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Abstract

This article surveys the state of the art in the econometrics of regression models with many

instruments or many regressors based on alternative – namely, dimension – asymptotics. We

list critical results of dimension asymptotics that lead to better approximations of properties of

familiar and alternative estimators and tests when the instruments and/or regressors are numer-

ous. Then we consider the problem of estimation and inference in the basic linear instrumental

variables regression setup with many strong instruments. We describe the failures of conven-

tional estimation and inference, as well as alternative tools that restore consistency and validity.

We then add various other features to the basic model such as heteroskedasticity, instrument

weakness, etc., in each case providing a review of the existing tools for proper estimation and

inference. Subsequently, we consider a related but different problem of estimation and testing

in a linear mean regression with many regressors. We also describe various extensions and con-

nections to other settings, such as panel data models, spatial models, time series models, and

so on. Finally, we provide practical guidance regarding which tools are most suitable to use in

various situations when many instruments and/or regressors turn out to be an issue.
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1 Introduction

In some instrumental variables (IV) models, there is abundance of instruments to exploit, so their

total number is often comparable to a sample size. Because the traditional asymptotic theory

presumes their small number, classical IV procedures, which rely on this presumption, may exhibit

various distortions when it fails. Consider an illustrative empirical application from Hahn and

Hausman (2002, Section 6) where a structural coefficient (price elasticity) in a certain demand

equation is estimated, with the number of observations equalling 1452. Five different estimators

are used in two different scenarios: one where only 2 excluded instruments are used, and one where

132 excluded instruments are used. These five estimators are asymptotically equivalent from the

point of view of the standard asymptotic theory. The figures are reported in Table 1.

estimate1 estimate2 estimate3 estimate4 estimate5

2 excluded instruments −2.03
(0.465)

−2.31
(0.500)

−2.03
(0.465)

−2.31
(0.502)

−2.05
(0.469)

132 excluded instruments −1.24
(0.194)

−8.01
(0.789)

−1.21
(0.194)

−4.64
(0.293)

−1.18
(0.211)

Table 1. Various estimates of price elasticity in the Hahn and Hausman (2002) application.

While the estimates and their standard errors are indeed numerically similar in the case of a

couple of excluded instruments, some of them are way off when many more instruments are used.

In fact, the discrepancies are so large that any conclusion from the conventional asymptotics in

this example is immediately compromised. Obviously, a different theory is needed that would

discriminate properties of these estimators.

The research on many instruments (as well as research on weak instruments and a combina-

tion thereof) was catalyzed by the paradigmatic Angrist and Krueger (1991) returns to schooling

application, which uses quarter-of-birth effects and their interactions with other variables as instru-

ments. Since the publication of this article, this research area has been recognized as an important

and empirically relevant subfield. Paul Bekker pioneered this research direction with a seminal

article (1994), where he proposed new standard errors that account for the numerosity of instru-

ments using dimension asymptotics with the number of instruments increasing proportionally with

sample size, although the machinery of dimension asymptotics in the present context was used

earlier in, e.g., Kunitomo (1980) and Morimune (1983) to compare the properties of familiar es-

timators.1 Starting from Chao and Swanson (2005), the many instrument asymptotic framework

has blended with the weak instrument asymptotics (Staiger and Stock, 1997), which has also been

an important step given the weakness of big instrument sets in practice (including the same An-

grist and Krueger (1991) application). Imbens (2010) notes that in empirically relevant situations,

1Kunitomo (1980) explores the properties of 2SLS and LIML estimators in a simplified model and finds that as

the degree of overidentification becomes comparable with the sample size, 2SLS becomes extremely inferior to LIML.

Morimune (1983) derives asymptotic expansions of k-class estimators (Nagar, 1959) in the many instrument framework

and finds that the 2SLS estimator is inconsistent while the LIML estimator and its Fuller’s (1977) modification are

consistent but have higher variance than under the large sample asymptotics.

2



it is the numerosity of instruments that is more responsible for misleading 2SLS inferences than

the instruments’ weakness. In the early 2010s, there was a burst of research on many (possibly

weak) instruments in conditionally heteroskedastic models, the main contributions being made in

Chao, Swanson, Hausman, Newey and Woutersen (2012), Hausman, Newey, Woutersen, Chao and

Swanson (2012), and Chao, Hausman, Newey, Swanson and Woutersen (2014). Simultaneously, an

interest in many regressors econometrics – a different but related research area – has also gone from

inference in a simple homoskedastic regression model (Calhoun, 2011; Anatolyev, 2012) to a general

conditionally heteroskedastic model with many covariates (Cattaneo, Jansson and Newey, 2018a,

2018b). Some literature (Anatolyev, 2013; Kolesár, 2018) considers models where both features –

many instruments and many covariates – are present at the same time.

More than a quarter of a century has passed since the publication of the Angrist and Krueger

(1991) application, and more than two decades since the theoretical work of Bekker (1994), but

empirical microeconomists are still largely unaware of how to correctly utilize a host of available

instruments or to properly handle large regressor sets. This survey aims to close the gap. The

survey is designed to provide empirical researchers and graduate-level econometrics students with

an overview of the field and concrete instructions for how to use relevant tools.

2 Structure of survey

Most recent theoretical literature tends to deal with all of the possible complications involved,

and thus the degree of sophistication can become a stumbling block for applied researchers. The

survey is structured so that complications are gradually scaffolded on an easily comprehensible

skeleton model – a linear homoskedastic instrumental variables model. In this section, we describe

a roadmap for how the survey is organized.

Section 3 presents the statistical foundations for many instrument/regressor asymptotics; an

uninterested reader may skip this section during a first reading and jump to Section 4. First, we

reiterate the idea of alternative asymptotic approximations, in particular, dimension asymptotics.

Second, the historical evolution of limit theorems for bilinear forms – the main building block

of many instrument/regressor asymptotics – is shown, starting with an example of a simplest

quadratic form, to show the differences between the approaches – the traditional asymptotics and

dimension asymptotics – and how they interlock. Third, a certain important asymptotic property

of the diagonal of the projection matrix is discussed.

In Section 4, a linear homoskedastic instrumental variables model is considered in detail. The

reasons why 2SLS estimation fails and various remedies for such failures (bias correction, jackknif-

ing, and LIML) are discussed. The alternative asymptotic distributions of consistent estimators

are presented, initially for the case of normal errors. Then, we relax error normality to examine

the arising complications and discuss how they can be handled. In addition to inferential proce-

dures regarding parameter restrictions, the issues of asymptotic efficiency and specification testing

are considered. Finally, we tackle another type of complication that arises when many exogenous

regressors (covariates) are present in addition to many instruments.

A major complication in the present context, unlike the ones mentioned above, is conditional
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heteroskedasticity, which leads to a breakdown of the consistency of LIML, a leading estimator

under conditional homoskedasticity. Section 5 reviews the problem and the proposed ways of

solving it, the leading method being based on mixing LIML with jackknifing. Estimation and

inference procedures robust to conditional heteroskedasticity are described.

In applied microeconometric problems, the numerosity of instruments is often accompanied

by their weakness as a group. Section 6 reviews the trade-offs between instrument numerosity

and their strength, as well as how they affect the rate of convergence, asymptotic distribution and

ultimately asymptotic inference.

Section 7 focuses on a related but different setup. A similar asymptotic analysis is needed in

mean regressions with a significant number of regressors that is possibly comparable to the sample

size. Such problems call for the many regressor asymptotics, a tool that works similarly to the many

instrument machinery. Hypothesis testing and parameter estimation are quite distinct problems in

this setting. The relevant literature and methods for solving both problems are reviewed in this

section.

Section 8 briefly surveys various further modifications of the basic instrumental variables and

regression models and procedures, such as proposed alternative estimators, bootstrap inference,

nonlinearity, as well as their extensions to particular settings such as panel data, spatial data,

robust regression and time series models. A connection to an adjacent subfield, very many instru-

ments/regressors, is also briefly highlighted.

Section 9 provides discussion and practical guidance regarding which tools are most suitable

to use in situations when many instruments and/or regressors turn out to be an issue, as well as in

situations outside the scope of this survey. This section is meant to help empirical microeconomists

with selecting the most appropriate route in handling their problems. Finally, Section 10 provides

a view on perspectives of the field and concludes.

By default, we use the term ‘many instruments’ to indicate dimension asymptotics, even in

cases when one should in fact use the term ‘many regressors’ or ‘many covariates.’

3 Asymptotic tools

This section presents the statistical foundations for many instrument/regressor asymptotics. An

uninterested reader may skip it during a first reading and jump directly to Section 4 for the many

instrument framework or to Section 7 for the many regressor framework.

3.1 Alternative and dimension asymptotics

Theoretical econometricians realized a while ago that traditional econometric tools often generate

poor inferences due to newly discovered peculiarities of data and that they are not able to handle

tasks that are rendered more challenging by wider data availability, more sophisticated modeling,

and accumulated empirical experience. Alternative asymptotic theories, in particular, have become

increasingly popular in recent decades among both theorists and practitioners. The coverage of such

theories is broad: regression models and instrumental variable models, unit root and cointegration
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models, problems of long-run forecasting, post-selection inference, and others; see a review in

Anatolyev and Gospodinov (2011b, Chapter 6). The usefulness of alternative asymptotic theories

for a careful practitioner has been forcefully emphasized, among others, by Bekker (1994) in the

context of models with many instruments and by Leeb and Pötscher (2005) in the context of post-

selection inference. In a nutshell, the proceedings of an alternative asymptotic theory allow one

to more adequately approximate the actual distributions of estimators and test statistics than the

traditional large sample asymptotic theory is able to do.

Broadly speaking, there are two types of alternative asymptotic theories – drifting parame-

ter asymptotics and dimension asymptotics – plus mixtures of the two. Drifting parameters are

designed to acknowledge the locality of some parameters to their focal values, e.g., of the autore-

gressive parameter to its unit root value (near unit roots), of the correlation coefficient between

the instrument and the regressor to zero (weak instruments), of the alternative hypothesis to the

null (local test power), of a parameter of a competing model to zero (post-selection inference), and

so on, and are of high importance in modern econometrics.

Dimension asymptotics serve the same purpose but deal with cases when the dimensionality of

some parameters is large and possibly comparable to the sample size (although we exclude cases

when dimensionality is not high enough to change the conventional conclusions). The idea of

dimension asymptotics is rumored to belong to Kolmogorov who, in the context of discriminant

analysis, proposed in 1967 an asymptotic approach in which the sample size increases along with the

number of parameters, such that their ratio tends to a constant (Serdobolskii, 2007). Independently,

similar asymptotics were being developed in the random matrix theory (Marchenko and Pastur,

1967), leading to a line of work on estimating covariance matrices in large dimensions (Yao, Zheng

and Bai, 2015). For microeconometricians, many instruments and/or many regressor asymptotics

featured in this survey are arguably the most important developments of dimension asymptotics.

3.2 Illustrative example

To see the differences in how the traditional and many instrument asymptotics work, let us consider

the following quadratic form:

e′Pe =
n∑

i,j=1

Pijeiej ,

where the error series {ei}ni=1 collected in n× 1 vector e is IID with zero mean and finite variance

σ2, and P = Z (Z ′Z)−1 Z ′ is n×n projection matrix associated with instruments {zi}ni=1 collected

in n× ` matrix Z treated for simplicity as fixed. Under the traditional large sample asymptotics,

as n→∞,
e′Pe

n
=
e′Z

n

(
Z ′Z

n

)−1 Z ′e
n

p→ 0 ·
(

lim
Z ′Z

n

)−1
· 0 = 0,

and, when appropriately normalized,

e′Pe =
e′Z√
n

(
Z ′Z

n

)−1 Z ′e√
n

d→ σ2χ2(`).
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Under the many instrument asymptotics, as ` → ∞ and `/n → α 6= 0, the first step above

immediately fails (e.g., the limit of n−1Z ′Z is not well defined). Instead, under suitable conditions,

the normalized quadratic form converges to a non-zero value: as `→∞ and `/n→ α,

e′Pe

n

p→ ασ2 6= 0

as long as α 6= 0. Indeed, consider its expectation:

E

[
e′Pe

n

]
=

1

n
E
[
tr
(
e′Pe

)]
=

1

n
tr
(
PE

[
ee′
])

=
1

n
tr
(
Pσ2In

)
= σ2

`

n
→ ασ2e .

Because the limit is non-zero, the quadratic form has to be recentered before being normalized. It

turns out that its normalization by
√
n instead of n is required:

e′(P − αIn)e√
n

d→ N

(
0, 2α (1− α)σ4 + κ

(
lim

1

n

n∑
i=1

P 2
ii − α2

)
σ4

)
,

where

κ =
E[e4i ]

σ4
− 3

is the excess kurtosis coefficient of ei. Apart from normalization, several important things should be

noted. First and most intriguing, a quadratic form gives rise to the normal asymptotic distribution

instead of the habitual chi-square. Second, the recentered and normalized statistic is asymptotically

non-pivotal in a complex way. Third, there is dependence of the asymptotic variance on the fourth

order moment of ei (unless Pii all converge to α) and on (the asymptotic behavior of) the diagonal

elements of P (unless ei is mesokurtic).

Heuristically, the asymptotic normality of the quadratic form comes from instrument numeros-

ity, i.e. infinity of ` in the limit. It is well known that, as the degrees of freedom increase, the

chi-square distribution becomes closer to the normal distribution. Indeed, as `→∞, if we represent

the chi-square distribution as a sum of independent squared standard normals, recenter the result

and renormalize it, we get for ξj ∼ IID N (0, 1) that

χ2(`)− `√
2`

d
=

1√
2`

∑̀
j=1

(ξ2j − 1)
a∼ N (0, 1),

which implies asymptotic normality of e′(P − αIn)e, though with incorrect asymptotic variance:

e′(P − αIn)e√
n

a∼ N
(
0, 2ασ4

)
.

The discrepancy in asymptotic variances arises because asymptotically there is a bounded amount

n/` of ‘information’ per each ξj rather than its infinite amount. It is this discrepancy that invalidates

conventional χ2 critical values that do not account for it in the presence of many instruments.

Note again that the asymptotic normality is driven by asymptotic infinity of instruments rather

than only by an asymptotically infinite sample, i.e. it comes from ` → ∞ rather than only from

n→∞. Such asymptotic normality can also arise when this condition holds without the asymptotic
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proportionality of ` to n. In fact, it may arise even when ` → ∞ slower than n → ∞ (see, e.g.,

Donald, Imbens and Newey, 2003).

Apart from the literature on many instruments/regressors, the asymptotic normality of quadratic

forms has been utilized in spatial econometrics (e.g., Kelejian and Prucha, 2001) and vast dimen-

sional covariance matrix estimation (e.g., Ledoit and Wolf, 2002).

3.3 Large sample theorems

In his article, Bekker (1994) used the exact statistical properties of the quadratic form based on the

exact normality of its elements. There is a broad statistical literature on asymptotic behavior of

U-statistics; see, for example, Götze and Tikhomirov (1999). The conditions for the large sample

theorems developed there are typically too tight to be applicable in the present context. However,

de Jong (1987) provides a useful result, which was used in Calhoun (2011).

Theorem (de Jong, 1987) Let

Qn =
∑
i 6=j

aijεiεj

be a quadratic form in independent random variables {εi}ni=1 with E [εi] = 0 and E
[
ε2i
]

= 1, with

µ1, ..., µn the eigenvalues of the symmetric matrix ‖aij‖ni,j=1 with no diagonal elements, aii = 0 for

all i. Suppose there exists a sequence of real numbers Kn such that K2
nσ
−2
Qn

max1≤j≤n
∑n

i=1 a
2
ij → 0

and max1≤i≤nE
[
ε2i I{|εi|>Kn}

]
→ 0 as n → ∞. If the eigenvalues of the matrix ‖aij‖ni,j=1 are

negligible, σ−2Qn
max1≤i≤n µ

2
i → 0 as n→∞, then

Qn
σQn

d→ N (0, 1)

as n→∞, where

σ2Qn
= 2

∑
i 6=j

a2ij,n.

Arguably, one of the first sources in the econometric literature where large sample theorems

for quadratic/bilinear forms suitable for handling setups with many instruments/regressors was

Kelejian and Prucha (2001) in the context of spatial data analysis. This CLT was used, in particular,

in Anatolyev (2012) and Anatolyev and Gospodinov (2011a).

Theorem (Kelejian and Prucha, 2001) Assume the elements of the random array {εi,n}ni=1 are

independent and satisfy E [εi,n] = 0 and supn sup1≤i≤nE[|εi,n|4+η] < ∞ for some η > 0. Consider

arrays of real numbers {aij,n}ni,j=1 and {bi,n}ni=1 such that aij,n = aji,n, supn sup1≤j≤n
∑n

i=1 |aij,n| <
∞ and supn n

−1∑n
i=1 |bi,n|

2+χ <∞ for some χ > 0. Define a bilinear form

Qn =
n∑
i=1

n∑
j=1

aij,nεi,nεj,n +

n∑
i=1

bi,nεi,n.

Then, as n→∞,
Qn − µQn

σQn

d→ N (0, 1),
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provided that supn n
−1σ2Qn

> 0, where

µQn =
n∑
i=1

aii,nE
[
ε2i,n
]

and

σ2Qn
= 4

n∑
i=1

i−1∑
j=1

a2ij,nE
[
ε2i,n
]
E
[
ε2j,n
]

+
n∑
i=1

b2i,nE
[
ε2i,n
]

+
n∑
i=1

(
a2ii,nvar

[
ε2i,n
]

+ 2aii,nbi,nE
[
ε3i,n
])
.

This CLT, unlike most in the statistical literature, allows the coefficients to depend on the

sample size. In addition, it allows the random elements εi,n to be heterogeneous across i.

After a while, the many instrument literature was enriched by central limit theorems targeted

to the needed structure of the coefficients, in particular, associated with a projection matrix. The

CLT of Hansen, Hausman and Newey (2008) for bilinear forms covering the case of fixed regressors

and conditional homoskedasticity reads as follows:

Theorem (Hansen, Hausman and Newey, 2008) Suppose ` → ∞ as n → ∞. Let P be a

constant idempotent matrix with rank `, let (w1n, v1, u1), ..., (wnn, vn, un) be independent, and

let (v′i, ui) have bounded 4th moments, with E[vi] = E[ui] = 0, E[(v′i, ui)(v
′
i, ui)

′] = const, with

E[||win||4]→ 0 and bounded
∑n

i=1E[winw
′
in]. Then, for any sequence of bounded vectors c1n and

c2n such that

Vn = c′1n

(
n∑
i=1

E[winw
′
in]

)
c1n +

(
1−

∑n
i=1 P

2
ii

`

)
c′2n(E[viv

′
i]E[u2i ] + E[viui]E[uiv

′
i])c2n

is bounded away from zero, it follows that

V −1/2n

c′1n n∑
i=1

win + c′2n
∑
i 6=j

vjPijui√
`

 d→ N (0, 1).

Note that the linear part is asymptotically mean zero while the bilinear part is of jackknife

type (i.e. there are no terms where both random elements have equal indexes), hence the entire

form has zero mean. The two parts are uncorrelated, hence no covariance term in the asymptotic

variance expression.

One more CLT for symmetric quadratic forms was developed in van Hasselt (2010), where

the central matrix does not need to be a projection, the vector elements have non-zero mean,

and the linear part is incorporated into the quadratic part. However, the assumptions underlying

van Hasselt (2010)’s CLT imposed on the central matrix and vector elements’ means seem to be

unnecessarily stringent for the given context.

An extension of the CLT of Hansen, Hausman and Newey (2008) given above is provided in

Chao, Swanson, Hausman, Newey and Woutersen (2012). The generalization concerns stochastic

instruments and heterogeneous elements of the bilinear form thus allowing for conditional het-

eroskedasticity. The CLT reads as follows:

Theorem (Chao, Swanson, Hausman, Newey and Woutersen, 2012) Suppose ` → ∞ as n →
∞. Let P be Z-measurable symmetric idempotent matrix with rank ` with diagonal elements
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uniformly smaller than unity almost surely. Let, conditional on Z, (w1n, v1, u1), ..., (wnn, vn, un) be

independent, (v′i, ui) have uniformly bounded 4th conditional moments, with E[win|Z] = E[vi|Z] =

E[ui|Z] = 0, with
∑n

i=1E[||win||4|Z]
AS→ 0 and uniformly bounded ‖

∑n
i=1E[winw

′
in|Z]‖ almost

surely. Then, for any sequence of uniformly bounded vectors c1n and c2n depending on Z such that

Vn = c′1n

(
n∑
i=1

E[winw
′
in|Z]

)
c1n + c′2n

1

`

∑
i 6=j

P 2
ij(E[viv

′
i|Z]E[u2i |Z] + E[viui|Z]E[uiv

′
i|Z])c2n

is bounded away from zero almost surely, it follows that

V −1/2n

c′1n n∑
i=1

win + c′2n
∑
i 6=j

viPijuj√
`

 d→ N (0, 1)

almost surely.

This CLT may also be applicable when the central matrix is symmetric but not a projection,

see a remark in Bekker and Crudu (2015, appendix A.4).

Cattaneo, Jansson and Newey (2018a) presented a unifying framework within which the asymp-

totic behavior of bilinear forms can be considered. The d-vector V-statistic

Sn =

n∑
i=1

n∑
j=1

sij ,

where each sij contains as a factor an element of a projection matrix of rank `, can be decomposed

into three parts:

Sn = Bn + Ψn + Φn,

where Bn = E [Sn] is the bias term, Ψn =
∑n

i=1 ψi is a sum of independent zero mean terms, and

Φn =
∑

i 6=j φij is a degenerate U-statistic which is a martingale difference sum uncorrelated with

Ψn. While the component Bn can be made asymptotically vanish, both the terms Ψn and Φn can

contribute to the asymptotic variance as `→∞ and n→∞:(
var [Ψn]−1/2 Ψn

var [Φn]−1/2 Φn

)
d→ N (0, I2d).

When ` grows slower than n, the second component is of smaller order than the first component,

and the asymptotic variance of Sn equals that of Ψn. When ` grows proportionately with n, the

rates are the same, and the asymptotic variance of Sn is composed of those of Ψn and Φn. In the

central limit theorems stated above, Ψn corresponds to the ‘linear’ part, and Φn to the ‘bilinear’

part. Correspondingly, the asymptotic variance is composed of two parts, var [Ψn] and var [Φn] ,

the ‘traditional’ asymptotic variance and the ‘dimensionality’, or ‘many instrument/regressor’,

asymptotic variance.

3.4 Diagonal of projection matrix

Some results in the many instrument/regressor literature (see subsections 4.5, 4.6, 4.9, and 7.2)

rely on the assumption that the main diagonal of the projection matrix P = Z (Z ′Z)−1 Z ′ associ-

ated with the instrument/regressor matrix Z is asymptotically homogeneous, i.e. Pii → α for all
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i = 1, ..., n. This property is also called an asymptotically balanced design of instruments/regressors.

Sometimes it is formulated in a different form, e.g., as n−1
∑n

i=1 (Pii − α)2 → 0 (Anderson, Kunit-

omo and Matsushita, 2010; Kunitomo, 2012) or as n−1
∑n

i=1 |Pii − α| → 0 (Anatolyev and Gospodi-

nov, 2011) or (which is unnecessarily stronger) maxi=1,...,n |Pii − α| → 0 (Anatolyev, 2012). The

convergence is understood in the usual deterministic sense if the instruments/regressors are treated

as fixed, and in the sense of convergence in probability if they are treated as random IID variables.

The point of concentration of diagonal elements is α because

n−1
n∑
i=1

Pii = n−1
n∑
i=1

tr
(
z′i
(
Z ′Z

)−1
zi

)
= n−1tr

((
Z ′Z

)−1 n∑
i=1

ziz
′
i

)
= n−1tr (I`)→ α

in the fixed instrument case, and similarly in the random IID case,

E [Pii] = n−1
n∑
i=1

E
[
tr
(
z′i
(
Z ′Z

)−1
zi

)]
= n−1tr

(
E

[(
Z ′Z

)−1 n∑
i=1

ziz
′
i

])
= n−1tr (E [I`])→ α.

Asymptotically balanced design essentially means that variability of Pii around α asymptotically

vanishes.

The random matrix theory (e.g., Bai and Silverstein, 2010; Yao, Zheng and Bai 2015), a spe-

cific direction in mathematical statistics, concentrates on similar questions and is able to provide

some answers in some special cases such as under independence of instruments within the instru-

ment vector. More tailored to econometric setups, Anatolyev and Yaskov (2017) present sufficient

conditions for the asymptotic homogeneity of the diagonal of an instrument projection matrix in

an IID framework and provide examples of when the instrument design is asymptotically balanced

and when it is not. Situations where asymptotically balanced design holds include independent in-

struments (including gaussian), when instruments are drawn from a log-concave distribution (again

including gaussian), when instruments follow a factor model, and some other cases. On the other

hand, some situations considered in the many instrument literature, such as those of dummy instru-

ments – standalone and interacted with other instruments like in Angrist and Krueger (1991) – are

characterized by non-zero asymptotic variation in diagonal elements. Intuitively, the asymptotic

homogeneity of the diagonal occurs when there is sufficient mixing within the instrument vector

so that a sort of a law of large numbers holds. Anatolyev and Yaskov (2017) also numerically

calibrate the asymptotic variations along the diagonal and conclude that ignoring them may have

a non-trivial influence on inferences.

4 Basic model with many instruments

Consider the setup of the paradigmatic returns to schooling application of Angrist and Krueger

(1991):

log Yi = β0edui + w′iδ0 + ei,

where Yi is yearly income, edui is endogenous (years of) education, and wi contains exogenous

regressors, including an intercept. The set of instruments Angrist and Krueger (1991) use contains

quarter-of-birth dummies (3) and their interactions with year-of-birth dummies (9 × 3 = 27) and

10



with state-of-birth dummies (50 × 3 = 150), totaling to 180 instruments. The rationale behind

the use of such variables as instruments is that while they are clearly exogenous, the US schooling

laws prescribe that schooling starts depend on birthdates; these laws vary across the US states and

change over time. This induces correlation between the education variable and these instruments,

making them relevant. The number of these instruments, 180, does not seem to be that small a

number that the traditional asymptotics would approve.

The above description does not include all the important facts about the Angrist and Krueger

(1991) application but we will wait and reveal others in due time when they become of interest to

our current focus.

4.1 Setup

The basic instrumental variables model is linear, conditionally homoskedastic, and is estimated

with an IID sample. The structural equation is

yi = x′iβ0 + ei,

where β0 is k × 1 vector of structural coefficients of interest, or in matrix notation, Y = Xβ0 + e,

where Y = (y1, ..., yn)′ is n× 1, X = (x1, ..., xn)′ is n× k, and e = (e1, ..., en)′ is n× 1. The reduced

form equation is

xi = z′iΓ + ui,

where zi is ` × 1 vector of instruments, and Γ is ` × k matrix of reduced form coefficients, or in

matrix notation, X = ZΓ + U, where U = (u1, ..., un)′ is n × k. We assume that the rank of the

instrument matrix Z = (z1, ..., zn)′ equals its column dimension `. The structural and reduced form

errors satisfy (
ei
ui

)
|zi ∼

((
0

0

)
,

(
σ2 Σ′

Σ Ω

))
.

Define the projection matrix associated with the instruments,

P = Z
(
Z ′Z

)−1
Z ′.

Also, define M = In − P. Under conditional homoskedasticity, it is technically easier to treat

instruments as fixed. Then the matrix P is a constant symmetric idempotent matrix of rank `.

The key assumption of the many instrument asymptotics is

`

n
= α+ o

(
1√
n

)
as n → ∞, where α ≥ 0. We include α = 0 for the traditional asymptotics to be a special case.

The order of discrepancy allows one to equalize the ratio `/n and α in (first order) asymptotic

inferences.

Along with this assumption, we need an assumption of strong but boundedly informative

instruments:
Γ′Z ′ZΓ

n
→ Q,

11



where matrix Q has full rank. This condition means that even asymptotically (within the thought

experiment where the instruments arrive continuously and whose number eventually becomes in-

finite), the instruments explain only a portion of the right hand side variables, and Q being of

full rank means that this portion is nontrivial (see the discussion of the notion of concentration

parameter in subsection 6.1). Note that this condition implies that some individual instruments

may be strong, but most (almost all) must be weak or even irrelevant.

4.2 Inconsistency of 2SLS

Under the many instrument asymptotics, the standard two-stage least-squares estimator is com-

promised. Recall that the 2SLS estimator is

β̂2SLS =
(
X ′PX

)−1
X ′PY.

Under the traditional asymptotics with fixed `, the 2SLS estimator is consistent:

β̂2SLS = β0 +

(
X ′Z

n

(
Z ′Z

n

)−1 Z ′X
n

)−1
X ′Z

n

(
Z ′Z

n

)−1 Z ′e
n

p→ β0,

as n−1Z ′e
p→ 0, provided that limn−1Z ′Z exists and is non-singular. However, under the many

instrument asymptotics, schematically,

X ′PX

n
=

Γ′Z ′ZΓ

n
+

Γ′Z ′U

n
+
U ′ZΓ

n
+
U ′PU

n

p→ Q+ αΩ

and
X ′Pe

n
=

Γ′Z ′e

n
+
U ′Pe

n

p→ αΣ.

The last terms turn out to be asymptotically non-negligible because of instrument numerosity

(recall subsection 3.2). Hence,

β̂2SLS = β0 +

(
X ′PX

n

)−1 X ′Pe
n

p→ β0 + (Q+ αΣ)−1 αΣ 6= β0,

unless α = 0 (the instruments are fewer than many) or Σ = 0 (there is no endogeneity).

Intuitively, the ‘incidental parameter problem’ in the first stage of the 2SLS procedure – pro-

jecting right side variables on the high dimensional instrument space – results in big noise that

contaminates the second stage estimation.

4.3 Consistent estimators

There are a few solutions to the problem of inconsistent estimation. One, the bias-corrected 2SLS

(B2SLS) estimator (Nagar, 1959; Donald and Newey, 2001), results from the direct removal of the

source of the bias in the 2SLS formula. The diagonal elements of P are recentered in as follows:

β̂B2SLS =

(
X ′
(
P − `

n
In

)
X

)−1
X ′
(
P − `

n
In

)
Y.
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Under the traditional large sample asymptotics, the correction is negligible, while under many

instrument asymptotics,

β̂B2SLS − β0 =

(
X ′PX

n
− `

n

X ′X

n

)−1(X ′Pe
n
− `

n

X ′e

n

)
p→ (Q+ αΩ− α (Q+ Ω)) (αΣ− αΣ)

= 0.

Another solution uses the idea of jackknifing, leading to the following most natural version of

the jackknife instrumental variables (JIV) estimator (Angrist, Imbens and Krueger, 1999; Ackerberg

and Devereux, 2009). Denote D = dg{Pii}ni=1. In the JIV estimator, the diagonal elements of P

are completely removed:

β̂JIV =
(
X ′(P −D)X

)−1
X ′(P −D)Y

=

∑
i 6=j

Pijxix
′
j

−1∑
i 6=j

Pijxiyj .

Under the many instrument asymptotics,

β̂JIV − β0
p→

lim
1

n

∑
i 6=j

PijE
[
xix
′
j

]−1 lim
1

n

∑
i 6=j

PijE [xiej ] = 0,

because those terms in the numerator that possess non-zero expectation due to endogeneity, have

been removed. Intuitively, the leave-one-out machinery reduces overfitting in the first stage of the

2SLS procedure.2

Yet another solution is provided by the limited information maximum likelihood (LIML) esti-

mator (Anderson and Rubin, 1949; Anderson, 2005):

β̂LIML = arg min
β

(Y −Xβ)′ P (Y −Xβ)

(Y −Xβ)′M (Y −Xβ)

= arg min
β

(Y −Xβ)′ P (Y −Xβ)

(Y −Xβ)′ (Y −Xβ)
.

Note that if not for the denominator of the LIML objective function, the minimizer would be the

2SLS estimator. The presence of the estimation of the structural error variance in the denominator

is a continuously updated GMM type correction known to reduce the second-order asymptotic bias

under traditional asymptotics (see Newey and Smith, 2004).

Computationally, it is more convenient to represent the LIML estimator in the following form:

β̂LIML =
(
X ′(P − α̂In)X

)−1
X ′(P − α̂In)Y,

2This version of the jackknife estimator appears most elegant. There are other versions of JIV estimation described,

for example, in Poi (2006): one that also originates from Angrist, Imbens & Krueger (1999), whose performance in

simulations is very close to that of the one we consider; and two versions that originate from Blomquist and Dahlberg

(1999), which exhibit poor behavior under many instruments (Poi, 2006).
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where α̂ is the minimal eigenvalue of the matrix
(
X̄ ′X̄

)−1
X̄ ′PX̄, where X̄ = [Y X]. Another useful

fact is that α̂ equals F (β̂LIML), where

F (β) ≡ (Y −Xβ)′ P (Y −Xβ)

(Y −Xβ)′ (Y −Xβ)
.

The LIML consistency follows from the fact that the true parameter solves the population

analog of the LIML optimization problem (Newey, 2004; Hansen, Hausman and Newey, 2008):

β̂LIML = arg min
β

n−1 (Y −Xβ)′ P (Y −Xβ)

n−1 (Y −Xβ)′ (Y −Xβ)

= arg min
β

n−1 (e−X(β − β0))′ P (e−X(β − β0))
n−1 (e−X(β − β0))′ (e−X(β − β0))

p→ arg min
β

ασ2 − 2α(β − β0)′Σ + (β − β0)′(Q+ αΩ)(β − β0)
σ2 − 2(β − β0)′Σ + (β − β0)′(Q+ Ω)(β − β0)

= arg min
β

{
α+ (1− α)

(β − β0)′Q(β − β0)
σ2 − 2(β − β0)′Σ + (β − β0)′(Q+ Ω)(β − β0)

}
= β0

as long as α 6= 1. Even though the ‘incidental parameter problem’ is still present, it does not affect

the consistency of LIML estimation. Kolesár (2018) explains this robustness by the coincidence of

the LIML estimator, at least under normality, with the maximum invariance likelihood estimator,

one whose number of parameters is asymptotically fixed. The asymptotic variance, however, is

inflated by the presence of many instruments; see the next subsection.

A well-known problem with LIML is the non-existence of moments (Fuller, 1977; Chao, Haus-

man, Newey, Swanson and Woutersen, 2012a). This phenomenon arises because the denominator

of β̂LIML possesses too much probability mass in the vicinity of zero. An asymptotically negligible

perturbation in recentering the projection is able to solve the moment existence problem, see details

in Chao, Hausman, Newey, Swanson and Woutersen (2012a). The Fuller (1977) (FULL) estimator

that achieves this goal is

β̂FULL =
(
X ′(P − α̊In)X

)−1
X ′(P − α̊In)Y

where

α̊ =
α̂− (1− α̂)C/n

1− (1− α̂)C/n
(1)

for some C (e.g., Hansen, Hausman and Newey, 2008). The most popular version uses the value

C = 1, in which case the FULL estimator possesses moments of all orders.

4.4 Asymptotic distributions under normal errors

Assume for the time being that the structural and reduced form errors are jointly gaussian. Under

traditional large sample asymptotics, the LIML estimator is consistent and asymptotically normal:

√
n
(
β̂LIML − β0

)
d→ N

(
0, V LIML

1

)
,
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where

V LIML
1 = σ2Q−1.

The B2SLS and Fuller estimators are asymptotically equivalent to LIML. The construction of the

JIV estimator entails loss of information; as a result, the efficiency of estimation somewhat suffers:

√
n
(
β̂JIV − β0

)
d→ N

(
0, V JIV

1

)
,

where

V JIV
1 = σ2Q−1− Q−2Q

−1
− ,

Q− = limn−1Γ′Z ′ (I −D)ZΓ and Q−2 = limn−1Γ′Z ′ (I −D)2 ZΓ. Large efficiency losses are

confirmed by simulations in Davidson and MacKinnon (2006).

Under many instrument asymptotics and error normality, Bekker (1994), Hansen, Hausman

and Newey (2008), van Hasselt (2010) and Chao, Swanson, Hausman, Newey and Woutersen (2012)

have shown that the B2SLS, JIV, LIML and FULL estimators are asymptotically normal, with the

asymptotic variance containing two components:

√
n
(
β̂ − β0

)
d→ N (0, V1 + V2) ,

where V1 is the conventional asymptotic variance shown above, and instrument numerosity mani-

fests itself in the additional variance component V2. Note that the rate of convergence is conven-

tional
√
n because is it proportional to

√
` within the many instrument framework. The additional

variance V2 is necessarily positive definite, and different for different estimators:

V B2SLS
2 =

α

1− α
Q−1

(
σ2Ω + ΣΣ′

)
Q−1,

V LIML
2 =

α

1− α
Q−1

(
σ2Ω− ΣΣ′

)
Q−1,

V JIV
2 = α (1− γ)Q−1−

(
σ2Ω + ΣΣ′

)
Q−1− ,

where γ = lim `−1
∑n

i=1 P
2
ii.

These components of asymptotic variances are positively related to α, the degree of instrument

numerosity. Perhaps even more importantly, they contain indicators of instrument strength Q and

Q− in the denominator, which occurs twice in comparison to appearing once in the V1 component.

This means that when the instruments are not too strong, the ‘many instrument’ component V2

may well exceed the ‘traditional’ component V1 (Newey, 2004); see Section 6.

4.5 Asymptotic distributions under non-normal errors

Now we depart with the assumption of error normality. Unlike in the traditional asymptotic

framework, under many instruments (and some additional assumptions), this results in a change of

the form the asymptotic variances take. Namely, two additional terms are responsible for deviations

of certain third and fourth error moments from their counterparts under error normality:

√
n
(
β̂ − β0

)
d→ N (0, V1 + V2 + V3 + V4) ,
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where V3 is additional variance associated with error 3rd moments, and V4 is additional vari-

ance associated with error 4th moments. Define ũi = ui − σ−2Σei to be population residuals

in the least squares projection of reduced form errors on the structural errors, and let πα =

limn−1Γ′Z ′ (D − αI) ιn, where ιn is an n× 1 vector of ones, exist. The exact formulas are:

V B2SLS
3 =

1

1− α
Q−1

(
παE

[
u′ie

2
i

]
+ E

[
uie

2
i

]
π′α
)
Q−1,

V LIML
3 =

1

1− α
Q−1

(
παE

[
ũ′ie

2
i

]
+ E

[
ũie

2
i

]
π′α
)
Q−1,

and

V B2SLS
4 =

α (γ − α)

(1− α)2
Q−1

(
E
[
uiu
′
ie

2
i

]
− σ2Ω− 2ΣΣ′

)
Q−1,

V LIML
4 =

α (γ − α)

(1− α)2
Q−1E

[
ũiũ
′
i

(
e2i − σ2

)]
Q−1,

while

V JIV
3 = V JIV

4 = 0

thanks to the removal of the terms that may give rise to higher-order moments.

The V3 and V4 components are zero under the asymptotically balanced instrument design (see

subsection 3.4), in which case πα = 0 and γ = α. Under general instrument design, they may

not be zero but the formulas can be simplified under restrictions on the joint error distribution.

Consider the special case of error moment independence: suppose that E [ei|ũi] = 0, E
[
e2i |ũi

]
= σ2

and E
[
e3i |ũi

]
= v3. Then

V B2SLS
3 =

1

1− α
v3
σ2
Q−1

(
παΣ′ + Σπ′α

)
Q−1,

V B2SLS
4 =

α (γ − α)

(1− α)2

( v4
σ4
− 3
)
Q−1ΣΣ′Q−1,

while

V LIML
3 = V LIML

4 = 0.

If we additionally assume error normality, we also get

V B2SLS
3 = V B2SLS

4 = 0.

Abutaliev and Anatolyev (2013) compute the numerical values of various components for the

LIML estimator for a model with Skewed Student errors with gaussian copula superimposed and

group instruments as in Bekker and van der Ploeg (2005). It turns out that indeed, for small

first-stage R2 (and thus small Q relative to Ω), the ‘many instrument’ correction V LIML
2 may be

very large relative to the ‘traditional’ component V LIML
1 . For a large degree of endogeneity, the

‘excess kurtosis’ correction V LIML
4 may be quite perceptible relative to V LIML

1 , while most often

the ‘skewness’ correction V LIML
3 is much smaller in absolute value relative to V LIML

1 . The latter

evidence is consistent with the many weak instrument theory (see subsection 6.2).
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4.6 Asymptotic efficiency

When possessing the formulas for asymptotic variance components, one can rank the ‘traditional’

asymptotic variance components easily: V B2SLS
1 = V LIML

1 ≤ V JIV
1 , but the ‘many instrument’

components are more ambiguous. It is clear that V B2SLS
2 ≥ V LIML

2 , strictly so if α 6= 0 and

Σ 6= 0, but it is not clear how these are related to V JIV
2 . The presence of the V3 and V4 compo-

nents complicates the picture even further. Under the asymptotically balanced instrument design

(see subsection 3.4) when the last two components are absent, one can additionally obtain that

V B2SLS
1 = V JIV

1 and V B2SLS
2 = V JIV

2 , and hence LIML � B2SLS ∼ JIV in terms of asymptotic

efficiency. Under error moment independence, the signs of V B2SLS
3 and V B2SLS

4 depend on the in-

teraction of the sign of παΣ′ and the direction of skewness, while the sign of V B2SLS
4 is determined

by whether the structural error is lepto- or platykurtic, and both components may have a positive

or negative effect on the total B2SLS asymptotic variance.

More conceptually, with many instruments, classical results on parametric efficiency are not

applicable because of the presence of many incidental parameters. The ranking of available esti-

mators in terms of asymptotic efficiency is more problematic than in the traditional large sample

framework due to the presence of several components in the asymptotic variances. More instru-

ments, which implies higher Q and higher α, may result in a higher or lower asymptotic variance

of a given estimator.

In setups with either asymptotically balanced instrument design or elliptically contoured error

distribution, Anderson, Kunitomo and Matsushita (2010) show the asymptotic efficiency of LIML

in a set of consistent estimators taking the form φ(S, S⊥), where S = X̄ ′PX̄ and S⊥ = X̄ ′MX̄ are

a pair of sufficient statistics, for a smooth function φ with bounded derivatives. Chioda and Jansson

(2009) expand the class of estimators to include all regular rotation-invariant estimators and show

that the asymptotic efficiency bound coincides with the LIML asymptotic variance, although they

prove their results under error normality.

Hahn (2002) finds out that when rotation invariance is not imposed, the asymptotic efficiency

bound is strictly lower than that attained by LIML. He argues that it has to lie between the classical

few instrument efficiency bound and the semiparametric efficiency bound of Chamberlain (1987),

which however coincide and are equal to σ2Q−1. Heuristically, if ` increases slower than n, then

formally α = 0 and the LIML asymptotic variance achieves the few instrument efficiency bound.

Thus, LIML and asymptotically equivalent estimators like FULL are not globally efficient, and

neither are any estimators whose asymptotic variance depends on α. It is not clear though that

such an efficiency bound is possible to achieve in practice, as this requires the use of a restricted

subset of available instruments, and it is not clear how to choose this restricted set. Hahn (2002)

conjectures that selecting instruments using tools in Donald and Newey (2001) might help attain

the efficiency bound.

In a model with one endogenous regressor and non-normal errors, Kolesár (2018) proposes

a minimum distance estimator that efficiently employs all information in S and S⊥, which is

asymptotically more efficient that the LIML estimator, and describes its asymptotic variance.
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4.7 Variance estimation

For any consistent estimator considered above, one can consistently estimate all components of the

asymptotic variance in a straightforward way. It is important, as in the rest of variance estimation

business, to make an emerging estimator positive definite by construction. For example, Bekker

(1994) and Hansen, Hausman and Newey (2008) suggest the following variance estimate for LIML

under error normality:

V̂ LIML
1+2 = Ĥ−1Σ̂LIML

1+2 Ĥ−1,

where Ĥ = X ′(P − α̃In)X and

Σ̂LIML
1+2 = σ̂2

(
(1− α̃)2X̃ ′PX̃ + α̃2X̃ ′MX̃

)
,

where α̃ = ê′P ê/ê′ê
p→ α, σ̂2 = ê′ê/(n − k)

p→ σ2, and X̃ = X − (ê′X/ê′ê)ê, and where ê are

LIML residuals. Unfortunately, the V3 and V4 components have a complex structure, and it does

not seem possible to ensure positive definiteness of the whole variance estimate by construction.

Hansen, Hausman and Newey (2008) propose the following consistent estimator:

V̂ LIML = Ĥ−1
(

Σ̂LIML
1+2 + Σ̂LIML

3 + Σ̂LIML
4

)
Ĥ−1,

where, in addition to above,

Σ̂LIML
3 =

1

n

n∑
i=1

(
Pii −

`

n

)
(PX)i

n∑
i=1

ê2i (MX̃)′i

and

Σ̂LIML
4 =

∑n
i=1 P

2
ii − n−1`2

n− 2`+
∑n

i=1 P
2
ii

n∑
i=1

(ê2i − σ̂2)(MX̃)i(MX̃)′i.

4.8 Parameter inference

Once consistent estimates of asymptotic variance are available, testing structural parameter re-

strictions is straightforward. In particular, for the null hypothesis

H0 : c′β = c′β0,

where c is k× 1 vector of constants, Hansen, Hausman and Newey (2008) establish that the LIML

t-statistic is asymptotically standard normal

c′(β̂LIML − β0)√
c′V̂ LIMLc

d→ N (0, 1) ,

and the decision rule is usual based on the quantiles of the standard normal distribution. The

FULL estimator can be used in place of LIML.
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4.9 Specification testing

Specification testing is related to the hypothesis of valid instruments

H0 : E[ziei] = 0

(or, rather, H0 : n−1Z ′e
p→ 0 for fixed Z). The Hansen (1992) overidentification J test statistic

and its asymptotic distribution under large sample asymptotics are:

J =
ê′P ê

σ̂2
d→ χ2 (`− k) .

Now, under many instrument asymptotics, J
p→ ∞, so the statistic should be recentered and

renormalized (recall subsection 3.2). Lee and Okui (2012) derive that the modified J test statistic

Jm =
ê′ (P − (`/n)In) ê

σ̂2

has the following asymptotic distribution:

Jm√
n

d→ N

(
0, 2α (1− α) + κ

(
lim

1

n

n∑
i=1

P 2
ii − α2

))
,

where

κ =
E[e4i ]

σ4
− 3

is excess kurtosis of ei (cf. subsection 3.2). Pivotization of the statistic is straightforward, and the

testing is one-sided. An analogous test can be constructed on the basis of the J statistic modified

in the jackknife fashion; see subsection 5.3.

In the situation of asymptotically balanced instrument design (see subsection 3.4) implying

limn−1
∑n

i=1 P
2
ii = α2, Anatolyev and Gospodinov (2011a) work with the conventional J statistic

J =
ê′P ê

σ̂2
,

and propose the robust J test that prescribes rejecting H0 at significance level φ when

J > q
χ2(`−k)
φ∗

where

φ∗ = Φ

(√
1− `

n
· Φ−1 (φ)

)
.

That is, testing is carried out in the conventional way using χ2 critical values but with an adjusted

significance level φ∗ < φ in place of the target level φ. This test is robust to the type of asymptotic

framework as it is valid both when there are few instruments (in which case φ∗ = φ asymptotically)

and when instruments are many (and the instrument design is asymptotically balanced). Kaffo and

Wang (2017) note that the test also works under many weak instrument asymptotics (see Section

6).
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4.10 Approximate reduced form

Recall that in the basic setup, the reduced form equation is linear:

xi = z′iΓ + ui.

Hansen, Hausman and Newey (2008) (as well as Hausman, Newey, Woutersen, Chao and Swanson,

2012; Chao, Swanson, Hausman, Newey and Woutersen, 2012) consider a more realistic situation.

They consider a general reduced form

xi = Υi + ui,

where unknown Υi is approximated by a linear function of zi. This linear combination may pri-

marily originate from expanding the unknown non-linear function of few basic instruments using

approximating functions such as powers, B-splines, etc. as in Newey (1990).

It turns out that the previous results go through if the approximation is good enough, in the

sense that for each n there exists a linear combination Γn of instruments zi such that

1

n

n∑
i=1

||Υi − z′iΓn||2
AS→ 0.

4.11 Many exogenous regressors

Consider again the setup of Angrist and Krueger (1991):

log Yi = β0edui + w′iδ0 + ei,

where Yi is yearly income, and edui is endogenous (years of) education. The set of exogenous

regressors (also known as ‘included instruments’ or ‘covariates’) in wi contains the intercept (1),

year-of-birth dummies (9) and state-of-birth dummies (50), so in total there are 60 exogenous

regressors; this number is comparable to a number of excluded instruments (180). Such inclusions

of many exogenous variables into the right hand side are typically done as a guard against model

misspecification or in order to approximate some important but unobservable factor.

Anatolyev (2013) extends the basic setup discussed previously to

yi = x′iβ0 + w′iδ0 + ei,

where w is an additional m-vector of exogenous regressors (or covariates, or included instruments),

and δ0 is m-vector of coefficients, which are nuisance parameters in this context. An additional

Bekker (1994) type assumption imposed on the dimensionality of w characterizes the many exoge-

nous regressor asymptotics:
m

n
→ µ > 0

as n→∞.
Collect wi for all i = 1, ..., n into n×m matrix W with the associated projection and residual

matrices PW = W (W ′W )−1W ′ and MW = In − PW . Also, similarly denote by PZ⊥ and MZ⊥ the

projection and residual matrices associated with Z⊥ = MWZ.
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The additional assumption has certain effects on the consistency of some estimators. The usual

bias-corrected 2SLS estimator ceases to be consistent, but appropriate bias correction as in

β̂B2SLS =

(
X ′
(
PZ⊥ −

`

n−m
MW

)
X

)−1
X ′
(
PZ⊥ −

`

n−m
MW

)
Y

restores consistency. The LIML estimator is still consistent, but numerosity of exogenous regressors

has certain effects on the form of asymptotic variance, for example,

V LIML
1 + V LIML

2 = σ2Q−1W +
α

1− (1− µ)−1α
Q−1W

(
σ2Ω− ΣΣ′

)
Q−1W

where now QW = limn−1Γ′Z ′MWZΓ, all other notation being the same as before. The other

asymptotic variance components also change in mysterious ways. Anatolyev (2013) also proposes

an adaptation of the Lee and Okui (2012) modified J specification test and extends the notion of

a k-class estimator (Nagar, 1959) to the situation with numerous exogenous regressors.

Asymptotic variance estimation is further complicated by the fact that under the many in-

strument and exogenous regressor asymptotics, the habitual estimates of error moments based on

sample moments of residuals are no longer consistent. For example, the average squared residual

n−1
∑n

i=1 ê
2
i is consistent for (1 − µ)σ2 rather than for error variance σ2, which makes a differ-

ence when µ 6= 0. Likewise, the average cubed residual n−1
∑n

i=1 ê
3
i does not consistently estimate

E
[
e3i
]
, but the product

(∑n
j=1

∑n
f=1(MW )3jf

)−1∑n
i=1 ê

3
i does. For details, see Anatolyev (2013);

see also Calhoun (2011) on the consistent estimation of variance and kurtosis in the context of

linear regression with many regressors.

In some recent work on many instruments, the numerosity of exogenous regressors is explicitly

embedded in the setup; see Kolesár (2018) and Evdokimov and Kolesár (2018).

5 Heteroskedastic model with many instruments

5.1 Setup and estimation

The model equations are the same:

yi = x′iβ0 + ei

and

xi = z′iΓ + ui,

but now the structural and reduced form errors are heteroskedastic:(
ei
ui

)
|zi ∼

((
0

0

)
,

(
σ2i Σ′i
Σi Ωi

))
,

where the dependence of variances and covariances on i comes from the dependence on zi if those

are treated as random variables.

The bad news is that, generally, the LIML estimator ceases to be consistent. This was first

shown in Bekker and van der Ploeg (2005). Chao, Swanson, Hausman, Newey and Woutersen (2012)
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and Hausman, Newey, Woutersen, Chao and Swanson (2012) provide a systematic treatment of the

many instrument problem under heteroskedasticity.

The good news is that consistent estimation is possible under heteroskedasticity using the JIV

estimator as it does not contain the terms where endogeneity kicks in and contaminates expectations

(Ackerberg and Devereux, 2009; Chao, Swanson, Hausman, Newey and Woutersen, 2012). Indeed,

the 2SLS estimator solves

β̂2SLS
p→ arg min

β
limE

[
n−1 (Y −Xβ)′ P (Y −Xβ)

]
= arg min

β

{
(β − β0)′Q−(β − β0) + lim

1

n

n∑
i=1

PiiE
[(
yi − x′iβ

)2]}
,

whereQ− = limn−1Γ′Z ′(P−D)ZΓ, which is a positive definite matrix (Hausman, Newey, Woutersen,

Chao and Swanson, 2012). The minimizer will differ from β0 as the second term in the limiting

objective function is not minimized at β0 because of endogeneity, and is of the same order of mag-

nitude as the first term. Removal of the problematic term in the sample objective function leads

to the JIV estimator

β̂JIV = arg min
β

n−1 (Y −Xβ)′ (P −D) (Y −Xβ)
p→ arg min

β
(β − β0)′Q−(β − β0) = β0.

However, as noted previously, since JIV has low efficiency under homoskedasticity (Davidson and

MacKinnon, 2006), it is hardly highly efficient in heteroskedastic situations.

Hausman, Newey, Woutersen, Chao and Swanson (2012) propose how to combine consistency

of JIV and relative efficiency of LIML. Following Hausman, Newey, Woutersen, Chao and Swanson

(2012), the LIML estimator is inconsistent for a similar reason as the 2SLS estimator:

β̂LIML
p→ arg min

β

limE
[
n−1 (Y −Xβ)′ P (Y −Xβ)

]
limE

[
n−1 (Y −Xβ)′ (Y −Xβ)

]

= arg min
β

(β − β0)′Q−(β − β0) + limn−1
∑n

i=1 PiiE
[
(yi − x′iβ)2

]
limE

[
n−1 (Y −Xβ)′ (Y −Xβ)

]
6= β0

because of the presence of the second term in the numerator of the limiting objective function.

Hausman, Newey, Woutersen, Chao and Swanson (2012) give an exact condition when the LIML

estimator is inconsistent in terms of non-zero correlation between the diagonal elements of P and

certain endogeneity indicators. When LIML does not work, the remedy is familiar – the removal

of this source of inconsistency. This gives rise to the HLIM estimator

β̂HLIM = arg min
β

(Y −Xβ)′ (P −D) (Y −Xβ)

(Y −Xβ)′ (Y −Xβ)

p→ arg min
β

(β − β0)′Q−(β − β0)
limE

[
n−1 (Y −Xβ)′ (Y −Xβ)

] = β0.
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Like with LIML, there is no need to solve an explicit optimization problem. Hausman, Newey,

Woutersen, Chao and Swanson (2012) note that the HLIM estimator can be computed as

β̂HLIM =
(
X ′(P −D − α̂In)X

)−1
X ′(P −D − α̂In)Y

where α̂ is the minimal eigenvalue of
(
X̄ ′X̄

)−1
X̄ ′(P −D)X̄.

A Fuller-type analog of the HLIM called HFUL, which no longer has the moment problem

can be constructed in a way similar to how the FULL estimator is constructed based on LIML

(Hausman, Newey, Woutersen, Chao and Swanson, 2012; Chao, Hausman, Newey, Swanson and

Woutersen, 2012a); see equation (1). Hausman, Newey, Woutersen, Chao and Swanson (2012) show

that the HFUL estimator does possess low order moments under certain additional assumptions.

Interestingly, Chao, Hausman, Newey, Swanson and Woutersen (2012b) show that the HLIM

estimator can be viewed as a certain convex linear combination of the JIV estimator and the

‘reverse’ JIV estimator (that is, one where zi’s are used as instruments in a reverse regression of

xi’s on yi’s). They also suggest a way to construct other estimators based on this combination

that are asymptotically equivalent to HLIM and HFUL. An asymptotically optimal modification

of LIML of Kunitomo (2012) modifies the projectors in the LIML objective function and obtains

the AOM-LIML estimator that is asymptotically equivalent to HLIM under many instruments and

heteroskedasticity and has some advantages in finite samples.

5.2 Asymptotic distributions

Hausman, Newey, Woutersen, Chao and Swanson (2012) derive the asymptotic distribution of the

HLIM estimator under many instrument asymptotics:

√
n
(
β̂HLIM − β0

)
d→ N

(
0, V HLIM

)
,

where

V HLIM = V HLIM
1 + V HLIM

2 = Q−1− Σ−Q
−1
− + αQ−1− Ψ−Q

−1
− ,

Σ− = limn−1Γ′Z ′(I −D)dg{σ2e,i}ni=1(I −D)ZΓ, Ψ− = lim `−1
∑

i 6=j P
2
ij

(
σ2i Ω̃j + Σũe,iΣ

′
ũe,j

)
, with

(
ei
ũi

)
|zi ∼

((
0

0

)
,

(
σ2i Σ̃′i
Σ̃i Ω̃i

))
,

where the variances and covariances labeled by tilde are computed for rows of

Ũ = U − e
∑n

i=1 Σ′i∑n
i=1 σ

2
i

.

Note that the HLIM asymptotic variance, like that of the JIV estimator under homoskedasticity,

does not contain the terms that originate from deviations of third and fourth order moments

from their normal counterparts, for the same reason. In Chao, Swanson, Hausman, Newey and

Woutersen (2012), the asymptotic variance of the JIV under heteroskedasticity is presented too.

The sandwich form of the first, ‘traditional,’ asymptotic variance component indicates the

asymptotic inefficiency of HLIM. Indeed, Hausman, Newey, Woutersen, Chao and Swanson (2012)
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establish that under homoskedasticity, the HLIM estimator is asymptotically more efficient than

the JIV estimator, but neither of the HLIM and LIML estimators dominate each other. The

reason for inefficiency of HLIM is that a part of the ‘signal’ is removed because of jackknifing in its

construction. Bekker and Crudu (2015) find a way to preserve the signal neglected in HLIM. Their

symmetric jackknife estimator has a smaller ‘traditional’ component in the asymptotic variance

than the HLIM estimator if conditional heteroskedasticity is not extreme, though there is no clear

ordering in the ‘many instrument’ component.

Hausman, Newey, Woutersen, Chao and Swanson (2012) provide a valid and robust variance

estimator for the HLIM estimator:

V̂ HLIM = Q̂−1− Σ̂HLIM Q̂−1− ,

where Q̂− = X ′(P −D − α̂In)X, and

Σ̂HLIM =
n∑
i=1

((PX̂)i(PX̂)′i − PiiX̂i(PX̂)′i − Pii(PX̂)iX̂
′
i)ê

2
i +

n∑
i=1

n∑
j=1

P 2
ijX̂iX̂

′
j êiêj ,

where X̂ = X−ê(ê′X/ê′ê) and ê are HLIM residuals.3 The same construction can be applied for the

asymptotically equivalent HFUL estimator. The variance estimator is robust to many instruments,

i.e. it still works correctly when instruments are few. Chao, Swanson, Hausman, Newey and

Woutersen (2012) describe asymptotic variance estimation for the JIV estimator too.

5.3 Asymptotic inference

Once consistent estimates of asymptotic variance are available, testing structural parameter re-

strictions is straightforward. For the null hypothesis

H0 : c′β = c′β0,

where c is k × 1 vector of constants, an appropriate t-statistic and its asymptotic distribution are

c′(β̂HLIM − β0)√
c′V̂ HLIMc

d→ N (0, 1) ,

and the decision rule is the usual one based on quantiles of the standard normal distribution

(Hausman, Newey, Woutersen, Chao and Swanson, 2012).

Chao, Hausman, Newey, Swanson and Woutersen (2014) generalize the specification J test for

the heteroskedastic case. Their statistic is based on the jackknife modification of the familiar (see

subsection 4.9) quadratic form:

T̂ =
ê′(P −D)ê√

V̂
+ `,

where

V̂ =
1

`

∑
i 6=j

ê2iP
2
ij ê

2
j

3Hausman, Newey, Woutersen, Chao and Swanson (2012) also suggest an alternative representation of the second

term that avoids double summation from 1 to n, to simplify computations.
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is an estimate of the variance of the modified quadratic form. The test is one-sided, and the decision

rule is to reject the null of instrument validity when

T̂ > q
χ2(`−k)
φ .

Note that here the chi-squared distribution is used as an asymptotic equivalent of the normal

distribution when instruments are many, as in the robust test of Anatolyev and Gospodinov (2011a)

(see subsection 4.9): while the modified quadratic term is asymptotically centered normal, the

additional ‘`’ term makes it asymptotically chi-squared when ` is large (cf. subsection 3.2). The

test described works with many instruments whether there is homo- or heteroskedasticity. It also

works with few instruments under homoskedasticity, but it does not work under heteroskedasticity

when instruments are few.

Crudu, Mellace, and Sandor (2017) design a hybrid parameter and specification test based on

the Anderson–Rubin statistic and Bekker and Crudu (2015) symmetric jackknife objective function.

In a way, this is a generalization of the Anatolyev and Gospodinov (2011a) test robust to conditional

heteroskedasticity and asymptotically unbalanced instrument design.

6 Many weak instruments

6.1 Concentration parameter

Let us return to the homoskedastic version of the instrumental variables model with many in-

struments. Recall that another critical assumption of many instrument asymptotics, apart from

`/n → α > 0 as n → ∞, is the asymptotic non-triviality of information embedded in the set of

instruments: n−1Γ′Z ′ZΓ→ Q, and Q is positive definite. In fact, this is a situation of many strong

instruments: instruments are many and they are strong as a group, though most are individually

weak or even irrelevant.

However, in microeconometric practice, a more typical situation is when the number of instru-

ments is indeed large but still tiny relative to the sample size, so that the alternative assumption

that `→∞ but `/n→ 0 (in previous notation, α = 0) is more to the point. At the same time, the

instruments are little informative and weak as a group, so that a more suitable assumption would

be n−1Γ′Z ′ZΓ → 0 (in previous notation, Q = 0). This is a situation of many weak instruments

(e.g., Chao and Swanson, 2005; Stock and Yogo, 2005b).

In this and related contexts, a sensible measure of instrument informativeness is the concen-

tration parameter (assuming k = 1)

µ2n =
Γ′Z ′ZΓ

Ω
,

which measures the balance between the explained and unexplained portions in the reduced form

equation. In the traditional large sample asymptotics or in the many instrument asymptotics,

µ2n = O(n). In the many weak instrument asymptotics, µ2n = o(n).

Let us get back to the Angrist and Krueger (1991) application. We know that the instruments

are numerous, as ` = 180. However, this number is still tiny compared to the sample size: n ≈
330, 000. That is, `/n is essentially zero. If we look at the concentration parameter though, its
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value is estimated at µ2n ≈ 257 (Hansen, Hausman and Newey, 2008). This figure is also of a much

smaller order than the sample size, and it is of the same order as `, the number of instruments.

6.2 Asymptotic distributions

A relatively simple asymptotic conclusion results under the following assumptions (Stock and Yogo,

2005b; Hansen, Hausman and Newey, 2008). The number of instruments is large but tiny related

to the sample size:

`→∞, `

n
→ 0.

A proper terminology for such a situation is moderately many instruments as opposed to many.

The set of instruments is now little informative relative to the sample size, but well informative

relative to the their quantity:
Γ′Z ′ZΓ

`
→ Q̃,

where Q̃ is positive definite. It follows that in terms of the concentration parameter, µ2n = O(`) =

o(n). Then (for example), the LIML estimator under error normality is asymptotically normal:

√
`
(
β̂LIML − β0

)
d→ N

(
0, σ2Q̃−1 + Q̃−1

(
σ2Ω− ΣΣ′

)
Q̃−1

)
.

Note that the rate of convergence is
√
` = o (

√
n). Recall that it is numerosity of instruments that

gives rise to the asymptotic normality of bilinear forms contained in the LIML estimator. Note also

the similarity of the form of asymptotic variance to that in the many instrument case (see subsection

4.4). Hansen, Hausman and Newey (2008) show via simulations that these asymptotics provide a

good approximation when ` is sufficiently large even when instruments are little informative as in

Angrist and Krueger (1991).

More general cases leading to more sophisticated asymptotic statements are discussed in Chao

and Swanson (2005), Hansen, Hausman and Newey (2008), Hausman, Newey, Woutersen, Chao

and Swanson (2012) and Chao, Swanson, Hausman, Newey and Woutersen (2012). In particular,

they cover the possibilities that the number of instruments grows (i.e. `→∞) as fast as the sample

size or slower (i.e. `/n→ α ≥ 0) and as fast as their informativeness (i.e., µ2n = O(`)) or even faster

(i.e., µ2n = o(`) if α = 0). Moreover, different regressors may correspond to instruments of different

degrees of informativeness: this degree is
√
n for the regressors which are included instruments,

and is o(
√
n) for the truly endogenous regressors. This leads to different rates of convergence of

estimates of different coefficients in the structural form. The parameter estimators, asymptotic

variance estimators and inference procedures proposed in Hansen, Hausman and Newey (2008),

Hausman, Newey, Woutersen, Chao and Swanson (2012) and Chao, Swanson, Hausman, Newey

and Woutersen (2012) are all robust to many weak instruments.

One of the interesting and peculiar results within this general framework is the following

(see Chao and Swanson, 2005; Hansen, Hausman and Newey, 2008). Let ` → ∞ and `/n → 0,

i.e. instruments are moderately many; let `/µ2n → ∞, i.e. instrument numerosity exceeds their

informativeness; yet let
√
`/µ2n → 0, i.e. they are not too many so that the parameter identification
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obtains. Relax the assumption of error normality. Then the LIML estimator has the following

asymptotics:
µ2n√
`

(
β̂LIML − β0

)
d→ N (0, V2 + V4) ,

where the variance components V2 and V4 have the nature described in subsection 4.4. Note that

the rate of convergence is dictated by the exceedance of the degree of instrument informativeness

over their numerosity, and may be quite small if the ‘signal’ in the instrument set only slightly

dominates the ‘noise’. Another peculiarity is that the ‘traditional’ LIML variance component V1

and ‘skewness’ component V3 are dominated by the ‘many instruments’ component V2 and ‘excess

kurtosis’ component V4 and do not survive in the limit.

6.3 Asymptotic inference

For the null hypothesis of structural parameter restrictions

H0 : c′β = c′β0,

where c is k × 1 vector of constants, an appropriate t-statistic and its asymptotic distribution are

c′(β̂EST − β0)√
c′V̂ EST c

d→ N (0, 1) ,

where EST is LIML or FULL in a homoskedastic model andHLIM orHFUL in a heteroskedastic

model. The decision rule is the usual one based on quantiles of the standard normal distribution.

Importantly, it is shown in Hansen, Hausman and Newey (2008) and Hausman, Newey, Woutersen,

Chao and Swanson (2012) that the above pivotization takes care of correct rates of convergence

even if they are different across different parameters. Hansen, Hausman and Newey (2008) compute

that the returns to schooling coefficient in the Angrist and Krueger (1991) application, is estimated

by FULL at 0.106 with the confidence interval (0.078, 0.134).

Hansen, Hausman and Newey (2008) propose a modified version of the Lagrange multiplier

statistic of Kleibergen (2002) and Moreira (2009), which is asymptotically χ2 (k) distributed under

the null of a true parameter vector under many weak instruments. This test can be used to construct

confidence regions. In addition, Hansen, Hausman and Newey (2008) conjecture that the Stock

and Yogo (2005a) test for weak instruments can be used in the context of many (possibly) weak

instruments if one uses the above many weak instrument asymptotics in place of one based on few

weak instruments.

7 Many regressors

Sometimes in applied practice, the number of included regressors in a mean regression is large and

comparable with the number of observations. In this section, we change our focus and consider

mean regression models when the number of regressors is sizable.
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Apart from different empirical contexts, the many instrument setup and many regressor setup

are sharply different: in their basic formulations, the former assumes an asymptotically fixed num-

ber of parameters in the estimated equation (often, just one parameter of a single endogenous

variable),4 while the latter contains many of them, an asymptotically infinite number.

7.1 Literature on many parameter models

The literature on econometrics of parametric regression models with many regressors is much

thinner than that on instrumental variables models with many instruments, for several reasons.

One is that setups with endogeneity and hence instrumental variables arise in microeconometric

practice more often and more naturally than mean regressions with full exogeneity of all regressors.

Second, the abundance of instruments may well be due to the formulation of the model in the

conditional restriction form, which gives rise to a possibility of creating nonlinear combinations

and interactions of a given small set of basic instruments, while a number of regressors/covariates

is a built-in feature of a given conditional mean formulation. Third, big instrument sets may be

driven by a desire to utilize more information in the instruments in the face of their weakness,

while in the mean regression context there is no room for such a phenomenon. As a result, the

many regressor econometrics has received less attention than many instruments. Nevertheless, the

literature on many regressors, however thin, does exist and contributes to methods that an applied

microeconometrician needs to possess. The tools of dimension asymptotics required in the many

regressors framework often utilize the same or similar asymptotic theorems as those described in

Section 3.

The problem with many regressors is a special case of a problem with many parameters, i.e.

when the number of parameters increases to infinity with the sample size. The statistical literature

was interested in estimation of parameters in a linear regression under dimension asymptotics back

in 70-80’s; see, e.g., Huber (1973) and Portnoy (1984, 1985). The interest was focused mainly on

establishing maximal growth rates of a number of regressors relative to the sample size when the

usual asymptotic properties of estimators (consistency and asymptotic normality) do not change; for

example, Portnoy (1985) establishes that (m logm)3/2 /n→ 0 is sufficient for asymptotic normality

to hold. Of course, the ratio m/n is asymptotically negligible (µ = 0). Koenker and Machado (1999)

show that the traditional inference in general GMM problems is valid when the dimensionality of

the problem grows no faster than O
(
n1/3

)
.

The interest in the framework with m = O (n) in the regression context arose early. For

example, Huber (1973) pays special attention to the case when m/n is non-negligible. However,

appropriate asymptotic tools were not available at the time; Huber (1973, p.82) conjectures that

such a setup is “unlikely to yield to a reasonable simple asymptotic theory.” Much later, when

suitable large sample theorems became invented and documented, corresponding asymptotics for

OLS estimation and inference were developed, in particular in Calhoun (2011) and Anatolyev

(2012), who construct tests for multiple linear hypothesis about coefficients in a homoskedastic

model but do not consider their estimation (see subsection 7.2). El Karoui, Bean, Bickel, Lim,

4... of course, not counting nuisance parameters, for example, implicitly estimated in the first stage of 2SLS.
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and Yu (2013) derive the asymptotic normality of least squared estimates of parameters in a model

where errors are independent of gaussian regressors. Li and Müller (2016) further propose a test for

parameters of interest in a heteroskedastic model when the explanatory power of nuisance covariates

have a bounded asymptotic growth. In Cattaneo, Jansson and Newey (2018b), the estimation of an

asymptotically finite set of parameters of interest is considered, and consistent variance estimators

in a heteroskedastic environment are developed (see subsection 7.3).

How empirically justified are these developments? On the one hand, Koenker (1988) discovers

in his metastudy that the parameter dimensionality in empirical studies of cross-sectional wage

equations is roughly O
(
n1/4

)
. However, the practical importance of the case m = O (n) in crys-

tallography was mentioned as early as in Huber (1973). In economics, a perceptible ratio of m to

n may occur, for example, in growth regressions, regressions run for few transition or third world

countries, or predictive regressions with many predictors. Calhoun (2011) illustrates his proposed

test with a macroeconomic application to monetary policy shocks and with an application based on

previous studies of economic growth. Last, but not least, a big number of regressors can also result

from approximating the unknown regression function by expanding to a series of approximating

functions (see subsection 7.3), as in Cattaneo, Jansson and Newey (2018a).

In the remainder of this section, we describe from a practical viewpoint the methods of hy-

pothesis testing and parameter estimation in linear regression models with many regressors.

7.2 Hypothesis testing

Earlier econometric literature noticed problems that the classical tests experience when there are

many regressors and many restrictions. Berndt and Savin (1977) document huge conflicts between

the classical Wald, likelihood ratio and Lagrange multiplier tests. Rothenberg (1984) discovers a

big error in approximating the Wald statistic by chi-squared distribution in these circumstances.

Burnside and Eichenbaum (1996) find out that the actual size of the Wald test increases sharply

with a number of restrictions imposed under the null. The conventional testing tools developed

under the traditional asymptotics fail to account for these phenomena. The analysis of inference

in the regression context using the dimension asymptotics is undertaken in Anatolyev (2012) and

Calhoun (2011).

Anatolyev (2012) considers a linear homoskedastic regression with fixed regressors

yi = x′iγ + ei,

where E [ei] = 0, E[e2i ] = σ2e , and xi and γ are m × 1 vectors. A standard hypothesis containing

r ≤ m linear restrictions

H0 : Rγ = q,

where q is r × 1 and matrix R has full row rank r, is tested. Denote

x∗i = R
(
X ′X

)−1
xi,

and let P and P ∗ be projection matrices associated with xi and x∗i , respectively.
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The Bekker-type many regressor and (possibly) restriction asymptotics assumes that as n →
∞,

m

n
→ µ > 0,

and either r is fixed, or
r

n
→ ρ > 0.

Anatolyev (2012) additionally assumes an asymptotically balanced design of regressors xi and

vectors x∗i (see subsection 3.4).

The results are qualitatively different depending on whether the restrictions tested are few

or many, i.e. whether r is asymptotically fixed or ρ > 0. The former case includes a null that

an individual regression coefficient takes a particular value, most often zero, and a null of joint

insignificance of several regression coefficients. The latter setup includes a test for many exclusion

restrictions, e.g., joint significance test for all slope coefficients except, possibly, their small number.

If the restrictions are few, then under H0, the standard trio of statistics, some adjusted for

degrees of freedom, are asymptotically chi-squared:

W
d→ χ2(r),(

1− m

n

)
LR

d→ χ2(r),(
1− m

n

)
LM

d→ χ2(r).

If r = 1, the conventional t-statistic is asymptotically standard normal. That is, apart from the

degrees-of-freedom adjustment for the likelihood ratio and Lagrange multiplier tests, the conven-

tional tests work, and they are (after the adjustment) robust to the numerosity of regressors.

When the restrictions are many, the results are strikingly different. The W, LR and LM tests

are asymptotically incorrect for a similar reason as the chi-square tests are distorted when there

are many instruments (see subsection 3.2). Anatolyev (2012) shows that the suitably recentered

and normalized test statistics are asymptotically normal in the framework of many regressors and

restrictions,5 and the asymptotic normality can be converted to asymptotically equivalent chi-

squaredness. In particular,
√
r

(
W

r
− 1

)
d→ N (0, 2 (1 + λ)) ,

where

λ =
ρ

1− µ
(cf. subsection 3.2). The emerging corrected Wald test rejects H0 if

W > q
χ2(r)

φC
,

where φC = Φ(
√

1 + r/(n−m)Φ−1 (φ)), and φ is a target significance level. That is, the corrected

Wald test uses a corrected significance level so that the target significance level is asymptotically

5Normal asymptotic approximations for traditional asymptotic chi-squared tests can be found in earlier literature

where the dimensionality grows slower than the sample size. See, for example, Hong and White (1995) for regression

specification testing and Donald, Imbens and Newey (2003) for empirical likelihood based conditional moment testing.
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obtained. Note that the corrected test is robust to the numerosity of regressors and restrictions

as φC → φ when ρ → 0, and the conventional Wald test results. The LR and LM tests can be

corrected similarly, though require additional normalization.

Anatolyev (2012) also considers the ‘exact F’ test, which compares the F-statistic against the

critical values of the Fisher-Snedecor distribution and controls the size exactly in a normal linear

regression. It is shown that under an asymptotically balanced regressor design, the ‘Exact F’ test

is asymptotically valid without error normality, irrespective of whether the regressors are many

or few and whether the restrictions are many or few. Calhoun (2011) shows that when neither

error normality nor asymptotically balanced design hold, there is an extra term in the asymptotic

variance of the rescaled F statistic (cf. subsection 3.2). Assume, for simplicity, the conditional

homokurticity of errors6 and denote the excess kurtosis by κ. Then

√
r (F − 1)

d→ N

(
0, 2 (1 + λ) +

κ

ρ
lim

1

n

n∑
i=1

((P ∗ii − ρ) + λ (P ∗ii − µ))2
)
.

Based on this result, Calhoun (2011) also proposes a corrected F statistic that takes into account

this increase in asymptotic variance. The corrected F statistic also adapts to a situation of few

regressors in which case it mimics the properties of the regular F statistic. It turns out to be

very tricky to consistently estimate the excess kurtosis parameter κ using regression residuals (cf.

subsection 4.11).

7.3 Parameter estimation and inference

When m is an asymptotically nonnegligible fraction of n, one has to be careful with the asymptotic

properties of parameter estimates whose number is asymptotically increasing. It makes sense to

focus on an asymptotically fixed number of regression parameters of interest, the others being

nuisance parameters:

yi = x′iβ0 + z′iγ + ei, E [ei|xi, zi] = 0,

where the dimension of β0 is fixed, while the dimension of γ grows proportionately with the sample

size. The conditionally homoskedastic case falls into the instrumental variables setup with few

instruments of Anatolyev (2013, Section 3) and the partial linear regression setup of Cattaneo,

Jansson and Newey (2018a, subsection 3.2). It turns out that in a linear homoskedastic regression,

the traditional OLS estimation and inference are valid once a degrees-of-freedom adjustment is

made, despite the presence of many nuisance covariates.

Cattaneo, Jansson and Newey (2018b) consider the case of conditional heteroskedasticity. They

point out that the Eicker–White estimator asymptotic variance of the OLS estimator is asymptot-

ically invalid, and propose another estimator whose ‘middle of the sandwich’ matrix is constructed

as
1

n

n∑
i=1

n∑
j=1

κij(MX)i(MX)′iê
2
j ,

6That is, almost sure constancy of their conditional fourth moments.
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where M is the residual projection matrix associated with the nuisance regressors, êi’s are OLS

residuals, and the matrix K = ‖κij‖ni,j=1 is K = (M �M)−1. Such a choice of K ensures that the

target conditional expectation

1

n

n∑
i=1

(MX)i(MX)′iE
[
e2i |X,Z

]
matches the leading term in the conditional expectation of the variance estimator:

E

 1

n

n∑
i=1

n∑
j=1

κij(MX)i(MX)′iê
2
j

∣∣X,Z
 =

1

n

n∑
i=1

n∑
j=1

n∑
k=1

κikM
2
kj(MX)i(MX)′iE

[
e2j |X,Z

]
+ o(1).

The validity of this variance estimator requires that the number of nuisance regression parameters

is less numerous than half of the sample size. Interestingly, the above estimator can be viewed as

an Eicker–White one with bias-corrected squared residuals. Anatolyev (2018) proposes to set K =

(M �M − PM � PM )−1 , where PM is a projection matrix associated with MX. This correction is

aimed to reduce the bias of the variance estimator to improve the control over the test size.

Cattaneo, Jansson and Newey (2018a, 2018b) also consider a partial linear regression

yi = x′iβ0 + g(zi) + ei, E [ei|xi, zi] = 0,

where a series expansion of the nonlinear part g(zi) generates many nuisance regressors. Cattaneo,

Jansson and Newey (2018a) show that under conditional homoskedasticity, the OLS estimator and

usual variance estimator are consistent if g(zi) and E [xi|zi] are approximated by linear forms in

nuisance regressors well enough. Cattaneo, Jansson and Newey (2018b) derive conditions, under

which their asymptotic variance estimate is valid.

Kline, Saggio and Sølvsten (2018) propose a general consistent estimator for quadratic forms in

regression parameters in a many-regressor heteroskedastic linear regression. They use jackknife-type

correction for the bias arising from ‘diagonal’ elements in the quadratic form and the leave-one-out

principle for estimation of individual variances. This theory is helpful, in particular, in constructing

variance estimates for and doing inference about linear combinations of regression parameters.

Numerosity of regressors may manifest itself in circumstances other than the inclusion of them

as regressors in an estimated equation. Cattaneo, Jansson and Ma (2018) investigate the con-

sequences of including a (moderately) large number of regressors in the first step regression on

parameter estimates in the second step, in a general GMM framework with generated regressors.

The critical rate of numerosity of regressors turns out to be m = O (
√
n) , in which case the nu-

merosity of first step regressors induces an inconsistency bias in the distribution of the second step

estimates, in addition to higher-order effects on the asymptotic variance. Cattaneo, Jansson and

Ma (2018b) propose a hybrid procedure containing jackknifing to eliminate the asymptotic bias to-

gether with bootstrapping to account for additional variability caused by the generated regressors

and jackknife bias correction.
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8 Modifications and extensions

8.1 Alternative estimators

In addition to the main procedures described in the previous sections, some other estimators of

structural coefficients in the (possibly weak) many instrument environments have been proposed

in the literature.

In a model with only one endogenous regressor and normal errors, Chamberlain and Imbens

(2004) develop a random effects (RE) estimator whose likelihood function puts a random coefficients

structure on the coefficients in the reduced form. One of the restricted versions of the RE estimator

is equivalent to LIML. The unrestricted RE estimator and its standard error bring improvements

in inference in finite samples when there are many weak instruments. Chamberlain and Imbens

(2004) find that the returns to schooling coefficient in the Angrist and Krueger (1991) application7

is estimated by RE at 0.096 with the confidence interval (0.056, 0.139) as opposed to 0.094 and

(0.061, 0.129) when estimated by LIML. The difference is small, especially compared to the 2SLS

result with a (biased) point estimate of 0.073 and a (invalid) confidence interval of (0.057, 0.089).

In a similar model with non-normal errors, Kolesár (2018) investigates the class of minimum

distance (MD) estimators based on moment conditions for the two sufficient statistics. He shows that

under error normality, the efficient MD estimator is identical to the RE estimator. He also proposes

an efficient minimum distance estimator under error non-normality, which is asymptotically superior

to the LIML estimator.

Bekker and Wansbeek (2016) construct a concentrated instrumental variables estimator that

uses 2SLS in two (or more) steps thus avoiding LIML. In the first step, a ‘concentrated’ few-

dimensional instrument is constructed, which is used via 2SLS in the second step (which may

be iterated to achieve consistency). Under conditional homoskedasticity and error normality, this

estimator is asymptotically equivalent to LIML.

Sølvsten (2017) adapts LIML estimation to non-normal, possibly thick-tailed structural er-

rors. His optimal robust estimator is minimax optimal in a class of estimators that includes LIML.

Sølvsten (2017) establishes consistency and asymptotic normality under many instrument asymp-

totics, and also provides a consistent variance estimator. In simulations, it is found that efficiency

gains from the optimal robust estimator when may be substantial relative to that of LIML when

the structural errors have thick tails.

8.2 Bootstrapping

It is well known that the presence of weak instruments (recall that many instruments imply that

almost all instruments are individually weak) invalidates conventional bootstraps. Wang and Kaffo

(2016) consider a variety of bootstrap procedures for the LIML and FULL estimators in the context

of a conditionally homoskedastic regression with many or many weak instruments. One is the

standard residual bootstrap, with instruments staying fixed in bootstrap samples. Another is

7Chamberlain and Imbens (2004) use a cut sample (only from the 1st and 4th quarters) and an inflated set of

instruments (in addition to interactions with states and years, interactions with state/year combinations).
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Davidson and MacKinnon’s (2008) restricted efficient bootstrap, where the null is imposed in

bootstrap samples and reduced form estimates are more efficient. Wang and Kaffo (2016) show

that these bootstraps are not asymptotically valid because the instrument strength is exaggerated

in bootstrap samples, and, as a result, the asymptotic variance and even the rate of convergence

may be distorted in them. Wang and Kaffo (2016) propose modifications of the restricted efficient

bootstrap that allow one to reach asymptotic validity, at least under asymptotically balanced

instrument design (see subsection 3.4) or when instruments are few compared to sample size but

whose number is comparable to the concentration parameter. This is achieved by appropriately

rescaling the residuals and using alternative reduced form estimates. Wang and Kaffo (2016) verify

via simulations that their bootstrap inferences, both percentile and percentile-t, yield a much more

correct size control than the baseline alternatives, and have good power properties. Kaffo and Wang

(2017) propose bootstrap alternatives to Anatolyev and Gospodinov’s (2011) corrected J and AR

tests under asymptotically balanced instrument design.

In the regression context, El Karoui and Purdom (2016) explain why the residual bootstrap

does not work and needs modification when regressors are many; the pairs bootstrap has problems

as well. Richard (2017) studies the properties of bootstrap tests under many regressors and many

restrictions. In the framework of Anatolyev (2012), where the regressors have an asymptotically

balanced design, he shows the asymptotic validity of the (fixed regressor) bootstrap F, LR and

LM tests, which are also robust to the numerosity of regressors and restrictions. Under an asymp-

totically unbalanced design, Richard (2017) proposes bootstrapping Calhoun’s (2011) modified F

statistic instead. Richard (2017) notices that because of a mismatch between the bootstrap and

sample third cumulants, such a bootstrap is not likely to provide asymptotic refinements in general.

8.3 Panel data models

Dynamic panel data models provide an environment where many instruments arise naturally after

first differencing. If T is the panel’s time dimension, the number of instruments implied by the

difference or system GMM procedures is of order O(T 2), and if T is even moderately large, the

number of instruments can be comparable to the cross-sectional dimension. Some of the related

literature focuses on deriving biases of various GMM estimators (e.g., Bun and Kiviet, 2006) or

simply reducing the instrument count by limiting lag depth (see Roodman, 2009). Other literature

tries to invent ways to eliminate biases or constructing alternative estimators. For example, Okui

(2009) proposes algorithms to select moderately many instruments when T = o(n). Arellano

(2016), using an auxiliary parametric model for the instruments, constructs an optimal instrument

such that the corresponding estimator lacks the biases in the T = O(n) asymptotic setup and has

optimality properties in the fixed T setup.

Alvarez and Arellano (2003) analyze a number of estimators, including GMM and LIML, in

an autoregressive dynamic panel model under the joint asymptotics n, T →∞ when T/n→ τ > 0.

They utilize all available instruments in differences, whose number is of order ` = O(T 2) = O(n2)

so the ratio of the number of orthogonality conditions to the total sample size `/(nT ) is asymptot-

ically a nonzero constant. Interestingly, despite such abundant instrument numerosity, both GMM
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and LIML estimators of the autoregressive coefficient turn out to be consistent, asymptotically

normal, and asymptotically equally efficient, though having different higher-order biases. Alvarez

and Arellano (2003) explain the consistency of GMM by the fact that the endogeneity bias asymp-

totically goes down. Akashi and Kunitomo (2012) consider a dynamic panel model with generic

endogenous regressors. They show that when T/n → τ > 0, the differences-GMM estimator is

inconsistent, while the LIML estimator is consistent and asymptotically normal with asymptotic

variance containing four components along the lines of subsection 4.5.

8.4 Spatial data models

In spatial autoregressions, the spatial autoregressive term induces endogeneity, hence causing a

problem of instrumental variables estimation. Liu (2012) considers the genuine LIML estimator

and shows that if instruments are moderately many, i.e. ` = o(n), then the LIML estimator is

consistent, but it is not if instrument are many, i.e. ` = O(n), because of spatial correlation. Liu

and Lee (2013) consider instead 2SLS estimation and aim at the selection of (moderately many)

instruments using Donald and Newey’s (2001) criterion of minimization of the approximate mean

squared error.

8.5 Robust regression

El Karoui, Bean, Bickel, Lim and Yu (2013) consider a linear homoskedastic many-regressor re-

gression model whose parameters are estimated via loss functions other than quadratic. It turns

out that non-quadraticity of the loss leads to additional complications. In particular, the norm

of the difference between the vectors of estimates and true parameters asymptotically depends on

the error distribution. Another peculiarity is that the residuals cease to be a linear transformation

of the true errors; this, in particular, limits possibilities of residual bootstrapping (El Karoui and

Purdom, 2016). These issues are an active research area in high-dimensional statistics.

8.6 Time series models

Unfortunately, when there is dependence across equations for different i, the tools described in

Section 3 do not work. Consider, for example, the same quadratic form. Recall that if there is no

dependence, under many instrument asymptotics

e′Pe

n

p→ ασ2.

Under dependence, the same result is not likely to hold. In an attempt to compute an expectation

of the quadratic form, if one conditions on Z as before,

E

[
e′Pe

n

]
= E

[
E [tr(e′Pe)|Z]

n

]
= E

[
E [tr(PE[ee′|Z])]

n

]
,

this leads to nowhere as E[ee′|Z] is likely to depend on Z in a complex way even under conditional

homoskedasticity because there is cross-equational dependence, in particular, between eiej and zk

for k > max{i, j} if the instruments are predetermined but not strictly exogenous, as is often the

case in time series models.
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8.7 Nonlinear models

The methods related to many instruments and/or regressors are derived for linear models and are

hard to generalize to nonlinear equations. Han and Phillips (2006) develop a general theory for

GMM with many (possibly weak) moment conditions, including the case of many moments, i.e.

` = O(n) where now ` stands for a number of moment conditions. Newey and Windmeijer (2009)

present an extension to continuously updated GMM (an analog of LIML), jackknife GMM (an

analog of JIV) and generalized empirical likelihood (GEL) estimators with many weak moment

conditions when the moments are moderately many, i.e. ` = o(n).

8.8 Very many instruments/regressors

There is a broad econometric literature about dealing with big sets of instruments, with cardinality

possibly exceeding a sample (i.e. ` > n) or even being a continuum. This literature is inspired by

existing statistical techniques related to big data processing. For example, a lasso-type dimension

reduction is proposed in Belloni, Chen, Chernozhukov and Hansen (2012); some regularization

procedures for the LIML estimator are also proposed in Carrasco and Tchuente (2015). These

methods aim at extracting the most useful and relevant information from a host of instruments, and

often rely on strong assumptions about the data structure such as sparsity. Belloni, Chernozhukov

and Hansen (2014) analogously propose handling a very many regressor problem that may result,

in particular, from the approximation of unknown nonlinear forms in partially linear regressions.

Methods of dealing with very many instruments/regressors are useful, should a researcher

be endowed with such big instrument sets. Afterwards, the many (weak) instrument/regressor

techniques described here may be applied as the resulting instrument sets may still be sizable and

call for improved estimation and inference.

9 Empirical strategies

Previous sections describe a lot of econometric tools pertaining to estimation and inference in linear

models with many instruments and/or regressors. In this section we give some guidance on which

tools should be applied when an empirical researcher is confronted with one or both phenomena

depending on the particularities of a given empirical problem.

9.1 Many instruments

This survey focuses on those cases when the set of instruments is large in the sense that the num-

ber of instruments is comparable to the sample size, provided that the instruments are strong as a

group (the case of many instruments) or is moderately large in the sense that their number is large

but much smaller compared to the sample size, provided that the instruments are weak as a group

(the case of many weak instruments). Suppose that a researcher instead faces a linear IV setup

in which the number of instruments is moderately large and that there are no doubts about their
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strength, a situation falling outside the focus of this survey.8 A researcher may then apply methods

for selecting the most informative and least noisy instruments from the given set by exploiting the

trade-off between first order asymptotic variance and higher order asymptotic bias and/or variance

to reach minimal asymptotic MSE. See Donald and Newey (2001) on selecting instruments in a

linear homoskedastic model, and Donald, Imbens, and Newey (2009) on selecting instruments in a

conditional nonlinear heteroskedastic model. Another, possibly better, option, is to employ shrink-

age or model averaging methods for the reduced form to construct the optimal instrument, as these

methods, unlike instrument selection, utilize information from the whole set of instruments and do

not require the pre-ordering of instruments. Okui (2011) suggests shrinking some OLS coefficient

estimates in the first stage of 2SLS, the shrinkage intensity being guided by the asymptotic higher

order MSE criterion, and then using the predicted values as instruments; Canay (2010) exploits the

same idea but shrinks coefficients in a smoother manner and uses heteroskedasticity-robust GMM

estimation. Kuersteiner and Okui (2010) propose a model averaging procedure that generalizes

instrument selection and dominates it in terms of asymptotic higher order MSE.9

In the opposite situation, when the number of instruments is huge and even exceeds the sam-

ple size, dimension reduction methods are called for; one can recommend, in particular, lasso-type

shrinkage tools developed in Belloni, Chen, Chernozhukov and Hansen (2012) for conditionally het-

eroskedastic, non-gaussian models. One has to be aware that their application requires a sparse or

approximately sparse structure of the reduced form, which essentially means that all information is

concentrated in at most a moderately large subset of instruments. When the information instead

is scattered across many instruments, this method is not meant to achieve that goal.10 An alter-

native option is to use various regularization methods as in Hansen and Kozbur (2014), Carrasco

and Tchuente (2015) and Carrasco and Doukali (2017).11 These methods do not require sparsity,

ordering or strength of instruments; all instruments are used even if they are weak.

If the setup does fall into the category this survey is focused on – the instruments are many

and strong (Sections 4–5) or the instruments are moderately many and weak as a group but

their strength is comparable or smaller than their numerosity (Section 6) – the decision of which

exact tools to apply depends on whether there is conditional homoskedasticity and, if yes, whether

the design of the instrument projection matrix is asymptotically balanced and/or the errors have

gaussian third and fourth moments. Most recent developments provide most robust tools that

will work irrespective of homo/heteroskedasticity and the instrument design; they are also robust

to whether the instruments are strong or weak as a group as well as to differences in rates of

8This situation formally may be considered as a trivial case of the many instrument theory, when the noise coming

from instrument numerosity is negligible. The described tools can then still be applied, though without a point.
9These methods do require ` = o(n); Donald and Newey (2001), for example, impose the conditions `/n → 0 and

max1≤i≤n Pii
p→ 0, and so do Okui (2011) and Kuersteiner and Okui (2010), while Canay (2010) requires ` = o(n1/2).

10What is critical in the simulation design in Belloni, Chen, Chernozhukov and Hansen (2012) is that the information

is distributed exponentially across the instruments, which essentially makes only a few of them strong. Setting ` = 100

with n = 100 or 250, i.e. ` not exceeding n, the authors can apply LIML/FULL as well. They report that “the

simulation results verify that FULL becomes more appealing as the sparsity assumption breaks down” (p.2403).
11In general, the method of Belloni, Chen, Chernozhukov and Hansen (2012) allows for huge ` restricted above by

log ` = O(n1/3). Carrasco and Tchuente (2015) and Carrasco and Doukali (2017) do not at all restrict the number of

instruments which may be even infinite.
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convergence across different parameters. Naturally, these tools are robust to few instruments and

the type of asymptotic framework. Apart from and in addition to that, the literature seems to

have converged to the dominance of Fuller-type modification over LIML-based estimators, because

of the existence of their moments.

Thus, in the general case, the most preferable estimator is HFUL (with C = 1) described

in subsection 5.1, accompanied with its variance estimator described in subsection 5.2, and the

most preferable specification test is described in subsection 5.3.12 If the model is homoskedastic

(or sufficiently close to homoskedastic), however, there is a choice. There may be benefits for

switching to estimators and tests targeted to the conditionally homoskedastic model, as the (LIML

and FULL) parameter estimates may be more efficient (see subsection 5.2), the variance estimators

and, consequently, the test statistics have a simpler form (see subsection 4.7 vs subsection 5.2)

and thus contain less noise in finite samples. If, in addition, the instrument design seems to be

sufficiently balanced (which can be verified directly from the data on instruments) or the error

distribution has zero skewness and zero excess kurtosis (which is testable), further simplifications

and thus finite sample improvements are possible (see subsections 4.5 and 4.9). An alternative is to

sacrifice some efficiency and keep using HFUL under conditional homoskedasticity. Another reason

for doing that is, apart from the universal robustness of HFUL, the absence of third and forth

moment terms in its asymptotic variance (unlike that of LIML or FULL) – the terms that are most

tedious to estimate (see subsection 4.7 vs subsection 5.2). Yet another phenomenon an empirical

researcher has to watch for is the possible numerosity of covariates in the structural equation (see

subsection 4.11).13

Often, the instrument set is formed by the researcher, for example, by adding interactions

among those already in use or by adding their nonlinear functions. Thus, there is a choice of

which asymptotic framework the problem eventually falls into. While more instruments means

more asymptotic efficiency, newly generated instruments taken together may be weak, which may

not justify their inclusion given the increasing dimensionality of the asymptotic framework.14 On

the other hand, by including them up to a reasonable limit and using the robust tools described

above does not really do any harm.

Which relationships between instrument numerosity ` and sample size nmay be characterized as

‘many instruments’ or ‘moderately many instruments’? Bruce Hansen notes in his online textbook

(Hansen, 2018): “In an application, users should calculate the ‘many instrument ratio’ α = `/n.

Unfortunately, there is no known rule-of-thumb for α which should lead to acceptable inference,

12An exception is that the specification test is not robust to heteroskedasticity coupled with few instruments; see

subsection 5.3.
13To the best of our knowledge, numerosity of exogenous covariates has not yet been incorporated in the most

general framework.
14To date, there are no available methods on instrument selection/shrinkage/model averaging applicable to the

‘many instrument’ case ` = O(n) in contrast to those cited above for the case ` = o(n). Likewise, there are no

methods for testing for instrument weakness in this framework, analogous to the Stock and Yogo (2005a) test,

although Hansen, Hausman and Newey (2008) conjecture that this test can still be used in the context of many

(possibly weak) instruments if one uses the many weak instrument asymptotics in place of the few weak instruments

asymptotics.
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but a minimum criterion is that if α ≥ 0.05 you should be seriously concerned about the many-

instrument problem.” To try to answer the question more precisely, one can trace simulation sections

of theoretical studies. For example, the simulations in Donald and Newey (2001) and Kuersteiner

and Okui (2010) are tuned to n = 100 with ` = 20 and n = 1000 with ` = 30; those in Donald,

Imbens, and Newey (2009) are tuned to n = 200 with ` = 10 and n = 800 with ` = 20. All

three papers consider designs with the first stage R2 = 0.10, although sometimes also include the

weak instrument design with R2 = 0.01. These are situations of ‘moderately many instruments,’

in the latter case coupled with weak instruments. Anatolyev and Gospodinov (2011a) set `/n =

0.04, 0.2, 0.5, 0.8. While the first and possibly second value also correspond to the same situation,

the other two clearly belong to the ‘many instruments’ case. When instruments are weak, the

relationship between instrument numerosity ` and concentration parameter µ2n becomes important

as well. For example, Hausman, Newey, Woutersen, Chao and Swanson (2012) set n = 800 with

` = 30 and µ2n = 8, 32, as well as with ` = 10 and µ2n = 16. Chao, Hausman, Newey, Swanson, and

Woutersen (2014) choose n = 800 with ` = 10, 30, 50 and µ2n = 8, 32. Bekker and Crudu (2015) use

the same design, also setting n = 800 with µ2n = 8, 32 but ` = 2, 5, 15. These figures are able to

provide an idea about what kind of practical situations are meant to fit the theory.

9.2 Many regressors

In models with many regressors, the situation is more straightforward, as there are no weakness

issues. If the regressor set is numerous but still very small compared to the sample size (‘moderately

many regressors’), one may still apply traditional asymptotic tools for estimation and inference.

If, on the contrary, the regressors are abundant (‘very many regressors’) because of, for example,

lots of potential covariates may be determinants of the outcome variable, then dimension reduction

tools, such as lasso-based methods of Belloni, Chernozhukov and Hansen (2014), are in order.

However, if the number of regressors is smaller but comparable to the number of observations

(‘many regressors’), one should apply the methods described in Section 7 of this survey.

The estimator of choice is OLS, which is consistent for coefficients of interest (of which there

should be few). If the target is to test (few or many) restrictions about regression parameters

in a homoskedastic regression (for example, in the course of model building), the relevant tools

are described in subsection 7.2.15 The preferred test is the F test, possibly robustified against

an asymptotically unbalanced regressor design. Under heteroskedasticity, the appropriate variance

estimator for OLS estimates of coefficients of interest is given in subsection 7.3. The ‘many re-

gressors/restrictions’ situation is distinguished from the ‘moderately many regressors/restrictions’

situation in the same way as ‘many instruments’ are distinguished from ‘moderately many instru-

ments.’

15To the best of our knowledge, there are no available methods to date on testing many restrictions in the condi-

tionally heteroskedastic regression with many regressors.
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10 Concluding remarks

We have surveyed the state of the art in the econometrics of regression models with many instru-

ments and/or many regressors. While the ideas behind the modern analysis of such models were

put forth several decades ago in 1980-90s, a burst of developments has occurred quite recently

within the last decade, and some are still occurring. There are some open questions regarding,

in particular, estimation efficiency, the selection of instruments, and the applicability to nonlinear

and time series models. There is also, unfortunately, a significant gap between the existing the-

ory and prevailing practice, as often happens when alternative approximation ideas and advanced

econometric methods are involved. This survey will hopefully narrow that gap.
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