
The Stata Journal (yyyy) vv, Number ii, pp. 1–17

Many Instruments: Implementation in STATA

Stanislav Anatolyev
CERGE-EI

Prague, Czech Republic
stanislav.anatolyev@cerge-ei.cz

Alena Skolkova
CERGE-EI

Prague, Czech Republic
alena.skolkova@cerge-ei.cz

Abstract. During the last decades there have been developed econometric tools
of handling instrumental variable regressions characterized by numerosity of in-
struments. We introduce a STATA command, mivreg, that implements consistent
estimation and testing in linear IV regressions with many (possibly weak) instru-
ments. The command mivreg covers both homoskedastic and heteroskedastic envi-
ronments, estimators that are both non-robust and robust to error non-normality
and projection matrix limit, both parameter tests and specification tests, both with
and without correction for existence of moments. We also run a small simulation
experiment using mivreg and illustrate how mivreg works with real data.
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1 Introduction

Instrumental variables (IV) estimation and inference have long been a distinctive method
in applied microeconometric analysis and have often spurred advances in econometric
theory. The IV methods were designed to address endogeneity bias from OLS in es-
timating a causal/treatment effect in structural models (such as an effect of smoking
on health, returns to education, or demand elasticity), see Angrist and Krueger (2001).
At the dawn of the 21st century, both theory and practice were extended to accommo-
date such complications as weak instruments, numerous instruments, and combinations
thereof. It was established that the empiricist’s workhorse, the two-stage least-squares
(2SLS) estimator, fails to deliver consistent estimates and results in invalid inference
when such complications arise, and alternative approaches to estimation and inference
were proposed. The quick progress in econometric theory did not, however, carry over
to empirical practice as fast.

The seminal article by Bekker (1994) proposed an alternative asymptotic approxima-
tion for linear normal homoskedastic IV regressions with many instrumental variables,
together with consistent estimation and construction of valid standard errors within
the new paradigm of dimension asymptotics. Since then, there has been a significant
progress in the theory of estimation and testing in IV regressions with many, possibly
weak, instruments. Many new or modified versions of old estimators and tests have been
proposed, including, among others, limited information maximum likelihood (LIML),
bias-corrected 2SLS, several versions of jackknife IV estimators, and so on. In an im-
portant article, Hansen et al. (2008) proposed extensions of estimation and inference
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methods based on LIML, when, in particular, the structural and first stage errors are
not necessarily normal and when the instruments may be weak as a group. More re-
cently, Hausman et al. (2012) showed that the leading ‘homoskedastic’ estimators fail
to deliver consistency in heteroskedastic models, and proposed their ‘heteroskedastic’
modifications. Specification testing tools were developed in Anatolyev and Gospodinov
(2011) and Lee and Okui (2012) for the homoskedastic case and in Chao et al. (2014)
for the heteroskedastic case.

The state-of-the-art theoretical literature has converged to suggesting estimation
based on LIML and its Fuller (1977)-type correction that remedies the problem of non-
existence of moments. Parameter inference is based on consistent estimation of up to
four terms in the asymptotic variance, while specification testing is based on asymptot-
ically normal (or asymptotically equivalent possibly adjusted chi-squared) distribution
of the overidentifying test statistic. The literature has shown that all these tools are ro-
bust to weakness of the instruments as a group (though weakness of a lesser degree than
that would jeopardize identification). We describe these tools in brief in the following
sections; see the recent survey Anatolyev (2019) for more technical details as well as the
history of theoretical developments and suggestions of empirical strategies.

Despite the theoretical advances, practitioners rarely use appropriate tools because
of their non-availability in popular econometric packages, STATA in particular. The
present contribution aims at filling this void. We introduce a STATA command, mivreg,
that implements consistent estimation and testing in linear IV regressions with many,
possibly weak, instruments. This command covers both homoskedastic and heteroskedas-
tic environments, estimators that are both non-robust and robust to error non-normality
and projection matrix limit, both parameter tests and specification tests. Even though,
as noted above, a number of other consistent estimators have been proposed, we build up
mivreg around the leading LIML estimator and its Fuller (1977) correction as suggested
by the state-of-the-art literature.

In Section 2, we set out the model and introduce necessary notation. In Sections 3
and 4, we describe estimation and testing tools pertaining to the homoskedastic and het-
eroskedastic models, respectively. In Section 5, we present the new command, mivreg.
In Section 5, we illustrate how mivreg works in simulations and compare it with the
classical command ivregress in Section 6. Finally, in Section 7, we illustrate how
mivreg works with real data.

2 Model

The structural equation is
yi = x′iβ0 + ei,

where β0 is k× 1 vector of structural coefficients of interest, or in matrix notation, Y =
Xβ0 + e, where Y = (y1, ..., yn)

′
is n× 1, X = (x1, ..., xn)

′
is n× k, and e = (e1, ..., en)

′

is n× 1. The first stage equation is

xi = z′iΓ + ui,
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where zi is ` × 1 vector of instruments and Γ is ` × k matrix of first stage coefficients,
or in matrix notation, X = ZΓ + U, where U = (u1, ..., un)

′
is n × k. We assume

that the rank of instrument matrix Z = (z1, ..., zn)
′

equals its column dimension `. The
structural and first stage errors follow(

ei
ui

)
|zi ∼ D

((
0

0

)
,

(
σ2
i Ψ′i

Ψi Ωi

))
,

for some distribution D, normal N being a possibility. Under conditional homoskedas-
ticity, σ2

i = σ2, Ψi = Ψ and Ωi = Ω for all i = 1, ..., n.

Introduce the projection matrices associated with the instruments

P = Z (Z ′Z)
−1
Z ′, M = In − P.

The (i, j)th element of P is denoted Pij . Let us also denote by D the diagonal matrix

with diagonal elements of P on the main diagonal: D = diag {Pii}ni=1 . By P 2
ii we denote

an average of diagonal elements of P squared: P 2
ii = n−1tr

(
D2
)
.

3 Homoskedastic case

In the conditionally homoskedastic case, correct parameter estimation and inference was
developed in Bekker (1994) and Hansen et al. (2008). Specification testing was dealt
with in Anatolyev and Gospodinov (2011) and Lee and Okui (2012).

3.1 Point estimation

Under many instruments, 2SLS estimation is inconsistent. The leading consistent esti-
mator is the limited information maximum likelihood (LIML) estimator

β̂LIML = arg min
β

(Y −Xβ)
′
P (Y −Xβ)

(Y −Xβ)
′
(Y −Xβ)

.

Numerically, instead of the above optimization problem, it can be found via the eigen-
value problem:

β̂LIML = H̄−1X ′P̊ Y,

where
H̄ = X ′P̊X,

and P̊ = P − ᾱIn, and ᾱ is the smallest eigenvalue of the matrix (X̊ ′X̊)−1X̊ ′PX̊, where
X̊ = (Y,X) .

The LIML estimator has a disadvantage that even its low order moments do not
exist. A simple Fuller (1977) adjustment solves the moment problem:

α̃ =
ᾱ− (1− ᾱ) ς/n

1− (1− ᾱ) ς/n
. (1)
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This adjustment leads to the FULL estimator, where ᾱ is replaced by α̃ everywhere. It
is usually advised to use the value ς = 1 in practice.

Denote the vector of LIML or FULL residuals by ê, then

σ̂2 =
ê′ê

n− k

is the residual variance.

3.2 Variance estimation

Under error normality and/or asymptotically constant diagonal of P , the asymptotic
variance is estimated by

V̄ = nH̄−1Σ̄0H̄
−1,

where
Σ̄0 = σ̂2

(
(1− ᾱ)

2
X̄ ′PX̄ + ᾱ2X̄ ′ (In − P ) X̄

)
,

and

X̄ = X − ê ê
′X

ê′ê

(Bekker 1994, Hansen et al. 2008).

Under error non-normality and asymptotically variable diagonal of P , the asymptotic
variance is estimated by

V̄R = nH̄−1
(
Σ̄0 + Σ̄A + Σ̄′A + Σ̄B

)
H̄−1,

where the subscript R stands for ‘robust’, and in addition

Σ̄A =

(
n∑
i=1

(
Pii −

`

n

)
(PX)i

)(
1

n

n∑
i=1

ê2i
(
MX̄

)
i

)′
and

Σ̄B =
P 2
ii − (`/n)

2

1− 2`/n+ P 2
ii

n∑
i=1

(
ê2i − σ̂2

) (
MX̄

)
i

(
MX̄

)′
i

(Hansen et al. 2008).

The variance estimates V̄ and V̄R are a basis of parameter inference. For example,
the standard error for jth parameter can be computed as

√
V̄jj/n.

3.3 Specification testing

Consider the conventional J statistic

J =
ê′P ê

σ̂2
= (n− k) ᾱ,
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and the bias-corrected J statistic

JR = J − `

n

ê′ê

σ̂2
= (n− k)

(
ᾱ− `

n

)
,

where the subscript R stands for ‘robust’.

Under error normality and/or asymptotically constant diagonal of P , the Anatolyev
and Gospodinov (2011) test prescribes rejecting correct model specification at signif-

icance level φ when the value of J exceeds q
χ2(`−k)
φ∗ , the (1− φ∗)-quantile of the chi-

squared with `− k degrees of freedom, where

φ∗ = Φ

(√
1− `

n
· Φ−1 (φ)

)
.

Under error non-normality and asymptotically variable diagonal of P , the Lee and
Okui (2012) test prescribes rejecting correct model specification at significance level φ
when the value of

JR√
nV̂ J

exceeds q
N (0,1)
φ , the (1− φ)-quantile of the standard normal. Here,

V̂ J = 2
`

n

(
1− `

n

)
+

(
P 2
ii −

(
`

n

)2
)(

ê4i
σ̂4
− 3

)
.

4 Heteroskedastic case

In the conditionally heteroskedastic case, correct parameter estimation and inference
were developed in Hausman et al. (2012). Specification testing was dealt with in Chao
et al. (2014).

4.1 Point estimation

The HLIM (‘heteroskedastic LIML’) estimator is

β̂HLIM = arg min
β

(Y −Xβ)
′
(P −D) (Y −Xβ)

(Y −Xβ)
′
(Y −Xβ)

Numerically, it can be found via the eigenvalue problem:

β̂HLIM = H̄−1X ′P̊ Y,
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where
H̄ = X ′P̊X,

and P̊ = P −D − ᾱIn, and ᾱ is the smallest eigenvalue of the matrix (X̊ ′X̊)−1X̊ ′(P −
D)X̊, where X̊ = (Y,X) . Similarly to FULL, the Fuller (1977) adjustment (1) leads to
HFUL (‘heteroskedastic FULL’) estimation.

Denote the vector of HLIM or HFUL residuals by ê, then

σ̂2 =
ê′ê

n− k

is the residual variance.

4.2 Asymptotic variance estimation

Hausman et al. (2012) provide a valid and robust variance estimator for the HLIM
estimator:

V̄ = nH̄−1Σ̄H̄−1,

where

Σ̄ =

n∑
i=1

((PX̄)i(PX̄)′i − PiiX̄i(PX̄)′i − Pii(PX̄)iX̄
′
i)ê

2
i +

n∑
i=1

n∑
j=1

P 2
ijX̄iX̄

′
j êiêj , (2)

where

X̄ = X − ê ê
′X

ê′ê
.

The variance estimate V̄ is a basis of parameter inference. For example, the standard
error for jth parameter can be computed as

√
V̄jj/n.

4.3 Specification testing

Chao et al. (2014) generalize the specification J test for the heteroskedastic case. Their
statistic is based on the jackknife modification of J statistic’s quadratic form:

J =
ê′(P −D)ê√

V̂ J
+ `,

where

V̂ J =
1

`

∑
i 6=j

ê2iP
2
ij ê

2
j =

1

`

 n∑
i=1

n∑
j=1

ê2iP
2
ij ê

2
j −

n∑
i=1

P 2
iiê

4
j

 (3)

is an estimate of the variance of the modified quadratic form.

The test is one-sided, and the decision rule is reject the null of instrument validity

if the value of J exceeds q
χ2(`−k)
φ , the (1− φ)-quantile of the χ2 (`− k) distribution.
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5 Command mivreg

5.1 Functionality

The command mivreg implements estimation, inference on individual parameters and
specification testing under many, possibly weak, instruments. The default ‘hom’ (for
‘homoskedastic’) option is based on the LIML or FULL estimators, the ‘het’ (for ‘het-
eroskedastic’) option is based on the HLIM or HFUL estimators. Within the ‘hom’
version, the ‘robust’ option leads to the Hansen–Hausman–Newey variance estimator
and Lee–Okui specification test, while the default non-robust variation computes the
Bekker variance estimator and Anatolyev–Gospodinov specification test. The ‘hetero’
version implements the Hausman–Newey–Woutersen–Chao–Swanson variance estima-
tor and Chao–Hausman–Newey–Swanson–Woutersen specification test. By default, the
estimators used are LIML or HLIM; the ‘fuller’ option makes the Fuller correction with
parameter ς = 1, and so the FULL or HFUL estimators are used instead.

5.2 Syntax

mivreg depvar
[
indepvars

]
(varlist1 = varlist2)

[
if
] [

in
] [

, hom het robust

fuller level(#)
]

by, rolling, statsby and xi are allowed; see [U] 11.1.10 Prefix commands.

5.3 Description

The command mivreg performs estimation, inference on individual parameters and
specification testing under many possibly weak instruments. The dependent variable
depvar is modeled as a linear function of indepvars and varlist1, using varlist2 (along
with indepvars) as instruments for varlist1.

5.4 Options

hom uses the LIML (default) or FULL (in combination with full option) estimator.

het uses the HLIM (default) or HFUL (in combination with full option) estimator.

robust leads, under hom option, to the Hansen–Hausman–Newey variance estimator and
the Lee–Okui specification test, while the default non-robust variation computes the
Bekker variance estimator and the Anatolyev–Gospodinov specification test; under
het option, to the Hausman–Newey–Woutersen–Chao–Swanson variance estimator
and the Chao–Hausman–Newey–Swanson–Woutersen specification test.

fuller makes the Fuller correction with parameter ς = 1, which leads to the FULL (in
combination with hom option) or HFUL (in combination with het option) estimator.



8 mivreg

level(#) sets the confidence level; the default is level(95).

5.5 Saved results

mivreg saves the following in e():

Scalars
e(N) number of observations e(F1) first-stage F statistic
e(rmse) root mean squared error e(df m F1) first-stage model degrees of free-

dom
e(F) model F statistic e(df r F1) first-stage residual degrees of

freedom
e(df m) model degrees of freedom e(r2 1) first-stage R2

e(df r) residual degrees of freedom
e(r2) R2 e(jval) model J statistic
e(r2 a) adjusted R2 e(jpv) J-test p-value

Macros
e(model) hom or het e(instd) instrumented variables
e(title) title in estimation output e(insts) instruments
e(depvar) name of dependent variable e(properties) b V
e(depvar) name of dependent variable e(properties) b V

Matrices
e(b) coefficient vector e(V) variance–covariance matrix of

the estimators

Functions
e(sample) marks estimation sample

5.6 Computational notes

First, throughout we avoid storing n × n matrices like P and In in the memory. For
example, we compute H̄ = X ′ (P − ᾱIn)X as

H̄ = X ′Z (Z ′Z)
−1
Z ′X − ᾱX ′X.

Second, the last term in (2) can be alternatively computed without double summa-
tions over n observations (Hausman et al. 2012):

∑̀
p=1

∑̀
r=1

(
n∑
i=1

Z̃ipZ̃irX̄iêi

) n∑
j=1

ZjpZjrX̄j êj

′ ,
where Z̃ = Z(Z ′Z)−1. Similarly, the full double summation in (3) can analogously be
computed as

∑̀
p=1

∑̀
r=1

(
n∑
i=1

Z̃ipZ̃ir ê
2
i

) n∑
j=1

ZjpZjr ê
2
j

 .
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6 Simulations

6.1 Artificial data

We demonstrate how mivreg works with two sets of artificial data. The artificial data
are generated from the Monte-Carlo setup in Hausman et al. (2012). The estimated
equation is

y = β1 + β2x2 + e,

and the first stage equation is
x2 = γz1 + u2,

where z1 ∼ N (0, 1) and u2 ∼ N (0, 1) . The instrument vector is

z =
(
1, z1, z

2
1 , z

3
1 , z

4
1 , z1d1, ..., z1d`−5

)′
,

where dj ∈ {0, 1} with Pr {dj = 1} = 1
2 independent of z1. The structural disturbance

is given by

e = 0.30u2 +

√
1− 0.302

φ2 + 0.864
(φv1 + 0.86v2) ,

with v1 ∼ N (0, 1) in the homoskedastic case and v1 ∼ N
(
0, z21

)
in the heteroskedastic

case, and v2 ∼ N
(
0, 0.862

)
, both v1 and v2 being independent of u2. Samples of size

n = 400 are generated, with ` = 30 instruments, the instrument strength γ is chosen
so that the concentration parameter equals nγ2 = 32. The parameter φ is set at the
value 0.8 which in the heteroskedastic case corresponds to R2 ≈ 0.25 in the skedastic
regression. The true values of β1 and β2 are set at 1.

Note that the instrument vector is such that the diagonal of P is asymptotically
heterogeneous (see Anatolyev and Yaskov 2017). In the homoskedastic case, simplifica-
tions due to error normality pertaining to variance estimation and specification testing
(see subsections 3.2 and 3.3) are applicable.

6.2 Simulation results

In this section, we report output statistics resulting in simulations from using mivreg

and compare it with that when the STATA command ivregress was used.1 The
reported results are obtained from 10,000 simulations.

First, we focus on point estimates. Table 1 collects percentiles of simulated distribu-
tions of 2SLS, LIML and GMM estimators produced by ivregress, and LIML, FULL,
HLIM and HFUL estimators produced by mivreg. Naturally, the LIML rows coincide.

The 2SLS and GMM estimators (whose results are very similar) are always rightward
biased, as expected. In the homoskedastic case, all the other estimators deliver unbiased
estimation. The LIML estimator is a bit more concentrated towards the center than

1. For example, to compute 2SLS-related statistics, ivregress 2sls y one (x = z*), nocons

robust was used.
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Table 1. Percentiles of simulated distribution of various estimators.

Estimator Homoskedastic case Heteroskedastic case

5% 25% 50% 75% 95% 5% 25% 50% 75% 95%

command ivregress

2SLS 0.93 1.06 1.14 1.23 1.35 0.85 1.02 1.14 1.26 1.43
GMM 0.91 1.05 1.14 1.23 1.37 0.85 1.02 1.14 1.26 1.42
LIML 0.47 0.83 1.00 1.16 1.42 −4.08 −0.27 0.49 1.07 4.48

command mivreg

LIML 0.47 0.83 1.00 1.16 1.42 −4.08 −0.27 0.49 1.07 4.48
FULL 0.52 0.84 1.01 1.17 1.41 −1.14 −0.03 0.56 1.09 2.77
HLIM 0.43 0.82 1.00 1.17 1.43 0.15 0.76 1.01 1.22 1.62
HFUL 0.52 0.84 1.01 1.17 1.43 0.30 0.79 1.02 1.22 1.60

Note: The true value of the parameter is unity.

HLIM, which reflects higher efficiency of the former. The Fuller versions are more
concentrated away from the tails, which reflects their resistance to outliers. In the
heteroskedastic case, LIML and FULL have severe negative biases, which reflects their
inconsistency. Their ‘heteroskedastic’ versions, HLIM and HFUL, are both median
unbiased. While the HLIM estimator is susceptible to outliers, especially in the left tail,
its Fuller version, HFUL, exhibits much tighter and more symmetric distribution.

Table 2 contains actual rejection rates corresponding to the 5% nominal rate for
the two sided t-test of the null H0 : β2 = 1 marked as tβ2=1, the Wald test of the null
H0 : β1 = β2 = 1 marked as Wβ1=β2=1, and the specification test marked as JE[ze]=0.
The 2SLS and LIML tests produced by ivregress come in two forms: non-robust and
robust to heteroskedasticity. In the specification tests (which are available only for
efficient estimators), the Basmann (1957) variance estimator is used. The test statistics
produced by mivreg use the following estimators and robustness regimes:2 non-robust
LIML, non-robust FULL, robust LIML, robust FULL, HLIM, and HFUL.

As expected, severe size distortions are exhibited by conventional parameter tests
based on 2SLS, GMM and LIML.3 In the homoskedastic case, all the mivreg tests exhibit
similar behavior, with much smaller distortions, though the ‘heteroskedastic’ versions
seem to be more reliable. In the heteroskedastic case, the latter are the only valid ones
theoretically, and do deliver rejection rates close to nominal. The Fuller correction does

2. Note again the different use of the term ‘robust’: the classical tests produced by ivregress may
be robust to heteroskedasticity; of course, they are not robust to instrument numerosity. The tests
produced by mivreg may or may not be robust, within natural robustness to many possibly weak
instruments, to error non-normality and asymptotically variable diagonal of the projection matrix.

3. The conventional specification tests do not exhibit too much of distortions in this particular design;
however, in general they may well do; see Anatolyev and Gospodinov (2011).
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Table 2. Actual rejection rates for parameter and specification tests

Estimator Homoskedastic case Heteroskedastic case

tβ2=1 Wβ1=β2=1 JE[ze]=0 tβ2=1 Wβ1=β2=1 JE[ze]=0

command ivregress

non-robust 2SLS 22.0% 17.7% 6.2%
robust 2SLS 14.9% 13.1% −
GMM 33.9% 31.8% 2.5% 26.8% 24.4% 2.1%
non-robust LIML 12.0% 9.6% 3.0%
robust LIML 1.6% 1.3% −

command mivreg

non-robust LIML 4.1% 4.3% 3.0% 9.4% 4.6% 60.1%
non-robust FULL 4.2% 4.5% 2.4% 9.3% 4.7% 56.8%
robust LIML 4.0% 4.3% 2.1% 9.2% 4.5% 54.2%
robust FULL 4.2% 4.5% 1.7% 9.2% 4.6% 50.9%
HLIM 4.7% 4.9% 2.8% 5.4% 4.9% 3.5%
HFUL 5.0% 5.2% 2.9% 5.7% 5.1% 3.4%

Note: The nominal significance level of all tests is 5%.

not significantly affect these rejection rates. The results of specification testing point
at huge distortions if one relies on ‘homoskedastic’ specification tests when in fact the
homoskedasticity assumption is violated. One must avoid using them in heteroskedastic
environments as one is too much likely to receive a signal of instrument invalidity when
in fact the instruments are valid.

7 Example with real data

We illustrate the use of mivreg using real data from a well-known application to the
married female labor supply of Mroz (1987). The number of observations is 428.4

The left-side variable is working hours hours, the only endogenous right-side variable
is log wages lwage; there are also 6 exogenous controls: nwifeinc, educ, age, kidslt6,
kidsge6, and the constant one. The list of basic instruments includes, in addition to
the 6 exogenous controls, 8 exogenous variables: exper, expersq, fatheduc, motheduc,
hushrs, husage, huseduc, and mtr, resulting in 14 instruments in total. The basic
instruments are pretty strong as a group: the first-stage F statistic equals 183.5. We
also consider an extended set of instruments – the basic instruments plus all their
cross-products (‘interactions’), the total numerosity amounting to 92. The use of the

4. The data can be found at http://www.stata.com/data/jwooldridge/eacsap/mroz.dta. We use
only the records that correspond to women in labor force.
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Table 3. Various estimates of wage coefficient for married female labor supply

Options Estimator Instruments Estimate (Standard error)

command reg

robust OLS − −17.4 (81.4)

command ivregress

robust 2SLS basic only 1179.1 (185.2)
robust 2SLS extended 536.4 (101.5)

command mivreg

hom LIML extended 1120.6 (195.3)
hom robust fuller FULL extended 1110.0 (197.2)
het robust fuller HFUL extended 1058.3 (170.5)

extended instrument set is meant to possibly enhance estimation efficiency by exploiting
information in the instruments more actively. However, while the conventional tools are
suitable for the basic set of instruments, the extended instrument set evidently requires
handling via many-instrument asymptotics: the ratio of the number of instruments to
the sample size is sizable: `/n ≈ 0.215.

Table 3 presents various estimates for the slope coefficient of log wages: OLS,
heteroskedasticity-robust 2SLS (employing the basic and extended instrument sets), as
well as three many-instrument-robust estimators – LIML, FULL and HFUL (employing
the extended instrument set) – whose STATA output will appear below.

Evidently, due to unaccounted endogeneity, OLS estimation from applying the reg

command is inconsistent; the numerical value of the OLS estimate is even negative
revealing a big endogeneity bias. The (more than twofold!) difference between the two
2SLS estimates points at invalidity of conventional tools and the ivregress command
when instruments are many. The LIML, FULL and HFUL point estimates produced by
the mivreg command are quite in line with the 2SLS estimate that uses only the basic
instruments.5 There is a small difference between ‘homoskedastic’ LIML and FULL
point estimates and the ‘heteroskedastic’ HLIM point estimate. Though not too big,
this difference makes the HFUL estimate more trustworthy.6 The smaller standard error
of HLIM compared to that of 2SLS may be interpreted as a gain in efficiency from using
the extended instrument set.

The STATA outputs produced by the command mivreg to deliver the three many-
instrument-robust estimators appear next.

5. Note also from the STATA outputs that all three corresponding specification tests produce very
high p-values and agree on the model validity.

6. Mroz (1987) reports a similar 2SLS estimate using a short list of instruments (line 2 in his Table IV),
but 2SLS estimates also get a lot smaller with longer lists of instruments (lines 3–6 in Table IV).
Eventually, Mroz (1987) adopts smaller estimates than ones seeming correct from our experiments.
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Example

The STATA output for LIML estimation with option hom:

. mivreg hours nwifeinc educ age kidslt6 kidsge6 one (lwage = nwifeinc educ ///
> age kidslt6 kidsge6 one exper expersq fatheduc motheduc hushrs husage ///
> huseduc mtr *X*) if inlf==1 , hom

MIVREG estimation (HOM)

First-stage summary Number of obs = 428
F( 7, 421) = 95.74

F( 86, 336) = 2.07 Prob > F = 0.0000
Prob > F = 0.0000 R-squared = -0.5157
R-squared = 0.8471 Adj R-squared = -0.5373

Root MSE = 1.1e+03
LIML estimation
Bekker variance estimation

hours Coef. Std. Err. t P>|t| [95% Conf. Interval]

lwage 1120.595 195.3494 5.74 0.000 736.6134 1504.577
nwifeinc -7.890468 5.261348 -1.50 0.134 -18.23225 2.451317

educ -133.1851 31.79141 -4.19 0.000 -195.6748 -70.69543
age -9.954741 7.918058 -1.26 0.209 -25.51859 5.609111

kidslt6 -246.5892 143.8619 -1.71 0.087 -529.3663 36.18793
kidsge6 -65.87681 44.77805 -1.47 0.142 -153.8932 22.13958

one 2345.98 487.9451 4.81 0.000 1386.868 3305.092

Instrumented: lwage
Instruments: nwifeinc educ age kidslt6 kidsge6 one exper expersq fatheduc

motheduc hushrs husage huseduc mtr educXnwifeinc ageXnwifeinc
ageXeduc kidslt6Xnwifeinc kidslt6Xeduc kidslt6Xage
kidsge6Xnwifeinc kidsge6Xeduc kidsge6Xage kidsge6Xkidslt6
experXnwifeinc experXeduc experXage experXkidslt6 experXkidsge6
expersqXnwifeinc expersqXeduc expersqXage expersqXkidslt6
expersqXkidsge6 expersqXexper fatheducXnwifeinc fatheducXeduc
fatheducXage fatheducXkidslt6 fatheducXkidsge6 fatheducXexper
fatheducXexpersq motheducXnwifeinc motheducXeduc motheducXage
motheducXkidslt6 motheducXkidsge6 motheducXexper
motheducXexpersq motheducXfatheduc hushrsXnwifeinc hushrsXeduc
hushrsXage hushrsXkidslt6 hushrsXkidsge6 hushrsXexper
hushrsXexpersq hushrsXfatheduc hushrsXmotheduc husageXnwifeinc
husageXeduc husageXage husageXkidslt6 husageXkidsge6
husageXexper husageXexpersq husageXfatheduc husageXmotheduc
husageXhushrs huseducXnwifeinc huseducXeduc huseducXage
huseducXkidslt6 huseducXkidsge6 huseducXexper huseducXexpersq
huseducXfatheduc huseducXmotheduc huseducXhushrs huseducXhusage
mtrXnwifeinc mtrXeduc mtrXage mtrXkidslt6 mtrXkidsge6 mtrXexper
mtrXexpersq mtrXfatheduc mtrXmotheduc mtrXhushrs mtrXhusage
mtrXhuseduc

AG specification test:
J statistic = 0.1748
Prob > J = 0.8059
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Example

The STATA output for FULL estimation with options hom robust fuller:

. mivreg hours nwifeinc educ age kidslt6 kidsge6 one (lwage = nwifeinc educ ///
> age kidslt6 kidsge6 one exper expersq fatheduc motheduc hushrs husage ///
> huseduc mtr *X*) if inlf==1 , hom robust fuller

MIVREG estimation (HOM)

First-stage summary Number of obs = 428
F( 7, 421) = 96.46

F( 86, 336) = 2.07 Prob > F = 0.0000
Prob > F = 0.0000 R-squared = -0.5013
R-squared = 0.8471 Adj R-squared = -0.5227

Root MSE = 1.1e+03
FULL estimation
HHN variance estimation

hours Coef. Std. Err. t P>|t| [95% Conf. Interval]

lwage 1109.999 197.2334 5.63 0.000 722.314 1497.684
nwifeinc -7.856532 5.235509 -1.50 0.134 -18.14753 2.434462

educ -132.0795 31.83561 -4.15 0.000 -194.656 -69.50294
age -9.934026 7.879563 -1.26 0.208 -25.42221 5.554159

kidslt6 -247.4823 143.2961 -1.73 0.085 -529.1472 34.18265
kidsge6 -66.3344 44.59569 -1.49 0.138 -153.9923 21.32355

one 2343.827 485.5647 4.83 0.000 1389.394 3298.26

Instrumented: lwage
Instruments: nwifeinc educ age kidslt6 kidsge6 one exper expersq fatheduc

motheduc hushrs husage huseduc mtr educXnwifeinc ageXnwifeinc
ageXeduc kidslt6Xnwifeinc kidslt6Xeduc kidslt6Xage
kidsge6Xnwifeinc kidsge6Xeduc kidsge6Xage kidsge6Xkidslt6
experXnwifeinc experXeduc experXage experXkidslt6 experXkidsge6
expersqXnwifeinc expersqXeduc expersqXage expersqXkidslt6
expersqXkidsge6 expersqXexper fatheducXnwifeinc fatheducXeduc
fatheducXage fatheducXkidslt6 fatheducXkidsge6 fatheducXexper
fatheducXexpersq motheducXnwifeinc motheducXeduc motheducXage
motheducXkidslt6 motheducXkidsge6 motheducXexper
motheducXexpersq motheducXfatheduc hushrsXnwifeinc hushrsXeduc
hushrsXage hushrsXkidslt6 hushrsXkidsge6 hushrsXexper
hushrsXexpersq hushrsXfatheduc hushrsXmotheduc husageXnwifeinc
husageXeduc husageXage husageXkidslt6 husageXkidsge6
husageXexper husageXexpersq husageXfatheduc husageXmotheduc
husageXhushrs huseducXnwifeinc huseducXeduc huseducXage
huseducXkidslt6 huseducXkidsge6 huseducXexper huseducXexpersq
huseducXfatheduc huseducXmotheduc huseducXhushrs huseducXhusage
mtrXnwifeinc mtrXeduc mtrXage mtrXkidslt6 mtrXkidsge6 mtrXexper
mtrXexpersq mtrXfatheduc mtrXmotheduc mtrXhushrs mtrXhusage
mtrXhuseduc

LO specification test:
J statistic (bias-corrected) = -0.0382
Prob > J = 0.8752
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Example

The STATA output for HFUL estimation with options het robust fuller:

. mivreg hours nwifeinc educ age kidslt6 kidsge6 one (lwage = nwifeinc educ ///
> age kidslt6 kidsge6 one exper expersq fatheduc motheduc hushrs husage ///
> huseduc mtr *X*) if inlf==1 , het robust fuller

MIVREG estimation (HET)

First-stage summary Number of obs = 428
F( 7, 421) = 124.27

F( 86, 336) = 2.07 Prob > F = 0.0000
Prob > F = 0.0000 R-squared = -0.4339
R-squared = 0.8471 Adj R-squared = -0.4543

Root MSE = 1.1e+03
HFUL estimation
HNWCS variance estimation

hours Coef. Std. Err. t P>|t| [95% Conf. Interval]

lwage 1058.269 170.4895 6.21 0.000 723.1527 1393.386
nwifeinc -8.041127 4.708921 -1.71 0.088 -17.29705 1.214798

educ -133.5581 29.08721 -4.59 0.000 -190.7323 -76.38381
age -10.71399 8.313921 -1.29 0.198 -27.05596 5.627971

kidslt6 -274.0719 166.8757 -1.64 0.101 -602.0853 53.94151
kidsge6 -81.38394 43.17962 -1.88 0.060 -166.2584 3.49055

one 2485.039 466.6137 5.33 0.000 1567.856 3402.222

Instrumented: lwage
Instruments: nwifeinc educ age kidslt6 kidsge6 one exper expersq fatheduc

motheduc hushrs husage huseduc mtr educXnwifeinc ageXnwifeinc
ageXeduc kidslt6Xnwifeinc kidslt6Xeduc kidslt6Xage
kidsge6Xnwifeinc kidsge6Xeduc kidsge6Xage kidsge6Xkidslt6
experXnwifeinc experXeduc experXage experXkidslt6 experXkidsge6
expersqXnwifeinc expersqXeduc expersqXage expersqXkidslt6
expersqXkidsge6 expersqXexper fatheducXnwifeinc fatheducXeduc
fatheducXage fatheducXkidslt6 fatheducXkidsge6 fatheducXexper
fatheducXexpersq motheducXnwifeinc motheducXeduc motheducXage
motheducXkidslt6 motheducXkidsge6 motheducXexper
motheducXexpersq motheducXfatheduc hushrsXnwifeinc hushrsXeduc
hushrsXage hushrsXkidslt6 hushrsXkidsge6 hushrsXexper
hushrsXexpersq hushrsXfatheduc hushrsXmotheduc husageXnwifeinc
husageXeduc husageXage husageXkidslt6 husageXkidsge6
husageXexper husageXexpersq husageXfatheduc husageXmotheduc
husageXhushrs huseducXnwifeinc huseducXeduc huseducXage
huseducXkidslt6 huseducXkidsge6 huseducXexper huseducXexpersq
huseducXfatheduc huseducXmotheduc huseducXhushrs huseducXhusage
mtrXnwifeinc mtrXeduc mtrXage mtrXkidslt6 mtrXkidsge6 mtrXexper
mtrXexpersq mtrXfatheduc mtrXmotheduc mtrXhushrs mtrXhusage
mtrXhuseduc

CHNSW specification test:
J statistic (bias-corrected) = 76.4821
Prob > J = 0.7340
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