KO) 0.003 0.001 9.917 0.436 0.054 0.402
(KO; MCD, MSFT) 0.129 0.025 19.673 0.541 0.026 0.286
(MCD; MSFT, PG) 0.133  0.315 8.481  0.588 0358  0.136
(MSFT; MCD, PG) 0.001 0.000 6.562 0.407 0.078 0.606
(PG; MCD, MSFT) 0.001 0.128 5.165 0.425 0.120 0.561
(MCD; KO, PG) 0.000 0.004 6.686 0.320 0.154 0.324
(KO; MCD, PG) 0231 0020 19575 0577  0.066  0.605
(PG; MCD, KO) 0.000 0.405 4.553 0.587 0.164 0.365
(MSFT; KO, PG) 0.002 0.001 6.930 0.473 0.125 0.015
(KO; MSFT, PG) 0.002 0.001 23.721 0.530 0.067 0.251
(PG; MSFT, KO) 0.022 0.143 8.385 0.544 0.159 0.221
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TABLE8.8 Maximum likelihood parameter estimates of the compounding functions for groups of four
assets (standard errors omitted)

C(5-) a B n P a b

(GE; MCD, MSFT, KO) 0.057 0.326 8.580 0.630 0.007 0.646
(MCD; GE, MSFT, KO) 0.005 0.180 8.326 0.440 0.137 0.244
(MSFT; GE, MCD, KO) 0.022 0.110 8.443 0.508 0.058 0.238
(KO; GE, MCD, MSFT) 0.015 0.062 8.540 0.466 0.023 0.477
(GE; MCD, MSFT, PG) 0.026 0.137 8.868 0.523 0.096 0.103
(MCD; GE, MSFT, PG) 0.046 0.201 8.464 0.447 0.189 0.390
(MSFT; GE, MCD, PG) 0.007 0.008 8.666 0.423 0.185 0.047
(PG; GE, MCD, MSFT) 0.025 0.235 6.492 0.511 0.092 0.494
(GE; MCD, KO, PG) 0.026 0.269 10.768 0.447 0.092 0.188
(MCD; GE, KO, PG) 0.023 0.228 8.492 0.400 0.163 0.320
(KO; GE, MCD, PG) 0.140 0.073 8.825 0.440 0.101 0.304
(PG; GE, MCD, KO) 0.048 0.400 8.507 0.675 0.079 0.730
(GE; MSFT, KO, PG) 0.013 0.109 8.563 0.553 0.004 0.706
(MSFT; GE, KO, PG) 0.004 0.004 9.226 0.475 0.105 0.130
(KO; GE, MSFT, PG) 0.022 0.073 9.093 0.506 0.064 0.316
(PG; GE, MSFT, KO) 0.022 0.225 8.615 0.591 0.120 0.186
(MCD; MSFT, KO, PG) 0.022 0.356 8.839 0.481 0.229 0.112
(MSFT; MCD, KO, PG) 0.023 0.056 8.487 0.418 0.100 0.345
(KO; MCD, MSFT, PG) 0.041 0.022 8.652 0.450 0.066 0.757
(PG; MCD, MSFT, KO) 0.035 0.327 8.487 0.564 0.102 0.552

TABLE8.7 Maximum likelihood parameter estimates of the compounding functions for groups of five
assets (standard errors omitted)

C(5-) @ B n P a b

(GE; MCD, MSFT, KO, PG) 0.175 0265  10.818  0.546  0.157  0.227
(MCD; GE, MSFT, KO, PG)  0.189  0.410 9.088  0.578  0.247  0.199
(MSFT; GE, MCD, KO, PG)  0.394  0.301 8.580  0.463  0.309  0.285
(KO; GE, MCD, MSFT, PG) ~ 0.285  0.585 8.680  0.433 0312  0.321

(PG; GE, MCD, MSFT, KO) 0.045 0.252 8.499 0.520 0.051 0.782
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8.5.5 Comparison with the Conventional Copula Approach

Now we compare the proposed approaches with the conventional single copula approach to dynamic
modelling of joint distributions. The conventional alternative would be to estimate a time-varying
five-dimensional ¢z-copula using ML.

The parameter estimates for the conventional benchmark method are summarized in Table 8.8.
As before, we have run serial correlation tests — they are not reported due to their large number — and
almost all of them passed at the 95% confidence level. This means that, for our five time series, there is
no obvious leader in the goodness-of-fit competition. Moreover, the number of estimations in our pro-
cedure is much larger than in the conventional method. In this example, a five-dimensional distribution
requires solving 80 low-dimensional problems in the sequential procedure.’ The conventional approach
would require solving just one, but it would involve estimating 43 parameters in total.® Hence, for mod-
erate dimensions such as d = §, the conventional method may be preferred in terms of computer time,
provided it is operational (it was quicker in this example). However, this changes as we increase the
dimensionality of the problem, which is what we will do next.

When we repeat the above exercise ford = 6, ... , 15, the number of parameters in the conventional
MLE based on the d-copula grows according to O(d?), while the number of additional parameters in
each step of the new sequential procedure remains fixed at 6. The number of estimations in the sequential
procedure also grows with d (potentially faster than d?); however, this number can be made small in
steps 3 and above, if we consider a random subset of all available combinations in each step. Table 8.9
contains the number of parameters to be estimated in a single optimization problem when we use the
new and the conventional method.

TABLE8.8 Maximum likelihood parameter estimates of time-varying five-dimensional ¢-copula for the
returns (robust standard errors are in parentheses)

{R;} 1 2 3 4 5

GE 1.000 0.425 0.621 0.502 0.510

(0.000) (0.055) (0.042) (0.055) (0.049)

n 13.426 MCD 0.425 1.000 0.415 0.398 0.367
(4.380)

(0.055) (0.000) (0.056) (0.055) (0.062)
a 0.030

(0.035) MSFT 0.621 0.415 1.000 0.539 0.465

) 0.157 (0.042) (0.056) (0.000) (0.053) (0.057)

(0.308) KO 0.502 0.398 0.539 1.000 0.495

(0.055) (0.055) (0.053) (0.000) (0.049)

PG 0.510 0.367 0.465 0.495 1.000

(0.049) (0.062) (0.057) (0.049) (0.000)

SThere are 5 estimation problems at step 1, 20 distributions of all possible pairs in step 2, 30 combina-
tions of F, with F;, in step 3, 20 combinations of F; with F,, in step 4, and 5 combinations of F, with

Eope
jklm
6Each skew-¢ marginal has 6 parameters and the ¢-copula has 13 distinct parameters.
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TABLE8.9 Growth of the number of parameters in a
single optimization problem for the conventional and
for the sequential methods based on the #-copula

Dimension Conventional Sequential
3 6 6
4 9 6
5 13 6
6 18 6
7 24 6
8 31 6
9 39 6

10 48 6

11 58 6

12 69 6

13 81 6

14 94 6

15 108 6

In our application, we discovered that the conventional approach fails to produce reliable conver-
gence when d reaches and exceeds 10. At the same time, the new approach remains functional. Although
there are a lot of optimization problems to solve, each such problem is relatively simple and takes very
little time. In this application, each of the sequential estimations took only a few seconds, while the
high-dimensional standard estimation with d close to 10 takes minutes and fails if the dimension is
greater than 10.”

8.6 CONCLUDING REMARKS

We have proposed a sequential MLE procedure which reconstructs a joint distribution by sequentially
applying a copula-like compounding function to estimates of marginal distributions. We have discussed
the theoretical justification of the use of compounding functions and averaging and outlined the asymp-
totic properties of our estimator. We have shown in an application that this is a reasonable alternative
to the conventional single-copula approach, especially when the dimension is higher than moderate.
The issues with conventional ML are not only computational (Hessian non-invertibility, local max-
ima, etc.). It is often a problem to find a multivariate distribution that accommodates certain features

7 A Matlab module handling arbitrary dimension and data sets under both conventional and sequential
methodology is available at https://sites.google.com/site/artembprokhorov/papers/reconstruct.zip.
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(e.g., asymmetry and extreme dependence in higher dimensions) while remaining tractable. Moreover,
finite-sample-based ML estimation of highly parameterized multivariate distribution is inaccurate due
to the curse of dimensionality.

The proposed method falls short of solving all the issues. For example, the full version of the algo-
rithm requires more computing time than conventional ML (when it works) and the standard errors
of the sequential procedure suffer from the ‘generated regressor’ problem. However, the new method
allows us to estimate distributions with arbitrary patterns of dependence and to parameterize depen-
dence between a scalar and a subvector.

The standard way to study the performance of our algorithm relative to the vine copula and factor
copula approaches mentioned in the Introduction is by means of simulations. However, it is unclear
what criterion to use for such comparisons. The difficulty is not only in coming up with a feasible
version of a MISE-type distance for a d-variate function. The operational version of this measure would
need to be applicable to sequential estimators. We leave the development and implementation of such
criteria for future research.

Alternative methods of constructing a joint distribution from objects of lower dimensions may
come from work by de la Pena et al. (2006) and Li et al. (1999). De la Pena et al. (2006) provide a char-
acterization of arbitrary joint distributions using sums of U-statistics of independent random variables.
Their terms in the U-statistic are functions g(-) defined over subvectors of the original multidimensional
vector. Li ef al. (1999) discuss the notion of the linkage function L(-), which is a multidimensional ana-
logue of the copula function. Linkage functions link uniformly distributed random vectors rather than
uniformly distributed scalar random variables.

Functions g(-) and L(-) are the lower-dimensional objects that may be used in a similar estimation
procedure to ours. However, except for some special cases, the closed-form expressions of these objects
are unknown and their properties are not so well studied as the properties of copula functions. For
this reason, we leave the study of such alternative methods of modelling joint distributions for future
research.
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g.A

Proof of Proposition 8.1: We provide the proof for d = 3. Arguments for d > 3 are analogous.
Lipschitz continuity of In ¢ implies

d " (uy,uy)

¥ < B, uy), m=1,...d, j=12.
U

Since H(x{,x,,x3) = C® (F;, CP(F,, Fy)), we have

P H(xy, x5, %)

by, %5, %3) = 0x,0x,0x;5

= b, (x,.%5,%3) + €(x, x5, X3),

where

0*CY (F,,CA(F,, Fy)) 0*CO(F,, Fy)
dF,0C® OF,0F,

=1, fr f; ¢P(F,, F;) O (F,, C(F,, F,))

0CY (F,, CP(F,, F;)) 0CO(F,,F;) oC?(F,,F;)
OF,[0C 2 oF, oF,

h.(x,x,x)=f L f

e(xl,xz,x3)5f1 fz f3

Note that 0 < 9C?(F,, F;)/dF; < 1,i = 2,3. Therefore,

3C® (Fl’ C(2>(F2,F3)) 66(3)(F3, C(Z))
eCerxpx) <hihfs OF [0CO]2 =hhh ——Fca —
<Bfif, f; D(F;, C?)
B
= m hc(xl,xz,x:;),
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where the second line follows from In ¢®(u,,u,) being Lipschitz with constant B.
It follows that

1
lnh(xl,xz,x3)—lnhc(xl,xz,x3)SBm. | |
Proof of Proposition 8.2: The result follows trivially from application of Sklar’s (1959) theorem to
Fyy g

Proof of Proposition 8.3: These are standard results cited, for example, in Chapter 10 of Joe (1997) or
by Joe (2005).



