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Abstract

We explore a predictive relationship between volatility and trading volume within the

class of HAR type models for realized volatility. We propose a new way to incorporate

trading volume into the model of volatility forecasts. In the spirit of the HAR model,

we include average trading volumes for the past one, five, and 22 trading days, in

various combinations, and for different horizons. We verify whether these averages are

able to increase out-of-sample quality of volatility forecasts. We discover that for a

one-day horizon, the lags of trading volume significantly enhance the quality of out-

of-sample volatility forecasts compared to HAR models without trading volume and

with only a one-day trading volume. This result is robust to model specification, choice

of loss function, and asset type. In contrast, for both week and month horizons, the

quality of volatility forecasts typically does not increase. A plausible reason for forecast

enhancement is that the lagged average trading volume represents not only information

coming to the market but also signals how fast the incoming information spreads across

the market.
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1 Introduction

Volatility forecasting is very important in financial econometrics. Good volatility fore-

casts are in demand in order to price an option or determine the best trading or hedging

strategy. There are numerous other uses for volatility. A lot of academic papers try to find

whether the trading volume can increase the quality of volatility forecasts. In this paper,

we propose a new way to incorporate trading volume into the model of volatility forecasts.

We take as a starting point the heterogeneous autoregressive model for realized volatility

(HAR-RV), a popular and attractive workhorse model by Corsi (2009), and add average

trading volumes for the past one, five, and 22 trading days, in various combinations, sim-

ilarly to how the baseline HAR-RV model includes past average realized volatilities. We

verify whether these past average volumes are able to improve in-sample and especially out-

of-sample quality of volatility forecasts, and how such improvements (if any) vary with the

forecast horizon.

Specifically, we use one-minute data on prices and trading volumes for 41 assets contained

in the DOW30 index. Using the price data, we compute realized volatility, a consistent

measure of integrated volatility. Exploiting the baseline HAR-RV model and its several

modifications, we make forecasts of realized volatility for the day, week, and month horizons.

After that, we add the corresponding lags of trading volume, in the spirit of the HAR-RV

model. Thus, for each version of the HAR model, each forecast horizon, and each of the

41 assets,1 we compare forecasts produced by four models: one without trading volume,

one with one lag of trading volume (i.e., daily volume measure), one with trading volume

for one and five trading days (i.e., daily and average weekly volume measures), and one

with trading volume for one, five and twenty two trading days (i.e., daily, average weekly,

and average monthly volume measures). In all comparisons, we use out-of-sample MSE and

QLIKE losses. To make the forecast comparisons, we first informally look at values of the

out-of-sample R2 as a simple measure of forecast quality. Second, and more formally, we

construct model confidence sets (MCS) (Hansen, Lunde & Nason, 2011) using values for

both loss measures, corresponding to each model.
1Even though DOW30 contains 30 components at any given time, the composition has been varying over

years, hence the total number 41; for details, see Section 5.
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The results are sharply different for different forecast horizons. For the one-day forecast

horizon, inclusion of lagged weekly and/or monthly volume into a model with no volume

or with only lagged daily volume significantly enhances forecasting quality, as attested by

the 90% level MCS for 83% of all assets. In terms of out-of-sample R2, adding the weekly

or weekly together with monthly volume on top of the daily volume improves forecasting

quality four times more than adding only the daily volume to the baseline model, and three

times more than the difference in forecasting quality among different HAR-RV specifications.

For the one-week forecast horizon, there is a similar tendency, albeit weaker: as the 90%-

level model confidence sets attest, a similar inclusion increases the quality of the volatility

prediction in about 40% cases, and never decreases it. For the one-month forecast horizon,

however, the inclusion of the weekly and monthly volume only in less than 27% cases signif-

icantly increases volatility forecast quality, and sometimes significantly decreases it. These

results are robust to HAR-RV type model specification, choice of loss function, and asset

type.

We suggest two explanations for such increases in forecast quality. One is very close to

intuition behind the HAR-RV model (Corsi, 2009). It is based on the Heterogeneous Market

Hypothesis, which states that traders in the financial market are heterogeneous because of

differences in agents’ endowments, institutional constraints, risk attitudes, temporal hori-

zons, etc. The financial markets are composed of participants who have a large spectrum of

trading frequencies. For example, dealers, market makers, and intra-daily speculators trade

at a very high intra-daily frequency. While insurance companies and pension funds trade

much less frequently and possibly for larger amounts, the main idea is that agents with differ-

ent time horizons perceive and react to different news (for which trading volume is a proxy),

which results in different trading volumes for different periods. There can also be differences

in the speed of information arrival to the market for different types of traders. Thus, trading

volume for different time spans should make a difference for volatility prediction.2

The second explanation is that the lags of average trading volume represent two types of
2Another way to formulate the same intuition is: trading volume and price changes (i.e., volatility) change

only when some information comes to the market. As historical volatility for various horizons matters for
volatility prediction, the flow of information across various horizons also matters. Thus, since trading volume
also reflects an information flow (in a different way than volatility), trading volume for different time spans
should also matter for volatility prediction.
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information. Firstly, the first lag of average trading volume represents the shocks that came

to the market in the previous day. When some information comes to the market, trading

volume increases because informed traders who have already received this shock trade with

uninformed traders who do not yet know about the shock. Then, after some time, when most

of the traders receive the same information, the price changes. Thus, the increase in trading

volume yesterday signals that some information has come to the market and that the prices

will adjust to this information later, and hence volatility should increase. Secondly, the lags

of trading volume are a proxy that describes how fast information spreads in the market. If

trading volume is low, information spreads very fast because the prices adjust very fast and

the traders do not want to trade intensively when the price has quickly changed. For the

same reason, if trading volume is high, information spreads slowly.

When there is no trading volume, such information is not coming to the market. If

the model includes only the lag of daily volume, trading volume affects volatility by two

different channels. Through one channel, it tends to increase volatility, while through the

other channel it tends to decrease volatility. The past daily volume represents an average

of impacts though these two opposite channels, and thus is not supposed to significantly

increase volatility prediction quality. However, if the model includes the past average weekly

trading volume, this predictor represents only the propagation speed of information, as prices

are usually adjusted to the shock by less than two days, so the shock spreads fast enough and

the weekly volume usually cannot represent the information about the shocks that come to

the market. This information is instead represented by the past daily trading volume. Thus,

each of these predictors affects volatility through its own single channel, and the quality of

volatility prediction increases.

The rest of the paper is organized as follows. Section 2 describes the role of trading volume

in forecasting volatility and evidence found in empirical literature. Section 3 discusses our

modeling approach, Section 4 lists statistical procedures used, and Section 5 describes the

data. Section 6 contains the results and their discussion. Finally, Section 7 concludes.
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2 Trading volume

The relationship between trading volume and volatility has received significant attention

in the literature. However, there is mixed evidence about whether trading volume can

increase the quality of volatility forecasts, and results vary across asset types, data periods,

and different horizons of forecasting.

A few empirical studies have found that trading volume does not improve the quality

of volatility prediction. For example, Brooks (1998) compares 31 different volatility models

and concludes that the predictive power of trading volume is negligible. Kambouroudis &

McMillan (2016) discover that trading volume does not improve the accuracy of volatility

prediction. However, several studies have discovered that trading volume does have predictive

power for volatility. For example, Wang, Wu & Xu (2015) add previous-day trading volume

into the HAR-RV model and find that it significantly increases prediction quality. Mougoue

& Aggarwal (2011) discover as well that trading volume is able to improve the quality of

volatility forecasts.

To the best of our knowledge, no existing study attempts to understand how the term

structure of historical trading volume can enhance volatility prediction and uses average

trading volume for more lengthy periods as we do, confining to inclusion of only previous-

day trading volume as a predictor. Note also that we use a wide set of assets to ensure a

high degree of validation, and analyze volatility forecasting at different horizons.

From a theoretical perspective, there are two leading theories about the relationship

between trading volume and volatility: the Mixture of Distributions Hypothesis (MDH) and

the Sequential Information Arrival Hypothesis (SIAH). MDH suggests that trading volume

does not increase the quality of volatility prediction; on the contrary, SIAH suggests that

trading volume does increase forecasting quality. For both hypotheses, there are studies that

find evidence why these hypotheses hold for some markets, and other studies that show that

these hypotheses do not hold. For example, Mougoue & Aggarwal (2011) show that SIAH

holds, while Liu, Lee & Choo (2020) find no evidence in its favor. In both theories, trading

volume is considered as a proxy for the information flow that comes into financial markets.

According to the MDH, prices and volume change simultaneously when information ar-
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rives to the market. The MDH assumes that the stock return is drawn from a joint distribu-

tion of volume and prices, conditional on the current information. Price and trading volume

changes are driven by a simultaneous underlying information arrival process, hence volume

and volatility are interrelated. This hypothesis predicts a contemporaneous volume–volatility

relation. The MDH does not imply serial dependence in return volatility and volume.

The SIAH argues that each trader observes information sequentially. Traders who have

already received new information will increase trading volume, while the asset price will not

fully accommodate according to this new information. Thus, an increase in trading volume

implies that prices will change in the future, causing volatility to increase. Hence, due to

the sequential information flow, the lagged trading volume possesses predictive ability for

the current realized volatility.

To summarize, the MDH suggests that trading volume does not provide additional in-

formation that improves the accuracy of volatility forecasting. On the contrary, the SIAH

states that there is a lead-lag relation between trading volume and volatility.

Note that if trading volume increases the quality of volatility prediction, then the SAIH is

not true, whereas if trading volume makes prediction better, this becomes important evidence

in favor of SIAH. Several studies reach a conclusion about whether the SIAH is true or false

solely based on whether past trading volume is an important predictor for volatility or not;

see, for example, Mougoue & Aggarwal (2011) and Liu, Lee & Choo (2020). Because we find

that trading volume does matter for volatility prediction, we suggest that there is significant

evidence in favor of SIAH, at least for the shares studied.

To forecast realized volatility in day t, we compute the average trading volume for p

previous days, where p ∈ {1, 5, 22}, and include it (or more, precisely, its log transformation),

in various combinations, in HAR-type models of volatility prediction, in the spirit of the

baseline HAR-RV model. Formally, we have observations for trading volume TRt for each

day t, and compute average lagged trading volume:

TRp
t =

1

p

p∑
i=1

TRt−i.

So, TRp
t is an average trading volume for p days that are immediately preceding day t. The
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values p = 1, p = 5 and p = 22 correspond to inclusion of lagged average daily, weekly, and

monthly trading volumes, respectively.

We choose a certain restricted number of combinations of lags of trading volume:

⋃
p∈Ω

TRp
t ,

where Ω is the set of lags included in a model of volatility forecasting. Specifically, we use

Ω = ∅, Ω = {1}, Ω = {1, 5}, and Ω = {1, 5, 22}. We use the first two sets as baselines

for comparison, i.e. the models with no trading volume and with only lagged daily trading

volume, which can be found in HAR-RV type models in the previous literature. In the

augmented models, we use the last two sets, which will give evidence on how longer-ranged

past volumes – weekly in a more important degree and monthly in a less important degree –

improve prediction. In a nutshell, we show that these augmented models do tend to improve

volatility forecasts compared to the baselines, although the exact tendencies sharply depend

on the forecast horizon – daily, weekly or monthly.

3 HAR type models

The models on which we build is the heterogeneous autoregressive model for realized

volatility (HAR-RV) proposed by Corsi (2009), and its modifications. The HAR-RV type

models use realized volatility components for the previous day, previous week, and previous

month to forecast today’s volatility. The intuition of these models is based on the Heteroge-

neous Market Hypothesis that traders are heterogeneous – agents with different time horizons

perceive, react to, and cause different types of volatility components. There are three types

of investors that lead to three primary volatility components: short-term traders with a daily

or higher trading frequency, medium-term investors who typically rebalance their positions

weekly, and long-term agents with a characteristic time of one or more months. As a result,

to forecast today’s volatility, volatilities from the previous day, week, and month are all

important.

There are three reasons for using HAR type models. The first reason is that the HAR
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models are among the best models to fit the realized volatility process. For example, Liu,

Patton & Sheppard (2015) compare the HAR-RV model estimated on five-minute data with

nearly 400 other models, and discover that HAR-RV provides one of highest quality forecasts

in terms of in- and out-of-sample performance by way of the MCS approach and various

other tests. Next, according to Corsi (2009), HAR-RV type models are able, in spite of its

simplicity, to reproduce such an important feature of volatility as the long memory property.

Finally, HAR-RV type models forecast returns well for different horizons: one day, one week,

and one month, while other models usually predict returns only for only one horizon.

In addition, the Heterogeneous Market Hypothesis claiming that traders are heteroge-

neous is an explanation of why the HAR-RV model works well, and is also an explanation

of why trading volumes for different periods have to matter for volatility forecasting. The

trading volume and price change only when some new information comes to the market.

Since trading volume reflects information flow as well but in a different way than volatility,

trading volume over periods of different length should also matter for volatility forecasting.

Thus, by intuition of the HAR-RV model, it follows that average trading volumes for periods

of different length should be good additional predictors for volatility.

HAR-RV type models are formulated for observable realized volatility (RV), which is a

consistent (in the sense of the in-fill asymptotics) measure of integrated volatility, which

is true unobserved volatility. To compute RV, we need to use the intradaily stock returns,

which are, for intradaily period i of day t, by definition, rt,i = ln(pt,i)− ln(pt,i−1), where pt,i is

a midquote (i.e., the arithmetic average between bid open and ask open prices) at intradaily

period i of day t. We use five-minute data for regular trading sessions, so typically we have

79 observations of intradaily prices for one day and thus 78 observations of intradaily returns.

Using these intradaily returns, we calculate realized volatility, RVt, for day t :

RVt =
1

N

N∑
i=1

r2
t,i,

where N is the number of observations of returns during the day. Then, we calculate the

average realized volatility for the previous day, week (that is, previous 5 trading days),

and month (that is, previous 22 trading days): RV d
t = RVt−1, RV w

t = 1
5

∑5
k=1RVt−k, and
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RV m
t = 1

22

∑22
k=1RVt−k. Hence, RV

d
t is a previous day realized volatility, RV w

t is a previous

week volatility, and RV m
t is a previous month volatility.

The HAR-RV model of Corsi (2009) linearly predicts daily volatility RVt by the daily,

weekly and monthly components, RV d
t , RV w

t and RV m
t . In the literature that followed,

however, in addition to the original linear-in-levels version, there is another common version

of the use of realized volatility in HAR-RV type models – using realized volatility in a log-

transformed form. There is evidence that log specification outperforms a specification in

levels in terms of quality of volatility forecasting. For example, Corsi, Pirino & Reno(2010)

show the logs specification leads to lower out-of-sample losses than the levels specification

for the HAR-RV and HAR-RV-CJ (one of extensions, see below) models. Similar evidence

is found by Duong and Swanson (2015): log specifications outperform levels specifications in

terms of out-of-sample R2 for the models we use in our analysis. Hence, as we are trying to

improve the quality of volatility prediction, we start from the log specification. To simplify

notation, let us denote rvt = lnRVt, rvdt = lnRV d
t , rvwt = lnRV w

t , rvmt = lnRV m
t ; we will

follow similar mnemonics for other log-transformed variables throughout. Then, the basic

HAR-RV model has the following form:

rvt = a0 + adrv
d
t + awrv

w
t + amrv

m
t + εt.

In this and all other regressions that follow, the error εt is assumed to be an MDS white

noise.

To ensure external validity of our conclusions, we consider several extensions from the

basic HAR-RV model, and perform the same experiments on these extended HAR-type

models. The first extension, HAR-CJ, is the HAR-RV model with the volatility decomposed

to the continuous and jump components, which was proposed by Andersen, Bollerslev &

Diebold (2007). This is one of the most commonly used extensions of HAR-RV in the related

literature. In this extension, the volatility is divided into a jump components – volatility that

is much higher than ‘average’ volatility, and the rest, a continuous component. The intuition

for this division is that the effect of lagged volatility on current volatility is non-linear, so the

high lagged volatility represented by the jump component has a different impact on current
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volatility than the continuous component.

Note that volatility in the morning is usually higher than during the rest of a day.

Boudt, Croux, & Laurent (2011) show that because of this periodicity, jumps will occur

more frequently than they should, lowering the quality of HAR model forecasts. In order to

prevent this, we use the weighted standard deviation (WSD) approach of Boudt, Croux, &

Laurent (2011) to standardize the return and filter out the intradaily diurnal pattern. For

the day t and intradaily period i, the filtered returns are denoted as r̂t,i. Next, we divide

volatility into jump and continuous components:3

Ct =
N∑
i=1

r2
t,i (1− Jt,i) ,

Jt =
N∑
i=1

r2
t,iJt,i,

where Ct stands for continuous volatility for day t, and Jt stands for jump volatility for day

t. The variable Jt,i is a binary variable that is equal to 1 if the jump occurred in minute i

in day t. A return is classified as a jump if it lies in the tail of the volatility distribution.

According to Andersen, Bollerslev & Dobrev (2007), the return is classified as a jump if it

lies in the top 0.1% of the distribution of absolute values of returns. According to Andersen,

Bollerslev & Dobrev (2007), this happens if

|r̂t,i| > Φ

(
1− 1− (1− 10−5)1/N

2

)−1

√√√√ π

2N

N∑
i=2

|rt,i| |ri−1,t|,

where Φ stands for the CDF of the standard normal distribution, and N is a number of

observations per day. Note that on the left hand side of this equation, the standardized

returns are used. The average jump components of realized volatility for the previous day,

Jdt , previous week, Jwt , and previous month Jmt , as well as the average continuous components

of realized volatility for the previous day, Cd
t , previous week Cw

t , and previous month Cm
t

3There are several ways to estimate the jump and continuous components of volatility. We have decided
to use the approach of Andersen, Bollerslev & Dobrev (2007), the most commonly used method that is
specifically designed for the intra-daily detection of jumps and thus allows us to divide jumps and continuous
components into positive and negative components.
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are computed as follows: Jdt = Jt−1, Jwt = 1
5

∑5
k=1 Jt−k, J

m
t = 1

22

∑22
k=1 Jt−k; C

d
t = Ct−1,

Cw
t = 1

5

∑5
k=1 Ct−k, C

m
t = 1

22

∑22
k=1 Ct−k. According to our mnemonic rule, we denote jdt =

ln(Jdt +1), jwt = ln(Jwt +1), ..., cwt = ln(Cw
t ), cmt = ln(Cm

t ). Note that for the jump component

we add unity because the jump component is typically zero. The continuous component is

strictly positive in more than 99.999% of day observations; if for some observation it is zero,

such an observation is dropped, so in the end, less than 0.01% of observations are excluded.

With the notation introduced, the HAR-CJ model of Andersen, Bollerslev, Diebold (2007)

reads

rvt = a0 + adc
d
t + awc

w
t + amc

m
t + bdj

d
t + bwj

w
t + bmj

m
t + εt.

The second extension is the HAR-RV model, where volatility is decomposed into positive

and negative volatility, so called HAR-GB, proposed in Patton & Sheppard (2015). The

authors show that this model outperforms the basic HAR-RV model in terms of out-of-

sample volatility prediction. They also show that the model that decomposes volatility into

positive, negative, jump, and continuous components predicts volatility out-of-sample better

than any other commonly used HAR-RV type model.

So, the volatility is divided into positive (i.e., volatility with an increase in price) and

negative (i.e., volatility with a decrease in price). The intuition behind this division is that

an increase in price represents different news than a decrease in price, and hence will affect

volatility in the future differently. Then, for day t, the positive component of volatility, say

RV +
t , and the negative component of volatility, say RV −t , are defined as follows:

RV −t =
1

N

N∑
i=1

r2
t,iI{rt,i<0},

RV +
t =

1

N

N∑
i=1

r2
t,iI{rt,i>0},

where N is a number of observations on returns during the day, and I{·} is an indicator

function. Note that positive and negative volatility is always larger than zero. The average

positive realized volatility for the previous day, RV d+
t , previous week RV w+

t and previous

month RV m+
t , and the average negative realized volatility for the previous day, RV d−

t , pre-
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vious week RV w−
t and previous month RV m−

t are computed similarly to previously defined

variables: RV d+
t = RV +

t−1, RV
w+
t = 1

5

∑5
k=1RV

+
t−k, RV

m+
t = 1

22

∑22
k=1RV

+
t−k; RV

d−
t = RV −t−1,

RV w−
t = 1

5

∑5
k=1RV

−
t−k, RV

m−
t = 1

22

∑22
k=1RV

−
t−k, with obvious mnemonics for corresponding

log-transformed variables. The HAR-GB model with decomposed risk premia of Patton &

Sheppard (2015) reads

rvt = a0 + a+
d rv

d+
t + a−d rv

d−
t + a+

wrv
w+
t + a−wrv

w−
t + a+

mrv
m+
t + a−mrv

m−
t + εt.

An even more general model named HAR-GB-CJ and also described in Patton & Shep-

pard (2015) includes both divisions: to positive and negative volatility, on the one hand, and

to jump and continuous components, on the other. Define the positive jump component of

volatility J+
t , negative jump component of volatility J−t , positive continuous component of

volatility C+
t , and negative continuous component of volatility C−t as

C−t =
1

N

N∑
i=1

r2
t,i (1− Jt,i) I{rt,i<0}, C+

t =
1

N

N∑
i=1

r2
t,i (1− Jt,i) I{rt,i>0},

J−t =
1

N

N∑
i=1

r2
t,iJt,iI{rt,i<0}, J+

t =
1

N

N∑
i=1

r2
t,iJt,iI{rt,i>0},

where Jt,i is the same jump detection as in the HAR-CJ model. Then, for each volatility

component we calculate it for the previous day, week, and month: Jd+
t = J+

t−1, J
w+
t =

1
5

∑5
k=1 J

+
t−k, J

m+
t = 1

22

∑22
k=1 J

+
t−k; J

d−
t = J−t−1, J

w−
t = 1

5

∑5
k=1 J

−
t−k, J

m−
t = 1

22

∑22
k=1 J

−
t−k;

Cd+
t = C+

t−1, C
w+
t = 1

5

∑5
k=1C

+
t−k, C

m+
t = 1

22

∑22
k=1 C

+
t−k; C

d−
t = C−t−1, C

w−
t = 1

5

∑5
k=1 C

−
t−k,

Cm−
t = 1

22

∑22
k=1C

−
t−k, where the upper index d represents the daily component, w the weekly

component, and m the monthly component. Again, when taking a log transformation for

the jump component, unity is added.In terms of our mnemonical variables, the specification

of the HAR-GB-CJ model reads

rvt = a0 + a+
d c

d+
t + a−d c

d−
t + a+

wc
w+
t + a−wc

w−
t + a+

mc
m+
t + a−mc

m−
t

+ b+
d j

d+
t + b−d j

d−
t + b+

wj
w+
t + b−wj

w−
t + b+

mj
m+
t + b−mj

m−
t + εt.
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The basic HAR-RV model and its extensions described above are the most commonly

used HAR-RV type models. We use them to show that the results of adding trading volume

do not depend on the exact type of model; so that the conclusions are robust to a specification

of the HAR-RV type model.

In addition, as noted above, the HAR-RV type models are commonly used to predict

realized volatility at higher than daily horizons, in particular, for forecasting monthly and

weekly volatility. We also use these models to predict the monthly and daily components of

volatility, by using the same specifications with the left side variable changed to a weekly or

monthly average realized volatility appropriately dated: rvwt+5 = ln(RV w
t+5) for weekly and

rvmt+22 = ln(RV m
t+22) for month-ahead forecasting are used in place of rvt = ln(RVt).

The trading volume predictors are included in the log-transformed form as well. Define

vpt = ln(TRp
t ).

Respectively, we sometimes add “-V” for ‘volume’ to model acronyms in addition to “-RV” for

‘realized volatility’. In the table below we summarize the predictive regressions with added

trading volume predictors.

model name predictive part of specification (apart from intercept)

HAR adrv
d
t + awrv

w
t + amrv

m
t +

∑
p∈Ω a

p
vv
p
t

HAR-GB a+
d rv

d+
t + a−d rv

d−
t + a+

wrv
w+
t + a−wrv

w−
t + a+

mrv
m+
t + a−mrv

m−
t +

∑
p∈Ω a

p
vv
p
t

HAR-CJ adc
d
t + awc

w
t + amc

m
t + bdj

d
t + bwj

w
t + bmj

m
t +

∑
p∈Ω a

p
vv
p
t

HAR-GB-CJ a+
d c

d+
t + a−d c

d−
t + a+

wc
w+
t + a−wc

w−
t + a+

mc
m+
t + a−mc

m−
t + b+

d j
d+
t + b−d j

d−
t

+ b+
wj

w+
t + b−wj

w−
t + b+

mj
m+
t + b−mj

m−
t +

∑
p∈Ω a

p
vv
p
t
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4 Evaluation methodology

A rather informal statistic we use to judge forecasting quality is the out-of-sample R2

(e.g., Campbell & Thompson, 2008), which produces point estimates of quality of volatility

forecasts and helps compare different predictive models. The out-of-sample R2 measures

how well, in terms of the mean squared forecast error (MSFE), the model predicts the data

relative to a simple benchmark forecast of realized volatility. As a benchmark forecast, we use

the previous day value of volatility; this forecast delivers smaller MSFE than, for example,

the historical average, so in a sense our R2 figures are conservative measures of MSFE-

based forecasting quality, and will likely increase if one uses another benchmark. If for some

model the out-of-sample R2 is higher than for other models, such a model in interpreted as

forecasting volatility better in terms of MSFE. The out-of-sample R2 is computed from the

following formula:

R2 = 100%×

(
1−

∑N
t=N/2 (rvt − r̂vt)2∑N
t=N/2 (rvt − rvt−1)2

)
,

where rvt and rvt−1 is the logarithm of (monthly, daily or weekly) realized volatility for days

t− 1 and t, respectively, and r̂vt is a forecast of the logarithm of realized volatility for day t.

To formally determine whether the past average daily, weekly and monthly trading vol-

ume enhance the quality of volatility forecasts relative to baseline models without volume

or only including a lag of daily trading volume, we employ the model confidence set (MCS)

approach by Hansen, Lunde & Nason (2011). We use two most commonly used MSE and

QLIKE loss functions:

MSE: L (r̂v, rv) = (r̂v − rv)2 ,

QLIKE: L (r̂v, rv) = − ln

(
r̂v

rv

)
+
r̂v

rv
,

where rv is the logarithm of realized volatility from the data, and r̂v is the predicted log-

arithm of realized volatility. Both losses are robust to volatility measurement in the sense

of Patton (2011), and we use both to verify that the results are robust to a choice of loss

functions.

To obtain losses, we estimate each model4 on the first 1
2
of data sample (i.e., from t = 1 to

4We estimate the predictive models by OLS, which minimizes both MSE and QLIKE criteria in our case.
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t = N/2− 1) and produce out-of-sample forecasts (i.e., for t = N/2 to t = N), and compute

the forecast error and loss values. We used the recursive estimation scheme, i.e. for each

day t = N/2, ..., N , we estimate the model using all observations preceding day t and predict

realized volatility for day t, and week and month that start on day t.

Now we briefly describe the construction of an MCS. Denote by M the initial set of

competing models with different inclusions of average trading volume, which in our case is

4. Define the loss differential between models m and µ as

dm,µ = Lm − Lµ,

where Lm is the loss of model m and Lµ is the loss of model µ. Then, one computes a t

statistic for each loss differential:

tm,µ =
dm,µ√

v̂ar (dm,µ)
for all m,µ ∈M,

where v̂ar is a consistent estimate of the loss differential’s (asymptotic) variance. The MCS

test statistic is given by maxm,µ∈M |tm,µ|, The null is that all the models in M have the

same expected loss; under the alternative, there is some model that has an expected loss

greater than expected losses of all the other models. If the null hypothesis is rejected, the

worst performing model is eliminated. The test is performed iteratively, until no further

model can be eliminated. We denote the final set of surviving models byM∗. This final set

contains the best forecasting model with the confidence level set in advance. The asymptotic

distribution of the max-t test statistic is approximated by bootstrapping.5

The standard errors are constructed using the Newey & West (1987) heteroskedasticity and autocorrelation
consistent (HAC) estimator, with truncation lag selected according to formula 4(n/100)1/3 (Newey & West,
1994), where n is the number of observations for a particular asset. On average the number of autocovariances
lags is 15. Jump component coefficients, when reported, are multiplied by 10−5, as they are relatively high
due to low values of jump components.

5The bootstrap block length is set to a square root of a number of loss observations over which the loss
is computed, i.e.

√
N/2.
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5 Data

We use data on prices and trading volumes for the 45 stocks that were included in the

past or are included now in the DOW30 index. The DOW30 is the index that includes

30 biggest U.S. companies in all industries. These companies’ stocks are very liquid and

highly diversified across industries. The data for daily trading volume is taken from ßYahoo!

Finance. All the data on prices is taken from kibot.com.6 Note that there are published

papers analyzing realized volatility that use data from this source (for example, Caporin,

2017, 2022).

For each stock, if for some year more than 1% of observations for regular trading sessions

are missing, that year’s observations and observations for all previous years are excluded.

If the data for some stock shares contain fewer than 2000 daily observations, this stock is

excluded from the analysis. As a result, four stocks are excluded.7 The data have at least

3370 daily observations, and on average 5438 daily observations. The data for different stocks

start from different dates. The earliest year is 1998, and the latest year is 2008. Almost all

stocks’ data end in June 2022.

The raw price data contain prices for each minute of pre-market (8:00-9:30 a.m.), regular

(9:30-4:00 p.m.), and aftermarket (4:00-6:30 p.m.) sessions on each of the trading days for

each stock. Since realized volatility and its jump component are used, the high volatility

of pre-market and after-market sessions may distort volatility measures. Thus, we focus on

regular session data, so the data only for transactions from 9:30 a.m. to 4:00 p.m. are used.

The price of each stock is a midquote, i.e. an arithmetic average between the open bid and

open ask price for each five minutes. We use this price to calculate intradaily returns for

each 5 minutes.
6The data on prices are available on the payment basis at this kibot.com link.
7We used stocks for the following companies: Alcoa Corporation, Apple Inc., American International

Group Inc., American Express Company, Boeing Company, Bank of America Corporation, Citigroup Inc.,
Caterpillar Inc., Salesforce Inc., Cisco Systems Inc., Chevron Corporation, Walt Disney Company, General
Electric Company, General Motors Company, Goldman Sachs Group Inc., Home Depot Inc., Honeywell
International Inc., HP Inc., International Business Machines Corporation, Intel Corporation, Johnson &
Johnson, JP Morgan Chase & Co., Coca-Cola Company, McDonald’s Corporation, Mondelez International
Inc., 3M Company, Altria Group Inc., Merck & Company Inc., Microsoft Corporation, Nike Inc., Pfizer Inc.,
Procter & Gamble Company, Raytheon Technologies Corporation, AT&T Inc., The Travelers Companies
Inc., United Health Group Incorporated, Visa Inc., Verizon Communications Inc., Walgreens Boots Alliance
Inc., Walmart Inc., Exxon Mobil Corporation.
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Note that we used 5 minute returns. There is a trade-off between using data for higher

or lower sampling frequency. The higher the sampling frequency is and thus the larger the

sample size of intradaily returns is, the more precise the estimates of daily volatility should

become. However, the higher the frequency is, the larger is the effect of microstructure

noise that distorts the aggregated realized volatility. According to Bandi & Russell (2006),

on average the four minute sampling frequency is enough for liquid stocks8 to ensure that

microstructure noise does not distort realized volatility too much. Since the most frequently

used in the literature for stocks of sufficient liquidity is five minute sampling frequency, we

too use this exact frequency.

6 Results

6.1 Regression coefficients

First we discuss numerical values, signs, and statistical significance of coefficient estimates

corresponding to volume-related predictors. We report aggregated regression results for the

basic HAR-RV model specification in Table 1; the results for the extended specifications

and assets are similar and reported in similar Tables 4–6 in the Appendix. A figure without

brackets is an arithmetical average across point estimates of the corresponding coefficient for

all 41 assets, while a figure in square brackets shows a fraction of coefficient estimates that

are statistically significant at the 90% significance level. Several important conclusions can

be derived from these figures.
8The results in Bandi & Russell (2006) are obtained for each stock from the S&P100 index.
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Table 1: Aggregated regression results for basic HAR-RV-V model.

predictor day-ahead forecast week-ahead forecast month-ahead forecast
rvdt 0.39 0.38 0.32 0.32 0.27 0.28 0.23 0.23 0.18 0.20 0.17 0.17

[100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100]
rvwt 0.30 0.30 0.38 0.37 0.30 0.30 0.36 0.37 0.25 0.25 0.29 0.32

[100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [98] [100]
rvmt 0.25 0.25 0.24 0.26 0.33 0.32 0.32 0.3 0.39 0.37 0.37 0.34

[100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [95]
vdt 0.04 0.23 0.23 -0.02 0.11 0.11 -0.06 0.03 0.03

[66] [100] [100] [56] [98] [95] [54] [37] [27]
vwt -0.24 -0.20 -0.17 -0.20 -0.11 -0.18

[100] [98] [98] [85] [63] [71]
vmt -0.05 0.03 0.08

[37] [22] [34]

Parameters are estimated by OLS; standard errors are constructed using Newey & West (1987)
HAC estimator, with truncation lag selected according to Newey & West (1994).

First, the lags of average realized volatility are always significant at the 10% level. This

result is consistent with the intuition behind the HAR-RV model. Second, the coefficient on

lagged average realized volatility decreases when the trading volume is added. The reason is

that trading volume and volatility are both proxies for the information flow that comes into

the market, so the influence of information in RV lagged values decreases when the lagged

trading volume is added and hence the corresponding coefficient goes down. Third, for the

prediction of daily volatility, in most cases, coefficients on trading volumes for the lagged

daily and monthly average volumes are statistically significant. This result is consistent with

and is justified by intuition, which we outlines in the Introduction.

Fourth, the coefficient of the lagged daily trading volume is usually positive. Trading

volume is a proxy for information that comes to the market; thus, an increase in trading

volume implies that some information has appeared in the market. This information will

be able to change prices in the future, and hence volatility will increase in the future. The

coefficient of the lagged average weekly trading volume is negative and relatively big in

absolute value. The intuition behind this evidence is that the average trading volume is a

proxy that describes how fast information spreads in the market. If average weekly trading

volume is low, information spreads very fast because the prices adjust very fast, and the

traders do not want to trade intensively because of the changed price. For the same reason, if
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trading volume is high for the past week, information spreads slowly. The lagged daily volume

carries information about the information that comes to market, not about its propagation

speed. Thus, the lagged average weekly trading volume predicts volatility with a negative

sign because it measures the speed of information propagation in the market.

Finally, in the models where a lagged average weekly volume is present, the coefficients

for the lagged daily volume are always positive and almost always statistically significant.

These coefficients are much higher than the same coefficients in the models with only the

lagged daily trading volume accompanied with a lower fraction of statistical significance.

These results are consistent with the intuition described in the previous paragraph: in the

model without lagged average weekly volume, the daily volume measures information that

comes to the market and hence increases volatility. But at the same time, since there is

no weekly volume predictor, the lagged daily volume predictor measures the information

propagation speed and thus decreases volatility. Thus, the average weekly volume affects

volatility through two different channels: through one channel, it has a positive effect, while

through the other channel it decreases volatility. As a net effect, this decreases the values

of coefficients and makes them less statistically significant. When average weekly volume

that represents the propagation speed of information is added to the model, the lagged daily

volume then represents only information that comes into the market, and as a result, affects

today’s volatility only through one channel. So the coefficient on the lagged daily volume

becomes highly positive and significant.

6.2 Model confidence sets

Now we present the results of the model confidence set procedures. Table 2 reports, for

each model, forecast horizon and criterion, a number of assets (out of all 41), for which

adding average weekly volume predictor, or average weekly and monthly volume predictors

together, produce a 90% level statistically significant improvement in forecasting quality,

or, conversely, its worsening. Formally, each figure in the upper panel points at a number

of assets, for which the model without trading volume or with only lagged daily trading

volume is not included in the 90% level MCSM∗, the set of survived models from the MCS

procedure, while one of the volume-augmented model lie insideM∗. Similarly, in the lower
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panel, each figure points at a number of assets, for which the baseline model lies insideM∗,

while one of volume-augmented models lies inside M∗. Several important conclusions can

be derived from these figures.

Table 2: Number of assets (out of 41) with MCS significance level of 90%.

forecast predictive model and criterion
horizon MSE QLIKE

HAR HAR-GB HAR-CJ HAR-GB-CJ HAR HAR-GB HAR-CJ HAR-GB-CJ
increase of forecasting quality

day 34 36 36 36 32 33 32 35
week 15 16 15 16 15 16 14 15
month 10 10 11 11 10 11 11 11

decrease of forecasting quality
day 0 0 0 0 0 0 0 0
week 0 0 0 0 0 0 0 0
month 3 3 3 3 3 3 3 3

First, one can see that at the daily horizon, the models containing average weekly vol-

ume predictor or average weekly and monthly volume predictors together typically forecast

volatility better and never forecast worse than the baseline models. This result does not

significantly depend on a model specification or criterion. At least for 32 assets out of 41 the

forecasting quality improves at the 90% significance level, while on average this happens in

34.25 out of 41 cases. There are two possible explanations of this result.

The first is that there are two channels of how past average trading volume can increase

the quality of prediction. It adds new information about shocks that come to the market,

and it is a proxy that describes how fast information spreads in the market. Through

these two channels, past volume affect volatility differently. Through the channel of new

information, the average trading volume should increase volatility, while through the channel

of the information propagation speed, the average trading volume should decrease volatility.

When past volume is not included, this information is missing. When only the daily lag is

included, it predicts volatility via both channels – through one, it increases volatility, while

through the other it decreases volatility. The lagged daily volume predictor thus shows a

net effect of these two opposite channels, and thus may not significantly enhance forecasting

quality. However, when one adds average weekly trading volume, which represents only
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the information propagation speed channel, the lagged daily volume represents only the

new information channel. Thus, each predictor affects volatility only through one specific

channel, with own coefficient exhibiting that channel’s impact, and the forecasting quality

increases as a consequence of this division of labor.

The second explanation is similar to the intuition behind the HAR-RV model. It is based

on the Heterogeneous Market Hypothesis, which states that traders in financial markets are

heterogeneous. The agents with different time horizons perceive and react to different news

(for which trading volume is a proxy) and thus cause trading volume differently for different

periods. There are differences in the speed of arrival of information to the market for different

types of traders as well. In summary, trading volume when averaged over different periods has

different volatility predictive ability. At the same time, trading volume represents different

information than realized volatility does. Moreover, if a volatility measure is imprecise (for

example, due to low data quality), a trading volume averaged over the same past periods as

volatility is able to complement past volatility predictors and so enhance volatility forecasting

quality. This intuition is supported by the fact that for volatility prediction for some specific

horizon, the most important (in terms of a numerical value of corresponding coefficient) is the

length of averaging period that coincides with the horizon. Yet another fact that supports

this intuition is that when one adds lagged trading volume, the coefficients for past volatility

decrease. That is, the information that lagged volume represents coincides, at least partially,

with information that the same-lag of realized volatility represents.

Note that since the lags of trading volume increase the quality of volatility predictions, we

have evidence that the SIAH holds for the assets under consideration, even if the forecasting

quality increases only for the daily horizon. The reasoning is given in Section 2.

Second, an increase in weekly horizon forecasting quality from adding the lagged average

weekly or weekly and monthly volumes is heterogeneous across assets. For 14–16 out of 41

assets, both the weekly and weekly and monthly volume-augmented models forecast volatility

better than both the baseline models, at the 90% significance level. This result almost does

not depend on a model specification or criterion. Moreover, there is no asset for which adding

these lagged predictors worsens the forecast. The coefficient on the daily volume lag when the

weekly volume lag is added in the weekly horizon model is on average more than two times
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lower than the same coefficient in the daily horizon model. After adding the lagged weekly

volume to the model, the lagged daily volume predictor represents information that comes to

the market, and so, for weekly forecasts, this information does not affect volatility as much

as it does for daily forecasts. Intuitively, information that comes to the market spreads out

fast enough to not significantly affect volatility for the following week, but it spreads out

slowly enough to affect volatility the following day. Thus, an increase in forecasting quality

from adding the lagged weekly volume is lower for weekly horizon forecasts.

Finally, at the monthly horizon, adding weekly or weekly and monthly average volume

predictors to the two baseline models rarely increases and rarely decreases the volatility

forecasting quality at the 90% significance level. This result holds for both criteria and all

the predictive models. There are two possible explanations for this result.

The first explanation is the same as described before, related to the split of information

and division of labor among the lagged daily volume and averages over longer periods. The

value of the coefficient corresponding to the lagged daily volume predictor when the lagged

average weekly volume is added in the month-ahead forecasting model is on average close

to zero and statistically insignificant at the 90% level. This means that information that

comes to the market represented by the past daily volume, does not affect volatility as much

as it does for day-ahead or week-ahead forecasting. Thus, when the lagged average weekly

volume is added, the forecasting quality of prediction does not increase significantly.

The second explanation is that sometimes, trading volume may not give any information

about too distant future monthly volatility and hence does not improve volatility forecasts

whatsoever. This intuition is supported by the fact that the coefficient on almost all lags of

average trading volume is always closer to zero and less statistically significant compared to

daily and weekly volatility forecasting models.

Next, we present the results of the MCS procedure that compares only two volume-

augmented models – one with past average volumes for periods of all three lengths (daily,

weekly and monthly), and with past average volumes for periods of only two shortest lengths

(daily and weekly). Table 3 reports, for each model, forecast horizon and criterion, a number

of assets (out of all 41), for which one of these two models produces a significant, at the 90%

significance level, improvement in forecasting quality relative to the other model. Formally,
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these figures show a number of assets, for which the given model is not included in the final

set of surviving models,M∗. The purpose of this evidence is to understand which of the two

models – with the lagged monthly volume or without it, produces the highest increase in

forecasting quality, on top of inclusion of all smaller-length averaging periods (as a significant

increase in forecasting quality is not found at the monthly horizon, this horizon is omitted

from the analysis). For daily and weekly horizon volatility predictions, very rarely either

model outperforms the other. In most cases, the MCS technology cannot distinguish these

two models, at least (or even) at the 90% significance level. This result holds for all model

specifications and both criteria.

Table 3: Number of assets (out of 41) with MCS significance level of 90%.

forecast predictive model and criterion
horizon MSE QLIKE

HAR HAR-GB HAR-CJ HAR-GB-CJ HAR HAR-GB HAR-CJ HAR-GB-CJ
daily and weekly volume predict better than daily, weekly and monthly volume

day 3 5 5 4 2 4 2 3
week 2 0 1 0 1 1 1 1

daily, weekly and monthly volume predict better than daily and weekly volume
day 3 1 2 3 0 1 0 0
week 1 0 0 1 1 1 0 1

This result gives support to both intuitive explanations of improvement in forecasting

quality from adding the lagged average weekly or weekly and monthly trading volumes.

According to the first intuitive explanation, the forecasting quality increases from adding

the average weekly volume because it allows to distinguish two effects of trading volume on

volatility: new information about shocks that come to the market, and how fast information

spreads in the market. This suggests that adding past average weekly volume increases

forecasting quality. The second intuitive explanation is similar to the intuition behind the

HAR-RV model and suggests that adding both average weekly and monthly volumes should

increase forecasting quality more than solely average weekly volume. Since both models with

past volumes for periods of only two shortest lengths, on the one hand, and past volumes for

periods of all three lengths, on the other, increase forecasting quality and the MCS cannot

distinguish between these two models, both intuitive explanations are valid – otherwise, if

only one was true, one of these models would outperformed the other: in case of the former
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explanation it would be the model with past average weekly and monthly volumes, and in

case of the latter explanation, it would be the model with past daily, average weekly and

average monthly trading volume predictors.

6.3 Quality of out-of-sample fit

Now we discuss increases in the out-of-sample R2 measure, whose values are reported in

Figure 1. The figure shows a distribution of a rise in R2 from adding the lagged average

weekly or weekly and monthly trading volumes to one of the baseline models with the same

forecasting horizon. Formally, the variable whose histogram is depicted is a difference in

R2 between, on the one hand, the better model between one including daily, weekly and

monthly volumes and one including daily and weekly volumes, and on the other hand, the

better model between one including only daily volume and one not including any volume

predictor.9 This R2 differential is yet another measure showing whether and by how much

adding past weekly or monthly trading volume can increase the forecasting quality and

providing insight about economic significance of this increase. The red line represents an

average increase from adding the past daily trading volume to the model without volume at

all.
9Schematically, this can be written as max{R2

d,w,m, R2
d,w}−max{R2

d, R
2
∅}, with self-explanatory notation.
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Figure 1: R2 differential pooled across models for different forecast horizons

(a) day-ahead forecasting (b) week-ahead forecasting

(c) month-ahead forecasting

Note that in Figure 1 the out-of-sample R2 differentials are pooled across all four HAR-

RV specification. Figure 2 in the Appendix reports similar R2 differentials for each HAR-RV

specification separately, for the daily forecast horizon. We find that there is no significant

difference in the distribution of the R2 differential across different models; the results for the

other forecast horizons are similar.

One can see that an increase in R2 is usually consistent with results from MCS. For

day-ahead forecasts, the out-of-sample R2 always increases as a result of adding longer-

period volume predictors. For week-ahead forecasts, the out-of-sample R2 usually increases

and rarely decreases. On average, such an increase is lower than in case of day-ahead
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forecasting. For month-ahead forecasts, adding these volume predictors sometimes increases

and sometimes decreases the out-of-sample R2. The increase is on average lower than for

the day or week forecast horizon. On average, there is no improvement in the quality of

volatility forecasting for the monthly horizon.

All these results are consistent with those produced by the MCS procedure, but give

an idea of the size of forecast improvements, which are pretty impressive, and some insight

into economic significance of how much past average trading volume can improve forecasting

quality on the daily or weekly scale. First, on average, adding longer-period volume pre-

dictors to one of the baseline models increases the out-of-sample R2 by 1.1% for one-day

horizon and by 0.62% for week-ahead horizon, which corresponds to a relative increase of

5.0% and 2.7%, respectively, given that the average R2 is 22.4%. Second, on average, adding

past daily volume to the model without volume predictors increases the out-of-sample R2

by 0.25% for day-ahead and week-ahead forecasting horizons. Thus, on average, forecasting

quality from adding only past daily volume (as usually done in the literature to improve

prediction quality) is more than four times lower for day-ahead forecasting and more than

two times lower for week-ahead forecasting than from adding past average weekly volume or

weekly and monthly volumes on top of that.

Third, on average across assets, the out-of-sample R2 differential between the best and

the worst HAR-RV specifications10 is 0.37% for one-day and 0.6% for one-week forecasting.

Thus, on average, an increase in forecasting quality from adding past average weekly volume

or weekly and monthly volumes is three times higher for day-ahead forecasting and similar

for week-ahead forecasting than the difference between the best and the worst performing

HAR-RV specifications.

To summarize, since for a day-ahead prediction the difference in the out-of-sample R2

between the best and the worst HAR-RV specifications is three times lower, and the difference

between the model with no volume and one with past daily volume is four times lower than

an increase in the out-of-sample R2 from adding past average weekly volume or weekly and

monthly volumes, an economically highly significant amount.

10This differential is computed as 1
41

∑41
a=1(max{R2

a,HAR-RV, R
2
a,HAR-RV-CJ, R

2
a,HAR-RV-GB, R

2
a,HAR-RV-GB-CJ}

−min{R2
a,HAR-RV, R

2
a,HAR-RV-CJ, R

2
a,HAR-RV-GB, R

2
a,HAR-RV-GB-CJ}), where R2

i,s is the value of out-of-sample
R2 for asset a and specification s.
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7 Conclusion

Within the framework of HAR-RV type models we have investigated whether utilizing,

in the spirit of HAR modeling, past average trading volume for long periods – week and/or

month – are able to improve the quality of volatility forecasting. We compare models with

past average volume for a day, week and month and models with past average volume for a

day and week, on the one hand, and the model without volume and the model with past daily

trading volume only. We employ an out-of-sample R2 and the model confidence set procedure

driven by MSE or QLIKE loss functions. We find that typically, for the one-day forecasting

horizon, including past average week volume or average week and month volumes improves,

statistically and economically significantly, and never worsens, forecasting quality relative to

the benchmark models. The improvements are weaker at the one-week forecasting horizon,

and rarely, if ever, appear at the one-month horizon. We have suggested two explanations of

these results, one based on different flows of information coming to the market in periods of

different length, and the other based on the division of labor among different-length-periods

average volumes in containing different types of information – shocks coming to the market

and how fast information spreads out in the market. All our results seem to be robust to

HAR-RV type model specification, a choice of loss function, and asset type.
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Table 4: Aggregated regression results for HAR-GB-V model.

predictor daily forecast weekly forecast monthly forecast
rvd+t 0.15 0.15 0.11 0.11 0.10 0.11 0.08 0.08 0.07 0.08 0.06 0.06

[100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100]
rvw+

t 0.09 0.09 0.14 0.13 0.08 0.08 0.12 0.12 0.05 0.05 0.07 0.09
[76] [73] [93] [90] [49] [54] [68] [68] [15] [20] [34] [44]

rvm+
t 0.10 0.10 0.10 0.11 0.14 0.14 0.14 0.13 0.26 0.25 0.25 0.23

[46] [49] [46] [49] [44] [41] [41] [39] [54] [51] [51] [49]
rvd−t 0.23 0.23 0.19 0.19 0.16 0.16 0.14 0.14 0.11 0.12 0.10 0.10

[100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100]
rvw−t 0.22 0.22 0.26 0.25 0.22 0.22 0.25 0.26 0.20 0.20 0.22 0.24

[100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100]
rvm−t 0.15 0.15 0.14 0.15 0.19 0.18 0.18 0.17 0.13 0.12 0.12 0.10

[63] [63] [61] [61] [51] [51] [51] [49] [27] [27] [27] [29]
vdt 0.04 0.24 0.24 -0.01 0.12 0.12 -0.06 0.04 0.03

[68] [100] [100] [54] [98] [98] [56] [56] [51]
vwt -0.26 -0.21 -0.18 -0.20 -0.12 -0.19

[100] [98] [98] [85] [71] [73]
vmt -0.06 0.03 0.08

[41] [22] [34]

Parameters are estimated by OLS; standard errors are constructed using Newey & West (1987) HAC
estimator, with truncation lag selected according to Newey & West (1994).

Table 5: Aggregated regression results for HAR-CJ-V model.

predictor daily forecast weekly forecast monthly forecast
cdt 0.39 0.38 0.31 0.31 0.27 0.27 0.23 0.23 0.18 0.19 0.17 0.17

[100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100]
cwt 0.29 0.29 0.37 0.36 0.29 0.29 0.35 0.36 0.24 0.24 0.28 0.31

[100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100]
cmt 0.26 0.27 0.26 0.28 0.35 0.34 0.33 0.32 0.41 0.39 0.38 0.35

[100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100]
jdt 1.20 1.17 0.91 0.93 -0.14 -0.07 -0.25 -0.24 -0.58 -0.40 -0.54 -0.52

[27] [27] [20] [20] [22] [22] [22] [22] [10] [12] [10] [10]
jwt -4.88 -4.93 -4.58 -4.72 -5.61 -5.41 -5.14 -5.13 -9.98 -9.49 -9.24 -9.13

[39] [37] [32] [34] [34] [34] [34] [34] [59] [59] [61] [56]
jmt -6.86 -6.78 -6.33 -6.35 -8.26 -7.60 -7.21 -7.0 -5.35 -4.16 -3.81 -3.52

[29] [32] [29] [29] [29] [27] [29] [27] [22] [24] [27] [22]
vdt 0.04 0.23 0.23 -0.02 0.11 0.11 -0.06 0.03 0.03

[71] [100] [100] [54] [98] [98] [61] [29] [27]
vwt -0.24 -0.20 -0.17 -0.19 -0.12 -0.18

[100] [98] [98] [83] [68] [68]
vmt -0.06 0.03 0.08

[41] [20] [34]

Parameters are estimated by OLS; standard errors are constructed using Newey & West (1987) HAC
estimator, with truncation lag selected according to Newey & West (1994). Jump component coefficients
are multiplied by 10−5.
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Table 6: Aggregated regression results for HAR-GB-CJ-V model.

predictor daily forecast weekly forecast monthly forecast
cd+t 0.15 0.14 0.11 0.11 0.10 0.10 0.08 0.08 0.07 0.07 0.06 0.06

[100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100]
cw+
t 0.09 0.08 0.13 0.12 0.08 0.08 0.11 0.11 0.04 0.05 0.07 0.08

[71] [66] [90] [85] [41] [39] [63] [63] [10] [17] [29] [41]
cm+
t 0.11 0.11 0.11 0.12 0.16 0.15 0.15 0.14 0.26 0.25 0.25 0.23

[54] [51] [51] [51] [44] [41] [41] [39] [51] [51] [49] [49]
jd+t 0.66 0.60 0.22 0.25 -0.46 -0.38 -0.64 -0.62 -1.09 -0.86 -1.06 -1.03

[20] [20] [20] [20] [22] [20] [22] [22] [7] [2] [5] [5]
jw+
t -4.20 -4.36 -3.94 -4.25 -4.87 -4.67 -4.35 -4.37 -12.23 -11.59 -11.16 -10.9

[17] [17] [7] [7] [12] [12] [12] [12] [34] [32] [29] [32]
jm+
t -5.00 -5.19 -4.77 -4.76 -4.55 -4.59 -4.24 -4.24 9.46 9.07 8.91 8.47

[20] [20] [15] [17] [15] [15] [15] [15] [29] [27] [29] [32]
cd−t 0.23 0.22 0.19 0.19 0.16 0.16 0.14 0.14 0.11 0.11 0.10 0.10

[100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100]
cw−t 0.21 0.21 0.26 0.25 0.22 0.22 0.25 0.25 0.20 0.20 0.22 0.23

[100] [100] [100] [100] [98] [98] [100] [100] [98] [98] [98] [98]
cm−t 0.15 0.15 0.15 0.16 0.19 0.19 0.19 0.18 0.14 0.14 0.13 0.12

[66] [68] [63] [66] [56] [51] [54] [49] [27] [29] [29] [29]
jd−t 2.10 2.06 1.84 1.84 0.23 0.29 0.12 0.14 -0.21 -0.07 -0.19 -0.16

[32] [32] [24] [22] [20] [22] [22] [20] [7] [7] [7] [5]
jw−t -5.80 -5.85 -5.32 -5.40 -5.99 -5.77 -5.37 -5.33 -7.43 -6.95 -6.72 -6.56

[24] [27] [24] [24] [20] [20] [20] [20] [27] [22] [24] [24]
jm−t -9.78 -9.71 -8.41 -8.34 -14.17 -12.51 -11.40 -11.08 -26.32 -22.87 -21.56 -21.0

[22] [22] [24] [27] [17] [15] [15] [12] [24] [20] [20] [20]
vdt 0.04 0.24 0.24 -0.01 0.12 0.12 -0.06 0.04 0.04

[71] [100] [100] [56] [98] [98] [59] [59] [56]
vwt -0.26 -0.21 -0.18 -0.19 -0.12 -0.18

[100] [98] [98] [88] [73] [68]
vmt -0.06 0.02 0.07

[41] [17] [29]

Parameters are estimated by OLS; standard errors are constructed using Newey & West (1987) HAC
estimator, with truncation lag selected according to Newey & West (1994). Jump component coefficients
are multiplied by 10−5.

31



Figure 2: R2 differential for different models for daily forecast horizon.

(a) HAR-RV-V (b) HAR-RV-CJ-V

(c) HAR-RV-GB-V (d) HAR-RV-GB-CJ-V
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