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Optimal Instruments in Time Series: A Survey

Abstract

This article surveys estimation in stationary time series models using the approach of

optimal instrumentation. We review tools that allow construction and implementation

of optimal instrumental variables estimators in various circumstances – in single- and

multiperiod models, in the absence and presence of conditional heteroskedasticity, by

considering linear and nonlinear instruments. We also discuss issues adjacent to the theme

of optimal instruments. The article is directed primarily towards practitioners, but also

may be found useful by econometric theorists and teachers of graduate econometrics.

Keywords
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ciency bounds; Stationary time series.
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1 Introduction

In stationary time series models, achieving consistent estimation is rarely a difficult issue.

As a rule, there is abundance of valid instrumental variables (IV) that may be used for

such estimation; these are usually taken from the set of historical variables and possibly

their functions. Achieving asymptotically most efficient estimation, however, is a more

challenging task, given that the set of valid instruments to choose from is typically infinite,

and even “double-infinite” both spreading into an infinite past and embracing all nonlinear

functions. In this survey, we gather recent results pertaining to efficient estimation by

instrumental variables of time series models that are characterized by an infinite set of

potential instruments, with a hope that the appropriate methods will gain more popularity

among applied econometricians. After all, even though achieving more efficiency may

be effortful and may come at certain computational cost in most complex situations,

consistency of estimation is not lost, and a practitioner does not risk anything, so why

not trying it?

Applied time series econometricians are nowadays accustomed1 to using the general-

ized method of moments (GMM) of Hansen (1982), which can be recast as instrumental

variables estimation, and more often think of ways to use GMM most optimally. The

available surveys devoted to GMM in time series only marginally discuss the issue of op-

timal instrumentation (see, for example, Harris, 1999; Hansen L.P., 2002; Hansen B. and

West, 2002)2. Section 7.2 in the recent manuscript Hall (2005) handles this topic, but it

does not contain most recent results, particularly applicable for the general case charac-

terized by serial correlation and conditional heteroskedasticity. The present review fills

this gap. As it is directed primarily towards practitioners, the narration is least rigorous

as it can probably be, given the technicality of this topic. To facilitate comprehensibility,

in Section 2 we list several examples from applied econometric practice where the idea

of optimal instrumentation may be implemented, while in Section 11 we illustrate some

of techniques using a macroeconomic example and real data. We also want to emphasize

that the approach being surveyed is constructing instruments that are a priori known to

be optimal, rather than picking or selecting instruments from a list, which is, of course,

a valid and interesting topic on its own (we list several articles representing the latter re-

search direction at the end of this survey). For simplicity and transparency, linear single

equation models are treated throughout.

We start in Section 3 by considering optimal instrumentation for unconditional mo-

ment restrictions. The problems considered here are theoretically, rather than empirically,

motivated; this material is included in order to introduce certain concepts in a simplest

framework. In contrast, Sections 4 through 9 are devoted to conditional moment restric-

tions that do arise in practice. In Section 4 we introduce the optimality condition derived

1This is clearly evidenced by the JBES 20th anniversary issue on the generalized method of moments.
2Lars Peter Hansen eloquently described the evolution of his ideas on efficiency bounds in a JBES

interview (Ghysels and Hall, 2002).
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in Hansen (1985), the key tool to finding the form of the optimal instrument in various cir-

cumstances. In Section 5 we consider the case of single-period moment restrictions, where

the moment function becomes in the information set in the next period (i.e., is a martin-

gale difference) and hence is serially uncorrelated. In a sense, this case is analogous to that

in an IID environment, as the form of the optimal instrument is the same static function

of certain conditional expectations, viz. the conditional expectation of the gradient of the

moment function predivided by its conditional variance matrix (cf. Chamberlain, 1987),

and further simplifies in a conditionally homoskedastic case (Amemiya, 1974). A vari-

ety of intertemporal macroeconomic and financial models instead give rise to multiperiod

moment restrictions, where the moment function is serially correlated to a finite known

order. The GMM estimation procedure in these situations does not change dramati-

cally, but the conditions for an instrument to be optimal become more complicated. In

Sections 6 and 7 we review the cases of conditional homoskedasticity and conditional het-

eroskedasticity, respectively. Under conditional homoskedasticity, Hansen (1985) found

that the optimal instrument takes a dynamic form of a certain recursive relation. Under

conditional heteroskedasticity, Hansen, Heaton and Ogaki (1988) presented an elegant

characterization of the efficiency bound (i.e., a minimal attainable asymptotic variance).

This theory leads to the optimal instrument whose form described in Anatolyev (2003b)

has an additional difficulty that its dynamics is implicitly defined. In Section 9, we review

an alternative route in the optimal IV literature where one artificially contracts the set

of allowable instruments thus sacrificing efficiency in order to attain the efficiency bound

relative to this narrowed set of instruments. The motivation behind such a seemingly

strange move is relative easiness of attaining the new efficiency bound. In Section 10

we make numerical comparisons of asymptotic efficiency for optimal in various senses IV

estimators as well as some of their competitors in a simple example, in order to get a feel

of efficiency–complexity trade-offs.

Throughout, we also discuss ways of implementing the optimal IV estimators, in most

complex cases having to adapt approximations. Apart from a complicatedness of the form

of the optimal instrument, this step intrinsically contains other difficulties specific to the

time series context. While in cross-sections the state vector is typically finite dimensional,

here it may contain all infinite past, which makes nonparametric estimation of the needed

conditional expectations more problematic. An alternative direction entails making auxil-

iary parameterizations, and may be viewed as non-comforting by an econometric theorist;

the reasoning against this direction is a resulting reduction of robustness of the GMM

approach. A practitioner, however, may be comfortable with fully or partially parame-

terizing the auxiliary processes (e.g., the conditional variance by a parametric GARCH),

with an understanding that the efficiency may be lost and that more robust inference

methods are needed (“sandwich” estimation of asymptotic variance, etc.). Unfortunately,

there are few examples of application in empirical work, and the guidance to feasible im-

plementation provided by the theoretical literature is rather limited. However, we devote
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separate Section 8 to a discussion of issues of estimation of conditional expectations listing

helpful references to a recent literature on nonparametric estimation.

Last, but not least, in Section 12 we briefly discuss issues adjacent to the theme of

optimal instrumentation in order to provide a more complete characterization of the place

of this interesting topic in a broader context of econometric theory and practice. This

includes, among other aspects, applicability of similar ideas to panel data and nonstation-

ary time series, and a connection to notions of instrument redundancy, semiparametric

efficiency bounds, and empirical likelihood estimation.

2 Econometric examples

To begin with, we list several examples from applied econometric practice where the idea

of optimal instrumentation may be used. Typically, the conditioning set is infinite, and

contains the entire history of one or more variables. The question is how to optimally

exploit the information in this wide set of potential instruments.

Example 1 When one stationary variable, say xt, is used to forecast another, say yt,

testing for forecast unbiasedness or predictive ability leads to the moment restriction

E [yt+q − α− βxt |xt, yt, xt−1, yt−1, · · · ] = 0.

In Fama (1975), xt is interest rate and yt is inflation; in Mishkin (1990), xt is slope of

term structure of nominal interest rates and yt is either real interest rate or change in

inflation; in Hansen and Hodrick (1980), xt is forward premium and yt is exchange rate

depreciation.

Example 2 If AR parameters in a semi-strong ARMA(p,q − 1) model are estimated by

instrumental variables, the conditional moment restriction

E [yt − α0 − α1yt−1 − · · · − αpyt−p | yt−q, yt−q−1, · · · ] = 0

is estimated. If the ARMA model is weak, it is the system of unconditional moment

restrictions

E
[
(yt − α0 − α1yt−1 − · · · − αpyt−p) (yt−q, yt−q−1, · · · )′

]
= 0

that is estimated.

Example 3 Meddahi and Renault (2004) showed that the class of square-root stochastic

autoregressive volatility (SR–SARV) models, a natural extension of weak GARCH models,

is characterized by the conditional moment restriction

E

[
ε2
t − ω −

q−1∑
j=1

γiε
2
t−j | εt−q, εt−q−1, · · ·

]
= 0,

where εt is observable stationary SR–SARV(q − 1) process (for details, see Meddahi and

Renault, 2004).
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Example 4 The Hansen and Singleton (1982) consumption-based CAPM with assets ma-

turing in q periods leads to the moment restriction

E

[
δq

q∏
j=1

(1 + rt+j)

(
ct+q
ct

)−γ
− 1 | ct

ct−1

, rt,
ct−1

ct−2

, rt−1, · · ·

]
= 0,

where ct is a consumption, and rt is a market return; δ is a discount factor, and γ is

a coefficient of risk aversion. More complicated moment restrictions corresponding to

q = 1 are implied by models in Mark (1985), Mankiw, Rotemberg, Summers (1985),

Hotz, Kydland, Sedlacek (1988), Kocherlakota (1990), Epstein and Zin (1991), Marshall

(1992), Holman (1998), Smith (1999), Weber (2000), among others.

Example 5 The Ferson and Constantinides (1991) consumption-based CAPM with habit

formation leads to the moment restriction

E

[
δ (1 + rt+1)

((
st+1

st

)−γ
+ αδ

(
st+2

st

)−γ)

−

(
1 + αδ

(
st+1

st

)−γ)
| ct
ct−1

, rt,
ct−1

ct−2

, rt−1, · · ·

]
= 0,

where st = ct + αct−1, ct is a consumption, and rt is a market return; α is a habit forma-

tion/durability parameter, δ is a discount factor, and γ is a coefficient of risk aversion.

Similar examples are the models in Dunn and Singleton (1986), Eichenbaum, Hansen and

Singleton (1988) and Weber (2002).

Example 6 The Hansen and Singleton (1996) temporal aggregation model leads to a

system of conditional moment restrictions

E


 ut+2

u2
t+2 − 2σ2/3

u2
t+2/4− ut+2ut+1

 | ct, qt, ct−1, qt−1, · · ·

 = 0,

where ut+1 = γ (ct+1 − ct) + (qt+1 − qt)− (δ − σ2/2) , ct and qt are consumption and asset

price, γ and δ are preference parameters, and σ2 is a variance measure of underlying

Brownian motions. Simpler versions of this model were formulated earlier in Hall (1988)

and Grossman, Melino and Shiller (1987).

Example 7 The Meddahi, Renault and Werker (2003) model for ultra-high-frequency

returns considered in more detail in Section 11 corresponds to the moment restriction

E

[(
r2
t − θ

)
−
(
r2
t−1 − θ

)
exp (−κdt−1)

c (κdt)

c (κdt−1)
| rt−2, dt−2, rt−3, dt−3, · · ·

]
= 0,

where dt is a duration between successive trades, rt is a scaled return from the latter of

these trades, and c (v) ≡ (1− exp (−v)) /v.
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As can be seen, most of practical situations give rise to conditional restrictions rather

than unconditional ones. However, to introduce main notions and terminology in a sim-

plest context, we start by considering unconditional moment restrictions. Also, for the

sake of simplicity we concentrate on a linear model. When the moment function is non-

linear in parameters as in many examples above, the role of right side variables (“regres-

sors”) is played by a quasi-regressor, the derivative of the moment function with respect

to parameters. Since this quasi-regressor depends on parameters, usually an additional

preliminary step of finding its consistent estimate is needed. Otherwise, the same tools

can be applied to nonlinear models.

3 Unconditional problems

Consider a linear IV model with instruments that are uncorrelated with disturbances:

yt = x′tβ + et, E [ztet] = 0, (1)

where xt is a k × 1 vector of right-hand-side variables, zt is an ` × 1 vector of basic

instruments, and all variables are strictly stationary. Let ` ≥ k (possibly, ` = ∞ if

emerging infinite-dimensional matrices are well-defined) and Qxz = E [xtz
′
t] have rank k.

A (not necessarily efficient) GMM estimator of β indexed by an arbitrary data-dependent

symmetric positive definite weight matrix Ŵ consistent for its population analog W , is3

β̂ς = arg min
b

[∑
t

zt (yt − x′tb)

]′
Ŵ

[∑
t

zt (yt − x′tb)

]

=

(∑
t

ς̂ tx
′
t

)−1∑
t

ς̂ tyt,

where ς̂ t = Q̂xzŴzt and Q̂xz = T−1
∑

t xtz
′
t. The estimator β̂ς is a just-identified IV

estimator that uses ς̂ t as an instrument, and is asymptotically equivalent to one that

would use as an instrument the (usually non-feasible) population analog ς t = QxzWzt.

Here premultiplication of the ` × 1 basic instrument zt by QxzW converts it to a just-

identifying k × 1 one. Note that QxzW is as arbitrary as W is.

It is well known that the efficient GMM corresponds to the weight matrix W = V −1
ze ,

where (Hansen, 1982)

Vze ≡ lim
T→∞

[
1

T
var

(∑
t

ztet

)]
=

+∞∑
j=−∞

cov (ztet, zt−jet−j) .

It follows that the best choice for a just-identifying instrument is ζt = QxzV
−1
ze zt, or

its asymptotically equivalent feasible version ζ̂t = Q̂xzV̂
−1
ze zt, where V̂ze is a consistent

3Unless otherwise designated, the index of summation signs is t that runs from the beginning to the
end of the sample whose length equals T. All sums are truncated to exclude components outside the
sample.
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estimate of Vze. We call ζt the optimal instrument in the class of allowable instruments

Zt, which in the present case are k linearly independent linear combinations of the basic

instrument zt. Formally,

Zt =
{
ς t : ς t = Azt for some k × ` matrix A

}
.

Remark 3.1 Premultiplication of an instrument by an arbitrary non-singular con-

formable constant matrix does not change an associated IV estimator. Therefore, the

optimal instrument is defined up to such premultiplication. In the special case of exact

identification (` = k), QxzV
−1
ze is k× k and thus can be removed, so the basic instrument

is trivially optimal.

Remark 3.2 Note that for convenience it is not required that an allowable instrument be

relevant. Instead, irrelevant instruments are associated with infinite asymptotic variances.

Remark 3.3 The optimal instrument ζt satisfies the optimality condition

E [xtς
′
t] =

+∞∑
j=−∞

cov (ζtet, ς t−jet−j) for all ς t ∈ Zt.

This condition will be of great help in more complex situations and will be properly

introduced in due time. The asymptotic variance of the IV estimator that employs the

optimal instrument is the efficiency bound relative to Zt

Vβ̂ζ = Q−1
ζx VζeQ

′−1
ζx =

(
QxzV

−1
ze Q

′
xz

)−1
. (2)

Remark 3.4 It is easy to see that the optimal instrument ζt = QxzV
−1
ze zt is such that

any other instrument ς t = Azt, exactly identifying or overidentifying, is redundant given

ζt, no matter what A is. This directly follows from the application of Theorem 1 of

Breusch, Qian, Schmidt and Wyhowski (1999).

Schematically, the implementation of the idea of optimal instruments is done in the

following three distinct steps.

1. Find the form of the optimal instrument. In the present situation the form is

ζt = QxzV
−1
ze zt.

2. Construct a feasible optimal instrument. In the present situation it entails consistent

estimation of matrices Qxz and Vze and calculation of ζ̂t for all t.

3. Use the constructed instrument to estimate β and the estimate’s asymptotic vari-

ance.
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4 Conditional problems: optimality condition

Consider a linear IV model with the disturbances that have mean zero conditional on

history of instruments:

yt = x′tβ + et, E [et|=t] = 0, (3)

where xt is a k × 1 vector of right-hand-side variables, =t ≡ σ (zt, zt−1, . . .) , where zt is

an `× 1 vector of basic instruments4, and all variables are strictly stationary. In a typical

macroeconomic application, zt includes xt and a lag of yt of certain order. When the

order of this lag is q = 1, the restriction (3) is single-period, otherwise (when q > 1) –

multiperiod. This terminology is justified by the typically q-step-ahead prediction context

of (3) as in example 1 above; see also Hansen and West (2002, Section 2). The ARMA

models of example 2 and SR–SARV models of example 3 are also multiperiod unless q = 1.

A number of models such as those in examples 5, 6 and 7, give rise to two-period moment

restrictions.

For the model (3), any stationary =t-measurable k × 1 vector ς t with finite fourth

moment is a valid instrument. That is, the broadest class of admissible instruments is

Zt =
{
ς t : ς t = f (zt, zt−1, . . .) for some measurable f s.t. E

[
|ς t|4

]
<∞

}
. (4)

Obviously, there is no need to consider instruments that are overidentifying. As follows

from the previous Section, the optimal use of such instrument would entail premultipli-

cation by a certain matrix, while this transformation might be embedded in f in the first

place. Again, we associate irrelevant instruments with infinite asymptotic variances.

Hansen (1985) derived the optimality condition which may be used to find the optimal

instrument. Under suitable conditions placed on the set of instruments Zt (not necessarily

(4)5) the optimal relative to Zt instrument ζt satisfies the optimality condition

E [xtς
′
t] =

+∞∑
j=−∞

cov (ζtet, ς t−jet−j) for all ς t ∈ Zt. (5)

Indeed, for any ς t define Qςx = E [ς tx
′
t] and Vςe =

∑+∞
j=−∞ cov (ς tet, ς t−jet−j) , then from

the inequality

+∞∑
j=−∞

cov
(
Q−1
ςx ς tet − V −1

ζe ζtet, Q
−1
ςx ς t−jet−j − V −1

ζe ζt−jet−j
)
≥ 0 for all ς t ∈ Zt

it follows using (5) that Q−1
ςx VςeQ

′−1
ςx ≥ V −1

ζe = Q−1
ζx VζeQ

′−1
ζx for all ς t ∈ Zt, that is, ζt is

optimal relative to Zt. In single-period problems the long-run covariance on the right

side of (5) is just a short-run covariance; in multiperiod problems with horizon q the

4As long as β is identified by some instrument from =t, the dimensionality of the basic instrument
does not matter for the rest of discussion except for that in Section 9.

5The set Zt needs to be a linear space; (4) is.
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summation index j runs from −(q − 1) to q − 1. The system (5) may be viewed as a first

order condition for a problem of minimization of the asymptotic variance Q−1
ςx VςeQ

′−1
ςx

with respect to ς t. Under the condition (5) the variance sandwich collapses, which is an

indication of efficiency.

In constructing the optimal instrument ζt, the serial correlation structure of the distur-

bance et is critical. When the problem is single-period so that the error has a martingale

difference structure, the optimal instrument has Chamberlain’s (1987) static form. When

the problem is multiperiod so that the error is serially correlated, the optimal instrument

has a complicated dynamic structure which can be characterized differently depending on

whether the disturbance et is homoskedastic or heteroskedastic conditional on =t.

5 Single-period conditional problems

When the disturbance term is a martingale difference relative to =t ∨ σ (et−1, et−2, · · · ),
the optimal instrument has the following simple form:

ζt =
E [xt|=t]
E [e2

t |=t]
. (6)

This form is familiar from the literature on optimal IV estimation in problems with cross-

sectional data (Chamberlain, 1987). It is static in the sense that its formula does not

explicitly contain lagged values of the optimal instrument, in contrast to dynamic forms

for multiperiod restrictions below (which does not preclude the dependence of ζt on the

whole infinite past). Note that the form (6) easily follows from the optimality condition:

E [xtς
′
t] = E

[
ζtς
′
te

2
t

]
= E

[
ζtς
′
tE
[
e2
t |=t

]]
for all ς t ∈ Zt

⇒ E
[(
E [xt|=t]− ζtE

[
e2
t |=t

])
ς ′t
]

= 0 for all ς t ∈ Zt
⇒ E [xt|=t]− ζtE

[
e2
t |=t

]
= 0.

Implementation of the instrument (6) reduces to estimation of the conditional score

E [xt|=t] and conditional variance E [e2
t |=t].

6 Multiperiod conditional problems with conditional

homoskedasticity

Hansen (1985, Lemma 5.7) showed that under conditional homoskedasticity (meaning that

the conditional variance and all conditional autocovariances are constant), the optimal

instrument follows the recursion

Θ(L)ζt ∝ E
[
Θ(L−1)−1xt|=t

]
, (7)
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where Θ(L) = θ0 + θ1L+ · · ·+ θqL
q is a qth order moving average polynomial in the Wold

representation of et:

et = Θ(L)εt,

where εt is a (weak) white noise with unit variance. Let us check that (7) satisfies the

optimality condition. The right hand side of (5) is

+q∑
j=−q

cov (ζtet, ς t−jet−j) = E

[
ς t

+q∑
j=−q

ζt−jΘ(L)εt−j ·Θ(L)εt

]
= E

[
ς t
(
θ0εt

(
θ0εtζt + · · ·+ θqεtζt+q

)
+θ1εt−1

(
θ0εt−1ζt−1 + · · ·+ θqεt−1ζt+q−1

)
+ · · ·
+θqεt−q

(
θ0εt−qζt−q + · · ·+ θqεt−qζt

))]
= E

[
ς t ·Θ(L)Θ(L−1)ζt

]
= E

[
ς t ·Θ(L−1)Θ(L)ζt

]
.

Now, with (7), it is proportional to

E
[
ς t ·Θ(L−1)E

[
Θ(L−1)−1xt|=t

]]
= E

[
ς tE

[
Θ(L−1)E

[
Θ(L−1)−1xt|=t

]
|=t
]]

= E
[
ς tE

[
E
[
Θ(L−1)Θ(L−1)−1xt|=t

]
|=t
]]

= E [ς txt] ,

the left hand side of (5).

The optimal instrument (7) was used in empirical work by West and Wilcox (1996)

for a first-order condition characterized by conditional homoskedasticity, from a dynamic

inventory model. In West and Wilcox (1996) small sample properties of the optimal

estimator are investigated; West, Wong and Anatolyev (2002) also contains asymptotic

computations and simulation evidence. Hansen and Singleton (1996) applied the instru-

ment (7) for a variant of the CAPM in both conditionally homo- and heteroskedastic

environments, with the understanding that in the latter case it is not optimal. Hansen

and Singleton (1991) propose implementation algorithms based on state space methods.

Remark 6.1 Hayashi and Sims (1983) warn that backward filtering of the equation

in order to whiten the error term, and subsequently applying IV estimation leads to

inconsistent estimation. This occurs because the Wold innovation εt is not necessarily

a martingale difference and hence is not orthogonal to the instruments from the past;

see also Hansen and West (2002, Section 2) for more on this point. Hayashi and Sims

(1983) instead suggest forward filtering that also whitens the error term and preserves

orthogonality to past data.

Remark 6.2 Hansen and Singleton (1991, 1996) give the following interpretation of the

formula (7): apply the Hayashi and Sims (1983) forward filter Θ(L−1)−1 to the original
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equation to get rid of serial correlation, project the forward filtered right-hand-side vari-

able xt onto =t to get a valid instrument, and then filter this instrument back with the

filter Θ(L)−1 to the terms of the original equation. It turns out that under conditional

homoskedasticity, the instrument so constructed is optimal.

7 Multiperiod conditional problems with conditional

heteroskedasticity

Hansen (1985) and Hansen, Heaton and Ogaki (1988), using Gordin’s (1969) martingale

difference approximation and Hayashi and Sims’ (1983) forward filtering idea, presented

a characterization of the efficiency bound for IV estimators that correspond to a given

system of conditional moment restrictions. Building on this characterization, Anatolyev

(2003b) shows that the form of the process followed by the optimal instrument is

Φt(L)ζt = E
[
Ψt(L

−1)xt|=t
]
, (8)

where, in contrast to (7), the filters Φt(L) and Ψt(L) are time varying and tied to het-

eroskedasticity and serial correlation characteristics of errors via an implicit system of

nonlinear stochastic equations.

To be more specific, we will consider the case of first-order conditional serial correlation,

i.e. when E[etet−j|=t] = 0 for j > 1. Denote ωt = E [e2
t |=t] , γt = E [etet−1|=t] , the

conditional variance and conditional first-order autocovariance of the errors. Then the

optimal instrument ζt follows (Anatolyev, 2003b)

ζt = φtζt−1 + ρtδt, (9)

where the auxiliary processes φt, ρt and δt are determined from the following system:

γt + φt
(
ωt + Et

[
φt+1γt+1|=t

])
= 0, (10)

ρt = −φtγ−1
t , (11)

δt = E
[
xt + φt+1δt+1|=t

]
, (12)

E[log |φt|] < 0, (13)

provided that the solution of the system exists and has finite forth order moment.

Remark 7.1 The linear autoregressive-like structure of the process ζt does not mean

that the instrument is optimal in the class of instruments having additive structure. This

structure is a result of the linearity of the optimality condition which stems from the

quadratic nature of GMM, or, to be more precise, from the asymptotic linearity of the

GMM first-order conditions.
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Remark 7.2 Recalling the Hansen and Singleton (1991, 1996) interpretation of (7),

note from (9) and (12) that to attain optimality under conditional heteroskedasticity,

time varying filters, correspondingly forward (1− L−1φt)
−1 and backward 1− φtL, must

be applied, along with the appropriate time varying scaling by ρt.

Remark 7.3 The condition (13) rules out unstable solutions of the nonlinear equation

(10). For example, if et = εt+1 − θεt for some θ ∈ (−1, 1), with {εt} being a martingale

difference relative to =t, with σ2
t ≡ Et[ε

2
t ], then ωt = Et[σ

2
t+1] + θ2σ2

t , γt = −θσ2
t , equation

(10) can be rewritten as (1 − θφt)σ
2
t + φtEt[(φt+1 − θ−1)σ2

t+1] = 0, and one can notice

that φt = θ−1 for all t is a solution and is unstable. Unfortunately, the stable one is not

(except under conditional homoskedasticity) simply φt = θ.

Remark 7.4 Although in general |φt| may exceed unity for a set of realizations of =t of

nonzero measure, a sufficient condition for stability is supt |φt| < 1, which may sometimes

be shown without knowledge of the solution to (10). For example, let the innovation εt

follow the GARCH(1, 1) process: σ2
t = σ2(1 − a − b) + aε2

t−1 + bσ2
t−1, where σ2 is the

unconditional variance of εt, and 0 < θ < a + b < 1. Then κ ≡ θ supt
{
σ2
t/Et[σ

2
t+1]
}
< 1

and it is easy to show by induction over iterations in

φ
(0)
t = 0 ∀t, φ

(j+1)
t =

{
θ + Et

[
σ2
t+1

σ2
t

(θ−1 − φ(j)
t+1)

]}−1

, j = 0, 1, · · · ,

that 0 ≤ φt ≤ κ < 1. If in addition εt has bounded support, the condition θ < a+ b may

be relaxed.

The major trouble that distinguishes the present situation from that with single-period

restrictions or under conditional homoskedasticity is that in general the system (10)–(13)

cannot be solved analytically for the auxiliary processes. The Heaton and Ogaki (1991)

example (see the bottom of this Section) is a notable exception, although in order to

accomplish the goal, one has to assume normality of the fundamental process, which

nullifies this example’s practical significance. Therefore, if the above result is used as a

point of departure in constructing the feasible instrument, there seem to be two ways to

proceed: one is to estimate the auxiliary processes directly from the system by designing

an iterative scheme, the other is to approximate the system in such a way that an explicit

though approximate solution can be obtained and estimated.

7.1 Iterative optimal instrument

The following is based on ideas in Anatolyev (1999). Note that φt is defined implicitly

by (10) accompanied by (13). A serious annoyance is the presence of unstable solutions

along with the stable one sought for. One may think of designing an iterative scheme that

would lead to the appropriate stable solution of (10) at the population level. The obvious

13



candidate is

φ
(j)
t = −

(
ωt + E

[
φ

(j−1)
t+1 γt+1|=t

])−1

γt, j = 1, 2, · · · , (14)

until convergence is attained, if it is attained. The iterative scheme (14) will work if it

embeds contraction, i.e. if ||φ(j+1)
t − φ(j)

t || ≤ κ||φ(j)
t − φ

(j−1)
t || for some κ < 1 and some

norm || · || over infinite sequences. The iterative scheme (14) is reminiscent of one way of

numerically finding the stable root of the quadratic equation

ax2 + bx+ c = 0, a > 0, b2 > 4ac,

using the iterative scheme

x(j) = − c

ax(j−1) + b
, j = 1, 2, · · · ,

which does embed contraction in the vicinity of the stable root. In order to fall in its

vicinity, and not in the vicinity of the unstable root, one may start the iterations from,

say, zero. In fact, the example with the quadratic equation corresponds to the case of

conditional homoskedasticity, with a = c = θσ2, b = −
(
1 + θ2

)
σ2, where θ and σ2 are

parameters of the Wold decomposition. In more general cases, one can start the iterations

from φ
(0)
t = 0 for all t, or, alternatively, from the “conditionally homoskedastic solution”

φ
(0)
t = θ for all t.

In addition to the relatively trivial case of conditional homoskedasticity (and, by con-

tinuity, cases of small departures from conditional homoskedasticity), contraction embed-

ding can be shown to hold for a pretty general class of error structures. Assume that

et = g0wt+1 + g1wt,

where g0 and g1 are 1 × p row vectors, and wt is a p × 1 column vector of disturbances

with the properties E[wt|=t∨σ (wt−1, wt−2, · · · )] = 0, E[wtw
′
t|=t∨σ (wt−1, wt−2, · · · )] = Σt.

Then, provided that φ
(0)
t = 0, it is possible to show that supt |φ

(j)
t −φ

(j−1)
t | → 0 as j →∞.

It follows that the iterative scheme converges to the stable fixed point φt in supnorm.

Unfortunately, it does not seem possible to verify contraction embedding for a fully

general case, so the iterative scheme may in principle explode or converge to an unstable

solution. In practice, if there is no enough information to prove contraction embedding,

one may check the stability of the emerged estimated series provided that the algorithm did

converge. Alternatively, trimming φ
(j)
t away from large absolute values at each iteration

j may help arrive at an estimated series having a property of a stable solution.

An analogous iterative scheme may be set up for δt based on equation (12):

δ
(j)
t = E

[
xt + φt+1δ

(j−1)
t+1 |=t

]
, j = 1, 2, · · · ,

starting from, say, δ
(0)
t = 0, if it embeds contraction. If contraction embedding is suspect,

an alternative way is to approximate δt by

δ≈t = E
[
xt + φt+1xt+1 + φt+2φt+1xt+2 + · · ·+ φt+Jφt+J−1 · · ·φt+1xt+J |=t

]
+
θJ+1

1− θ
E [xt]
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for sufficiently big J.

The iterative schemes described above may be used to make up analogous schemes

at the sample level, at each iteration nonparametrically estimating needed conditional

expectations. After an estimate φ̂t is computed for all t, estimates δ̂t are found using

already computed φ̂t; estimates ρ̂t can be calculated using (11). The feasible iterative

optimal instrument ζ̂t is then constructed recursively using (9):

ζ̂t = ζ̂t−1φ̂t + ρ̂tδ̂t, t = 1, 2, · · · , T,

starting from, say, ζ̂0 = 0.

7.2 Approximately optimal instrument

Note that in the absence of conditional heteroskedasticity and serial correlation, the ideal

instrument is proportional to E [xt|=t]. Recall the Hansen (1985) instrument (7) that

would be optimal if there were no conditional homoskedasticity. In the case of first-order

serial correlation it is

ζt = ζt−1θ +
1

σ2
E

[
∞∑
i=0

θixt+i|=t

]
, (15)

where σ2 is the variance of the implied Wold innovation of et, and θ is a negative of its

first-order autocovariance coefficient. Note that the instrument (15) reduces to E [xt|=t]
by setting θ = 0, hence let φ0

t = θ be a benchmark when we look for an approximation

for φt in the face of conditional heteroskedasticity. Now recall that when the error is

conditionally serially uncorrelated, the optimal instrument is that of Chamberlain (1987):

ζt =
E [xt|=t]

ωt
. (16)

Note that the instrument (16) reduces to E [xt|=t] by setting ωt = const, hence let ρ0
t =

ω−1
t be a benchmark when we look for an approximation for ρt in the face of serial

correlation.

The idea of constructing an approximation to the optimal instrument is to find an

explicit solution of the system that emerges after the equation for φt

γt + φt
(
ωt + E

[
φt+1γt+1|=t

])
= 0,

and the equation for ρt
ρt(ωt − E

[
ρt+1γ

2
t+1|=t

]
) = 1,

are linearized with respect to φt and ρt around the mentioned benchmarks. The details

of derivations of the approximations can be found in Anatolyev (2002b). The solution of

this approximated system results in the following approximately optimal instrument ζ̄t:

ζ̄0 = 0, ζ̄t =
〈
φ̄t
〉
ζ̄t−1 + ρ̄t

∞∑
i=0

E

[
i−1∏
j=0

φ̄t+jxt+i|=t

]
, t = 1, 2, · · · , T, (17)
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where

φ̄t = θ +
1

σ2

(
γt −

∞∑
i=0

θ2iE
[
θωt+i + 2γt+i|=t

])
, (18)

ρ̄t =
1

ωt
, (19)

and 〈·〉 indicates trimming to ensure stability of the recursion and existence of fourth

moments of ζ̄t. A simple trimming device is

〈ς〉 ≡ min {1− ε,max {−1 + ε, ς}}

for a small positive number ε.

An interesting question is how much is lost in terms of asymptotic efficiency from the

use of an approximately optimal instrument in place of the truly optimal one. Naturally,

to answer this question we need to have exact analytical expressions for both instruments.

The only non-trivial (i.e. conditionally heteroskedastic) example known in the literature

where the optimal instrument can be analytically derived is the Heaton and Ogaki (1991)

problem. Unfortunately, in order to accomplish this goal, one has to assume normality

of the fundamental process, which nullifies this example’s practical significance. The

example, however, can be used to get a feel of asymptotic efficiency gains and losses; it

is, of course, unclear if the relative figures carry over to other problems.

We briefly outline the Heaton and Ogaki (1991) example without giving explicit forms

for the instruments as the analytic expressions are quite messy, and then proceed with

calibration of asymptotic variances. Let wt be a serially independent standard nor-

mal series, and ut be a two-period ahead forecast error with the Wold representation

ut = ν0wt + ν1wt−1. Observable at time t is zt, and the space of instruments is =t =

σ(zt, zt−1, . . . ). Let ut be connected to zt via ut = zt + βzt−1, where β is a scalar param-

eter of interest. The rational expectations hypothesis imposes the conditional moment

restriction

Et [ut+2] = 0.

Under the assumptions made, the error in this equation is conditionally homoskedas-

tic. There is conditional heteroskedasticity in another conditional moment restriction, a

conditional analog of the Working (1960) result on temporal aggregation:

Et [ut+2 (ρut+2 − ut+1)] = 0,

where ρ ≡ ν0ν1/ (ν2
0 + ν2

1) = 1
4
. To calibrate asymptotic variances, let ν0 = 1, ν1 = 2−

√
3.

The Table below presents asymptotic variances of some IV estimators for a number of

values of β. The optimal IV estimator is most efficient, and significantly beats the optimal

IV estimator that ignores the second equation (“first equation optimal”), especially when

β is close to ν1. The “homoskedasticity optimal” instrument that would be optimal if there

were no conditional heteroskedasticity captures much of the efficiency gains. However, the
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approximately optimal instrument captures an overwhelming part of the further efficiency

gains provided by the optimal instrument. Thus, the efficiency losses arising from the

approximation error turn out to be small (only 1 ÷ 8% for the shown values of β), and

show that the approximately optimal instrument is able to nearly attain the efficiency

bound.

β −0.8 −0.3 0 +0.3 +0.8

Optimal 0.360 0.910 1.000 0.910 0.360

Approximately optimal 0.365 0.920 1.012 0.924 0.390

Homoskedasticity optimal 0.399 1.070 1.313 1.235 0.430

First equation optimal 0.466 3.293 13.93 749.4 0.786

8 On estimation of conditional expectations

In previous Sections various complex forms of instruments are presented. Barring special

cases, these forms necessarily contain conditional expectations (conditional variances, con-

ditional autocovariances, conditional scores, etc.), sometimes an infinite number thereof.

As mentioned in the introduction, “parametric” feasible estimation requires extraneous

knowledge of the functional forms for these conditional expectations. If a researcher is

willing to impose such auxiliary parameterizations, the “parametric optimal instrument”

yields an estimator that will likely be consistent, but their misspecification will lead to

asymptotic inefficiency in the class of allowable estimators. At the end of the day, such an

estimator may be no better (while being harder to implement) than, say, a quasi-maximum

likelihood (QML) estimator using same or different parameterizations (see comparisons

in Section 10). To really attain the IV efficiency bound, a researcher is expected to go

all the way and estimate the involved conditional expectations non-parametrically. To

allow doing that, and to allow assessing gains from doing that, a sample size should be

plentiful to allow precise non-parametric estimation, and the problem’s characteristics

should be such that the precision of the optimal IV estimator is likely to overweight those

of competitors even in a given finite sample. Usually, this means the presence of strong

heteroskedasticity, and in multiperiod problems – in addition the presence of noticeable

serial correlation. More precise characterization, unfortunately, is not possible in general.

“Nonparametric” feasible versions of previously considered instruments entails replace-

ment of conditional expectations in a formula for the optimal instrument by their nonpara-

metric estimates. For example, the auxiliary process φt of the iterative optimal instrument

is estimated by repeating the scheme (14) at the sample level:

φ̂
(0)

t = θ̂, t = 1, 2, · · · , T, T + 1;

φ̂
(j)

T+1 = θ̂, j = 1, 2, · · · ;

φ̂
(j)

t = −
(
Ê
[
ê2
t + φ̂

(j−1)

t+1 êt+1êt|=t
])−1

Ê [êtêt−1|=t] , t = 1, 2, · · · , T, j = 1, 2, · · · ,
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where θ̂ and êt are an MA(1) coefficient estimate and residuals from a preliminary estima-

tion step, and Ê denotes an estimator of the conditional expectation operator. Next, some

of expressions for various components of complex instruments contain infinite summations

of certain conditional expectations. For example, (18) contains

γt −
∞∑
i=0

θ2iE
[
θωt+i + 2γt+i|=t

]
.

This does not mean that one has to evaluate an infinite number of conditional expec-

tations; instead, one may collect all terms under a single expectation sign and trim the

summation. For example, the preceding expression may be approximated with an arbi-

trary precision by

E

[
etet−1 −

J∑
i=0

θ2i
(
θe2

t+i + 2et+iet+i−1

)
|=t

]
− θ2J+2

1− θ2E
[
θe2

t + 2etet−1

]
for some large J.

In the rest of this Section, we discuss some aspects of non-parametric estimation of

conditional expectations. In an IID framework, to construct feasible GLS estimators in

regression models, Carroll (1982) proposes kernel methods for their estimation, Robinson

(1987) suggests a nearest neighbors approach, Newey (1990) considers nearest neighbors

and series approximations, Donald, Imbens and Newey (2003) use splines; see also Pagan

and Ullah (1999) for a survey. In time series, the matter is additionally complicated by

the fact that the composition of the state vector is unknown a priori, and the state vector

may potentially involve an infinite number of variables. In practice, the IID techniques

may be applied for time series, provided that the state vector is finite dimensional (and

small-dimensional, too!). Intuitively, the state vector may be made expanding with a

sufficiently slow rate to reach complete conditioning asymptotically, but no formal results

are established in this regard. Some promising ongoing work (Pinkse, 2005) seeks ways to

reduce the dimensionality of the state vector using dimension reduction techniques, but

to date this work deals only with cross-sections and panels.

More recent statistics and econometrics literature, however, does provide some practical

nonparametric and semiparametric tools.

Tschernig and Yang (2000) propose a criterion called “nonparametric corrected asymp-

totic final prediction error” (CAFPE) to simultaneously select a composition of the state

vector (so called “significant lags”) in conditioning and optimal bandwidth values in the

context of kernel estimation. When the basic instrument is a single variable, the criterion

to be minimized is

CAFPE =

(
Â+

2

T − im + 1

(
k(0)

hopt

)m
B̂

)(
1 +

m

(T − im + 1)4/(m+4)

)
, (20)

where k(u) is a kernel function, m is a number of employed lags of the basic instrument,

and im is its maximal employed lag. Here, Â and B̂ are the following nonparametric
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estimates of ingredients of the asymptotic final prediction error:

Â =
1

T − im + 1

T∑
t=im

(yt − m̂y (zt−i1 , · · · , zt−im))2 wt,

B̂ =
1

T − im + 1

T∑
t=im

(yt − m̂y (zt−i1 , · · · , zt−im))2

µ̂ (zt−i1 , · · · , zt−im)
wt,

where m̂y (zt−i1 , · · · , zt−im) is a Nadaraya–Watson estimate of the regression function of

yt on the included lags of the basic instrument, µ̂ (zt−i1 , · · · , zt−im) is a Nadaraya–Watson

estimate of the joint density of the vector of included lags, and wt equals zero if the asso-

ciated joint density estimate µ̂ (zt−i1 , · · · , zt−im) is among the lowest 5% over the values

of (zt−i1 , · · · , zt−im) in the sample, and unity otherwise (such screening off extreme ob-

servations is conventional in nonparametric estimation literature; see also Tjøstheim and

Auestad, 1994). The optimal bandwidth hopt is determined via a grid search procedure.

The first term in (20) is a nonparametric estimate of the asymptotic final prediction error,

the second term in (20) is a correction aimed at penalizing lag overfitting (i.e. choosing

superfluous lags in addition to correct ones). When a number of significant lags is likely

to be large, a search across all lag combinations may take enormous computational time.

To speed up the search, Tjøstheim and Auestad (1994) suggest a shortcut by picking

significant lags one by one, taking already selected ones as included.

To increase a precision of nonparametric estimation, Glad (1998) and Fan and Ullah

(1999) suggest a “combined” estimator by first estimating a parametric possibly nonlin-

ear projection (hopefully capturing a large part of the dependence) and then estimating

a multiplicative residual nonparametrically. Mishra, Su and Ullah (2004) extended this

approach to estimation of conditional variance. Likewise, other similar objects like con-

ditional autocovariances may be estimated in a similar two-step manner.

When there is high persistence in the processes of conditional estimators of interest

(say, in conditional volatility), the true state vector may be prohibitively large leading to

the curse of dimensionality for the unconstrained nonparametric regression. In such cases,

constraints of the kind σ2
t = ϕσ2

t−1 + g (=t) , where σ2
t is (say) a conditional variance, and

g (=t) is an unspecified function of a small number of arguments belonging to =t, may

be imposed in order to semiparametrically estimate the conditional expectations; see the

semiparametric ARCH models of Linton and Mammen (2005).

9 Linear subclass of instruments

The theory presented in previous Sections is difficult. As a result, much greater popularity

has been gained by the theory of linear optimal instruments because of its simplicity

and tractability. One searches for the optimal instrument within a narrower subclass of

allowable instruments than (4), the linear subclass consisting of only linear functions of

19



the basic instruments:

Zt =

{
ς t : ς t =

∞∑
i=0

κizt−i for some k × ` weights κi s.t.
∞∑
i=0

|κi| <∞

}
. (21)

The theory and feasible implementation are developed in West (2001), West, Wong and

Anatolyev (2002), and Kuersteiner (2001, 2002). A convenient tool is the optimality

condition (5).

Generally, employing the linear subclass of instruments delivers efficiency gains, often

substantial, compared to the use of the basic instrument or a finite number of its lags

(Stambaugh, 1993; Kuersteiner, 2002), especially in multiperiod problems (Kuersteiner,

2001, West, Wong and Anatolyev, 2002). Sometimes a special structure of conditional

heteroskedasticity may kill any the gains though. An example of redundancy of all lags

can be found in Anatolyev (2003a) and Carrasco (2004), of redundancy of all lags but

their small number – in West (2002). However, in spite of likely efficiency gains, the linear

subclass is significantly narrower than the entire class of allowable instruments. Never-

theless, one may be willing to sacrifice potential efficiency gains provided by conditional

moment restrictions for the sake of simplicity and tractability of the resulting theory. This

can be observed, for instance, in the eagerness to use OLS in place of more efficient GLS

when testing for forecast unbiasedness (as in Example 1 of Section 2). In Section 10 we

will present some numerical evidence revealing whether this choice is justified.

Example: optimal instrument in conditionally heteroskedastic AR(1) model

Consider a zero mean AR(k) model

yt = ρ1yt−1 + ρ2yt−2 + · · ·+ ρkyt−k + et, (22)

where the martingale difference innovations et, conditionally on =t, are symmetrically dis-

tributed and have variance σ2
t . In this case, β = (ρ1 ρ2 · · · ρk)

′, xt = (yt−1 yt−2 · · · yt−k)′.
Let us see how the linear optimal instrument is constructed for a conditionally het-

eroskedastic AR(1) model. Conditional on =t, let the innovations εt be symmetrically

distributed and have variance σ2
t . The linear subclass of allowable instruments is

Zt =

{
ς t : ς t =

∞∑
i=1

κiyt−i for some scalar weights κi s.t.
∞∑
i=1

|κi| <∞

}
.

Using the West (2001) trick, we let the optimal instrument be ζt =
∑∞

i=1 φiεt−i and rewrite

the optimality condition as

E [yt−1εt−r] = cov

(
∞∑
i=1

φiεt−iεt, εt−rεt

)
,

for all r ≥ 1. See also West (2002). When et is conditionally homoskedastic, it follows

that φr ∝ ρr, i.e. ζt ∝ xt, and OLS is efficient.6 In the general case of conditional
6Even more easily this result can be obtained by seeing that the optimal combination of un-

conditional moment restrictions corresponding to most recent ` ≥ k lags of yt as instruments is
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heteroskedasticity,

φr =
ρr−1

τ r
,

where τ r ≡ (E [ε2
t ])
−2
E
[
ε2
t ε

2
t−r
]
. Suppose a consistent estimate ρ̂ of ρ and consistent

estimates τ̂ r for τ r for all r ≥ 1 are available. Then feasible φ̂r for all 1 ≤ r ≤ T −1 along

with estimates ε̂t for 1 ≤ t ≤ T − 1 can be computed; a feasible optimal instrument ζ̂t
can be constructed as

∑t−1
i=1 φ̂iε̂t−i, where ε̂t = yt − ρ̂yt−1 are residuals.

Example: optimal instrument in conditionally heteroskedastic ARMA(1, 1)

model Consider the following ARMA(1,1) model:

yt = ρyt−1 + εt − θεt−1, (23)

where the martingale difference innovations εt, conditionally on =t, are symmetrically

distributed and have variance σ2
t . In this case, β = ρ, xt = yt−1, and et = εt − θεt−1.

Assume that |θ| < 1, θ 6= 0, θ 6= ρ. Dolado (1990) proves the intuitive fact that among all

yt−j, j ≥ 2, the instrument yt−2 is best. However, using yt−j for some j ≥ 3 along with

yt−2 in general increases efficiency.

The linear subclass of allowable instruments is

Zt =

{
ς t : ς t =

∞∑
i=1

κiyt−1−i for some scalar weights κi s.t.
∞∑
i=1

|κi| <∞

}
.

Again using the West (2001) trick, we let the optimal instrument be ζt =
∑∞

i=1 φiεt−1−i

and rewrite the optimality condition as

E [yt−1εt−1−r] =
+1∑
j=−1

cov

(
∞∑
i=1

φiεt−1−i (εt − θεt−1) , εt−1−r−j (εt−j − θεt−1−j)

)
,

for all r ≥ 1. Upon simplification we obtain a second-order linear difference equation for

φi with time-varying coefficients:

−θτ r+1φr+1 +
(
τ r+1 + θ2τ r

)
φr − θτ rφr−1 ∝ ρr, for all r ≥ 1, (24)

subject to two boundary conditions φ0 = φ∞ = 0.

Consider first the case of conditional homoskedasticity, in which case τ r does not

depend of r. Then the solution of the difference equation (24) is

φr ∝ ρr − θr,
QxzV

−1
ze ∝

[
Ik Ok×(`−k)

]
(see section 3, and also Kim, Qian and Schmidt (1999) and Anatolyev (2002a)),

or by considering optimal instrumentation for the conditional moment restriction E [et|yt−1, yt−2, · · · ] = 0
(see section 5), or simply by comparing GMM and 2SLS (coinciding with OLS) estimators which are
asymptotically equivalent under the circumstances.
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and the optimal instrument is

ζt ∝
∞∑
i=1

(
ρi − θi

)
εt−1−i ∝

∞∑
i=1

iθi−1yt−1−i.

One can see that the optimal weights at the lags die out a bit slower than exponentially.

Another, more useful (anticipating further discussion), representation of ζt is

(1− θL) ζt ∝
yt−2

1− θL
.

This formula is a special case of an expression for the optimal instrument for estimation of

parameters of the finite-lag polynomial P(L) in the general ARMA model P(L)yt = Θ(L)εt

with zero mean IID innovations is

Θ(L)ζt ∝ proj
[
Θ(L−1)−1xt|Zt

]
. (25)

In turn, (25) is an application of Hansen’s (1985) formula for the optimal instrument in

conditionally homoskedastic models (cf. (7)). Optimal instrumentation in homoskedastic

ARMA models was also independently considered in the engineering literature, see Stoica,

Söderström and Friedlander (1985, 1987).

In the general case of conditional heteroskedasticity, the solution of the difference

equation (24) is7

φr =
∞∑
i=0

θi
ρj+i − θj+i (1 + θφ1τ 1)

τ r+i+1

,

where

φ1 =

(
1 +

∞∑
i=1

θ2i τ 1

τ i+1

)−1 ∞∑
i=1

θi−1ρ
i − θi

τ i+1

.

Suppose consistent estimators ρ̂ and θ̂ of ρ and θ are available, along with consistent

estimates τ̂ r for τ r for all r ≥ 1. Then feasible φ̂r for all 1 ≤ r ≤ T − 2 along with

estimates ε̂t for 1 ≤ t ≤ T − 2 can be computed; a feasible optimal instrument ζ̂t can be

constructed as
∑t−2

i=1 φ̂iε̂t−1−i.

More generally, suppose that we want to determine k × ` optimal weights in the

representation of the optimal instrument ζt =
∑T−1

i=0 φiεt−i for the equation (3) with

E [etet−q|=t] = 0 for finite integer q > 0, where εt is the Wold innovation in the ` × 1

basic instrument zt (simplifying that there is no deterministic part). Then the optimality

condition looks as follows:

Ψ = SΦ,

where Ψ ≡ E [Etx′t] , S ≡
∑+q

j=−q E
[
EtE ′t−jetet−j

]
, and Et ≡ vec (εt, εt−1, · · · , εt−T+1) .

The matrices Ψ and S are T` × k and T` × T`, respectively, and the matrix of weights

Φ ≡ vec
(
φ′0, φ

′
1, · · · , φ′T−1

)
sought for is T`×k. The solution is, of course, Φ = S−1Ψ, with

7This solution is due to Kenneth West and Ka-fu Wong.
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the feasible version being Φ̂ = Ŝ−1Ψ̂, where Ψ̂ and Ŝ are estimates of Ψ and S, respectively.

West, Wong and Anatolyev (2002) proceed by imposing auxiliary parametric structures

on the moments that figure in the matrices Ψ and S. In their leading example, they impose

an assumption of symmetry of fourth-order moments of innovations hence reducing the

dimensionality of the matrix S.

In the above two examples, postulating and estimating an auxiliary parametric model

for σ2
t like GARCH(1,1): σ2

t = ω + αε2
t−1 + βσ2

t−1, yields

τ r = 1 + α

(
1 +

αβ

1− 2αβ − β2

)
(α + β)r−1 (τ 0 − 1) .

This step obviously requires one to go beyond the initially given model and can induce

misspecification. If the auxiliary model is misspecified, the feasible instrument will no

longer be optimal. However, it is likely that even a misspecified equation will yield quite

reliable estimates of fourth moments, and the instrumental variables estimator will be

good, although not fully efficient. West, Wong and Anatolyev (2002) also show that

neither trimming in the summation ζt =
∑T−1

i=0 φiεt−i at some moderate J or at t − 1,

nor minor misspecification of auxiliary parameterizations have a significant effect on the

performance of the optimal IV estimator.

Kuersteiner (2002) specializes to a class of semi-strong conditionally heteroskedastic

AR models possessing the symmetry condition mentioned above, and proposes a (fre-

quency domain) nonparametric estimator. Kuersteiner (2001) considers more flexible

linear autoregressive models possibly of infinite order where the innovation sequence has

a martingale difference property (this class includes semi-strong ARMA models in partic-

ular).

10 Some asymptotic comparisons

In this Section, we make asymptotic comparisons for some IV estimators and their com-

petitors, to get a feel of efficiency–complexity trade-offs. The central questions are how

much efficiency is gained by the linearly optimal instrument, how much efficiency is fur-

ther gained by the non-linearly optimal instrument, and how big the relative size of these

gains is. We use a simple AR(1)–GARCH(1,1) example to that end, where it is possible

to compute asymptotic variances of all estimators of interest.

The results for α = β = 0.4 and various values of ρ are contained in the table below.

The conditional distribution of errors is standard normal, standardized Student’s t with

6 degrees of freedom (so that the coefficient of kurtosis equals 6), or standardized and

recentered Chi-square with 4 degrees of freedom (so that the coefficient of skewness equals√
2, and the coefficient of kurtosis equals 6). Asymptotic variances of four estimators are

compared. The first is the OLS estimator, an IV estimator with the basic instrument

yt−1. The second one, labeled “LOIV”, is an IV estimator based on the linear optimal

23



instrument. The third one, labeled “NLOIV”, is an IV estimator based on the non-linear

optimal instrument. The fourth one, labeled “QML”, is a quasi-maximum likelihood

estimator based on the normal conditional density and correct specification of the variance

dynamics. The table contains figures for a relative asymptotic efficiency with respect to

the OLS estimator, i.e. for a ratio of the asymptotic variance of a particular estimator to

the asymptotic variance of OLS.

Normal Student, df = 6 Chi-square, df = 4
ρ LOIV NLOIV QML LOIV NLOIV QML LOIV NLOIV QML

0.1 99.9 24.3 19.0 99.9 7.09 7.47 99.9 6.15 6.67
0.3 99.6 22.1 17.4 99.5 7.52 7.71 99.5 5.18 5.76
0.5 98.6 25.1 19.8 97.9 2.83 3.06 98.0 6.47 7.43
0.8 87.7 19.7 16.0 78.1 2.23 2.27 77.6 1.77 2.10

One can see that the linearly optimal instrument is not able to yield substantial efficiency

gains relative to the basic instrument, unless the latter has a very persistent dynamics.

Roughly consistent with the above evidence, figures for the relative efficiency for the

linear optimal IV estimation with respect to OLS reported in Kuersteiner (2001, 2002)

for AR(1)–ARCH(1) and ARMA(1,1)–ARCH(1) models vary between 0.8 (which is not

that low) and 1.0. Furthermore, asymptotic calculations in West, Wong and Anatolyev

(2002, Section 3) specializing on multiperiod problems give enough evidence that the use of

infinite past of basic instruments tends to yield much more efficiency gains in multiperiod

models than in single-period ones, these gains tending to be higher the higher is the degree

of serial correlation in the error term.

It is clear that both nonlinear optimal instrument and quasi-maximum likelihood allow

one to extract much more efficiency, with comparable relative efficiency figures. Natu-

rally, the normal maximum likelihood is asymptotically more efficient in the conditionally

normal model, while nonlinear optimal instrumentation is asymptotically more efficient

when the conditional density is misspecified. Further, QML estimation when the variance

equation is incorrectly specified may yield arbitrary asymptotic losses (for example, a

conditional variance thought to be constant renders QML equivalent to OLS).

11 Illustrative application

In this Section we show a small application demonstrating some of techniques described

above. We consider the Hansen and Singleton (1982) and Ferson and Constantinides

(1991) consumption-based capital asset pricing models (CAPM), with the former being

characterized by a one-period conditional restriction, and the latter being characterized

by a two-period conditional restriction, i.e. by the presence of serial correlation of first

order.

The Ferson and Constantinides (1991) CAPM with habit formation leads to the fol-
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lowing conditional moment restriction:

E

[
δ

1 + αδ
Rt+1

((
st+1

st

)−γ
+ αδ

(
st+2

st

)−γ)

− 1

1 + αδ

(
1 + αδ

(
st+1

st

)−γ)
| ct
ct−1

, Rt,
ct−1

ct−2

, Rt−1, · · ·

]
= 0,

where st = ct + αct−1, ct is a consumption, and Rt is a (gross) market return; α is a

habit formation/durability parameter, δ is a discount factor, and γ is a coefficient of risk

aversion. The standard division by 1 + αδ appears in order to avoid the trap γ = 0,

αδ = −1. When α is zero, the model reduces to the Hansen and Singleton (1982) CAPM

characterized by the following conditional moment restriction:

E

[
δRt+1

(
ct+1

ct

)−γ
− 1 | ct

ct−1

, Rt,
ct−1

ct−2

, Rt−1, · · ·

]
= 0.

Note that in both problems the moment function is nonlinear in the parameter vector.

We use monthly consumption and return data from 1959.1 to 2005.7, totaling to

T = 555 observations on ct/ct−1 and Rt (monthly instead of quarterly data are used

for the sake of precision of nonparametric estimates). For ct, we use seasonally adjusted

personal consumption expenditures published by the Bureau of Economic Analysis of the

US Department of Commerce, for Rt – 3-month treasury bill secondary market rate. All

data are taken from the FRED database at http://research.stlouisfed.org/fred2.

For conventional IV implementation, we choose the instrument vector

zt =

(
1,

ct
ct−1

, · · · , ct−`+1

ct−`
, Rt, · · · , Rt−`+1

)′
for ` = 1 and 2, and use the identity weight matrix at the preliminary stage. The residuals

corresponding to ` = 2 are used in constructing more complex IV estimators. Asymptotic

variances are estimated using the Smith (2005) automatic formula with the lag truncation

parameter 3. The linearly optimal instrument is implemented according to the algorithm

in West, Wong and Anatolyev (2002, Additional Appendix, Section 5).

In implementing the iterative optimal and approximately optimal IV estimation, to

estimate nonparametrically various conditional expectations we employ the Nadaraya–

Watson estimator using a product kernel with Epanechnikov marginals and the CAFPE

criterion of Tschernig and Yang (2000) to select significant lags and an optimal value of

the bandwidth (see Section 8). In every loop, we make the bandwidths for ct/ct−1 and Rt

take one of 5 values on a two dimensional grid [.5hc, 1.5hc] × [.5hR, 1.5hR] , where hς =

(4/(m+ 2))1/(m+4)(T − im + 1)−1/(m+4), and ς is c or R, to determine optimal bandwidth

values hopt,c and hopt,R. In the standard formula (20) we change h−mopt to h−mcopt,ch
−mR
opt,R,

where mς is a number of employed lags of the basic instrument ς, ς being c or R, and
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mc +mR = m. The maximal mc and mR are set at 3; trimming of |φ(j)
t | at 0.95 is used to

ensure stability.

The results for both variations are presented below, with standard errors in parenthe-

ses. In the Ferson–Constantinides model, the degree of serial correlation is given by the

estimate θ̂ = −0.188 of the MA coefficient in a Wold representation εt+1 − θεt. In both

models, all conventional GMM J-tests do not reject the null of correct specification at the

5% significance level.

Ferson–Constantinides Hansen–Singleton

Method α δ γ δ γ

GMM with ` = 1
0.201

(0.070)

1.193

(0.101)

41.62

(16.84)

1.075

(0.034)

21.36

(5.80)

GMM with ` = 2
0.194

(0.066)

1.160

(0.086)

35.89

(14.49)

1.061

(0.031)

19.08

(5.21)

Linearly optimal
0.176

(0.089)

1.170

(0.031)

37.78

(4.75)

1.119

(0.009)

30.16

(1.22)

Nonlinearly optimal
0.458

(0.226)

0.975

(0.014)

4.07

(2.63)

0.967

(0.002)

3.28

(0.37)

In both models, the conventional GMM and linearly optimal IV estimates turns out

to be close, the latter seeming to be more precise (though, the confidence intervals for

conventional GMM may not be reliable, as documented in Tauchen, 1986 and West, Wong

and Anatolyev, 2002). The nonlinearly optimal IV estimates are even more precise, but

differ in value quite sizably from linear IV estimates. In particular, the discount factor

is estimated to be larger than unity by linear IV methods but smaller than unity by

the nonlinear method; the nonlinear optimal IV estimates of the degree of risk aversion

are much smaller than those given by linear IV methods. The high variability of point

estimates of risk aversion across models and estimation methods is traditional in the

literature.

12 Special issues and related research

Redundancy of moment conditions and instruments Breusch, Qian, Schmidt

and Wyhowski (1999) introduced a concept of redundancy of instruments and, more

generally, of moment conditions, and derived criteria for redundancy in the context of

both unconditional and conditional moment restrictions. A set of instruments is called

redundant relative to a given set of instruments if expanding the latter set to include

the former does not increase asymptotic efficiency. The criteria for redundancy may help
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in particular examples to show the optimality of an instrument; compare, for instance,

Dhaene’s (2004) and Carrasco’s (2004) solutions of the problem by Anatolyev (2003a).

Unit roots and nonstationarity When the error term is conditionally homoskedastic

and has a finite number of isolated unit roots in its moving average representation, Hansen,

Heaton and Ogaki (1988) show that it is still possible to attain the efficiency bound,

and, consequently, construct the optimal instrument. The complication involved is the

following. The unit root in the polynomial Θ(L) of the Wold decomposition et = Θ(L)εt

makes the coefficients implied by Θ(L)−1 and Θ(L−1)−1 not converge to zero; however,

the right hand side of (7) may still converge to a well defined random variable if the

projections of future xt onto =t fall sufficiently fast. However, the optimal instrument

ζt will not be well defined because of further filtration by Θ(L)−1. Hansen, Heaton and

Ogaki (1988, section 4.2) show that the efficiency bound is attained if a truncated version

of the polynomial Θ(L)−1 is used. Under conditional heteroskedasticity, this issue is yet

unexplored. Although the unconditional unit root is of no concern, a similar problem

arises when all candidates for Φt(L) in (8) do not satisfy the stability condition.

Bates and White (1988) extend the econometrics of efficiency bounds to “heteroge-

nous”, i.e. nonstationary but ergodic, data. Of course, some amount of heterogeneity in

the data is allowed as long as the conventional asymptotic theory still applies.

Semiparametric efficiency bounds Suppose the true conditional probability distri-

bution is parameterized subject to the moment restrictions implied by the available set of

instruments, and the maximum likelihood estimation is applied to this system. The least

upper bound for the asymptotic variance of such an estimator for β is named the semi-

parametric efficiency bound. The fact is that in many circumstances this bound exactly

equals the asymptotic variance of the optimal IV estimator. This is proved in Chamber-

lain (1987) for general nonlinear conditional moment restrictions in an IID environment,

and one may conjecture that this also holds in time series conditional problems with a

martingale difference structure of the moment function. Hansen and Singleton (1991)

argue that the relation must also hold in conditionally homoskedastic time series models

with serial correlation, and Hansen, Heaton and Ogaki (1988) conjecture that the same

must be also true in multiperiod problems under conditional heteroskedasticity.

Single equation vs. system estimation In the “parametric” approach to imple-

mentation of the optimal instrument, auxiliary parameterizations for dynamics of right

hand side variables and basic instruments are assumed. A different approach would take

these auxiliary parameterizations seriously and construct the optimal IV estimator for the

system containing the equations of interest and the auxiliary equations. If the latter are

correctly specified, the resulting estimator for the parameters of interest is expected to be

asymptotically more efficient than the one designed for a single equation. However, if the
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auxiliary equations are misspecified, not only asymptotic efficiency, but also consistency

may be lost. In the context of a log-linear asset pricing model, Hansen and Singleton

(1996) evaluate the asymptotic efficiency gains from the system optimal IV estimator

(which is asymptotically equivalent to the normal MLE) over the single equation optimal

IV estimator. These gains turns out to be very small.

Panel data The Hayashi and Sims (1983) idea of forward filtering has found its way to

some methods of estimation of panel data models. Keane and Runkle (1992) suggested

removing possible serial correlation from the error by applying a forward filter, and using

the instruments that are presumed weakly exogenous, to the transformed equation. The

serial correlation in the error typically arises after first differencing. Schmidt, Ahn and

Wyhowski (1992) show that the forward filtered IV estimator does not increase asymptotic

efficiency in comparison with already known estimators as long as all available instruments

are used, and that there exist more efficient IV estimators. Thus, the advantages of the

proposed estimator may lie only in its possibly better finite sample properties. Besides,

the forward filtering idea rests on the large-T asymptotics, which is not the case for usual

short panels.

The authors mentioned above make assumptions that imply conditional homoskedas-

ticity. Hence they exploit identification information only in expected cross-products of

instruments and errors, thus considering the linear subclass of the space of potential in-

struments. In the context of more general relationship between errors and instruments,

Chamberlain (1992) expands the subclass to take full advantage of conditional moment

restrictions aiming at reaching the semiparametric efficiency bound. He exploits condi-

tional forward filtering similar to that of Hansen, Heaton and Ogaki (1988), and suggests

constructing the optimal instrument sequentially using nonparametric techniques for esti-

mating conditional expectations. Hahn (1997) proposes a feasible estimator that attains

the efficiency bound using an asymptotically expanding set of instruments.

Instrument selection and alternative asymptotics An alternative way to exploit

information in an infinite set of instruments asymptotically efficiently is by using a por-

tion of them for a fixed sample size but letting this portion expand asymptotically. This

literature essentially approaches the issue of “too many instruments” by picking instru-

ments from some set rather than constructing instruments as in the featured optimal

instrument approach. Koenker and Machado (1999) establish an acceptable rate of this

expansion; Andrews (1999) and Hall and Peixe (2003) develop methods to consistently

form the “best” set of valid and relevant instruments. Hahn (2002) derives an efficiency

bound when the number of instruments grows with the same rate as the sample size.

Unfortunately, most of the work done concerns estimation in an IID environment.

Another strand of literature appeals to higher order asymptotic properties of IV esti-

mators to select an instrument set from a larger list; see, for example, Donald and Newey
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(2001) for IID models, and Kuersteiner (2006) for time series.

Empirical likelihood and related methods The method of maximum empirical

likelihood (EL) is an alternative method of estimation of parameters in moment restriction

based systems; see the overview in Imbens (2002). One of main advantages of EL over

GMM is its ability to reduce the finite sample bias of GMM estimates, see Newey and

Smith (2004) for IID data and Anatolyev (2005) for time series data. The adaptation to

conditional moment restrictions is made in Donald, Imbens and Newey (2003), but only

for an IID envoronment.
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