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Abstract

The kurtosis of the distribution of financial returns characterized by high volatility

persistence and thick tails is notoriously difficult to estimate precisely. We propose

a simple but effective procedure of estimating the kurtosis coefficient (and variance)

based on volatility filtering that uses a simple GARCH model. In addition to an

estimate, the proposed algorithm issues a signal of whether the kurtosis (or variance)

is finite or infinite. We also show how to construct confidence intervals around the

proposed estimates. Simulations indicate that the proposed estimates are much less

median biased than the usual method-of-moments estimates, their confidence intervals

having much more precise coverage probabilities. The procedure also works well when

the underlying volatility process is not the one the filtering technique is based on. We

illustrate how the algorithm works using several actual series of returns.
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“The use of kurtosis should be banished from use with fat-tailed distributions.”

Gabaix, Gopikrishnan, Plerou, and Stanley ([17], p.491)

1 Introduction

Every empirical paper reports summary statistics for the data used in the study. Many

textbooks do so as well for educational purposes. Among this output one can always see

the sample variance and often sample kurtosis (raw or more frequently in the form of a

kurtosis coefficient). When the data are financial returns, these statistics, especially the

sample kurtosis, are highly unreliable (e.g., [3], [28]). Indeed, when the data are highly

persistent and thick-tailed, as are typical financial returns, the sample moments typically

underestimate the true moments thus giving a misleading picture. The fact that higher-order

moments of financial returns are notoriously hard to precisely estimate has even prompted

some researchers to look for alternative measures of those data features they are meant to

capture ([28]).

Technically, even though the mathematical expectation of (non-centered) sample moments

matches the population moments exactly, their distributions are highly skewed so that the

major probability mass is concentrated away from the true parameter. The following experi-

ment gives an illustration. We generate a series following simple zero mean ARCH(1) process

([10]) with news impact parameter α, unit variance and standard normal standardized in-

novations. We set the sample size to 10000 which is larger than typical samples. Table 1

shows median biases of the sample kurtosis and variance expressed in percentage points, i.e.

medians of
θ̂ − θ
θ
× 100%

across 1,000,000 simulations, where θ̂ is sample kurtosis or sample variance, and θ is the

corresponding theoretical value (equaling 3(1 − α2)/(1 − 3α2) or 1, respectively). One can

see that when α is relatively small, so is the median bias, but as α approaches the boundary

of existence of the population kurtosis and variance (1/
√

3 and 1, respectively), the median

bias becomes enormous. Needless to say, often financial returns operate in a close proximity

of these boundaries.

It follows, in particular, that sample kurtoses documented in applied literature are very

likely to be underestimating their true values. For example, in [5] the sample estimates for
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Table 1: Median relative biases of sample kurtosis and sample variance for different values

of α.

Sample kurtosis

α 0.30 0.40 0.50 0.56 0.57

−1.8% −7.8% −33.1% −78.1% −90.0%

Sample variance

α 0.50 0.80 0.90 0.95 0.99

−0.4% −11.4% −33.4% −57.5% −89.5%

the kurtosis coefficient (left side of Table 1, p.544) are way below the values implied by the

estimated GARCH-t model parameters.1

The empirical finance literature documents stylized facts that real-world financial returns

exhibit heavy tails, sometimes to the extent that fourth or even second moments may be

infinite (see, among others, [31] and [7]). For example, when power laws of return distribu-

tions are estimated, the tail index estimates often fall into the interval (2, 4) implying that

no finite kurtosis exists ([31], [17]) or may even turn out smaller than 2 implying that no

finite variance exists ([32], [24]).2

While the population moments may not exist, the sample analogs are always finite,3 and

only their relatively large value may give a hint that the moments may not in fact exist.

The figures for the sample kurtosis as 99.7 and 119.2 for some daily stock return indices

documented in [14] (Table 1.1) probably reflect the fact that the population kurtosis is

infinite. The kurtosis figures like 63 or 77 for exchange rate futures documented in [7] are

also suspect, and, according to the experimental evidence above, the actual kurtosis may be

seriously larger, even if it is finite.

1For example, for the British pound (left side of first line in Table 1 on p.544) the reported sample

estimate is 4.81 while the GARCH-t parameters (right side of first line in Table 1 on p.544, and first line in

Table 2 on p.545) imply the unconditional kurtosis coefficient of (see formula (3) ahead)

κ = 4.63
1− (0.921 + 0.057)2

1− (0.9212 + 2 · 0.057 · 0.921 + 0.0572 · 4.63)
≈ 6.35.

2See the detailed discussion of heavy-tailed power law distributions, their estimation and application to

financial data in [25], and of their connection with GARCH models in [37].
3See, for example, [9] on the limiting behavior of sample variances and autocovariances in such cases.
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Given the degree of persistence, the problem of biased sample moments is much more severe

for the fourth moment (i.e. kurtosis) than for the second moment (i.e. variance). However,

even for the latter it is practically relevant. The simulation evidence in [1] shows that for a

GARCH model the ‘variance targeted’ estimate of the variance (i.e. sample variance) is (up

to) twice as median biased as its estimate obtained within the GARCH framework.4

In this article we propose a method that in a way is ‘opposite’ to variance targeting,

which is also (and primarily) applicable to computing the kurtosis coefficient. In a nutshell,

the proposed volatility filtering (VF) technique implies passing the return series through

a GARCH filter using gaussian quasi-maximum likelihood (QML) estimation, computing

kurtosis and variance of the filtered series, and restoring the implied kurtosis and variance of

the original series by ‘reverting’ the estimated filter. The resulting estimates are going to be

more precise because computation of moments for highly persistent series (that are subject

to big estimation biases) is thus avoided. The trick is reminiscent of prewhitening the errors

in asymptotic variance estimation in time series (see [2]). Note that the underlying volatility

process need not be the same GARCH as long as the filtering significantly reduces the

degree of return persistence. The filtering can be based on the simple GARCH(1,1) process

that often happens to be suitable for description of the conditional variance of financial

returns, and, if the out-of-sample performance can be regarded as a signal of a ‘true’ model,

GARCH(1,1) is often statistically sufficient for that purpose ([20]).

We verify how the VF technique works in simulations relative to the method of moments

(MM). The VF estimates are much less median biased than the MM estimates, not only

when the true underlying process is GARCH of the same order, but also when it is nonlinear

GARCH from another class or when its order is higher. For practical purposes, filtering

using orders (1,1) appears to be sufficient indeed. When the true kurtosis is infinite, the

algorithm issues such signal often enough, up to almost always for sufficiently big samples.

We also show how to construct asymptotic confidence intervals (CI) for MM and VF es-

timators and verify their actual coverage probabilities. The MM asymptotic CI are poorly

motivated because of problems with existence of higher order (to be more exact, 8th) mo-

ments of the return series. The asymptotic CI for VF in contrast require more relaxed

4The ‘variance targeting’ detour for GARCH models ([12], [16]) helps reduce the dimensionality of the

problem, which is useful in a multivariate context. The method boils down to estimating the variance from

the sample at the first step, subsequently plugging this estimate into the GARCH equation.
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moment conditions (existence of 8th moments as well, but of the innovation series instead

of the return series) and hence are much better motivated. Even though they involve com-

putations of certain derivatives, they are still easy to construct numerically. We also utilize

the robust CI by [26] based on group t statistics. We compare coverage rates in simulations

and find out severe distortions in the case of MM and much smaller distortions in the case

of VF.

Finally, we illustrate discrepancies among different estimates and their standard errors

using several actual series of various nature – stock index returns, individual stock returns,

exchange rate returns, – and frequency – monthly, weekly, daily. These discrepancies turn

out to be quite large for estimates of the kurtosis coefficient, while a comparison of standard

errors confirms inadequacy of those for MM.

The article is organized as follows. Section 2 describes the technique. Section 3 contains

simulation evidence on the performance of the VF method in comparison with the method of

moments. Section 4 analyzes construction of confidence intervals, while Section 5 compares

their coverage properties. Section 6 outlines an extension to the multivariate case. Section 7

shows an illustration with real data. Section 8 concludes. The Appendix contains auxiliary

technical details and proofs of propositions.

2 Point estimation: How does it work?

For observable zero mean strictly stationary observable series of returns rt, the method-of-

moment (MM) estimates for the second moment (i.e. variance)

σ2 = Er2t

and the fourth moment normalized by the squared variance (i.e. kurtosis coefficient)

κ =
Er4t
σ4

are simply

σ̂2
MM =

1

T

T∑
t=1

r2t

and

κ̂MM =
1

σ̂4
MM

1

T

T∑
t=1

r4t .
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Now we show how estimates of the variance and kurtosis coefficient can be constructed using

the GARCH(1,1) and GARCH(2,2) volatility filtering.

Consider the GARCH(1, 1) model ([4]) with possibly non-normal standardized innovations:

rt = σtεt,

where εt ∼ i.i.d.D(0, 1) with finite fourth moment (kurtosis) ν4 = Eε4t , and volatility (con-

ditional variance) follows

σ2
t = ω + βσ2

t−1 + αr2t−1. (1)

For further use, denote θ = (ω, α, β)′. The variance of rt can be expressed as (see [4])

σ2 =
ω

1− β − α
, (2)

provided that it is finite, which happens when

β + α < 1.

The kurtosis coefficient of rt can be expressed as (see [21])

κ = ν4
1− (β + α)2

1− (β2 + 2αβ + α2ν4)
, (3)

provided that is finite, which happens when

β2 + 2αβ + α2ν4 < 1.

The algorithm of obtaining the volatility filtered (VF) estimates goes as follows:

Step 1. Run5 GARCH(1,1) QML on rt. Obtain GARCH parameters ω̂, β̂ and α̂ and standard-

ized errors ε̂t. Compute an estimates of kurtosis of standardized innovations as

ν̂4 =
1

T

T∑
t=1

ε̂4t .

Step 2. If β̂ + α̂ ≥ 1, set σ̂2
V F =∞. Otherwise, compute

σ̂2
V F =

ω̂

1− β̂ − α̂
.

5For raw returns, a conditional mean (e.g., a constant, or AR(1) as appropriate) should be added.
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Step 3. If β̂2 + 2α̂β̂ + α̂2ν̂4 ≥ 1, set κ̂V F =∞. Otherwise,6 compute

κ̂V F = ν̂4
1− (β̂ + α̂)2

1− (β̂2 + 2α̂β̂ + α̂2ν̂4)
.

The inequality conditions can be alternatively verified by first computing the estimate,

and then checking whether it is positive.

For the GARCH(2,2) process

σ2
t = ω + β1σ

2
t−1 + β2σ

2
t−2 + α1r

2
t−1 + α2r

2
t−2,

denote

γ11 = β1 + α1,

γ21 = β2 + α2,

γ12 = β2
1 + 2α1β1 + α2

1ν4,

γ22 = β2
2 + 2α2β2 + α2

2ν4,

γ̃12 = β1β2 + α2β1 + α1β2 + α1α2ν4.

Then the moments are:

σ2 =
ω

1− γ11 − γ21
, (4)

provided that

γ11 + γ21 < 1,

and (see [21])

κ = ν4
(1− γ11 − γ21) ((1 + γ11 + γ21)(1− γ21) + 2γ11γ21)

(1− γ21) (1− γ12 − γ22)− 2γ11γ̃12
, (5)

provided that

2γ11γ̃12 < (1− γ21) (1− γ12 − γ22).

The estimation algorithm is adjusted accordingly:

6Alternatively, one could also set κ̂V F =∞ before checking for finiteness of kurtosis if σ̂2
V F =∞ is issued

at step 2, because the kurtosis is infinite whenever variance is infinite. However, we stick to the algorithm in

the text because σ̂2
V F =∞ is sometimes issued spuriously even when both variance and kurtosis are finite.
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Step 1. Run7 GARCH(2,2) QML on rt. Obtain GARCH parameters ω̂, β̂1, β̂2, α̂1 and α̂2 and

standardized errors ε̂t. Compute an estimate of variance and kurtosis of standardized

innovations as

ν̂4 =
1

T

T∑
t=1

ε̂4t .

Also, compute

γ̂11 = β̂1 + α̂1,

γ̂21 = β̂2 + α̂2,

γ̂12 = β̂2
1 + 2α̂1β̂1 + α̂2

1ν̂4,

γ̂22 = β̂2
2 + 2α̂2β̂2 + α̂2

2ν̂4,̂̃γ12 = β̂1β̂2 + α̂2β̂1 + α̂1β̂2 + α̂1α̂2ν̂4.

Step 2. If γ̂11 + γ̂21 ≥ 1, set σ̂2
V F =∞. Otherwise, compute

σ̂2
V F =

ω̂

1− γ̂11 − γ̂21
.

Step 3. If 2γ̂11̂̃γ12 ≥ (1− γ̂21) (1− γ̂12 − γ̂22), set κ̂V F =∞. Otherwise, compute

κ̂V F = ν̂4
(1− γ̂11 − γ̂21) ((1 + γ̂11 + γ̂21)(1− γ̂21) + 2γ̂11γ̂21)

(1− γ̂21) (1− γ̂12 − γ̂22)− 2γ̂11̂̃γ12 .

Again, the inequality conditions can be alternatively verified by first computing the esti-

mate, and then checking whether it is positive.

3 Point estimation: How well does it work?

To verify the performance of the VF technique and compare it with that of MM we run

simulations with 1000 runs of artificial data of length T = 500, 2000 and 10000, and read off

25%, 50% and 75% quantiles of distributions of estimates of κ and σ2 from both procedures.

We concentrate on quantiles because of likely problems with existence of moments. Most of

the time we focus on the kurtosis coefficient κ, because it is for the kurtosis that the problem

under consideration is most acute; still, we look at the results for the variance σ2 as well.8

The parameter ω is set to unity unless otherwise noted.

7Again, for raw returns, a conditional mean (e.g., a constant, or AR(1) as appropriate) should be added.
8The performance of GARCH parameter estimates, which is not of interest here, is described in [1].
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3.1 Estimation of kurtosis

Table 2a shows the results for kurtosis estimates when the standardized innovations εt are

standard normal implying ν4 = 3, for several combinations of variance equation parameters.

The first two combinations are empirically plausible and imply a moderately big kurtosis

coefficient between 5 and 6. The third combination implies reduction to a simpler ARCH(1)

true process. The fourth combination implies very weak volatility persistence and almost

mesokurtic tails.

Table 2a: Estimates of kurtosis coefficient from MM and GARCH(1,1) VF procedures, true

process is GARCH(1,1), innovations are normal.

Quantiles of κ̂

25% 50% 75% 25% 50% 75% 25% 50% 75%

T = 500 T = 2000 T = 10000

DGP α = 0.15, β = 0.80, ν4 = 3

True κ = 5.57

MM 3.32 3.74 4.34 3.82 4.25 4.90 4.31 4.68 5.30

VF 3.74 4.77 7.88 4.52 5.26 7.03 5.07 5.54 6.18

DGP α = 0.20, β = 0.70, ν4 = 3

True κ = 5.18

MM 3.37 3.76 4.39 3.82 4.17 4.77 4.27 4.64 5.17

VF 3.86 4.69 6.84 4.41 5.08 6.13 4.78 5.19 5.64

DGP α = 0.40, β = 0.00, ν4 = 3

True κ = 4.85

MM 3.47 3.86 4.52 3.82 4.19 4.77 4.19 4.50 4.88

VF 3.84 4.62 5.97 4.36 4.91 5.80 4.60 4.84 5.13

DGP α = 0.05, β = 0.05, ν4 = 3

True κ = 3.02

MM 2.83 2.97 3.13 2.92 3.00 3.08 2.98 3.01 3.05

VF 2.84 3.00 3.16 2.93 3.01 3.12 2.98 3.02 3.05

One can see that in the case of strongly persistent GARCH process (the first two panels)
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the VF estimates are much less biased than the MM estimates. When the sample size is large,

the VF estimates are nearly median unbiased, while for the MM estimator the [25%,75%]

interquartile range does not even contain the true value of kurtosis! For the less persistent

ARCH process (the third panel) the VF estimates are quite precise even for the smallest

sample size, while the true parameter is barely contained in the MM [25%,75%] interquartile

range for the largest sample size. When the volatility persistence is very weak (the fourth

panel), both procedures yield very similar results.

Table 2b shows the results for the former two parameter combinations when the stan-

dardized innovations εt are (standardized) Student with η = 10 degrees of freedom implying

ν4 = 4. This fattens the tails significantly resulting in a kurtosis coefficient larger than 10.

Table 2b: Estimates of kurtosis coefficient from MM and GARCH(1,1) VF procedures, true

process is GARCH(1,1), innovations are Student with 10 degrees of freedom.

Quantiles of κ̂

25% 50% 75% 25% 50% 75% 25% 50% 75%

T = 500 T = 2000 T = 10000

DGP α = 0.15, β = 0.80, ν4 = 4

True κ = 13.00

MM 4.06 4.80 6.06 5.01 5.91 7.56 6.13 7.01 8.95

VF 4.87 7.32 59.15 7.06 10.71 25.78 9.37 12.48 20.74

DGP α = 0.20, β = 0.70, ν4 = 4

True κ = 10.86

MM 4.14 4.81 6.04 4.40 5.83 5.02 5.98 6.82 8.32

VF 5.02 7.50 30.79 6.87 9.57 18.67 8.54 10.32 13.92

A larger kurtosis makes both estimators more variable, hence wider interquartile ranges.

The VF estimator is especially prone to this, especially the right tail. However, in all cases

its [25%,75%] interquartile range covers the true value of kurtosis, which does not fall far

from the median, except for the smallest sample size. The MM estimates, in contrast, are

very biased to the left, and their [25%,75%] interquartile ranges never cover the true value,

even for the largest sample size.
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Table 2c shows the results with standard normal standardized innovations for the first of

previous parameter combinations with normal innovations but inflated news impact parame-

ter α so that the kurtosis is either infinite or huge. The table additionally reports percentages

of cases when the VF procedure classifies the kurtosis to be infinite.

Table 2c: Estimates of kurtosis coefficient from MM and GARCH(1,1) VF procedures, true

process is GARCH(1,1), innovations are normal.

Quantiles of κ̂

25% 50% 75% 25% 50% 75% 25% 50% 75%

T = 500 T = 2000 T = 10000

DGP α = 0.19, β = 0.80, ν4 = 3

True κ =∞

MM 4.13 5.12 6.93 6.03 8.09 12.61 10.42 16.13 28.23

VF 4.75 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

VF % of ∞ 62 88 99

DGP α = 0.17, β = 0.80, ν4 = 3

True κ = 136.38

MM 3.63 4.26 5.54 4.47 5.28 6.71 5.93 7.16 9.59

VF 4.84 11.14 ∞ 9.12 39.27 ∞ 20.57 126.64 ∞

VF % of ∞ 36 43 45

In these cases the MM estimation gives ridiculously small estimates of kurtosis, the down-

ward bias is huge. The VF estimates are also median biased downward, but to a much lesser

degree. When the actual kurtosis in infinite, so is the median VF estimate for all sample

sizes; in fact, the whole [25%,75%] interquartile range is infinite when the sample size is big

enough, and the score in classification is large for the medium sample size and almost perfect

for the largest sample size. When the actual kurtosis in finite but very large, it takes quite a

big sample to reach the true value of kurtosis in median terms, and the proportion of infinite

classifications, although moderately large, does not exceed 50%.
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3.2 Kurtosis estimation under volatility misspecification

The volatility process followed by real data may not necessarily be GARCH(1,1). Now we

verify how well the GARCH(1,1) volatility filtering works when the actual process is in fact

more complex. We consider two cases: when the actual process is linear GARCH but of

higher orders, (2,2), and when the actual process is some nonlinear GARCH, but of the

same orders, (1,1).

Table 3a shows the results for kurtosis estimates when the underlying process is GARCH(2,2)

with standardized normal innovations. In the second parameter combination, the weights

placed on second lags are much larger than in the first parameter combination, otherwise the

sum of α’s and sum of β’s are kept the same. The true kurtosis coefficients are also similar.

One can see that GARCH(1,1) filtering when the true process is of higher order still works

very well, with the largest sample size yielding nearly median unbiased VF estimates, while

the MM estimates are still far from the true parameter both in median and interquartile

terms.

Table 3a: Estimates of kurtosis coefficient from MM and GARCH(1,1) VF procedures, true

process is GARCH(2,2), innovations are normal.

Quantiles of κ̂

25% 50% 75% 25% 50% 75% 25% 50% 75%

T = 500 T = 2000 T = 10000

DGP GARCH(2,2): α1 = 0.10, β1 = 0.50, α2 = 0.05, β2 = 0.30

True κ = 4.51

MM 3.19 3.51 3.95 3.57 3.89 4.37 3.90 4.14 4.56

VF 3.39 3.99 5.15 3.92 4.33 5.13 4.22 4.47 4.77

DGP GARCH(2,2): α1 = 0.05, β1 = 0.30, α2 = 0.10, β2 = 0.50

True κ = 4.19

MM 3.12 3.38 3.74 3.46 3.71 4.09 3.74 3.97 4.28

VF 3.11 3.56 4.40 3.69 4.05 4.62 3.95 4.14 4.37

Table 3b shows the results for kurtosis estimates when the underlying process is one of

three nonlinear GARCH(1,1) models with standardized normal innovations, and a stochastic
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volatility (SV) model. The GARCH models are GJR ([18]), TGARCH ([38]), and EGARCH

([33]), and the SV model is SARV ([36]).

Table 3b: Estimates of kurtosis coefficient from MM and GARCH(1,1) VF procedures, true

process is nonlinear GARCH or SV, innovations are normal.

Quantiles of κ̂

25% 50% 75% 25% 50% 75% 25% 50% 75%

T = 500 T = 2000 T = 10000

DGP GJR(1,1): α = 0.10, γ = 0.10, β = 0.80

True κ = 6.50

MM 3.37 3.78 4.50 3.98 4.45 5.29 4.52 5.03 5.91

VF 3.35 4.17 5.94 4.69 5.61 7.63 5.29 5.86 6.63

DGP TGARCH(1,1): α+ = 0.10, α− = 0.20, β = 0.80

True κ = 4.52

MM 3.33 3.65 4.13 3.68 3.95 4.32 3.94 4.11 4.34

VF 3.60 4.32 5.75 4.36 4.94 5.93 4.76 5.11 5.55

DGP EGARCH(1,1): ω = −0.25, α = 0.40, β = 0.80

True κ = 4.68

MM 3.86 4.29 4.84 4.20 4.47 4.87 4.45 4.62 4.81

VF 4.03 4.54 5.43 4.29 4.60 5.00 4.52 4.68 4.88

DGP SARV(1): ω = −0.25, β = 0.80, σ2
v = 0.16

True κ = 4.68

MM 3.90 4.31 4.90 4.27 4.51 4.91 4.48 4.64 4.81

VF 4.17 4.78 5.64 4.35 4.81 5.28 4.76 4.98 5.23

The formulas for kurtosis coefficients for these models can be found in the Appendix A.1.

The GJR equation is

σ2
t = ω + βσ2

t−1 +
(
α + γI{rt−1<0}

)
r2t−1, (6)

where I{rt−1<0} is indicator function. In contrast to the linear GARCH, it incorporates the

leverage effect, i.e. asymmetry with respect to the sign of the past innovation. We set the

news impact coefficients pretty different in size for the innovations of different sign. Although
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on average the news impact is the same as in the first GARCH(1,1) process in Table 2a,

the kurtosis coefficient is larger because of this asymmetry. The TGARCH equation is

formulated for the conditional standard deviation:

σt = ω + βσt−1 +
(
α+I{rt−1>0} + α−I{rt−1<0}

)
|rt−1|. (7)

We incorporate a distinguished leverage effect like that for the GJR model. The (restricted)

EGARCH equation is formulated for logs of conditional variances:

log σ2
t = ω + β log σ2

t−1 + α
rt−1
σt−1

. (8)

The SARV equation is also formulated for logs but with an unobservable volatility shock in

place of the observable driving process:

log σ2
t = ω + β log σ2

t−1 + vt, (9)

where vt ∼ i.i.d.N (0, σ2
v) independent of εt.

As expected, the MM estimates are severely biases downward, and in the three nonlinear

GARCH cases the VF estimator still fares better in median terms. For the SV process,

GARCH volatility filtering has a harder time whitening the squared returns, due to the un-

observable component being the driving process of volatility. Interestingly, for the TGARCH

process the sign of the bias for the VF estimator is positive rather than negative, and so is

it for the SARV process. This may be a consequence of a combination of high asymmetry

and additional highly nonlinear transformation of the conditional variance in the TGARCH

case and unobservable driver of volatility in the SARV case. These are the cases when the

VF estimator does not attain the goal for large sample sizes; for smaller ones the positive

and negative biases partially cancel each other.

3.3 Kurtosis estimation with higher order GARCH filtering

The evidence presented in the previous subsection poses a question: if the actual volatility

dynamics is nonlinear relative to GARCH, or its order is higher, would increasing the orders

of the GARCH process used in filtering help better capture the deviations from the actual

process and make a positive impact on the precision of VF estimates? Table 4 contains the

results when instead the GARCH(1,2) and GARCH(2,2) filters are employed, and the actual

processes are those from Tables 3a and 3b. Here we set the sample size to T = 2000.
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Table 4: Estimates of kurtosis coefficient from MM and GARCH(1,1) VF procedures, true

process is nonlinear GARCH, SV or GARCH(2,2), sample size is 2000.

Quantiles of κ̂

25% 50% 75% 25% 50% 75% 25% 50% 75%

GARCH(1,1) GARCH(1,2) GARCH(2,2)

DGP GJR(1,1): α = 0.10, γ = 0.10, β = 0.80

True κ = 6.50

MM 3.98 4.45 5.29 3.89 4.36 5.24 3.97 4.45 5.15

VF 4.70 5.59 7.45 4.50 5.37 7.12 4.43 5.37 7.15

DGP TGARCH(1,1): α+ = 0.10, α− = 0.20, β = 0.80

True κ = 4.52

MM 3.68 3.95 4.32 3.68 3.95 4.32 3.70 3.95 4.31

VF 4.36 4.94 5.93 4.38 5.05 6.02 4.42 5.11 6.48

DGP EGARCH(1,1): ω = −0.25, α = 0.40, β = 0.80

True κ = 4.68

MM 4.20 4.47 4.87 4.18 4.48 4.85 4.24 4.54 4.90

VF 4.29 4.60 5.00 4.37 4.73 5.33 4.38 4.71 5.14

DGP SARV(1): ω = −0.25, β = 0.80, σ2
v = 0.16

True κ = 4.68

MM 4.27 4.51 4.91 4.24 4.53 4.88 4.25 4.52 4.87

VF 4.35 4.81 5.28 4.62 5.02 5.70 4.58 4.97 5.46

DGP GARCH(2,2): α1 = 0.10, β1 = 0.50, α2 = 0.05, β2 = 0.30

True κ = 4.51

MM 3.57 3.89 4.37 3.54 3.85 4.34 3.57 3.85 4.31

VF 3.86 4.37 5.15 3.86 4.32 5.16 3.92 4.38 5.23

DGP GARCH(2,2): α1 = 0.05, β1 = 0.30, α2 = 0.10, β2 = 0.50

True κ = 4.19

MM 3.46 3.71 4.09 3.46 3.69 4.01 3.46 3.70 4.08

VF 3.69 4.05 4.62 3.66 4.04 4.62 3.70 4.03 4.59
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Interestingly and unexpectedly, for nonlinear/SV deviations from GARCH the use of higher

orders does not bring improvements and in fact sometimes the performance of VF estimates

deteriorates. In particular, in the GJR and TGARCH cases the median bias is larger when

a higher order GARCH filter is used in place of GARCH(1,1). In the EGARCH and SV

cases there is some improvement, but it is not large. When the true process has orders (2,2)

but only (1,1) (or (1,2), for that matter) are assumed, the performance of the VF technique

changes very little, if at all. This is true even when the coefficients on second lags are bigger

than those on first lags in the GARCH(2,2) specification.

This phenomenon can be explained as follows. First, even though the GARCH(2,2) model

better accounts for the true persistence structure, most of it can be well captured by the

GARCH(1,1) structure. Indeed, the GARCH literature suggests that the GARCH(1,1)

model is able to provide volatility forecasts that are no worse than those provided by more

sophisticated models ([20]). Secondly, an addition of one or two more parameters is a sharp

increase in model complexity, and it seems that estimation thereof reduces the precision of

ingredients of the kurtosis estimate to a greater degree than the deviation from the true

persistence structure.

3.4 Estimation of variance

Finally, we compare MM and VF variance estimates. Table 5 shows the results with two

processes with high persistence. The first parameter combination implies IGARCH struc-

ture and hence infinite variance. In the second parameter combination, the news impact

parameter is a bit smaller resulting in a covariance stationary process implying big but finite

variance.

When the actual variance is finite, the VF [25%,75%] interquartile range is wider than

that of the MM estimator. However, it is centered much closer to the true parameter,

and the discrepancy diminishes quickly with the sample size. The percentages of incorrect

classification diminishes very fast with the sample size. When the actual variance is infinite,

typical VF estimates increase very quickly with the sample size, with the percentage of

correct classification also growing, although more slowly.
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Table 5: Estimates of variance from MM and GARCH(1,1) VF procedures, true process is

GARCH(1,1), innovations are normal.

Quantiles of σ̂2

25% 50% 75% 25% 50% 75% 25% 50% 75%

T = 500 T = 2000 T = 10000

DGP α1 = 0.20, β1 = 0.80, εt ∼ N(0, 1)

True σ2 =∞

MM 51.6 80.8 143.7 74.4 111.3 195.1 116.1 160.6 251.4

VF 64.1 172.9 ∞ 134.9 434.8 ∞ 331.0 4113.5 ∞

VF % of ∞ 35 39 47

DGP α1 = 0.19, β1 = 0.80, εt ∼ N(0, 1)

True σ2 = 100

MM 36.5 51.6 79.6 49.0 61.9 86.0 62.4 74.1 94.6

VF 41.7 72.4 322.4 60.4 87.8 188.9 76.9 98.7 135.3

VF % of ∞ 18 12 1

4 Confidence intervals: How does it work?

One may want to surround the point estimates, if they turn out to be finite, by confidence

intervals (CI). We consider two ways of their construction: one is based on the Delta method

supported by the conventional large sample theory; the other is correlation and heterogeneity

robust inference by [26] based on finite sample inference for group t statistics.

4.1 Asymptotic confidence intervals

Consider first the inference based on conventional large sample theory. In a nutshell, it

amounts to applying the Delta method to time series asymptotics for basic estimators ob-

tained from the sample – the second and fourth sample moments for MM, and the GARCH

parameter estimates and fourth sample moments of standardized returns for VF.

For the MM estimator, we have

Proposition 1. Suppose the return series rt is stationary and ergodic with E [r8t ] < ∞.
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The MM estimator (σ̂2
MM , κ̂MM)′ is consistent and asymptotically normal with the asymp-

totic variance

VMM = GMMWMMG
′
MM ,

where

GMM =

 1 0

−2σ−2κ σ−4


is a matrix of analytical first derivatives of the mapping from the vector of sample second

and fourth moments to the vector (σ2, κ)′, and

WMM =
∞∑

j=−∞

cov

((
r2t
r4t

)
,

(
r2t−j
r4t−j

))

is the long-run variance of the vector of sample second and fourth moments.

The result of Proposition 1 follows by the Delta method applied to the transformation

from the second and fourth moments of returns to the moments figuring in the definitions of

σ2 and κ. Because the former exhibit serial correlation, HAC variance estimation is needed.

The asymptotic variance VMM can be consistently estimated by

V̂MM = ĜMMŴMMĜ
′
MM ,

where

ĜMM =

 1 0

−2σ̂−2MM κ̂MM σ̂−4MM


is a consistent estimator of the matrix GMM , and ŴMM is heteroskedasticity and autocor-

relation consistent (HAC, e.g., [34]) estimator of WMM .

To construct a VF confidence interval one needs the joint asymptotics of the QML esti-

mator θ̂ = (ω̂, α̂, β̂)′ of the GARCH parameters and sample fourth moments of standardized

returns v̂4. Denote vr = E [εrt ] for r = 6, 8. We have

Proposition 2. Suppose the return series rt follows a strong GARCH(1,1) process (1)

with β2 + 2αβ + α2ν4 < 1, v8 <∞, and θ lying in the interior of a compact parameter set.

The VF estimator (σ̂2
V F , κ̂V F )′ is consistent and asymptotically normal with the asymptotic

variance

VV F = GV FWV FG
′
V F ,
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where GV F is the matrix of first derivatives of the mapping from the vector of GARCH

parameters and fourth moments of standardized returns to the vector (σ2, κ)′ embedded

in the VF algorithm, and WV F is a covariance matrix of GARCH parameters and fourth

moment of standardized returns

WV F =

 (v4 − 1) J−1 (v6 − v4) J−1F

(v6 − v4) J−1F ′ v8 − v24

 ,
where

J = E

[
1

σ4
t

∂σ2
t

∂θ

∂σ2
t

∂θ′

]
, F = E

[
1

σ2
t

∂σ2
t

∂θ

]
,

and

`t =
r2t
σ2
t

+ log σ2
t .

The result of Proposition 2 follows by the Delta method applied to the transformation

from the GARCH parameters and fourth moments of standardized returns to the moments

figuring in the expressions (2) and (3) or (4) and (5). Because the score function and

standardized returns are martingale differences, HAC variance estimation is not needed.

The matrix GV F is analytically rather convoluted, but it can be easily computed using

numerical methods once the mapping is programmed, and estimated by plugging in the

available estimates of components. The matrix WV F can be computed using the asymptotics

in the Proposition that extends the asymptotics for GARCH coefficients in [15]. It can be

easily estimated during the numerical minimization of the average quasi-likelihood. Then,

an asymptotic variance estimate for the VF estimator (σ̂2
V F , κ̂V F )′ is

V̂V F = ĜV F ŴV F Ĝ
′
V F ,

where ĜV F consistently estimates GV F , and ŴV F consistently estimates WV F .

Note that the asymptotics for the VF estimator is well motivated when v8 < ∞. This

moment condition is much weaker for persistent data than the condition E [r8t ] <∞ needed

for asymptotics of the MM estimator to hold. The MM asymptotic CI are poorly motivated

as these computations presume existence of as high as eighth moments of returns. In the

situations under consideration such moments are unlikely to exist, and even when they do,

their method-of-moment estimates yield very poor approximations (the effects described in
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the Introduction for second and fourth moments are, of course, further exacerbated for eight

moments). This factor, together with biasedness of the estimates, is expected to make the

MM confidence intervals rather spurious. In contrast, the normal asymptotics holds for the

GARCH parameters without a requirement of finite eighth moments; in fact, asymptotic

normality may not fail even when the unconditional kurtosis is infinite provided that the

conditional kurtosis is finite (e.g., [29], [15]). Also note that MM inference uses HAC variance

estimates, which often have poor finite sample properties, while VF inference does not. The

decisive factor, however, in different precision of CI is expected to be the different biasedness

properties of the two point estimators.

4.2 Robust confidence intervals

Now consider the correlation and heterogeneity robust inference by [26] (IM henceforth).

This way of constructing confidence intervals avoids tedious, especially for VF, estimation

of derivatives and asymptotic variances; on the other hand, it requires repeated estimation

of the GARCH model.9 Suppose we divide the sample into a fixed number q of equal non-

overlapping groups of size τ, where T = τq, and compute estimates (σ̂2
j , κ̂j)

′, j = 1, ..., q, on

all groups. Suppose that 2 ≤ q ≤ 14 and φ ≤ 0.10, where φ is the CI level or test size. Then,

we have

Proposition 3. Suppose that
{

(σ̂2
j , κ̂j)

′}q
j=1

are consistent, asymptotically normal and

asymptotically independent as τ →∞, with asymptotic variances uniformly bounded from

below. Then, the t statistics over the groups,

tσ2 =
√
q
σ̂2 − σ2

sσ̂2

,

tκ =
√
q
κ̂− κ
sκ̂

,

where σ̂2 = q−1
∑q

j=1 σ̂
2
j , s

2
σ̂2 = (q − 1)−1

∑q
j=1(σ̂

2
j − σ̂2)2, κ̂ = q−1

∑q
j=1 κ̂j, and s2κ̂ =

(q − 1)−1
∑q

j=1(κ̂j − κ̂)2, are both asymptotically distributed as Student’s t with q − 1 de-

grees of freedom under the null that σ2 and κ are true values of the variance and kurtosis

coefficient.

9[35] uses robust inference in the context of GARCH models, but the inference concerns the parameters

of the conditional mean equation.
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These ‘robust’ t tests are finite sample in the sense that a finite sample Student’s distribu-

tion is used for a sample of fixed size q, and asymptotic in the sense that an asymptotically

infinite sample is needed to ensure uncorrelatedness of these q ‘observations’. By inverting

the IM tests, one can construct IM confidence intervals for σ2 and κ simply as σ̂2∓cvφsσ̂2/
√
q

and κ̂ ∓ cvφsκ̂/
√
q, where cvφ is the

(
1− 1

2
φ
)
-quantile of the Student’s t distribution with

q − 1 degrees of freedom.

As mentioned above, the IM confidence intervals require no tedious estimation of asymp-

totic variance ingredients, but require estimation of the GARCH model multiple times (which

is, however, not a big cost). The latter fact in the current context imposes a pressure on

the number of groups from above: each group has to be long enough for the GARCH model

to be estimable and these estimates to be reliable. There is yet another peculiarity of IM

confidence intervals: because they are centered around an average over groups rather than

around the whole sample point estimate, the point estimate may be severely shifted away

from the CI center or may not belong to the CI at all. Such outcomes may leave an empirical

researcher who is used to symmetric confidence intervals a bit dissatisfied.

5 Confidence intervals: How well does it work?

Table 6 contains results of simulation experiments with several DGPs used before. Two are

correctly specified GARCH(1,1) models with basic parameter values except the tail thickness

of standardized returns – one has normal tails implying ν4 = 3, the other has Student’s tails

implying ν4 = 4. Two other DGPs are misspecified – one follows GARCH(2,2), and the

other follows GJR(1,1). The true variance is σ2 = 20 in all DGPs, the true value of kurtosis

varies across DGPs. We report actual coverage probabilities of nominally 95% asymptotic

confidence intervals from both estimators, MM and VF, and two inference tools, ∆M (for

‘Delta method’) and IM. In the case of asymptotic CI, we use the HAC variance estimator

by [24] for the MM, and the two-sided difference scheme for obtaining partial derivatives

with the step h = 10−5 times the parameter value, for VF.10 In the case of IM inference, we

use q = 2 when T = 500, q = 3 when T = 2000, and q = 5 when T = 10000; these choices

are mostly driven by the need to allocate a sufficient number of observations into each group

for the volatility filter to be computationally feasible, and to set q to be slowly increasing

10This guarantees the precision of order O(h2) (see [27], section 7.7).
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Table 6: Coverage probabilities of 95% asymptotic confidence intervals from MM and

GARCH(1,1) VF procedures.

κ σ2 κ σ2 κ σ2

T = 500 T = 2000 T = 10000

DGP GARCH(1,1): α = 0.15, β = 0.80, ν4 = 3

True κ = 5.57, σ2 = 20

MM with ∆M 24% 57% 32% 68% 44% 76%

MM with IM 71% 94% 52% 92% 50% 93%

VF with ∆M 69% 84% 89% 92% 95% 95%

VF with IM 85% 94% 89% 94% 94% 95%

DGP GARCH(1,1): α = 0.15, β = 0.80, ν4 = 4

True κ = 13, σ2 = 20

MM with ∆M 7% 55% 13% 67% 24% 76%

MM with IM 43% 92% 23% 92% 21% 92%

VF with ∆M 41% 82% 59% 90% 81% 95%

VF with IM 78% 94% 83% 95% 93% 94%

DGP GARCH(2,2): α1 = 0.10, β1 = 0.50, α2 = 0.05, β2 = 0.30, ν4 = 3

True κ = 4.51, σ2 = 20

MM with ∆M 32% 54% 43% 64% 55% 72%

MM with IM 79% 94% 64% 93% 62% 94%

VF with ∆M 80% 86% 92% 91% 97% 95%

VF with IM 90% 95% 88% 90% 94% 95%

DGP GJR(1,1): α = 0.10, γ = 0.10, β = 0.80, ν4 = 3

True κ = 6.50, σ2 = 20

MM with ∆M 17% 56% 26% 67% 34% 75%

MM with IM 63% 93% 43% 92% 40% 93%

VF with ∆M 60% 83% 80% 92% 85% 94%

VF with IM 83% 94% 88% 92% 87% 95%

Note: For IM, q = 2 when T = 500, q = 3 when T = 2000, and q = 5 when T = 10000.
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with T .

First consider the asymptotic inference based on the Delta method. One can notice imme-

diately that the MM confidence intervals have a dramatic undercoverage problem, especially

those for the kurtosis coefficient. Even though the MM coverage probabilities increase with

the sample size, even with T = 10000 the actual coverage is far from nominal: for variance,

the maximal coverage is about 75%, for kurtosis – mere 55% (and often much smaller). The

VF confidence intervals are undercovered to a much lesser degree, uniformly. Still pretty

serious undercoverage for relatively small samples quickly diminishes when the sample gets

larger, and with T = 10000 the actual coverage for variance gets almost nominal, while for

kurtosis it rises to relatively tolerable levels.

The VF coverage probabilities for variance do not vary or vary very little with DGP and

do not depend much whether it is correctly or misspecified. Comparing the VF coverage

probabilities in two top panels and two bottom panels one can conclude that the coverage

properties do not vary much with whether the true DGP is misspecified or not in the VF

procedure. It is the value of kurtosis that affects coverage: the higher the kurtosis coefficient,

the higher are coverage distortions. Highest size distortions for kurtosis appear for the second

DGP where the kurtosis is highest because the tails of standardized returns are thickest.

Indeed, the problems of estimation of fourth moments partially carry over to standardized

returns even though they are not persistent. All remaining VF coverage distortions evidently

originate from two sources: one is a bias in estimates of GARCH coefficients, and the other

is uncertainty in estimation of a fourth moment of standardized returns.

Now consider the inference based on the IM method by. For both estimators and across all

simulation designs, the IM confidence intervals have much better coverage properties that

those based on the Delta method. For the largest sample size and estimation of variance,

the VF confidence intervals based both on ∆M and on IM provide ideal coverage, though

the coverage distortions for kurtosis kick in even for the largest sample size when the Delta

method is used. For medium and small samples, the IM method clearly dominates in terms

of coverage, be it for variance or for kurtosis. Having such good coverage is accompanied

though with the CI being non-symmetric around the possibly biased VF point estimates and

not even including them from time to time.
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6 Extension to multivariate case

The extension to a multivariate context is straightforward, albeit technically tedious. Here

we write out the VF algorithm when series of returns rt is `-dimensional, ` > 1, and the

returns are conditionally spherically distributed (cf. [19]).

The MM estimate for the covariance matrix

Σ = Ertr
′
t

is

Σ̂MM =
1

T

T∑
t=1

rtr
′
t.

For the collection of coefficients of kurtoses and co-kurtoses

κii =
Er4i,t
Σ2
ii

, κij =
Er2i,tr

2
j,t

ΣiiΣjj

,

i, j = 1, ..., `, i 6= j, the collection of MM estimates is

κ̂iiMM =
1

Σ̂2
MMii

1

T

T∑
t=1

r4i,t, κ̂ijMM =
1

Σ̂MMiiΣ̂MMjj

1

T

T∑
t=1

r2i,tr
2
j,t.

Consider the general multivariate GARCH(1, 1) model ([6]) with possibly non-normal stan-

dardized innovations:

rt = H
1/2
t εt,

where εt ∼ i.i.d.D(0, I`), and vectorized conditional covariance matrix follows

vech(Ht) = vech(Ω) +Bvech(Ht−1) + Avech(rt−1r
′
t−1).

The distribution D of standardized innovations is assumed to be spherical with fourth cross-

moments c = Eε2i,tε
2
j,t = 3Eε4i,t for all i, j = 1, ..., `, i 6= j.

Denote n = `(`+ 1)/2. The vectorized variance of rt can be expressed as (see [11])

vech(Σ) = (In −B − A)−1 vech(Ω),

provided that it is finite, which happens when all eigenvalues of B + A lie inside the unit

circle. From [19], the kurtoses and co-kurtoses are elements of the following vector:

K = vec (E[vech(rtr
′
t)vech(rtr

′
t)
′])

= G` (In2 − Z)−1 vec


vech(Ω)vech(Ω)′

+ (B + A)vech(Σ)vech(Ω)′

+ vech(Ω)vech(Σ)′(B + A)′

 ,
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where

Z = (A⊗ A)G` +B ⊗ A+ A⊗B +B ⊗B,

G` = c
(
2(L` ⊗D+

` )(I` ⊗ C`` ⊗ I`)(D` ⊗D`) + In2

)
,

and L`, D`, D
+
` , C`` are certain matrix manipulation matrices (see [19]), provided that this

quantity is finite, which happens when all eigenvalues of Z lie inside the unit circle. The

collection of coefficients of kurtoses and co-kurtoses can be extracted from K and Σ:

κii =
Kkiki

Σ2
ii

, κij =
Kkikj

ΣiiΣjj

,

where ki = (i− 1)(`− i/2) + i, i, j = 1, ..., `, i 6= j.

The algorithm of obtaining VF estimates then goes as follows:

Step 1. Run11 unrestricted or restricted multivariate GARCH(1,1) QML on rt.Obtain MGARCH

parameters Ω̂, B̂ and Â and standardized innovations ε̂t. Compute an estimate of

fourth cross-moments as, for example,

ĉ =
1

3`

∑̀
i=1

1

T

T∑
t=1

ε̂4i,t.

Compute estimate Ẑ of Z from estimates Ω̂, B̂, Â and ĉ.

Step 2. If the largest eigenvalue of B̂ + Â is larger than unity in modulus, set Σ̂V F = ∞.

Otherwise, compute

vech(Σ̂V F ) =
(
In − B̂ − Â

)−1
vech(Ω̂).

Step 3. If the largest eigenvalue of Ẑ is larger than unity in modulus, set K̂V F =∞. Otherwise,

compute K̂V F and extract relevant values of κ̂iiV F and κ̂ijV F for i, j = 1, ..., `, i 6= j.

If the whole covariance/co-kurtosis matrix is classified as infinite, it is possible that some

variances/kurtoses are still finite. If they are of interest, one may reduce the dimensionality

of the return vector and repeat the procedure for a subset of returns.

11For raw returns, a conditional mean (e.g., a constant vector, or VAR(1) as appropriate) should be added.

25



7 Empirical illustration

In this section, we demonstrate the VF technique on typical financial return series of different

frequencies (daily, weekly, monthly) and different nature (stock index, individual stock,

exchange rate). We compare the estimates of variance σ2 and kurtosis coefficient κ from the

MM procedure and VF procedures using GARCH(1,1) and GARCH(2,2) in addition to a

constant conditional mean. Table 7a contains the results.

While the variance point estimates are in agreement across the methods, the point esti-

mates of the kurtosis coefficient are not. While the former tend to be a bit higher, although

not always, under volatility filtering, the latter are often two to three times larger (when

finite) with filtering than without it. In some cases the VF method signals on non-existence

of the fourth moment. This tendency is, of course, more clear for series that are likely to

have thicker tails (possibly due to higher volatility persistence) – high frequency index and

stock returns, while for exchange rates the difference is not so high.

Most dramatic are differences in standard errors provided by the two methods. Those

for the VF variance estimates are typically 2-4 times larger than those for MM estimates.

The latter standard errors provide too optimistic picture of actual estimation uncertainly.

This tendency is exacerbated for kurtosis estimates. Even for moderately kurtic data (like

monthly IBM returns and monthly dollar/yen exchange rate) the VF standard errors exceed

those provided by MM by a fewfold. For more kurtic returns the ratio may be greater than

ten or even twenty. For very kurtic data with a probably finite kurtosis (like monthly S&P500

returns), the difference may be a few dozenfold. In cases of likely non-existent kurtosis, the

MM shows moderate figures for the kurtosis coefficient, with inadequately small standard

errors. Often, the MM estimate plus two MM standard deviations falls way short of the VF

point estimates for the kurtosis coefficient.

Interestingly, while the figures across different orders of GARCH filtering are pretty sim-

ilar, there are discrepancies for (most persistent and most thick-tailed) index returns. For

the weekly S&P500 returns, the GARCH(1,1) filtering detects infinite kurtosis while the

GARCH(2,2) filtering still regards it finite but very large (almost three times larger than the

MM estimate computed from the raw data), and the huge VF standard errors reflect high

uncertainty embedded in the estimate.
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We also consider the bivariate case for daily and monthly exchange rate pairs. We compare

the estimates of covariance matrix Σ and relevant elements of the co-kurtosis coefficient

matrix K from the MM procedure and VF procedure that uses BEKK(1,1) ([11]) in addition

to a constant conditional mean vector. Here, because the use of the Delta method is even

more cumbersome with the multivariate model, we construct robust IM 95% level confidence

intervals instead of asymptotic ones. Table 7b contains the results. The MM variance and

kurtosis estimates are equal or very similar to those from the univariate MM procedure, and

the covariance and co-kurtosis values are pretty moderate. While the estimates of the former

from the multivariate volatility filtering procedure tend to go up as expected, the estimates

of the co-measures also increase in absolute value, especially the co-kurtosis coefficients (up

to almost twice). The 95% confidence intervals are quite narrow for the daily data, but are

little informative for the monthly data, with the confidence intervals for positive parameters

often covering large negative areas.

8 Concluding remarks

The volatility filtering method is an effective way to compute second and especially fourth

moments of persistent series by avoiding a necessity to apply the method of moments to a

persistent series. As our simulations show, the VF estimates are much less median biased

compared to the MM estimates, and the confidence intervals have actual coverage properties

much closer to nominal. This holds not only when the GARCH(1,1) process used in filtering

coincides with the true process driving the persistence, but also for a wide range of other

GARCH-type processes with different persistence structures.

The remaining median biases and coverage distortions of the VF kurtosis estimator in a

correctly specified persistence model are mainly due to the biasedness (even in mean terms)

of GARCH coefficients which is intrinsic even in a correctly specified GARCH model (see,

e.g., [1]). While these fade off as the sample size grows, this happens pretty slowly. One

may increase efficiency of GARCH and fourth moment estimates by using QML based on

heavy-tailed distributions ([13]), or by applying bias correction to GARCH parameters –

analytical ([30]) or via bootstrap ([8]). However, these refinements are likely to complicate

the algorithm seriously threatening its simplicity.

One bigger development of the method may constitute an attempt to tie the form (e.g.,

29



the lag order) of the process used to filter the volatility to some computable persistence

characteristics. Another possible extension is changing the volatility process to one that

allows analytic computation of all moments of the series, not only of the fourth and second.
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[15] Francq, C. and J.-M. Zaköıan (2004). Maximum likelihood estimation of pure GARCH

and ARMA-GARCH processes. Bernoulli 10 (4), 605-637.
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A Appendix

A.1 Kurtosis and variance formulas for non-GARCH processes

The following formulas for the kurtosis coefficients can be found in [22], [23] and [36].

For the GJR(1,1) model (6),

σ2 =
ω

1− β −
(
α + 1

2
γ
)

and

κ = ν4
1− (β +

(
α + 1

2
γ
)
)2

1− (β2 + 2
(
α + 1

2
γ
)
β +

(
α2 + αγ + 1

2
γ2
)
ν4)

.

For the TGARCH(1,1) model (7),

κ = ν4
Γ4 (1− γC) (1− γC2)

(1 + γC)2 (1− γC3) (1− γC4)
,

where

γC = β + ν1
α+ + α−

2
,

γC2 = β2 + ν1β(α+ + α−) + ν2
(α+)2 + (α−)2

2
,

γC3 = β3 + 3ν1β
2α

+ + α−

2
+ 3ν2β

(α+)2 + (α−)2

2
+ ν3

(α+)3 + (α−)3

2
,

γC4 = β4 + 2ν1β
3(α+ + α−) + 3ν2β

2
(
(α+)2 + (α−)2

)
+2ν3β

(
(α+)3 + (α−)3

)
+ ν4

(α+)4 + (α−)4

2
,

Γ4 = 1 + 3γC + 5γC2 + 3γC3 + 3γCγC2 + 5γCγC3 + 3γC2γC3 + γCγC2γC3,

and for standard normal standardized innovations, ν1 =
√

2/π, ν2 = 1, ν3 = 2
√

2/π and

ν4 = 3.

For the EGARCH(1,1) model (8) with normal innovations,

κ = 3 exp

(
α2

1− β2

)
.

For the CARV(1) model (9),

κ = 3 exp

(
σ2
v

1− β2

)
.
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A.2 Proofs of Propositions

Proof of Proposition 1: Straightforward, using the Ergodic Theorem, Central Limit

Theorem for general dependent observations of a stationary series, and the Delta method.

�

Proof of Proposition 2: The (minus) (twice) normal quasi-likelihood for observation t is

`t =
r2t
σ2
t

+ log σ2
t .

Following [15], formula (2.10), denote

J = E

[
∂2`t
∂θ∂θ′

]
= E

[
1

σ4
t

∂σ2
t

∂θ

∂σ2
t

∂θ′

]
,

where `t is the true likelihood for observation t. Following the proof of Theorem 2.2 in [15],

the joint asymptotics for average ∂`t/∂θ and average ε4t is

1√
T

T∑
t=1

( ∂`t
∂θ

ε4t − v4

)
d→ N (0,W0) ,

where

W0 =

 E

[
∂`t
∂θ

∂`t
∂θ′

]
E

[
(ε4t − v4)

∂`t
∂θ

]
E

[
(ε4t − v4)

∂`t
∂θ′

]
E
[
(ε4t − v4)

2
]


=

 (v4 − 1) J (v6 − v4)F

(v6 − v4)F ′ v8 − v24


using the representation (4.12) from [15], where

F = E

[
1

σ2
t

∂σ2
t

∂θ

]
.

Further,

√
T

(
θ̂ − θ
v̂4 − v4

)
A
= diag

−
(

1

T

T∑
t=1

∂2`t
∂θ∂θ′

)−1
, 1

 1√
T

T∑
t=1

( ∂`t
∂θ

ε4t − v4

)
d→ N (0,WV F ) ,

where

WV F = diag{−J−1, 1}W0 diag{−J−1, 1}

=

 (v4 − 1) J−1 (v6 − v4) J−1F

(v6 − v4) J−1F ′ v8 − v24

 .
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Finally, it follows that the asymptotic variance of VF estimator can be computed via the

Delta method:

VV F = GV FWV FG
′
V F ,

where GV F is the matrix of first derivatives of the mapping from the vector of parameters

and average fourth moments of standardized returns to the vector (σ2, κ)′. �

Proof of Proposition 3: Follows directly from [26]. �

36


