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Abstract

We propose a new sequential procedure for estimating multivariate distributions in cases when

conventional maximum likelihood has too many parameters and is therefore inaccurate or non-

operational. The procedure constructs a multivariate distribution and its pseudo-likelihood

sequentially, in each step using lower-dimensional distributions with a small number of param-

eters. In an application, the procedure provides excellent fit when the dimension is moderate,

and remains operational when the conventional method fails.
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1 Introduction

Consider the problem of constructing a high dimensional distribution. As an example, suppose

we wish to estimate a d -dimensional Student-t distribution. The problem has at least d(d − 1)/2

parameters. The conventional approach is to construct a joint log-density from this d-dimensional

distribution and use it in a maximum likelihood (ML) routine. However, for large d and moderate

sample sizes, the likelihood is highly unstable, Hessians are near singular, estimates are inaccurate,

and global convergence is hard to achieve.

One solution is to use copulas which have tighter parameterizations. However, the functional

form of such copulas limits the nature of dependence they can accommodate (Nelsen, 2006, Section

4.6). Another solution is to use ‘vine copulas’ (Aas, Czado, Frigessi, and Bakken, 2009) when the d-

variate density is decomposed into a product of up to d(d−1)/2 bivariate densities. However, there

are still O(d2) parameters in the joint likelihood; in addition, the required ordering of components

is rarely available, especially in the time series context. Yet another alternative is to use the factor

copula approach (Oh and Patton, 2013). However, the joint density obtained lacks a close form; in

addition, it is unclear whether the convolution of distributions imposed by the factor copula covers

all classes of joint distributions one may wish to model.

The proposed method replaces the initial estimation problem with a sequence of bivariate prob-

lems. The procedure can be thought of as recovering the joint distribution from the distributions

of all lower-dimensional sub-vectors comprising the original random vector. This provides sufficient

flexibility as there are more degrees of freedom in choosing a parameterization in each step. The

proposed estimator can be viewed as a traditional pseudo maximum likelihood estimator, but it is

more flexible and works reasonably well in situations when the traditional ML fails.

2 The algorithm

In this section we describe the proposed algorithm, while in the next section we discuss its asymp-

totic properties.

Step 1. Estimate the marginals by fitting a suitable parametric distribution F̂j = F (θ̂j) for

each j = 1, ..., d. This step involves d estimation problems.

Step 2. Using the F̂j ’s, estimate a bivariate distribution F̂ij = C(2)(F̂i, F̂j ; θ̂ij) for each pair

(i, j), where C(2) denotes a bivariate copula. There are d(d− 1) estimation problems in this step.

Step 3. Using the F̂j ’s and F̂ij ’s, estimate a trivariate distribution C(3)(F̂i, F̂jk; θ̂ijk), for each

combination of i and (j, k), where C(3) is a suitable compounding function capturing dependence
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between each element i and each disjoint pair (j, k). There are d(d−1)(d−2)/2 such combinations.

Now, average (F̂i, F̂jk) over permutations of (i, j, k):

F̂ijk =
C(3)

(
F̂i, F̂jk; θ̂ijk

)
+ C(3)

(
F̂j , F̂ik; θ̂jik

)
+ C(3)

(
F̂k, F̂ij ; θ̂kij

)
3

.

Step m. Using the F̂j ’s and F̂i1,...,j−1,j+1,...,im , estimate an m-dimensional distribution of each

m-tuple. There are d!/(d−m)!(m− 1)! possible combinations of F̂i’s with disjoint (m− 1)-variate

marginals. Let i1 < i2 < . . . < im, then obtain a model average estimate of the distribution for the

(i1, i2, . . . , im)-th m-tuple:

F̂i1i2...im =
1

m

m∑
l=1

C(m)(F̂l, F̂i1,...,l−1,l+1,...,im ; θ̂l,i1,...,l−1,l+1,...,im),

where C(m) is an m-th order compounding function which is set to be a suitable asymmetric

bivariate copula.

Step d. Estimate the d-variate distribution:

F̂12...d =
1

d

d∑
l=1

C(d)(F̂l, F̂1,...,l−1,l+1,...,d; θ̂l,1,...,l−1,l+1,...,d),

where C(d) is a d-th order compounding function. There are d such functions to be estimated.

3 Asymptotic properties

Let θ̂ contain all θ̂’s from Steps 1 to d. Then, by the Sklar (1959) theorem, the distribution

F̂12...d(x1, . . . , xd) implies a d-copula K(u1, . . . , ud; θ̂) and the corresponding estimator of density

f̂12...d(x1, . . . , xd) implies a d-copula density k(u1, . . . , ud; θ̂).1 There is no guarantee that the m-th

order compounding functions are also m-copulas, m = 3, . . . , d, unless we use a compatible copula

family.2 However, the resulting estimator F̂12...d is a continuous, non-decreasing, bounded d-variate

function with range [0, 1], which is a distribution and thus implies a d-copula. The following result

gives explicit formulas for the copula (density) implied by our estimator.

Proposition 1 Let F̂−1m (um),m = 1, . . . , d, denote the inverse of the marginal cdf F̂m from Step 1

and let f̂m denote the pdf corresponding to F̂m. Then, the copula implied by F̂12...d can be written

1We denote the implied copula distribution and density functions by K and k, respectively, to distinguish them
from the true copula distribution C(u1, . . . , ud) and true copula density c(u1, . . . , ud).

2There are several impossibility results concerning construction of high dimensional copulas by using lower dimen-
sional copulas as argument of bivariate copulas (Quesada-Molina and Rodriguez-Lallena, 1994).
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as follows:

K(u1, . . . , ud; θ̂) = F̂12...d(F̂
−1
1 (u1), . . . , F̂

−1
d (ud)),

k(u1, . . . , ud; θ̂) =
f̂12...d(F̂

−1
1 (u1), . . . , F̂

−1
d (ud))∏d

m=1 f̂m(F̂−1m (um))
.

It is clear from Proposition 1 that our algorithm provides an estimate of a flexible parametric d-

variate pseudo-copula3. So the asymptotic properties of our estimator are basically the well-studied

properties of copula-based pseudo- or quasi -ML estimator (Joe, 2005; Prokhorov and Schmidt,

2009). The following proposition summarizes these results, without proof.

Proposition 2 The estimator θ̂ minimizes the Kullback-Leibler divergence criterion,

θ̂ = arg min
θ

E ln
c(u1, . . . , ud)

k(u1, . . . , ud;θ)
,

where c is the true copula density and expectation is with respect to the true distribution. Fur-

thermore, under standard regularity conditions, θ̂ is consistent and asymptotically normal. If the

true copula belongs to the family k(u1, . . . , ud;θ), it is consistent for the true value of θ. If the

copula family is misspecified, the convergence is to a pseudo-true value of θ, which minimizes the

Kullback-Leibler distance.

Fundamentally, our algorithm uses the following form of the joint distribution:

H(x1, . . . , xd) = C(d)(Fd(xd), C
(d−1)(Fd−1(xd−1), . . .)),

where marginals are ordered in an arbitrary way. For example, C(3) can be formed as C(3)
(
F1, C

(2)(F2, F3)
)
,

or as C(3)
(
F2, C

(2)(F1, F3)
)
, etc. Since no single ordering is preferred we apply model averaging

to combine them. This is a central question in the literature on combining multiple prediction

densities (Geweke and Amisano, 2011), where optimal weights, also known as scoring rules, are

worked out in the context of information theory. As an example, define c
(3)
j as c

(3)
j ≡ c(3)(Fj , C

(2)
k ),

where j, k = 1, 2, 3, j 6= k and C
(2)
k ≡ C(2)(Fk, Fl), l 6= k, l 6= j. Then, it is possible in principle to

obtain the optimal weights ωj ’s as solutions to the following problem:

max
ωl:

∑
ωj=1

∑
sample

ln
∑
j

ωjc
(3)
j

3Here by pseudo-copula we mean a possibly misspecified copula function. The same term is sometimes used in
reference to the empirical copula obtained using univariate empirical cdf’s.
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Such scoring rules make ωj ’s a function of c
(3)
j ’s and may be worth pursuing in large samples.

However, it has been noted in this literature that, in finite samples, a simple average often performs

better due to the error from estimating ω’s (Stock and Watson, 2004). Moreover, in our setting, the

optimal weights would need to be solved for in each step, imposing a heavy computational burden.

4 Application

Suppose d = 5 and we wish to estimate a time-varying distribution of stock returns with non-

trivial conditional skewness and kurtosis. Following a conventional approach, one may use the

NAGARCH structure of Engle and Ng (1993) for volatility, the skew-t marginal distributions of

Azzalini and Capitanio (2003) for the standardized innovations, and the Student-t 5-copula to

model dependence, which amounts to estimating 43 parameters in total.4 Instead, the proposed

algorithm operates with only a few parameters in each step: there are six-parameter marginals in

step 1; in steps 2 to 5, there are one-parameter copulas if standard bivariate copula families are

used (we use the asymmetrized Student-t 2-copula of Khoudraji (1995) for additional flexibility,

which has 4 parameters).

On the other hand, our algorithm would run eighty optimization problems instead of one.5

So in effect, we replace a single highly-parameterized estimation problem with a long sequence

of trivial estimations in which the combined number of parameters is even higher. As a result,

our algorithm will produce a better fitting likelihood by construction. We note that our method

permits a reduction of the number of estimations by following the approach of Engle, Shephard, and

Sheppard (2008) and considering random pairs, triples, etc., instead of all possible pairs, triples,

etc.

In our empirical application we use daily stock returns of five DJIA constituents for the pe-

riod January 3 to December 31, 2007.6 We report a few estimates and goodness-of-fit tests. The

goodness-of-fit tests use the uniformity and independence properties of probability integral trans-

forms under correct specification (Breymann, Dias, and Embrechts, 2003). We ran Kolmogorov-

Smirnov tests of uniformity and F-tests of serial uncorrelatedness.

Table 1 reports sample statistics for five log-returns, and Table 2 reports estimates of the Skew-

t-NAGARCH marginals. Table 3 reports the estimates of conventional ML, feasible for d = 5. Ta-

bles 4-5 contain selected estimates from our algorithm. A few goodness-of-fit statistics are reported

4Each skew-t marginal has 6 parameters and the t-copula has 13 distinct parameters.
5There are 5 distributions in step 1, 20 distributions in step 2, 30 combinations {F̂i, F̂jk} in step 3, 20 combinations

{F̂i, F̂jkl} in step 4, and 5 combinations {F̂i, F̂jklm}.
6A Matlab module handling arbitrary dimension and data sets under both conventional and sequential method-

ology is available at https://sites.google.com/site/artembprokhorov/papers/reconstruct.zip
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in Table 6. The coefficient estimates capture significant degree of skewness and fat tails in the uni-

variate distributions as well as asymmetries in bivariate copulas connecting univariate marginals

with marginals of higher dimension. The goodness-of-fit tests show exceptional performance of the

new procedure.

5 Conclusion

The sequential ML procedure we propose reconstructs a joint distribution by sequentially applying

a copula-like compounding function to lower-dimensional marginal components of the distribution.7

Clearly, the consistency of this approach hinges on the correctly specified score functions for the

lower-dimensional marginals. The sequential structure permits flexible specifications of the score

function in each step and more degrees of freedom to come up with a correct specification than

using an ‘off-the-shelf’ multivariate distribution.

The issues with conventional ML are not only computational (Hessian non-invertibility, local

maxima, etc.). It is often a problem to find a multivariate distributions that accommodates certain

features, e.g., asymmetry and extreme dependence in higher dimensions, while remaining tractable.

Moreover, finite sample based ML estimation of highly parameterized multivariate distribution is

inaccurate due to the curse of dimensionality.

The proposed method falls short of solving all the issues. For example, the full version of

the algorithm requires more computing time than conventional ML (when it works) and the stan-

dard errors of the sequential procedure suffer from the ‘generated regressor’ problem (Zhao and

Joe, 2005). However, the new method allows to estimate distributions with arbitrary patterns of

dependence and to parameterize dependence between a scalar and a subvector.

The standard way to study the performance of our algorithm relative to the vine copula and

factor copula approaches mentioned in the Introduction is by means of simulations. However, it is

unclear what criterion to use for such comparisons. The difficulty is not only in coming up with

a feasible version of a MISE-type distance for a d-variate function. The operational version of

this measure would need to be applicable to sequential estimators. We leave the development and

implementation of such criteria for future research.

7This gives the algorithm the flavor of composite likelihood methods (Cox and Reid, 2004).
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GE MCD MSFT KO PG

minimum -0.0384 -0.0298 -0.0421 -0.0285 -0.0506
maximum 0.0364 0.0589 0.0907 0.0254 0.0359

mean, ×10−3 0.0248 1.2831 0.7575 1.0363 0.5987
standard deviation 0.0115 0.0116 0.0143 0.0087 0.0091

skewness -0.0349 0.2617 0.9461 0.0512 -0.6106
kurtosis 3.9742 4.8977 8.7270 3.6313 9.2954

Table 1: Sample statistics for GE, MCD, MSFT, KO, and PG returns; daily data are from January
3 to December 31, 2007

GE MCD MSFT KO PG

µ, ×10−3 -0.032
(0.615)

1.340
(0.709)

0.660
(0.886)

0.750
(0.673)

0.574
(0.645)

ω, ×10−5 0.569
(0.581)

5.845
(1.893)

0.852
(0.809)

0.667
(0.740)

0.608
(0.523)

α 0.106
(0.062)

0.153
(0.090)

0.041
(0.024)

0.142
(0.082)

0.107
(0.052)

β 0.861
(0.084)

0.379
(0.130)

0.915
(0.055)

0.787
(0.139)

0.837
(0.063)

κ -0.074
(0.364)

-0.530
(0.394)

-0.174
(0.796)

-0.032
(0.740)

-0.168
(0.606)

ν 6.482
(2.325)

9.672
(4.976)

5.898
(2.360)

8.098
(4.046)

3.305
(0.734)

γ -0.014
(0.077)

-0.431
(0.706)

0.176
(0.533)

-0.236
(0.950)

-0.106
(0.482)

Table 2: Maximum likelihood estimates of Skew-t-NAGARCH(1,1) marginals: yt = µ +
√
htεt,

εt ∼ i.i.d. Skew-t(γ, ν), ht = ωi + α(yt−1 − µ+ κ
√
ht−1)

2 + βht−1
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R GE MCD MSFT KO PG
η 13.426

(4.380)

GE 1.000
(0.000)

0.425
(0.055)

0.621
(0.042)

0.502
(0.055)

0.510
(0.049)

a 0.030
(0.035)

MCD 0.425
(0.055)

1.000
(0.000)

0.415
(0.056)

0.398
(0.055)

0.367
(0.062)

b 0.157
(0.308)

MSFT 0.621
(0.042)

0.415
(0.056)

1.000
(0.000)

0.539
(0.053)

0.465
(0.057)

KO 0.502
(0.055)

0.398
(0.055)

0.539
(0.053)

1.000
(0.000)

0.495
(0.049)

PG 0.510
(0.049)

0.367
(0.062)

0.465
(0.057)

0.495
(0.049)

1.000
(0.000)

Table 3: Maximum likelihood estimates of the time-varying five-dimensional t-copula
Cη,Rt (u1t, . . . , u5t), where uit = F St

γi,νi (εit) , with Skew-t-NAGARCH(1,1) marginals: yit = µi +√
hitεit, εit ∼ i.i.d. Skew-t(γ, ν), hit = ωi + αi(yi,t−1 − µi + κi

√
hi,t−1)

2 + βihi,t−1, and with

Rt = (1− a− b)R+ aΨt−1 + bRt−1, Ψij,t−1 =
∑m
h=1 T

−1
η (uit−h)T

−1
η (ujt−h)√∑m

h=1 T
−1
η (uit−h)

2 ∑m
h=1 T

−1
η (ujt−h)

2

GE,MCD GE,MSFT GE,KO GE,PG MCD,MSFT

η 9.627
(7.732)

7.948
(3.006)

6.107
(2.390)

14.236
(11.290)

9.883
(8.488)

a 0.074
(0.075)

0.089
(0.113)

0.002
(0.002)

0.038
(0.023)

0.159
(0.096)

b 0.399
(0.241)

0.001
(0.130)

0.486
(0.306)

0.913
(0.031)

0.385
(0.226)

ρ̄ 0.418
(0.062)

0.625
(0.042)

0.513
(0.050)

0.557
(0.076)

0.429
(0.073)

Table 4: Maximum likelihood estimates of selected pairwise t-copulas Cη,ρt (u1t, u2t), where uit =
F St
γi,νi (εit) , with Skew-t-NAGARCH(1,1) marginals: yit = µi +

√
hitεit, εit ∼ i.i.d. Skew-t(γ, ν),

hit = ωi + αi(yi,t−1 − µi + κi
√
hi,t−1)

2 + βihi,t−1, and with ρt = (1 − a − b)ρ + aψt−1 + bρt−1,

ψt−1 =
∑m
h=1 T

−1
η (u1t−h)T

−1
η (u2t−h)√∑m

h=1 T
−1
η (u1t−h)

2 ∑m
h=1 T

−1
η (u2t−h)

2
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C̃ (·; ·) α β η ρ a b

(GE; MCD, MSFT) 0.044 0.322 8.612 0.884 0.004 0.992
(MCD; GE, MSFT) 0.007 0.011 8.557 0.408 0.124 0.351
(MSFT; GE, MCD) 0.008 0.001 8.828 0.503 0.143 0.092

(GE; MCD, MSFT, KO) 0.057 0.326 8.580 0.630 0.007 0.646
(MCD; GE, MSFT, KO) 0.005 0.180 8.326 0.440 0.137 0.244
(MSFT; GE, MCD, KO) 0.022 0.110 8.443 0.508 0.058 0.238
(KO; GE, MCD, MSFT) 0.015 0.062 8.540 0.466 0.023 0.477

(MSFT; GE,MCD,KO,PG) 0.394 0.301 8.580 0.463 0.309 0.285
(KO; GE,MCD,MSFT,PG) 0.285 0.585 8.680 0.433 0.312 0.321
(PG; GE,MCD,MSFT,KO) 0.045 0.252 8.499 0.520 0.051 0.782

Table 5: Maximum likelihood estimates for selected triplets, quadruples and quintuples, with com-
pounding function Cm(u, v) = uαvβCη,ρt(u

1−α, v1−β), where Cη,ρt(·, ·) is described in Table 4

KS: uniformity P-value KS: uniformity P-value

GE 0.819 MCD|GE 0.635
MCD 0.677 MSFT|MCD 0.833
MSFT 0.972 KO|MSFT 0.997

KO 0.969 PG|KO 0.995
PG 0.851 GE|PG 0.766

F: uncorrelatedness P-value F: uncorrelatedness P-value

GE 0.701 GE: higher moments 0.763
MCD 0.454 MCD: higher moments 0.672
MSFT 0.762 MSF: higher moments 0.635

KO 0.336 KO: higher moments 0.611
PG 0.310 PG: higher moments 0.657

Table 6: Selected goodness-of-fit tests
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