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1 Approximation of baseline boundary for Wiener process

1.1 0th order approximation

We start with the case of one sided testing. The integral equation is

1√
2πr

exp

(
−b(r)

2

2r

)
= α

∫ r

0

1√
2π(r − s)

exp

(
−(b(r)− b(s))2

2(r − s)

)
ds,

or, after some rearrangement,∫ r

0

√
r

r − s
exp

(
b(r)2

2r
− (b(r)− b(s))2

2(r − s)

)
ds =

1

α
. (1)

Let us inspect the integral. Under the integral sign we have a product of two functions of s:√
r
r−s and exp

(
b(r)2

2r −
(b(r)−b(s))2

2(r−s)

)
. The former function is increasing in s and tends to +∞

as s approaches r. The latter function is a bounded continuous function taking values in the

interval
[
0, exp

(
b(r)2

2r

)]
and reaches its maximum value of exp

(
b(r)2

2r

)
at s = r.

Given the features of these functions we can obtain the 0 th order approximation b0(r)

by replacing exp
(
b(r)2

2r −
(b(r)−b(s))2

2(r−s)

)
with its maximum value exp

(
b(r)2

2r

)
. The ‘approximate’

integral equation becomes∫ r

0

√
r

r − s
exp

(
(b0(r))2

2r

)
ds = 2r exp

(
(b0(r))2

2r

)
=

1

α
,

which gives an explicit solution for the 0th order approximation

b0(r) =
√

2r(− ln(2αr)). (2)

Note that b0(r) is a monotonic function in the vicinity of zero.

1.2 1st order approximation

Now we refine the 0th order approximation. Rewrite the integral equation (1) in the form∫ r

0

√
r

r − s
exp

(
b(r)2

2r

)
exp

(
−(b(r)− b(s))2

2(r − s)

)
ds =

1

α
.

Here, three functions get multiplied inside the integral sign. To get the 0th order function we

in fact replaced exp
(
− (b(r)−b(s))2

2(r−s)

)
by 1. To get the 1st order approximation we replace this

function by a piecewise linear approximation. Because

∂

∂s
exp

(
−(b(r)− b(s))2

2(r − s)

)∣∣∣∣
s=r

=
1

2

(
b′(r)

)2
,

2



we approximate exp
(
− (b(r)−b(s))2

2(r−s)

)
by 1− 1

2 (b′(r))2 (r − s) in the vicinity of r. Next, we make

a guess that for a value of r close to zero the derivative of the boundary b′(r) takes extremely

large values so that 1
2 (b′(r))2 r > 1. This means that a linear approximation takes negative

values around the zero value of r. As the function to be replaced never takes negative values

we make a final adjustment by replacing it by the function max
{

0, 1− 1
2 (b′(r))2 (r − s)

}
. The

‘approximate’ integral equation for the 1st order approximation b↓0(r) is∫ r

0

√
r

r − s
exp

(
b↓0(r)2

2r

)
max

{
0, 1− 1

2

(
b′↓0(r)

)2
(r − s)

}
ds =

1

α
.

Integration leads to the ordinary differential equation

%
√
r

2b′↓0(r)
exp

(
b↓0(r)2

2r

)
=

1

α
,

where

% ≡ 8
√

2

3
,

or

b′↓0(r) =
%

2
α
√
r exp

(
b↓0(r)2

2r

)
, (3)

with the initial condition b↓0(0) = 0.

1.3 Asymptotic behavior of 1st order approximation

Let us derive the asymptotic behavior of the 1st order approximation b↓0(r) in the vicinity of

zero. Introduce the new function z(r) related to b↓0(r) by

b↓0(r) =
√
rz(r).

Having substituted the above expression into (3) we obtain

z(r)

2
√
r

+
√
rz′(r) =

%

2
α
√
r exp

(
z(r)2

2

)
.

Next, we guess that asymptotically the first term on the left side is much larger than the

second term; call it Claim A. Then we drop the second term on the left side to get an asymptotic

solution (without using any new notation)

z(r)

2
√
r

=
%

2
α
√
r exp

(
z(r)2

2

)
,

or

r =
1

%α
z(r) exp

(
−z(r)

2

2

)
. (4)

This is an implicit solution for the asymptotic form of z(r). Based on this solution we can verify
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Claim A (see Appendix A). Notice that in the vicinity of 0 the function z(r) is decreasing and

z(0) = +∞.

1.4 Asymptotic solution for 1st order approximation

Recall that the PDF of the standard normal distribution is

φ(x) =
1√
2π

exp

(
−x

2

2

)
.

The derivative of the PDF is

φ′(x) = − 1√
2π
x exp

(
−x

2

2

)
,

which implies

x exp

(
−x

2

2

)
= −
√

2πφ′(x). (5)

Combining (4) and (5), we get

r =
1

%α

{
−
√

2πφ′(z(r))
}
,

or

z(r) = (φ′)−1

(
− %α√

2π
r

)
,

where (◦)−1 denotes an inverse function. Recalling that b↓0(r) =
√
rz(r) we have the final

asymptotic expression for the 1st order approximation:

b↓0(r) =
√
r(φ′)−1

(
− %α√

2π
r

)
. (6)

1.5 Numerical solution for z(r)

In implementation, we will need a numerical algorithm of evaluation of z(r) in (4). That is, we

need to find the solution of the equation

r =
1

%α
z exp

(
−z

2

2

)
. (7)

We do it by the following iterative procedure.

We take a natural logarithm from both sides to get

ln(z)− z2

2
= ln (%αr) ,

or

z =
√

2
√

ln(z)− ln (%αr).
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We take an initial guess z0 =
√

2
√
− ln (%αr), and then iterate according to

zk+1 =
√

2
√

ln(zk)− ln (%αr)

until the sequence zk converges.

1.6 Calibration of 1st order approximation

Recall that the true baseline boundary obeys equation (1). To understand the features of the

asymptotic 1st order approximation b↓0(r) given by (6), we replace b(r) by b↓0(r) in (1) and

calculate the integral for different values of r. We find that for the value α ≈ 0.131094 in (6)

the right side of (1) is approximately equal to 10 (corresponding to α = 0.1) for small values of

r.

1.7 Parameterization of baseline boundary

We parameterize the baseline boundary Ψ(r) by the following functional form:

Ψ(r) = b↓0(r) exp

 J∑
j=0

ψjr
j

 .

Next recall that in a close vicinity of zero, b↓0(r) ≈ b(r), hence we can safely put ψ0 = 0. Thus,

our parametric approximation has the form

Ψ(r) = b↓0(r) exp

 J∑
j=1

ψjr
j

 . (8)

We estimate the parameters by OLS in a regression on r, ..., rJ of the difference between

the log of the true 10% boundary and the log of b↓0(r), on a uniform grid of 100, 000 points for

r ∈ [0.00001, 1.00000]. The parameters are tabulated in the main text.

1.8 Approximation of two sided baseline boundary

In the case of two sided testing, the integral equation is

1√
2πr

exp

(
−b(r)

2

2r

)
=

1

2
α

∫ r

0

1√
2π(r − s)

exp

(
−(b(r)− b(s))2

2(r − s)

)
ds

+
1

2
α

∫ r

0

1√
2π(r − s)

exp

(
−(b(r) + b(s))2

2(r − s)

)
ds.

The counterpart of the integral equation (1) is∫ r

0

√
r

r − s
exp

(
b(r)2

2r
− (b(r)− b(s))2

2(r − s)

)
ds+

∫ r

0

√
r

r − s
exp

(
b(r)2

2r
− (b(r) + b(s))2

2(r − s)

)
ds =

2

α
.
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Both integrals take only positive values. Next we evaluate the second integral from above

by

0 <

∫ r

0

√
r

r − s
exp

(
b(r)2

2r
− (b(r) + b(s))2

2(r − s)

)
ds 6

∫ r

0

√
r

r − s
ds = 2r,

where we use that b(r)2

2r −
(b(r)+b(s))2

2(r−s) 6 0. Since lim
r↓0

2r = 0, the asymptotic solution in the

vicinity of zero is the solution of the following ‘approximate’ integral equation∫ r

0

√
r

r − s
exp

(
b(r)2

2r
− (b(r)− b(s))2

2(r − s)

)
ds ≈ 1

α/2
. (9)

The above equation is the same as the ‘one sided’ integral equation (1) but with α replaced

by α/2. Hence, for the two sided boundary we can derive a parametric approximation in exactly

the same manner, keeping in mind that we need to ‘halve’ the total size α.

First, we construct a 1st order boundary approximation. We replace b(r) by b↓0(r) in (9)

and calculate the integral for different values of r. We find that for the value α ≈ 0.130055 in

(9) the right side of (9) is approximately equal to 20 (corresponding to α = 0.1) for small values

of r.

Similarly to the case of one sided boundary, we parameterize two sided boundary by the

same functional form. The parameters are tabulated in the main text.

2 Approximation of baseline boundary for Brownian bridge

2.1 Approximation near zero

Recall that the Brownian bridge is related to the Brownian motion via B(r) = W (r)− rW (1).

For values of r close to 0 B(r) is close to W (r), hence we can use the 1st order approximation

for values of the boundary near zero.

2.2 Approximation near unity

Surprisingly we get the same 1st order approximation as in the case of the Brownian motion

but with a different value of the scaling parameter. Let us derive of the 1st order approximation

near r = 1 from the integral equation

1√
r(1− r)

exp

(
− b(r)2

2r(1− r)

)
= α

∫ r

0

√
1− s

(r − s)(1− r)
exp

(
−((1− s)b(r)− (1− r)b(s))2

2(r − s)(1− r)(1− s)

)
ds.

After rearrangements we have∫ r

0

√
(1− s)r
r − s

exp

(
b(r)2

2r(1− r)
− ((1− s)b(r)− (1− r)b(s))2

2(r − s)(1− r)(1− s)

)
ds =

1

α
. (10)

Consider some value of s which is smaller than r and very close to r, so let r− s = ds. Then
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the expression (1− s)b(r)− (1− r)b(s) under the integral sign is approximately equal to

(1− s)b(r)− (1− r)b(s) ≈ (1− r + ds)b(r)− (1− r)(b(r)− b′(r)ds)

≈ (b(r) + (1− r)b′(r))ds

≈ −b
′′(r)

2
(1− r)2ds,

where we use the second order approximation that for small values of (1− r) :

b(r) + (1− r)b′(r) +
b′′(r)

2
(1− r)2 ≈ b(1) = 0.

Next,

((1− s)b(r)− (1− r)b(s))2

2(r − s)(1− r)(1− s)
≈
(
−1

2b
′′(r)(1− r)2ds

)2
2(1− r)2ds

=
b′′(r)2

8
(1− r)2ds. (11)

Given the approximation (11) we can replace (10) with the following ‘approximate’ integral

equation where we have a different power for the exponent inside the integral:

exp

(
b(r)2

2r(1− r)

)∫ r

0

√
(1− s)r
r − s

exp

(
−b
′′(r)2

8
(1− r)2(r − s)

)
ds =

1

α
.

Following the same strategy as in the case of Brownian motion we can approximate the above

integral equation as

exp

(
b(r)2

2r(1− r)

)∫ r

0

√
(1− s)r
r − s

max

{
0, 1− 1

8

(
b′′(r)

)2
(1− r)2(r − s)

}
ds =

1

α
.

This integral equation has a very complicated solution. To overcome this problem we approx-

imate (1 − s) with (1 − r) inside the square root. As a result we get an approximate solution

b↑1(r) from

− %

b′′↑1(r)

√
r

1− r
exp

(
b↑1(r)2

2r(1− r)

)
=

1

α
,

or

−b′′↑1(r) = %α

√
r

1− r
exp

(
b↑1(r)2

2r(1− r)

)
, (12)

with the initial condition b↑1(1) = 0.

As in the case of Brownian motion, we introduce the function z(r) such that

b↑1(r) =
√
r(1− r)z(r).

Upon substitution into (12) and multiplication of both sides of (12) by
√

1− r we get

1

4r3/2(1− r)
z(r)− 1− 2r√

r
z′(r)− r1/2(1− r)z′′(r) = %α

√
r exp

(
z(r)2

2

)
.
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Next we need to find the leading term on the left side. As before we make Claim B: on the

left side the first term is leading, and prove that the second term and the third term are not

dominant. By assuming that asymptotically r ≈ 0, we have the following asymptotic relation:

1

4r3/2(1− r)
z(r) = %α

√
r exp

(
z(r)2

2

)
,

or

1− r =
1

4%α
z(r) exp

(
−z(r)

2

2

)
. (13)

The equation (13) is very similar to the relation (4) except for the multiplier 1
4 . Based on

the implicit solution we can verify Claim B (see Appendix A). Note that in the vicinity of 1 the

function z(r) is increasing, and z(1) = +∞.

Before moving to the parametrization based on the equation (13) we deal with the counter-

part of z(r), which we denote by z̃(r,κ), where κ is a parameter, this function being implicitly

given by the equation

r = κz̃(r,κ) exp

(
− z̃(r,κ)2

2

)
(14)

based on (4). As a result we define

b̃(r,κ) =
√
r(1− r)z̃(r,κ). (15)

2.3 Numerical solution for z̃(r,κ)

Here we essentially repeat finding the numerical solution for the function z(r). In numerical

implementation we need to find a solution of the equation1

r = κz exp

(
−z

2

2

)
,

or

z =
√

2

√
ln(z)− ln

( r
κ

)
.

We take an initial guess z0 =
√
−2 ln (r/κ), and then iterate according to

zk+1 =
√

2

√
ln(zk)− ln

( r
κ

)
until the sequence zk converges.

1Recall that this equation has a solution for values r/κ < e−1/2 ≈ 0.6.
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2.4 Parametrization of boundary on [0, 1]

We parameterize the boundary bRα (r) by the following functional form:

bRα (r) =
√
r(1− r)z̃(r, ϕ/α)z̃(1− r, φ/α) exp

 J∑
j=0

ψj (α) rj

 ,

where

ψj (α) = ψ
(0)
j + ψ

(1)
j α+ ψ

(2)
j α2 + ψ

(3)
j α3.

Note that the parameters ϕ and φ are different.

Now we describe parameter evaluation in this parameterization. We calibrate the pa-

rameter ϕ by matching boundary values for a small value of r and some value of α to the

factor
√
r(1− r)z̃(r, ϕ/α) of the parametrization of bRα (r).2 The parameter φ is calibrated

by matching boundary values for a value of r close to 1 and some value of α to the factor√
r(1− r)z̃(1− r, φ/α). Next, we obtain the parameter values inside the exponent by running

an ‘OLS regression’ where the dependent variable is a difference between the log of the boundary

and the log of
√
r(1− r)z̃(r, ϕ/α)z̃(1 − r, φ/α), on a uniform grid of size 10001 × 91 for

(r, α) ∈ [0, 1]× [0.01, 0.10].3

Recall that the function z̃(r,κ) defined by the equation (14), or

r

κ
= z̃ exp

(
− z̃

2

2

)
, (16)

is defined for those values of r/κ that are lower than e−1/2 ≈ 0.6. To implement a parame-

terization we need to extend this function for larger values of r/κ. The ‘extended’ function

denoted by z̄(r,κ) has the same asymptotic properties but is defined for a larger set of values

of the argument. Let z̄(r,κ) be a solution to the following equation for some c > 0:

r

κ
= z̄ exp

(
− z̄

2

2

)(
1 + c exp

(
− z̄

2

2

))
.

The function z̄(r,κ) is defined for values of r/κ within the interval
[
0, e−1/2

(
1 + ce−1/2

)]
.4 This

function possesses all necessary properties listed and proved in Appendix B. For the purpose of

parameter estimation we set c = 1.

The parameters ϕ and φ are calibrated to take values 0.2052 and 0.1433, respectively, for one-

2More precisely, for some r and α we solve the following system of equations with two unknowns ϕ and z̃:

br,α =
√
r(1 − r)z̃, r = ϕ

α
z̃ exp

(
− z̃2

2

)
, where br,α is a value of the true boundary. The solution for the parameter

ϕ is

ϕ =
αr

z̃
exp

(
z̃2

2

)
=
αr
√
r(1 − r)

br,α
exp

(
b2r,α

2r(1 − r)

)
.

In implementation, we choose r = 0.0001 and α = 0.1.
3The maximal difference in logs between the true and parameterized boundaries is 0.036 for one sided testing

and 0.022 for two sided testing.
4The actual range is wider but for our purpose it is not important to know it.

9



sided testing, and 0.4085 and 0.2965 for two sided testing. The other parameters are tabulated

in the main text.

2.5 Parametrization of boundary on [1,+∞]

As before, B(r) behaves as W (r) for values of r close to 1, hence we can use the previous 1st order

approximation for values of the boundary near 1, and can use an analogous parameterization,

though with respect to the crossing intensity.

For any fixed crossing intensity γ, we use the functional form

bMα (r) =
√
r − 1z̄(r − 1, ϕ/γ) exp

 J∑
j=0

ψj (γ) (r − 1)j

 ,

where

ψj (γ) = ψ
(0)
j + ψ

(1)
j γ + ψ

(2)
j γ2 + ψ

(3)
j γ3.

The parameter ϕ is calibrated by matching boundary values for a value of r = 1.0001 and

a value of α close to γ = 0.100 to the factor
√
r − 1z̄(r − 1, ϕ/γ). We obtain the parameter

values inside the exponent by running an ‘OLS regression’ where the dependent variable is a

difference of the log of the boundary and the log of
√
r − 1z̄(r − 1, ϕ/γ), on a uniform grid of

size 10001× 101 for (r, γ) ∈ [1, 11]× [0.001, 0.100].5

The parameter ϕ is calibrated to take value 0.2158 for one-sided testing, and 0.4311 for two

sided testing. The other parameters are tabulated in the main text.

A Appendix: auxiliary claims

Proof of Claim A: We want to show that

lim
r↓0

rz′(r)

z(r)
= 0.

Let us compute z′(r). We rewrite (4) as

r(z) =
1

%α
z exp

(
−z

2

2

)
.

By taking the derivative we get

r′(z) =
1

%α

(
1− z2

)
exp

(
−z

2

2

)
.

Next, due the facts that r ↓ 0 implies z → +∞, and z′(r) = 1/r′(z), it follows that it suffices

5The maximal difference in logs between the true and parameterized boundaries is 0.068 for both one sided
and two sided testing.
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to show that

lim
z→+∞

r(z)

zr′(z)
= lim

z→+∞

1

z (1− 2z2)
= 0.

�

Proof of Claim B: We have three terms: 1
4r
−3/2 (1− r)−1 z(r), r−1/2 (1− 2r) z′(r) and, finally,

r1/2 (1− r) z′′(r). The leading asymptotic components of these terms are (1− r)−1 z(r), z′(r)

and (1− r)z′′(r). We want to show that

lim
r↓0

(1− r)z′(r)
z(r)

= 0

and

lim
r↓0

(1− r)2z′′(r)

z(r)
= 0.

The first limit can be proved exactly in the same fashion as in Claim A.

It is known that

z′′(r) = − r
′′(z)

r′(z)3
,

where r(z) is given by (13), or

r = 1− 1

2%α
z exp

(
−z

2

2

)
.

Then

lim
r↓0

(1− r)2z′′(r)

z(r)
= lim

z→+∞
− (1− r)2r′′(z)

zr′(z)3

= lim
z→+∞

z2
(
3− z2

)
(1− z2)3

= 0.

�

B Appendix: properties of z̄

Recall that z̄(r,κ) is a solution of the following equation:

r

κ
= z̄ exp

(
− z̄

2

2

)(
1 + c exp

(
− z̄

2

2

))
,

where c > 0. Note that the function z̄(r,κ) is in fact a function of the ratio r/κ, which we

denote by x. Hence we can define a function of one argument z̄(x) by

x = z̄ exp

(
− z̄

2

2

)(
1 + c exp

(
− z̄

2

2

))
. (17)
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Similarly, we can define the function z̃(x), which is a solution of (17) when c = 0. Below we list

and prove a set of properties.

Property 1: The function z̄(x) is well defined for values x ∈
(
0, e−1/2

(
1 + ce−1/2

)]
, and it

takes on that interval the values no smaller than unity.

Proof : We take a derivative of the right side of (17) with respect to z̄ and obtain

∂

∂z̄
z̄ exp

(
− z̄

2

2

)(
1 + c exp

(
− z̄

2

2

))
= (1− z̄2) exp

(
− z̄

2

2

)
+ c(1− 2z̄2) exp

(
−z̄2

)
.

This derivative is negative for z̄ ≥ 1. Hence, the right side of (17) is a decreasing function of

z̄ for z̄ ≥ 1, and it decreases from the value
[
(1− z̄2) exp

(
− z̄2

2

)
+ c(1− 2z̄2) exp

(
−z̄2

)]
z̄=1

=

e−1/2
(
1 + ce−1/2

)
to 0. �

Property 2: For x ∈
(
0, e−1/2

(
1 + ce−1/2

)]
, the following inequality holds: z̃(x) < z̄(x).

Proof : For given z̄ ≥ 1 the right side of (17) is a strictly monotone function of c. �

Property 3: In the vicinity of zero, the function z̄(x) has the same asymptotics as z̃(x), i.e.

lim
x↓0

z̄(x)

z̃(x)
= 1.

Proof : Given property 2, suppose that the opposite holds, i.e. there exists ε > 1 such that for

any δ > 0 there exists x ≤ δ such that

z̄(x)

z̃(x)
≥ ε.

For any such x we know that

z̃ exp

(
− z̃

2

2

)
= z̄ exp

(
− z̄

2

2

)(
1 + c exp

(
− z̄

2

2

))
where the argument x is dropped for the simplicity of exposition. From the statement above

we have z̄ ≥ εz̃ (as ε > 1), and z̃ can be sufficiently large. Let us rewrite the above equality as

z̄

z̃
exp

(
−(z̄/z̃)2 − 1

2
z̃2

)(
1 + c exp

(
− z̄

2

2

))
= 1.

For sufficiently large z̃ the above equality cannot hold. Indeed, for z̃ ≥ 1 and z̄/z̃ ≥ ε, the

expression

z̄

z̃
exp

(
−(z̄/z̃)2 − 1

2
z̃2

)
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reaches its maximum at z̄/z̃ ≥ ε, this maximum being equal to ε exp
(
− ε2−1

2 z̃2
)
, so

z̄

z̃
exp

(
−(z̄/z̃)2 − 1

2
z̃2

)(
1 + c exp

(
− z̄

2

2

))
≤ ε exp

(
−ε

2 − 1

2
z̃2

)(
1 + c exp

(
− z̃

2

2

))
,

which is strictly smaller than unity for sufficiently large z̃. The contradiction shows that the

statement of the property 3 holds. �

Property 4: The function z̄(r,κ) can be calculated by the following iterative algorithm. From

the initial guess z0 =
√

2
√
− ln (r/κ), iterate according to

zk+1 =
√

2

√
ln(zk) + ln

(
1 + c exp

(
− z̄

2

2

))
− ln

( r
κ

)
until the sequence zk converges.
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