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Abstract

In some heavily parameterized models, one may benefit from shifting some of parame-

ters towards a common target. We consider L2 shrinkage towards an equal parameter

value that balances between unrestricted estimation (i.e., allowing full heterogene-

ity) and estimation under equality restriction (i.e. imposing full homogeneity). The

penalty parameter of such ridge regression estimator is tuned using leave-one-out cross-

validation. The reduction in predictive mean squared error tends to increase with the

dimensionality of the parameter set. We illustrate the benefit of such shrinkage with a

few stylized examples. We also work out an example of a heterogeneous panel model,

including estimation on real data.
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1 Introduction

The ridge regression estimator was originally devised as an anti-collinearity tool (Hoerl,

1959). It also has a property of trading off variance for non-zero bias and achieving lower

estimation mean squared error (MSE) than that of least squares (LS) estimation. The ridge

regression estimator results from a penalized LS problem with L2 penalization. Although

the typical aim of ridge regression and L2 shrinkage in general is to produce an estimator

with a lower MSE (Hoerl and Kennard, 1970; Theobald, 1974), this ability carries over to the

predictive MSE as well. For more on ridge regression, see Gruber (2010) and van Wieringen

(2019).

Some models are heavily parameterized, with a subset of the parameter set representing

the same feature which may (or may not) be common within this subset. In that case,

researchers sometimes exploit either totally unrestricted or, conversely, tightly constrained

versions of the model. One important practical example is a heterogeneous coefficients panel

data model, for which, despite the fact that homogeneity of coefficients across units is of-

ten rejected, the homogeneous specification is most often adopted in practice, even though

a variety of shrinkage methods for heterogeneous panel data models have been developed

(Baltagi, Bresson and Pirotte, 2008). Another class of applications contains various non-

linear multivariate volatility models in finance, like the BEKK models (Engle and Kroner,

1995), autoregressive Wishart models (Golosnoy, Gribisch, and Liesenfeld, 2012) and spa-

tial multivariate GARCH (Caporin and Paruolo, 2015), where homogeneity restrictions are

sometimes imposed to reduce dimensionality.

Usually, the ridge penalization is performed towards a zero target (Hoerl and Kennard,

1970); a rarer case is a constant or random non-zero target (Swindel, 1976). In this paper,

we analyze choosing, as a target, the homogeneity restriction when it is relevant. The idea is

to balance between unrestricted estimation (i.e., allowing full heterogeneity) and estimation

under the commonality restriction (i.e. imposing full homogeneity). The L2 penalized mean

squared error criterion results in a ridge regression type estimator that has a closed form

in linear models. In other contexts such as volatility models references above, one may

potentially use another L2 penalized loss function. The penalty parameter of the ridge

regression estimator is tuned to minimize the out-of-sample mean squared error, which in

practice can be implemented using leave-one-out cross-validation. Apart from the cross-

validation stage, the proposed estimator is one-step, in contrast to an alternative shrinkage

scheme where the shrinkage estimator is a weighted average between a fully unrestricted and

fully restricted estimators (Hansen, 2016).
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We closely consider three prototype models, one one-dimensional and two two-dimensional

ones, with different ratios for the number of targets to the number of parameters that are

subject to shrinkage and to the total number of observations. Denote the cardinality of the

regressor vector by P, and the cross-sectional dimension by n (in the asymptotic analysis,

n → ∞ while P stays fixed or may slowly grow). In a simple one-dimensional prototype

model, where we derive the analytical expression for the predictive MSE and the optimal

value for the penalty parameter, this ratio equals 1 : P : n. In the more complex prototype

models where we derive the ridge estimators in a closed form but obtain predictive MSE by

simulation of the feasible procedure, these ratios are 1 : P 2 : Pn and P : P 2 : Pn. As our

prototype models indicate, there is a reduction in the predictive mean squared error which

tends to increase with dimensionality of the parameter vector that is subject to shrinkage.

We also specialize to a setup of a linear heterogenous panel data model and derive the

ridge estimator in a closed form. The aforementioned ratios in this case are k : kN : NT ,

where k is a number of covariates, N is a number of cross-sectional units, and T is time-series

dimensionality (in the asymptotic analysis, k stays fixed, T →∞ while N stays fixed or may

slowly grow). The leave-one-out cross-validation is performed along the time dimension. We

illustrate this application with an empirical example of a public capital productivity model

of Baltagi and Pinnoi (1995).

The paper is organized as follows. In Section 2, to fix ideas, we describe the optimization

problem that leads to a ridge regression towards homogeneity. In Section 3, we work out

a one-dimensional prototype model for which we derive an analytical solution and analyze

asymptotic out-of-sample MSE. In Section 4, we describe two two-dimensional prototype

models, derive the ridge solutions for them, and compare MSE properties of the heteroge-

neous, homogeneous and ridge estimators. In Section 5, we apply the idea of ridge towards

homogeneity to the heterogeneous panel data setup. Section 6 concludes.

A word on notation is due. By diag {Ai}mi=1 we denote a block-diagonal matrix containing

square matrices Ai, i = 1, ...,m, on the main diagonal, and by ‖ai‖mi=1 we denote a vector

containing vectors ai, i = 1, ...,m, stacked upon each other. Vector ιm is an m× 1 vector of

ones, Jm = ιmι
′
m is an m ×m matrix of ones, and Im is an identity matrix of size m. We

also introduce a special matrix

Ξm = Im −
Jm
m
. (1)

Note that Ξm is symmetric and idempotent.
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2 Shrinkage towards homogeneity

Let t index observations from 1 to n. Let B1, B2, ..., BK be non-overlapping subsets of the

parameter vector/matrix B, such that each subvector/submatrix Bk contains parameters

that are subject to shrinkage towards a common value, say β̄k. LetB− = B\(B1∪B2∪...∪BK).

Let et (B) be the vector of regression residuals for observation t = 1, ..., n when the values

of parameters are fixed at B, i.e., for example, et (B) = Yt −BXt as in models of Section 4.

The L2 penalized mean squared error criterion is

min
B1,...,BK ,B−

{
PLS (λβ) =

1

2

n∑
t=1

et (B1, ..., BK , B−)′ et (B1, ..., BK , B−)

+
λβ
2

K∑
k=1

∑
βjk∈Bk

(
βjk − β̄k

)2 , (2)

where λβ > 0 is a degree of penalization parameter, and

β̄k =
1

|Bk|
∑

βjk∈Bk

βjk (3)

is the common target within Bk.

The first order conditions to (2) are written as follows. For each βjk ∈ Bk, k = 1, ..., K,

that is subject to shrinkage within the parameter subset Bk,

0 =
n∑
t=1

et (B1, ..., BK , B−)′
∂et (B1, ..., BK , B−)

∂βjk
+λβ

(βjk − β̄k)− 1

|Bk|
∑

βjk∈Bk

(
βjk − β̄k

) ,

or

0 =
n∑
t=1

et (B1, ..., BK , B−)′
∂et (B1, ..., BK , B−)

∂βjk
+ λβ

(
βjk − β̄k

)
. (4)

For each βj ∈ B− that is not subject to shrinkage, we have the usual least squared equation

0 =
n∑
t=1

et (B1, ..., BK , B−)′
∂et (B1, ..., BK , B−)

∂βj
. (5)

Let us denote the solution to (4)–(5) by B̂ridge. Of course, the case λβ = 0 corresponds to

the unconstrained (heterogeneous) solution, say B̂het, while the case λβ → ∞ results in all

βjk ∈ Bk, k = 1, ..., K, being equal, i.e. to the fully constrained (homogeneous) solution, say

β̂hom.

When et (B1, ..., BK , B−) is linear in elements of all B1, B2, ..., BK , B−, the FOC are

linear in all these elements, and there is a closed form solution. We illustrate this with three

models in the next two Sections.
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Regarding the asymptotic inference, as long as |B| stays fixed asymptotically as n→∞,
the asymptotic properties of B̂ridge for any fixed λβ are the same as those of B̂het. We

conjecture that |B| may be allowed to slowly increase as n→∞, without drastic changes in

asymptotic conclusions. For a linear model, the finite sample conditional variance is easily

available for any fixed value of the penalty parameter λβ.

3 One-dimensional prototype model

3.1 Setup

Consider a regression equation with P regressors and similar coefficients:

yt = x′tβ + et, t = 1, ..., n, (6)

where for simplicity et is IID across t with mean zero and variance σ2, the P × 1 vectors

xt are IID N (0, IP ) . The coefficient vector β contains elements βj that are close to each

other so that the bias-variance tradeoff makes the homogeneous and heterogeneous estimates

competitive. For concreteness, we adopt a ‘random design’ setup and assume that βj ∼ IID

N (β0, ωβ) for some concentration point β0 and degree of heterogeneity ωβ. The researcher

does not know these parameters but has a prior belief about similarity of the elements of

β, which is a reason to impose the homogeneity restriction for the sake of model parsimony.

The ridge machinery can be used to further exploit the bias-variance tradeoff. In this model,

the ratio for the number of targets to the number of parameters that are subject to shrinkage

and to the total number of observations equals 1 : P : n.

3.2 Estimation

If elements of β are treated as distinct parameters (i.e. allowing full heterogeneity) and

estimated separately, we use least squares estimates

β̂het =

(
n∑
t=1

xtx
′
t

)−1 n∑
t=1

xtyt. (7)

If one makes all the elements of β equal (i.e. imposing full homogeneity), then the homoge-

neous solution is

β̂hom =

(
n∑
t=1

(x′tιP )
2

)−1 n∑
t=1

(x′tιP ) (ytιP ) . (8)
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Suppose we use the following penalized estimation criterion:

min
β

{
PLS (λβ) =

1

2

n∑
t=1

(yt − x′tβ)
2

+
λβ
2

P∑
j=1

(
βj − β̄

)2}
(9)

where

β̄ =
1

P

P∑
j=1

βj. (10)

Solving (9) leads to the ridge regression estimator1

β̂ridge =

(
n∑
t=1

xtx
′
t + λβΞP

)−1 n∑
t=1

xtyt. (11)

3.3 Asymptotic predictive MSE

Next, we derive an asymptotic predictive (out-of-sample) mean squared error of a forecast

generated by the ridge estimator, in order to see how it varies with the penalty parameter

λβ. The predictive MSE is defined as

MSEridge = E
[
(y∗t − x∗′t β̂ridge)2

]
, (12)

where the pair (y∗t , x
∗
t ) is drawn from the population of (yt, xt) independently from the given

sample. The asymptotic analog AMSEridge omits higher-order asymptotic terms in the

expansion of MSEridge (12) in powers of 1/n.

Proposition 1. The asymptotic (as n → ∞ and P stays fixed) predictive MSE to order

O (1/n2) of the forecast generated by β̂ridge is

AMSEridge = σ2

(
1 +

P

n
+
P (P + 1)

n2

)
+
(
ωβλ

2
β − 2σ2λβ

) P − 1

n2
. (13)

As follows from the proof of Proposition 1 (see Appendix), the first of five terms in

the expression (13), σ2, is the prediction error variance; the second component σ2P/n is

the estimation noise coming from the error term; the third term σ2P (P + 1) /n2 is the

estimation noise coming from approximating population moments by sample moments; the

fourth component ωβλ
2
β (P − 1) /n2 is an increase in estimation bias because of coefficient

1Note that the penalty term, apart from a multiplicative constant, can be rewritten as(
||βj ||Pj=1 − β̄

)′ (||βj ||Pj=1 − β̄
)

=
(
ΞP ||βj ||Pj=1

)′ (
ΞP ||βj ||Pj=1

)
=
(
||βj ||Pj=1

)′
ΞP

(
||βj ||Pj=1

)
.

Hence, this estimator can be interpreted as a generalized ridge estimator with weight matrix ΞP . I thank

Wessel van Wieringen for this observation.
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heterogeneity; finally, the fifth term 2σ2λβ (P − 1) /n2 is a reduction in MSE because of

a decrease in the estimation variance. While the first three terms are indispensable, the

last two terms represent the bias-variance tradeoff in the MSE. Note that this tradeoff is of

order O(1/n2), unless P changes with n, and quickly falls with sample size, as is usual with

ridge-shrinkage. Note also that the asymptotic MSE (13) does not depend on the parameter

concentration point β0.

Remark. Normality imposed on the distribution of x and βj is not critical for the expression

(13) to hold as long as the second-order moments exist.

Remark. The expression (13) also obtains if asymptotically, as n → ∞, P also grows

sufficiently slowly; in particular, if P = o (
√
n) .

Now observe that ∂AMSEridge/∂λβ|λβ=0 < 0, hence, at least for a range of λβ > 0

when the degree of heterogeneity ωβ is small relative to the error variance σ2, we have

AMSEridge < AMSEhet. The optimal λβ can be obtained from

0 =
∂AMSEridge

∂λβ
=
(
2ωβλβ − 2σ2

) P − 1

n2
, (14)

provided that ωβ 6= 0, which leads to

λoptβ =
σ2

ωβ
. (15)

That is, more shrinkage is required if there is more error noise and less coefficient hetero-

geneity. The minimal AMSEridge is

AMSEopt
ridge = σ2

(
1 +

P

n
+
P (P + 1)

n2

)
− σ4

ωβ

P − 1

n2
. (16)

Clearly, as λβ →∞, the increase in MSE will dominate the reduction in MSE, ridge will

not be beneficial. In fact, this will occur when λβ reaches or exceeds 2λoptβ . At the other end,

setting λβ = 0 is equivalent to imposing no constraints, which leads to the heterogeneous

solution

AMSEhet = σ2

(
1 +

P

n
+
P (P + 1)

n2

)
. (17)

The maximal benefit in the MSE of the ridge over the unconstrained estimation is

AMSEhet − AMSEopt
ridge =

σ4

ωβ

P − 1

n2
, (18)

which increases in the subject-to-shrinkage parameter dimensionality P .
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3.4 Feasible ridge estimator

In practice, the optimal value of the penalty parameter λβ is unknown. We suggest that

the feasible version, which we call ‘CV-ridge’, be based on leave-one-out cross-validation: at

the ith step, i = 1, ..., n, the vector β is estimated based on all observations except ith, and

the ith contribution to MSE is evaluated using the ith observation on regressor and outcome

variables.

3.5 Performance of feasible estimators

At each simulation run, we evaluate the four estimators’ MSE using 10,000 extra pseudo-

observations generated according to the same DGP. The sample size is n = 100; the number

of simulations is 1000. We set the point of parameter concentration to β0 = 1. We make ex-

periments with several values of degree of heterogeneity ωβ ∈ {0.025; 0.05; 0.10; 0, 15; 0.20}.
To get a feel of the degree of dispersion in βj’s, we show in Table 1 fragments of β corre-

sponding to each value of ωβ. For the feasible ridge estimator, the penalty parameter λβ is

selected from a grid of values from 0 to 1,000 with a step of 10.

Table 1: Fragments of β for different degrees of heterogeneity ωβ.

ωβ = 0.025 ωβ = 0.05 ωβ = 0.10 ωβ = 0.15 ωβ = 0.20
1.015

0.968

1.024




0.967

1.056

1.027




0.920

1.061

0.873




0.902

1.097

0.968




1.478

0.715

0.869



The graphs on Figure 1 present the average (across simulations) predictive MSE. The

top panel shows how the MSE varies with the degree of heterogeneity ωβ when P is fixed at

20, while the bottom panel shows its dependence on the parameter dimensionality P when

ωβ is fixed at 0.10.

As the degree of heterogeneity goes up, the MSE from the heterogeneous estimates (or-

ange lines) remains fully flat, while the MSE from the homogeneous estimates (gray lines)

quickly increases and from some point exceeds the former. The optimal ridge estimates

(yellow lines) and CV ridge estimates (blue lines) dominate in terms of MSE, though their

performance approaches that of heterogeneous estimates as the degree of heterogeneity in-

creases. Note that the discrepancy between the MSE from the infeasible optimal ridge and
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feasible CV ridge estimation is negligible compared to the differences between these and

MSE from homo- and heterogeneous estimates.

Further, as the parameter dimensionality increases, the MSE from all estimates rises,

from heterogeneous estimates more so, while from the ridge estimators in the least degree.

Thus, the benefit from using the ridge machinery tends to reveal itself in a higher degree for

higher dimensional setups.

It is also instructive to check on the values of the penalty parameter λCV
β in the feasible

CV-ridge procedure compared to the asymptotically optimal. The median (across simula-

tions) values are presented in Table 2 for the same values of degree of heterogeneity ωβ and

P = 20. One can see that the selected via cross-validation penalty parameter is not far (in

median terms) from the ideal optimal value, though it may be either larger or smaller than

that. The evidence presented in Figure 2 suggests that the discrepancy is not critical for the

predictive performance.

Table 2: Comparison of asymptotically optimal and feasible values of penalty parameter λβ

for different degrees of heterogeneity ωβ.

ωβ 0.025 0.05 0.10 0.15 0.20

λoptβ 1600 400 100 44 25

λCV
β 1000 470 100 40 30

4 Two-dimensional prototype models

In this Section, we consider more complex examples and compare MSE of different estima-

tors by simulations. These are characterized by two-dimensional design, i.e. a number of

parameters subject to shrinkage is P 2, with a number of targets being equal to 1 or P. Again,

in addition to the heterogeneous, homogeneous and non-feasible optimal ridge estimators, we

also consider the feasible version of the optimal ridge estimator, with the optimal smoothing

parameter obtained via leave-one-out cross-validation.

4.1 Setup

In both models, there is a system of P non-homogeneous equations

Yt = BXt + et, t = 1, ..., n. (19)
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where for simplicity et is IID across t with mean zero and variance matrix σ2IP , with σ2 = 1.

The coefficient matrix B is

B =


β11 β12 · · · β1P

β21 β22 · · · β2P
...

...
. . .

...

βP1 βP2 · · · βPP

 . (20)

We generate B such that βjk are concentrated around the same concentration point β0:

βjk ∼ IIDN (β0, ωβ) , where, again, ωβ is degree of heterogeneity. Of course, the researcher

does not know these parameters but has a prior belief that the elements of B are close to

each other, which is the reason to impose, fully or partially, the homogeneity restriction and

exploit the ridge trade-off. For simplicity, we generate Xt as independent standard normals

independently of B and all et.

In these models, the ratio for the number of targets to the number of parameters that

are subject to shrinkage and to the total number of observations equals 1 : P 2 : Pn in the

‘fully homogeneous target’ model, and P : P 2 : Pn in the ‘row-wise homogeneous target’

model.

4.2 Fully homogeneous target

The elements of B may be estimated without restrictions, imposing the homogeneity re-

strictions, or balance between the two by penalizing deviations from the common fully ho-

mogeneous target. If elements of B are treated as distinct parameters (i.e. allowing full

heterogeneity) and estimated separately, we use least squares estimates

B̂het =
n∑
t=1

YtX
′
t

(
n∑
t=1

XtX
′
t

)−1
. (21)

If all elements of B are equated (i.e. under full homogeneity restriction), then

B = βJP . (22)

The least squares estimation problem is then

min
β

1

2

n∑
t=1

et (β)′ et (β) , (23)

where et (β) = Yt − βJPXt. The solution to (23) is B̂hom = β̂homJP , where

β̂hom =

(
P

n∑
t=1

X ′tJPXt

)−1 n∑
t=1

X ′tJPYt, (24)
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because J2
P = PJP .

Suppose we use the following penalized estimation criterion:

min
B

{
PLS (λβ) =

1

2

n∑
t=1

et (B)′ et (B) +
λβ
2

P∑
j,k=1

(
βjk − β̄

)2}
, (25)

where

β̄ =
1

P 2

P∑
j,k=1

βjk. (26)

The solution to (25) is ridge-type regression estimator:

vec
(
B̂′ridge

)
= (IP ⊗X ′X + λβΞP 2)

−1
vec (X ′Y ) . (27)

The smoothing parameter λβ is set to minimize the out-of-sample mean squared pre-

diction error criterion. The feasible version which we call ‘CV’ is based on leave-one-out

cross-validation: at the ith step, i = 1, ..., n, the matrix B is estimated based on all obser-

vations except ith, and the ith contribution to MSE is evaluated using the ith observation on

regressor and outcome variables.

4.3 Row-wise homogeneous target

In this setup, the researcher instead has a belief that the elements of each row of the matrix

B are close to each other but may not be close across the rows. In this case, the researcher

may want to impose the homogeneity restriction partially, only within each row. Then, the

target is a P -vector of row-specific values.

The full heterogeneity estimate B̂het is the same as before. Under row-wise homogeneity

restriction, all elements of each row of B are equated, so that

B = βι′P , (28)

where now β is a P × 1 column vector. The least squares estimation problem is

min
β

1

2

n∑
t=1

et (β)′ et (β) , (29)

where et (β) = Yt − βι′PXt. The solution to (29) is B̂hom = β̂homι
′
P , where

β̂hom =

(
n∑
t=1

(ι′PXt)
2

)−1 n∑
t=1

(ι′PXt)Yt. (30)
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Now, suppose we use the following penalized estimation criterion:

min
B

{
PLS (λβ) =

1

2

n∑
t=1

et (B)′ et (B) +
λβ
2

P∑
j=1

P∑
k=1

(
βjk − β̄j

)2}
, (31)

where

β̄j =
1

P

P∑
k=1

βjk. (32)

The solution to (31) is ridge-type regression estimator:

vec
(
B̂′ridge

)
=
(
IP ⊗ (X ′X + λβΞP )

−1
)
vec (X ′Y ) . (33)

Again, the smoothing parameter λβ is set to minimize the out-of-sample mean squared

prediction error criterion. The feasible version which we call ‘CV’ is based on leave-one-

out cross-validation: at the ith step, i = 1, ..., n, the matrix B is estimated based on all

observations except ith, and the ith contribution to MSE is evaluated using the ith observation

on regressor and outcome variables.

4.4 Comparison of predictive MSE

At each simulation run, we evaluate the four estimators’ MSE using 10,000 extra pseudo-

observations generated according to the same DGP. The sample size is n = 200 for the

fully homogeneous target example, and n = 100 for the row-wise homogeneous target

example. The number of simulations is 100. We set the point of concentration of pa-

rameters at β0 = 1. We make experiments with several values of degree of heterogeneity

ωβ ∈ {0.025; 0.05; 0.10; 0, 15; 0.20}. To get a feel of the degree of dispersion in B, we show in

Table 3 fragments of B corresponding to each value of ωβ.

Table 3: Fragments of B for different degrees of heterogeneity ωβ.

ωβ = 0.025 ωβ = 0.05 ωβ = 0.10 ωβ = 0.15 ωβ = 0.20[
0.980 1.015

1.024 0.981

] [
0.960 1.030

0.937 1.048

] [
0.920 1.061

0.873 1.096

] [
0.879 1.091

0.809 1.144

] [
0.839 1.122

0.746 1.192

]

The graphs on Figures 2 and 3 present the average (across simulations) MSE for the fully

homogeneous and the row-wise homogeneous targets, respectively. The top panel shows how

the MSE varies with the degree of heterogeneity ωβ when P is fixed at 20, while the bottom
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panel shows its dependence on the parameter dimensionality P when ωβ is fixed at 0.05

(Figure 2) or 0.10 (Figure 3).

The two cases exhibit qualitatively similar tendencies. Moreover, all tendencies are

similar to those for the one-dimensional prototype model. It is interesting though that for

the row-wise homogeneous target this benefit is much higher than for the fully homogeneous

target, even though the former target is less homogeneous, especially with large P .

5 Application: heterogeneous panel data

Consider the panel data model with cross-sectionally heterogeneous coefficients:

yi,t = x′i,tβi + µi + vi,t, i = 1, ..., N, t = 1, ..., T, (34)

where the idiosyncratic components vi,t are IID across i and t, and, conditional on X =

(x1,1, ..., xN,T ) , have zero mean and variance σ2
v . Here, the k × 1 slope coefficients βi vary

across the individuals. After the Within transformation, we have

ỹi,t = x̃′i,tβi + ṽi,t, i = 1, ..., N, t = 1, ..., T, (35)

where ỹi,t = yi,t − ȳi, x̃i,t = xi,t − x̄i, etc. The homogeneous estimates β̂hom are given by the

Within estimator, i.e. OLS on the pooled Within-transformed system. The sample mean

squared error is computed as an average of squared Within residuals:

M̂SEhom =
1

NT

N∑
i=1

T∑
t=1

(
ỹi,t − x̃′i,tβ̂hom

)2
. (36)

Suppose now that we shrink each vector βi to a common row-specific vector of values β.

The ridge problem is

min
(β1,β2,...,βN )

{
PLS (λβ) =

1

2

N∑
i=1

T∑
t=1

(
ỹi,t − x̃′i,tβi

)2
+
λβ
2

N∑
i=1

(
βi − β̄

)′ (
βi − β̄

)}
, (37)

where

β̄ =
1

N

N∑
i=1

βi. (38)

The first order conditions with respect to βi for all i = 1, ..., N , are

T∑
t=1

x̃i,t
(
ỹi,t − x̃′i,tβi

)
= λ

(
βi − β̄

)
. (39)
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Hence, the ridge estimators stacked upon each other are

∥∥∥β̂i,ridge∥∥∥N
i=1

= ΨN,T (λβ)−1

∥∥∥∥∥
T∑
t=1

x̃i,tỹi,t

∥∥∥∥∥
N

i=1

, (40)

where

ΨN,T (λβ) ≡ diag

{
T∑
t=1

x̃i,tx̃
′
i,t

}N

i=1

+ λβΞN ⊗ Ik. (41)

The sample mean squared error is computed as an average of squared ridge residuals:

M̂SEridge =
1

NT

N∑
i=1

T∑
t=1

(
ỹi,t − x̃′i,tβ̂i,ridge

)2
. (42)

The heterogeneous estimator corresponds to the above solution with λβ = 0:

β̂het = ΨN,T (0)−1

∥∥∥∥∥
T∑
t=1

x̃i,tỹi,t

∥∥∥∥∥
N

i=1

, (43)

i.e. each β̂i is computed as OLS from a time series regression on unit ith data. The sample

mean squared error is computed as an average of squared heterogeneous residuals:

M̂SEhet =
1

NT

N∑
i=1

T∑
t=1

(
ỹi,t − x̃′i,tβ̂i,het

)2
. (44)

A variety of shrinkage methods for heterogeneous panel data models have been developed

before (Baltagi, Bresson and Pirotte, 2008). One of most straightforward is the Stein-rule

estimator (Ziemer and Wetzstein, 1983)

β̂Stein =
(

1− c

F

)
β̂het +

c

F
ιN ⊗ β̂hom, (45)

where

F =
RSShom −RSShet

RSShet

N(T − 1− k)

(N − 1)k
(46)

is an F-statistic for pre-testing the poolability of under normality, RSShom and RSShet are

residual sums of squares in the homogeneous (pooled) and heterogeneous models, respec-

tively, and

c =
(N − 1)k − 2

N(T − 1− k) + 2
(47)

(Judge and Bock, 1978).

We use the dataset used in Baltagi and Pinnoi (1995) and one of their models for public

capital productivity:

log Yi.t = β1,i logPi.t + β2,i logKi.t + β3,i logLi.t + β4,iUi.t + µi + vi,t, (48)
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where in state i in year t, Yi.t is gross state product, Pi.t is public capital, Ki.t is private

capital, Li.t is labor input, and Ui.t is the state unemployment rate. The log-linear form of

the model is due to the multiplicative form of the Cobb-Douglas production function with

respect to its inputs traditional in economic theory. The data embrace 48 US states for the

period 1970–1986. Thus, k = 4, N = 48, and T = 17.

The F-statistic for across-state homogeneity of coefficients equals 7.25 with the p-value

that is essentially zero. The Stein’s factor 1− c/F equals 0.956, so almost all the weight in

the Stein-rule estimator is given to the heterogeneous estimates.

To compute the ridge estimates, we pre-scale the Within-transformed regressors by their

standard deviations so that they have unit sample variance; we adjust the estimates of

coefficients accordingly. The leave-one-out cross-validation is performed along the t direction.

The CV-tuned penalty parameter turns out to be λβ = 0.0325. The ridge sample MSE equals

0.414×10−3, while the fully heterogeneous and homogeneous sample MSE equal 0.405×10−3

and 1.362×10−3, respectively. One can see that the ridge machinery puts the solution pretty

close to the heterogeneous one. However, it still has a strong effect on coefficient estimates,

much stronger than the Stein shrinkage (see Table 4).

Table 4: Coefficient point estimates for states whose names start with A.

State i β1,i β2,i β3,i β4,i β1,i β2,i β3,i β4,i

Homogeneous Heterogeneous

AL −0.026 0.292 0.768 −0.005 −1.443 0.280 1.835 0.007

AZ −0.026 0.292 0.768 −0.005 −0.163 −0.005 1.076 −0.004

AR −0.026 0.292 0.768 −0.005 −0.506 0.321 1.234 0.001

Stein rule CV-ridge

AL −1.380 0.280 1.788 0.007 −0.915 0.259 1.520 0.005

AZ −0.157 0.008 1.062 −0.004 0.026 0.085 0.865 −0.007

AR −0.484 0.320 1.213 0.001 −0.418 0.329 1.172 0.001

Table 4 reports homogeneous, heterogeneous, Stein rule, and CV-ridge estimates for

three arbitrary states. Of course, the homogeneous estimates are equal across the states.

The heterogeneous, Stein and ridge estimates vary a lot across the states, though the

dispersions of the three are different: the standard deviations are 0.55/0.35/0.52/0.0114,

0.53/0.33/0.50/0.0109 and 0.49/0.31/0.44/0.0099, respectively. Thus, the ridge estimators

15



exhibit a lower degree of heterogeneity of coefficient estimates than the Stein rule.

6 Concluding remarks

We have developed an extension of the ridge regression estimator to the case where the

shrinkage targets are commonality, or homogeneity, of parameter subsets. This yields a

reduction in a predictive mean squared error, this reduction being positively related to

a number of parameters that are subject to shrinkage. The penalty parameter is tuned by

minimization of the leave-one-out sample predictive cross-validation criterion. A prospective

research agenda contains application of the idea of penalization of parameter heterogeneity

in nonlinear problems, for likelihoods other than Gaussian, and for loss functions other than

quadratic.

16



References

Baltagi, B., Bresson, G. and Pirotte, A. (2008) To pool or not to pool. Chapter 16 in Panel
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Appendix

Proof of Proposition 1. First, let us compute

β̂ridge − β =

(
n∑
t=1

xtx
′
t + λβΞP

)−1 n∑
t=1

xt (x′tβ + et)− β

=

(
n∑
t=1

xtx
′
t + λβΞP

)−1 n∑
t=1

xtet −

(
n∑
t=1

xtx
′
t + λβΞP

)−1
nλβΞPβ,

hence the conditional MSE E
[
(β̂ridge − β)(β̂ridge − β)′|X

]
is

(
n∑
t=1

xtx
′
t + λβΞP

)−1
E

[(
n∑
t=1

xtet

)(
n∑
t=1

xtet

)′
|X

](
n∑
t=1

xtx
′
t + λβΞP

)−1

+

(
n∑
t=1

xtx
′
t + λβΞP

)−1
λ2βΞPE [ββ′] ΞP

(
n∑
t=1

xtx
′
t + λβΞP

)−1

=

(
n∑
t=1

xtx
′
t + λβΞP

)−1
σ2

(
n∑
t=1

xtx
′
t

)(
n∑
t=1

xtx
′
t + λβΞP

)−1

+

(
n∑
t=1

xtx
′
t + λβΞP

)−1
λ2βΞP

(
β2
0JP + ωβIP

)
ΞP

(
n∑
t=1

xtx
′
t + λβΞP

)−1
.

Now, the unconditional MSE E
[
(β̂ridge − β)(β̂ridge − β)′

]
is

E

( n∑
t=1

xtx
′
t + λβΞP

)−1(
σ2

n∑
t=1

xtx
′
t + ωβλ

2
βΞP

)(
n∑
t=1

xtx
′
t + λβΞP

)−1
= E

IP − λβ ( n∑
t=1

xtx
′
t

)−1
ΞP + oP

(
1

n

)( n∑
t=1

xtx
′
t

)−1(
σ2

n∑
t=1

xtx
′
t + ωβλ

2
βΞP

)

×

(
n∑
t=1

xtx
′
t

)−1 IP − λβ ( n∑
t=1

xtx
′
t

)−1
ΞP + oP

(
1

n

)
= E

( n∑
t=1

xtx
′
t

)−1(
σ2

(
n∑
t=1

xtx
′
t

)
+ ωβλ

2
βΞP

)(
n∑
t=1

xtx
′
t

)−1
− 2σ2λβE

( n∑
t=1

xtx
′
t

)−1
ΞP

(
n∑
t=1

xtx
′
t

)−1+ o

(
1

n2

)
.
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Collecting the terms and expanding further, we get

σ2

n
E

(E [xtx
′
t] +

1

n

n∑
t=1

(xtx
′
t − E [xtx

′
t])

)−1
+
(
ωβλ

2
β − 2σ2λβ

)
E

( n∑
t=1

xtx
′
t

)−1
ΞP

(
n∑
t=1

xtx
′
t

)−1+ o

(
1

n2

)

=
σ2

n
E

[(
IP − E [xtx

′
t]
−1 1

n

n∑
t=1

(xtx
′
t − E [xtx

′
t])

+

(
E [xtx

′
t]
−1 1

n

n∑
t=1

(xtx
′
t − E [xtx

′
t])

)2

+ oP

(
1

n

)E [xtx
′
t]
−1


+
ωβλ

2
β − 2σ2λβ

n2
E
[
E [xtx

′
t]
−1

ΞPE [xtx
′
t]
−1

+ oP (1)
]

+ o

(
1

n2

)
.

The asymptotic analog of this expression, omitting the remainder term, is equal to

σ2

n
IP +

σ2

n2
(P + 1) IP +

ωβλ
2
β − 2σ2λβ

n2
ΞP .

The second term is due to the fact that

E

(
1

n

n∑
t=1

(xtx
′
t − IP )

)2

=
1

n
E ((xtx

′
t − IP ))

2
=

1

n
(P + 1) IP ,

as the elements on the diagonal of E ((xtx
′
t − IP ))2 have expectation

E

((
x2jt − 1

)2
+ x2jt

∑
i 6=j

x2it

)
= 2 + (P − 1) = P + 1,

and the off-diagonal elements have zero expectation.

Now, let (y∗t , x
∗
t ) be drawn from the population of (yt, xt) independently from the given

sample. The mean squared prediction error is

MSEridge = E
[
(y∗t − x∗′t β̂ridge)2

]
= E

[
(y∗t − x∗′t β)2

]
+ E

[
(β̂ridge − β)′x∗tx

∗′
t (β̂ridge − β)

]
= σ2 + tr

(
E
[
(β̂ridge − β)(β̂ridge − β)′

])
,

whose asymptotic analog is

AMSEridge = σ2 + tr

(
σ2

n
IP +

σ2

n2
(P + 1) IP +

ωβλ
2
β − 2σ2λβ

n2
ΞP

)
= σ2

(
1 +

P

n
+
P (P + 1)

n2

)
+
(
ωβλ

2
β − 2σ2λβ

) P − 1

n2
.

�
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Figure 1. Graphs of dependence of average (across simulations) out of sample MSE on 
the degree of heterogeneity (top panel) and on parameter dimensionality (bottom 
panel), the one-dimensional prototype model.  
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Figure 2. Graphs of dependence of average (across simulations) out of sample MSE on 
the degree of heterogeneity (top panel) and on parameter dimensionality (bottom 
panel), the two-dimensional prototype model with the fully homogeneous target.  
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Figure 3. Graphs of dependence of average (across simulations) out of sample MSE on 
the degree of heterogeneity (top panel) and on parameter dimensionality (bottom 
panel), the two-dimensional prototype model with the row-wise homogeneous target. 
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