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Abstract

This article sheds light on the asymptotic behavior of diagonal elements of projection matri-

ces associated with instruments or regressors under many instrument/regressor asymptotics.

When the diagonal elements do not exhibit variation asymptotically, certain results in the

many instrument/regressor literature lead to elegant solutions and conclusions. We establish

conditions when this happens, provide relevant examples, and analyze instrument designs,

for which this property does or does not hold.
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1 Introduction

A seminal paper by Bekker (1994) spurred the development of alternative asymptotic tools

for models with many instrumental variables and/or regressors. In the conclusions im-

plied by these theories, diagonal elements of projection matrices associated with instru-

ments/regressors play a special role. A critical question is whether the diagonal elements do

or do not exhibit variation asymptotically, a situation sometimes referred to as an (asymp-

totically) ‘balanced design’. When this happens, certain results become attainable from a

theoretical viewpoint, and become more convenient and elegant from a practical perspective.

In particular, when the diagonal elements are asymptotically constant, asymptotic variances

of estimators or test statistics may lose their complexity, as shown in van Hasselt (2010),

Hansen, Hausman & Newey (2008), Lee & Okui (2012) and Hausman, Newey, Woutersen,

Chao & Swanson (2012, HNWCS henceforth).1 This means that variance estimates may be

simplified, which, in addition to facilitating computations, should improve asymptotic ap-

proximations. Under asymptotically balanced design, the LIML estimator in an instrumental

variables model can be shown to be asymptotically efficient in a certain class of IV estimates

(Anderson, Kunitomo & Matsushita, 2010; Kolesár, 2015). Moreover, the LIML estimator

keeps its consistency and asymptotic efficiency properties even under ‘weak heteroskedas-

ticity’ (Kunimoto, 2012). Wang and Kaffo (2016) use the assumption of asymptotically

balanced design to show the validity of their modified bootstrap procedure based on LIML

estimation with many instruments. Last, but not least, if the diagonal elements do not vary

asymptotically, robust chi-square and F tests become immediately available (Anatolyev &

Gospodinov, 2011; Calhoun, 2011; Anatolyev, 2012). It is important to know the circum-

stances under which an asymptotically balanced design may or may not occur, on the one

hand, and how much distortion a failure of this property may create, on the other.2

One well-known example encountered in previous literature is the case of grouped data

1Notably, the example of efficiency ranking between LIML and HLIM provided on p.224 does not attain

its point when the sample variance of diagonal elements is zero in the limit.
2Anderson, Kunitomo & Matsushita (2010) find that “the effects of non-normality of disturbance terms

on the cdf of the LIML estimator are often very small”. However, this may have occurred because their

instrument design is asymptotically balanced due to joint normality of instruments, see subsection 4.2.
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(Bekker & van der Ploeg, 2005) where the instruments are indicator variables. If group sizes

are equal, it is known that the diagonal of the instrument projection matrix is asymptoti-

cally homogeneous (e.g., van Hasselt, 2010), and is asymptotically heterogeneous otherwise.3

Another example where the instruments are jointly normal is presented in Anatolyev (2012).

To the best of our knowledge, there are no systematic studies of this phenomenon in a ran-

dom sampling setting, although the common presumption in the many instrument/regressor

literature is that the property under consideration is not likely to hold.

In this article, we formulate sufficient conditions under which the diagonal elements

are asymptotically non-stochastic. We provide relevant examples in which this property of

diagonal elements holds, and work out setups often referenced in the literature for when

it does not. In particular, situations that deal with independent instruments (including

gaussian), that deal with instruments drawn from a log-concave distribution (again including

gaussian), that deal with instruments following a factor model, as well as some others,

belong to the case of diagonal elements displaying asymptotic constancy. On the other

hand, several situations that are considered in the many instrument literature, such as those

of dummy instruments – both stand-alone and those that interact with other instruments,

as in Angrist & Krueger (1991) – are characterized by non-trivial asymptotic variation in

diagonal elements. The asymptotic variance turns out to take fancy forms, often involving

Poisson distributions or a mixture thereof. We consider each of these examples in some

detail and numerically characterize the dependence of asymptotic variation on the ratio of

instrument numerosity to the sample size.

In our derivations, we use some results from random matrix theory, which is a widely

used tool in high-dimensional statistics, machine learning theory and mathematical physics

(e.g., Bai & Silverstein, 2010). The impediment to immediate application of the random

matrix theory to the present setting is the typical assumption that the entries of the design

matrix are IID not only across rows but also across columns; the existing relaxations of this

condition are not sufficient to cover interesting cases arising in regression contexts. Some of

3Abutaliev & Anatolyev (2013) numerically evaluate the effects of asymptotic heterogeneity of the di-

agonal on the asymptotic variance of LIML estimates in a setting with indicator instruments and Skewed

Student errors.
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the results we derive here are themselves on the edge of today’s research in random matrix

theory.

The article is organized as follows. The setup and objectives are described in Section 2.

In Section 3 we give some theoretical results that are useful in designing further examples.

Section 4 contains examples with asymptotically balanced design, while Section 5 describes

settings under which the diagonal elements do exhibit variation in the limit. Section 6

concludes. Proofs of most substantive results are listed in Section 6, while more technical

propositions and auxiliary proofs are relegated to an online Appendix available at is.gd/

diagPz.

2 Setup

Let Zl be an n×l random matrix with rows {z′lk}nk=1 distributed independently and identically

as z′l, where l ≤ n. To simplify notation, we will further omit index l if there is no ambiguity.

The vectors {zk}nk=1 comprising the matrix Z are associated with n IID observations on

instruments or regressors (which we will refer to as instruments throughout) in a random

sampling framework. The object of our study is the projector P = ‖Pij‖ni,j=1 on the linear

span of columns of Z, and particularly its diagonal elements {Pkk}nk=1. If Z has full rank, then

P = Z(Z ′Z)−1Z ′ and Pkk = z′k(Z
′Z)−1zk for any k. In general, (Z ′Z)−1 should be replaced by

(Z ′Z)+, the Moore–Penrose generalized inverse of Z ′Z, and then rk(P ) = rk(Z) =
∑n

k=1 Pkk.

Note that for any l × l non-degenerate matrix C, the linearly transformed instruments

{Czk}nk=1 correspond to the same projection matrix P as the initial instruments {zk}nk=1.

Therefore, when necessary, we may assume that the instruments are normalized so that

E[zz′] = Il.

Throughout, the maintained assumption is that of many instruments, first introduced

by Bekker (1994): as n→∞,
l

n
= α + o (1) (MI)

for some α ∈ (0, 1). The rate of convergence is sufficient for our purposes, although it has to

be faster in order for asymptotic properties of various estimators and tests to take place.
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We are interested in the asymptotic behavior of the following two quantities:4

αn =
1

n

n∑
k=1

Pkk

and

∆n =
1

n

n∑
k=1

(Pkk − αn)2.

Note that if Z has full rank, then αn = l/n
A
= α, but in general αn = rk(Z)/n

A

≤ α. It is the

limits plimαn and plim ∆n that explicitly appear in asymptotic variances of many estimators

and test statistics (see references in the Introduction). We are mainly interested in whether

∆n
p→ 0

within the asymptotic framework (MI), i.e. if there is no variation in the diagonal elements

of P, asymptotically. In this case, the asymptotic variances of estimators simplify, certain

estimators gain attractive properties, robust chi-square tests become available, etc. (see

references in the Introduction).

We will use the following notation. Let λmin(A), λ∗min(A), and λmax(A) be the least

eigenvalue, the least non-zero eigenvalue, and the largest eigenvalue of a symmetric positive

semi-definite matrix A, respectively. Define also the L2 (Euclidean) norm ‖a‖ =
√
a′a for

any vector a. Negative indexing of a matrix means deletion of a corresponding row. By I{A}

we denote the indicator function for event A, by U [0, 1] we denote the uniform distribution

on [0, 1], and by Po(a) we denote the Poisson distribution with parameter a.

3 Some useful notions and intermediate results

A matrix relationship useful for many derivations is the Sherman-Morrison formula (Sherman

& Morrison, 1950), which states that, for each a ∈ Rl and any l × l non-degenerate matrix

4Recall that in a linear regression of y on z, the kth diagonal element Pkk of P is the leverage score of

the kth observation, for the kth fitted value of y is

ŷk = Pkkyk +
∑
j 6=k

Pkjyj .

If Pkk is too large, then yk is badly overfit. In particular, if Pkk is close to one, then ŷk is determined solely

by one observation. So, for the collection {Pkk}nk=1, the sample mean αn can be interpreted as the average

leverage score, and the sample variance ∆n measures how far the leverage scores are spread apart.
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A,

(A+ aa′)−1 = A−1 − A−1aa′A−1

1 + a′A−1a
(1)

and, as a result,

a′(A+ aa′)−1a = a′A−1a− (a′A−1a)2

1 + a′A−1a
=

a′A−1a

1 + a′A−1a
. (2)

In particular, this relationship helps us to write out a typical diagonal element of P as a

function of a quadratic form whose vector and matrix are independent:

Pkk =
z′k(Z

′
−kZ−k)

−1zk

1 + z′k(Z
′
−kZ−k)

−1zk
. (3)

Recall that Z−k denotes the matrix obtained from Z by removing k-th row from Z.

The critical technical condition we will be constantly using is

Condition A. There is δ > 0 such that P(λmin(Z ′Z) > δn)→ 1 as n→∞.

Condition A allows one to control expressions like (Z ′Z)−1. Note that it implies that Z ′Z

has full rank with probability approaching one, and thus αn
p→ α as n → ∞. Heuristically,

Condition A allows us to show that

tr(Z ′−kZ−k)
−1 ≈ tr(Z ′Z)−1 ≈ Etr(Z ′Z)−1

for n that is large enough. Condition A holds given the following set of conditions.

Lemma 3.1 Let Ezlz′l = Il and E|a′zl| ≥ c > 0 for some c > 0, any l ≥ 1, and all a ∈ Rl

with a′a = 1. There exists an absolute constant K > 0 such that, if α ≤ Kc2, then Condition

A holds.5

A version of Condition A, among other things, guarantees that all diagonal elements of

P are bounded away from unity; see Lemma A.1 in the online Appendix. This property is

intensively used as an additional assumption in recent works on many instrument asymptotics

(e.g., Hansen, Hausman & Newey, 2008; HNWCS, 2012; Bekker & Crudu, 2015).

5One can take K = 1/16 in Lemma 3.1 (see the proof of Corollary 3.4 in Yaskov, 2014; see also Yaskov,

2016), but it is far from optimal. In addition, since E(a′zl)
2 = 1 when a′a = 1, condition E|a′zl| ≥ c means

that random variables a′zl are not too heavy-tailed. Indeed, if, for example, Eu2 = 1 and E|u|2+δ ≤ C for

some C, δ > 0, then 1 = E|u|
δ

1+δ |u|
2+δ
1+δ ≤ (E|u|)

δ
1+δ (E|u|2+δ)

1
1+δ and E|u| ≥ c = C−1/δ.

5



Let us now introduce a property that plays an important role in random matrix theory

(see, for example, chapter 19 in Pastur & Shcherbina, 2011).

Definition. An array of random vectors {xl}l≥1 with xl ∈ Rl and a non-negative random

variable d satisfy property P if, for any sequence of l × l positive semi-definite symmetric

matrices {Al}l≥1 with maxl λmax(Al) <∞, we have

x′lAlxl − d tr(Al)

l

p→ 0

as l→∞.

Property P is a form of the weak law of large numbers for quadratic forms. Namely,

if d = 1 and Exlx′l = Il, then tr(Al) = Ex′lAlxl and, as a result, Property P states that

(x′lAlxl − Ex′lAlxl)/l
p→ 0.

Property P is preserved when a finite number of components to random vectors satisfying

it is added; see Lemma A.2 in the online Appendix. The conditions under which Property

P implies Condition A are stated in Lemma A.3 in the online Appendix.

In important special cases, Property P allows us to obtain explicit analytical formulas

for the limit of diagonal elements of P , as the following theorem shows.

Theorem 3.2 Let ({zl}l≥1, d) satisfy Property P and {(zlk, dk)}nk=1 be IID copies of (zl, d).

If α ∈ (0,P(d > 0)) and Condition A holds, then

Pkk
p→ cdk

1 + cdk

for any fixed k as n→∞, where c > 0 solves

E
cd

1 + cd
= α. (4)

Heuristically, when Property P holds, we have z′k(Z
′
−kZ−k)

−1zk
d
≈ dk tr(Z ′−kZ−k)

−1, and,

using (3) and the implication of Condition A,

Pkk
d
≈

dk tr(Z ′−kZ−k)
−1

1 + dk tr(Z ′−kZ−k)
−1

d
≈ dk Etr(Z ′Z)−1

1 + dk Etr(Z ′Z)−1
.

Further,

α ≈ EPkk ≈ E
dk Etr(Z ′Z)−1

1 + dk Etr(Z ′Z)−1
,
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hence equation (4) for c. If d = 1, then Pkk
p→ α for each fixed k, and then ∆n

p→ 0. If d is

a nongenerate random variable, Pkk are asymptotically different and ∆n
p9 0.

Remark 3.3 If α > P(d > 0) in Theorem 3.2, then Z ′Z =
∑n

k=1 zlkz
′
lk may be degenerate

with a large probability. Indeed, if α > P(d > 0) and zlk =
√
dkulk for IID l × 1 random

vectors ulk and IID non-negative random variables dk, then

rank(Z ′Z) ≤
n∑
k=1

I{dk>0} = nP(d > 0) + op(n) < l

for n that is large enough. As a result, det(Z ′Z) = 0.

Finally, the following lemma provides certain sufficient conditions for Property P. These

conditions will be used in the next section to construct examples of instrument designs for

which ∆n
p→ 0.

Lemma 3.4 For each l ≥ 1, let xl be a centered random vector in Rl with Exlx′l = Il, and

let d be a random variable. Then ({dxl}l≥1, d2) satisfies Property P if any of the following

conditions holds:

(a) each xl = (ξ1, . . . , ξl)
′ for some ξj that are infinite linear combinations of {ek}k≥1

converging in mean square, where {ek}k≥1 are IID random variables with zero mean

and unit variance;

(b) each xl = (ξ1, . . . , ξl)
′ for some ξj as in (a), where {ek}k≥1 are independent random

variables with zero mean, unit variance, and E|ek|2+δ ≤ C for some C, δ > 0 not

depending on k;

(c) each xl is a random vector with a log-concave density;

(d) each xl = Fl(vm) for a centered Gaussian random vector vm in Rm, where m = m(l),

λmax(var(vm)) ≤ C for some C > 0 not depending on m, and Fl : Rm → Rl is a

c-Lipschitz map with ‖Fl(u)−Fl(v)‖ ≤ c‖u− v‖ for all u, v ∈ Rm and some c > 0 not

depending on l.
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4 Examples when ∆n
p→ 0

4.1 Indicator instruments with equal group sizes

A well-known example in the literature is the case of grouped data (Bekker and van der

Ploeg, 2005) where the instruments are indicator variables. The instrument design in this

example is deterministic and hence does not fit our IID framework. However, αn and ∆n

can be computed by brute force. Assume that all observations are split into l groups. If

group sizes are equal, any size equals n/l. The instrument matrix is comprised of indicator

variables: Z = Il⊗ ιn/l, where ιm is an m-vector of ones, and the diagonal elements of P are

Pkk = l/n for all k. Then it is easy to derive that αn = l/n and ∆n = 0.

The example in subsection 5.2 shows how abruptly the situation changes when dummy

instruments have random design, even though group sizes stay equal on average.

4.2 Gaussian instruments

Our first example in an IID environment is most straightforward. Let zl = (1, v′l−1)
′ for a

Gaussian random vector vl−1 in Rl−1.

Theorem 4.1 As n→∞, we have αn
p→ α, Pkk

p→ α for any fixed k, and ∆n
p→ 0.

See also a brute force proof in Anatolyev (2012, Appendix A). The conclusion implies, in

particular, that Gaussian designs for instruments in simulation studies (e.g., Hahn & Inoue,

2002; Davidson & Mackinnon, 2006; Anderson, Kunitomo & Matsushita, 2011) may have

missed important effects of asymptotic heterogeneity of the diagonal of P present in general

theoretical results.

4.3 Independent instruments

This example generalizes the case of Gaussian instruments. Let {ek}k≥1 be independent

random variables with zero mean, unit variance, and E|ek|2+δ ≤ C for some C, δ > 0 not

depending on k. Now, let zl = (1, e1, . . . , el−1)
′.

Theorem 4.2 As n→∞, we have αn
p→ α, Pkk

p→ α for any fixed k, and ∆n
p→ 0.
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This means that the instrument design with many independent instruments drawn from

different distributions (barring those with extremely thick tails) does conform to the simpli-

fying implication.

4.4 Instruments drawn from log-concave distribution

This example generalizes the case of gaussian instruments in a different direction. Let

zl = (1, v′l−1)
′ for an Rl−1-valued random vector vl−1 having a centered log-concave density.6

Recall some useful properties of (probability) distributions with log-concave densities or,

more generally, log-concave distributions.7

This class of distributions generalizes the multivariate normal distribution. In the one-

dimensional case, it includes many common distributions, for example, Weibull, Gamma

and Beta distributions when their parameters are greater or equal to one (see Bagnoli &

Bergstrom, 2005). Like the class of normal distributions, it is closed under affine transfor-

mations, formation of products of measures, marginalization, convolution, and weak limits

(see Saumard & Wellner, 2014). This is why the class of log-concave distributions is consid-

ered a natural non-parametric generalization of the class of normal distributions.

Theorem 4.3 As n→∞, we have αn
p→ α, Pkk

p→ α for any fixed k, and ∆n
p→ 0.

4.5 Instruments distributed according to Gaussian copula

The results for Gaussian instruments can be extended to certain nonlinear transformations

of Gaussian vectors (e.g., Gaussian copulas). Let zl = (1, v′l−1)
′, where vl−1 = Fl−1(ul−1) for

a centered Gaussian random vector ul−1 in Rl−1 and, for x = (x1, . . . , xl−1)
′ ∈ Rl−1,

Fl−1(x) = (f1(x1), . . . , fl−1(xl−1))
′.

Here fk : R→ R are c-Lipschitz functions for some c > 0 (see Lemma 3.4(d)). Each fk may

depend on l, but c depends neither on k nor on l.

6That is, a density whose logarithm is a concave function (setting log 0 = −∞).
7A log-concave distribution in Rd can be defined as a distribution supported on an affine subspace H ⊂ Rd

of dimension k ≤ d, where this distribution has a log-concave density w.r.t. the Lebesgue measure on this

subspace (see Theorem 3.2 in Borell, 1975).
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Suppose also every vl−1 has zero mean and there are constants λ,C > 0 such that

λmin(Evl−1v′l−1) ≥ λ and λmax(var(ul−1)) ≤ C for each l > 1.

Theorem 4.4 As n→∞, we have αn
p→ α, Pkk

p→ α for any fixed k, and ∆n
p→ 0.

4.6 Instruments that are sums of IID random variables

Let {ek}k≥1 be IID random variables with zero mean and unit variance. For each j ≥ 1,

let ξj be an infinite linear combination of ek that converges in mean square. Assume that

zl = (1, ξ1, . . . , ξl−1)
′ and Ezlz′l is non-degenerate for all l > 1.

Theorem 4.5 As n→∞, we have αn
p→ α, Pkk

p→ α for any fixed k, and ∆n
p→ 0.

4.7 Instruments following a factor model

Let zl = (1, v′l−1)
′ with vl−1 = Λl−1,mfm + εl−1, where fm is an m × 1 vector of latent

factors, εl−1 is an (l − 1) × 1 disturbance term, and Λl−1,m is an (l − 1) × m matrix

of factor loadings. Suppose m satisfies m/l < 1, fm = (σ1e1, . . . , σmem)′, and εl−1 =

(σm+1em+1, . . . , σm+l−1em+l−1)
′ for some constants {σk}l+m−1k=1 and independent random vari-

ables {ek}l+m−1k=1 with zero mean, unit variance, and E|ek|2+δ ≤ C for some C, δ > 0 not

depending on k, l,m.

Theorem 4.6 As n→∞, we have αn
p→ α, Pkk

p→ α for any fixed k, and ∆n
p→ 0.

5 Examples when ∆n
p9 0

5.1 Indicator instruments with unequal group sizes

In the well known case of grouped data (Bekker & van der Ploeg, 2005), if the group sizes

are not equal, the diagonal of the instrument projection matrix is generally asymptotically

heterogeneous. Let us assume that all observations are split into l groups and proceed by

brute force. Denoting the size of the gth group by ng, we observe that the instrument matrix

is comprised of indicator variables: Z = dg{ιng}lg=1, where ιm is an m-vector of ones. Then
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the diagonal elements of P are Pkk = n−1g such that the kth observation belongs to gth group,

and

αn =
1

n

l∑
g=1

ng
1

ng
=

l

n

and

∆n =
1

n

l∑
g=1

ng

(
1

ng
− l

n

)2

=
1

n

l∑
g=1

1

ng
−
(
l

n

)2

,

which need not equal zero. See Abutaliev & Anatolyev (2013) for a numerical evaluation of

the effects of asymptotic heterogeneity of the diagonal of P on the asymptotic variance of

LIML estimates.

5.2 Dummy instruments with disjoint supports

Let zl = (d1, . . . , dl)
′, where d1, . . . , dl are Bernoulli random variables subject to the con-

straint
∑l

j=1 dj = 1. Each dj implicitly depends on l. We first consider the design when the

underlying factors have the same frequency of occurrence: P(dj = 1) = 1/l for any fixed j.

Let ξ ∼ Po(1/α), and let

ζ =
1

ξ + 1
.

Theorem 5.1 As n→∞, we have αn
p→ Eζ, Pkk

d→ ζ for any fixed k, and ∆n
p→ var(ζ).

Figure 1(i) illustrates the dependence between a = plimαn = Eζ and ∆ = plim ∆n =

var(ζ) when α changes from 0 to 1.

Generally, when P(dj = 1) non-trivially depends on j and asymptotically behaves like

O(1/l), the distribution of ξ will be a mixture of Poisson distributions. To see this, consider

the following design. Let u be a random variable with values in [0, 1] and a bounded density

f = f(u), u ∈ [0, 1]. Set dj = 1 if (j − 1)/l ≤ u < j/l, 1 ≤ j ≤ l, and dj = 0 otherwise.

Corollary 5.2 Let ξ satisfy

P(ξ = m) =

∫ 1

0

e−λ(u)λ(u)m

m!
f(u) du, m = 0, 1, . . . ,

for λ(u) = f(u)/α. Then the conclusion of Theorem 5.1 holds.
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The case under consideration is related to the famous setup of Angrist and Krueger (1991)

where dummy variables with disjoint supports are used. One group of such instruments (30

units) is formed as the products of year-of-birth and quarter-of-birth dummies. Another

group of instruments (150 units) is formed as the products of state-of-birth and quarter-of-

birth dummies. The diagonal elements of projection matrices for each group can be analyzed

along the lines of Corollary 5.2. The case when the instrument set includes both groups is

less amenable to analysis because of the complicated structure of (Z ′Z)−1.

5.3 Many instruments interacted with dummy variables

We consider the case of one dummy variable first. Let ul be one of a set of random vectors

zl from subsections 4.2 through 4.7 with non-degenerate Eulu′l. Construct zl as zl = uld,

where d is a Bernoulli random variable. Let also zlk = ulkdk for each k, where {(dk, ulk)}nk=1

are IID copies of (d, ul).

By Remark 3.3, Z ′Z is degenerate with large probability when l/n = α + o(1) and

α > P(d = 1). We will consider the case with α < P(d = 1).

Theorem 5.3 Let α < P(d = 1), and let ul, l ≥ 1, be independent of d. As n → ∞, we

have αn
p→ α,

Pkk
p→ α

dk
P(d = 1)

for any fixed k, and

∆n
p→ α2P(d = 0)

P(d = 1)
.

Figure 1(ii) illustrates the dependence between a = plimαn = α and ∆ = plim ∆n in

Theorem 5.3 when P(d = 1) = 1/2 and α changes from 0 to 1/2.

We now consider the case of several dummy variables. Let

zl = d⊗ ul = (d1u
′
l, . . . , dmu

′
l)
′,

where d = (d1, . . . , dm)′ is a vector of m Bernoulli random variables subject to the constraint

d1 + . . .+ dm ≤ 1, and m is a fixed number. Write zlk = (djk)
m
j=1⊗ulk for each k, 1 ≤ k ≤ n,

where {ulk, (djk)mj=1}nk=1 are IID copies of (ul, d).
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Again, it can be shown (cf. Remark 3.3) that Z ′Z is degenerate with large probability

when α > minj P(dj = 1).

Corollary 5.4 Let α < minj P(dj = 1), and let ul, l ≥ 1, be independent of d. As n→∞,

we have αn
p→ αm,

Pkk
p→

m∑
j=1

αdjk
P(dj = 1)

for any fixed k, and

∆n
p→

m∑
j=1

α2

P(dj = 1)
− (αm)2.

Remark 5.5 The independence of d and ul in Theorem 5.3 and Corollary 5.4 can be relaxed

as long as Condition A holds. In general, Condition A may not hold. For example, let

ul = (1, e1, . . . , el−1)
′ for IID {ek}k≥1 and e1 = (1− d)ζ/var(d), where ζ is independent of d

and has Eζ = 0 and Eζ2 = 1. Then de1 = 0 and λmin(Z ′Z) = 0.

5.4 Instrument interactions with many dummy variables

This artificial example is encountered in the simulation sections of many recent theoretical

studies, in particular, HNWCS (2012), Anatolyev (2013) and Bekker & Crudu (2015). Let

zl = (1, v, v2, v3, v4, vu′l−5)
′,

where ul−5 = (d1, . . . , dl−5)
′ contains IID Bernoulli random variables dj with P(dj = 0) =

P(dj = 1) = 1/2, and v ∼ N (0, 1) is independent of ul−5. Write zlk = (1, vk, . . . , v
4
k, vku

′
l−5,k)

′

for each k, 1 ≤ k ≤ n, where {(vk, ul−5,k)}nk=1 are IID copies of (v, ul−5).

Let c > 0 solve the equation

E
cv2

1 + cv2
= α.

Theorem 5.6 As n→∞, we have αn
p→ α,

Pkk
p→ cv2k

1 + cv2k

for any fixed k, and

∆n
p→ var

(
cv2

1 + cv2

)
.

Figure 1(iii) illustrates the dependence between a = plimαn = α and ∆ = plim ∆n when

α changes from 0 to 1.
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5.5 Instruments that are splines

Hansen, Hausman & Newey (2008), HNWCS (2012) and other recent treatments propose

to approximate an unknown nonlinear reduced form by a linear combination of many ap-

proximating functions. A common approach is to use B-splines with a sufficient degree of

smoothness and uniformly spaced knots. Below we will study (a simple version of) this case.

Let z be a [0, 1]-valued ‘basic’ instrumental variable. Let

zl = (B1(z), . . . , Bl+1(z))′,

where Bj = Bj(z), j = 1, . . . , l + 1, are B-splines in their natural order. To produce results

that are as clear as possible, we consider only linear B-splines with uniformly spaced knots

{sj}l+1
j=−1 with sj = j/l. All results can be rewritten to accommodate higher-order B-splines

(e.g., cubic B-splines).

Note first that Bk(z)Bj(z) = 0 for all z ∈ [0, 1] when |k − j| > 1. Hence, Z ′Z is a tridi-

agonal matrix for linear B-splines (it would be 9-diagonal for cubic B-splines, for example).

The inverse (Z ′Z)−1 is a matrix with a complicated structure (e.g., see Meurant, 1992). To

proceed, we simplify by setting zl = (ζ1, ζ2, . . . , ζ2l)
′, where ζ2j−1 = Bj(z)I{sj−1≤z<sj} and

ζ2j = Bj+1(z)I{sj−1≤z<sj} for 1 ≤ j ≤ l. For linear B-splines, by definition, if z ∈ [0, 1), then

B1(z) = ζ1(z), Bj(z) = ζ2j−2(z) + ζ2j−1(z) for j = 2, . . . , l + 1, and Bl+1(z) = ζ2l(z).

In this case, Z ′Z is a block diagonal matrix with 2 × 2 diagonal blocks, and its inverse

(Z ′Z)−1 has a similar structure. Let {ui}∞i=0 be IID random variables with ui ∼ U [0, 1].

Define vi = (ui, 1− ui)′, i ≥ 0, v = v0, and

V (0) =
1

v′v
, V (m) =

(
m∑
i=0

viv
′
i

)−1
, m ≥ 1.

Theorem 5.7 Let z ∼ U [0, 1]. As n → ∞, we have Pkk
d→ v′V (ξ)v for any fixed k, where

ξ ∼ Po(1/α) is independent of all other random variables involved.

Under the conditions of Theorem 5.7, η = v′V (ξ)v has the following cumulative distri-

bution function:

P(η ≤ x) =
∞∑
m=0

exp{−1/α}P(v′V (m)v ≤ x)

αmm!
.

14



As in Corollary 5.2, one can show that the result of Theorem 5.7 still holds if z has a

bounded density f = f(z), z ∈ [0, 1], and that the distribution of ξ is a mixture of Poisson

distributions from Corollary 5.2. The proof is available on request.

We also conjecture that αn
p→ Ev′V (ξ)v and ∆n

p→ var(v′V (ξ)v), though we do not have

a formal proof. Figure 1(iv) illustrates the dependence between a = plimαn = Ev′V (ξ)v

and ∆ = plim ∆n = var(v′V (ξ)v) when α changes from 0 to 1/2 (recall that the number of

instruments is 2l ≈ 2αn).

6 Conclusion

We have derived sufficient conditions for asymptotic homogeneity of a diagonal of the pro-

jection matrix under many instrument/regressor asymptotics. We have analyzed several

examples when asymptotic homogeneity holds, and several examples when the diagonal is

asymptotically heterogeneous. Intuitively, whether a given instrument design leads to the

former or the latter case depends on whether there is enough mixing inside the utilized in-

struments, or whether there are instead common factors in a non-negligible fraction of them.

This circumstance validates or, conversely, precludes the validity of a law of large numbers

for certain quadratic forms.

We have also calibrated the amount of variation in the diagonal elements, plim ∆n, which

sometimes attains values up to 0.25 and higher. Because this quantity explicitly appears

in asymptotic variances of some estimators and test statistics, it would be interesting to

know how much distortion can be caused by ignoring asymptotic heterogeneity and setting

plim ∆n to zero. Let us look at the asymptotic variance of the modified J-statistic (Lee &

Okui, 2012; Anatolyev, 2013). The relative difference between this asymptotic variance and

the same quantity when the condition plim ∆n = 0 is imposed equals

κ

2α(1− α)
plim ∆n,

where κ denotes excess kurtosis of the structural error. If the structural error is even mod-

erately leptokurtic, this formula and our calibration imply that sufficiently high relative

distortions are possible (e.g., up to 50%, if excess kurtosis equals unity).
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7 Main proofs

Proof of Theorem 4.1. We can normalize zl so that zl = (1, e1, . . . , el−1)
′ for ek ∼

IIDN (0, 1) and apply Theorem 4.2 to obtain the desired result. �

Proof of Theorem 4.2. By Lemma 3.4(b) and Lemma A.2, ({zl}l≥1, 1) satisfies Property

P. By footnote 5 and Lemma A.7, there is c > 0 such that E|z′la| ≥ c for all l ≥ 1 and a ∈ Rl

with a′a = 1. By Lemma A.3, Condition A holds and αn
p→ α.

Moreover, by Theorem 3.2, Pkk
p→ α for any fixed k. Recall a version of the Lebesgue

dominated convergence theorem:

if ζn
d→ ζ and |ζn| ≤ 1 a.s. for all n, then Eζn → Eζ. (5)

By this theorem and the exchangeability of {(Pkk, αn)}nk=1,

E∆n = E
1

n

n∑
k=1

(Pkk − αn)2 = E(P11 − αn)2 → 0.

�

Proof of Theorem 4.3. We can normalize vl−1 in zl by some affine transformation so that

Evl−1v′l−1 = Il−1. As a result, Ezlz′l = Il for zl = (1, v′l−1)
′, since Evl−1 has zero entries. Affine

transformations preserve log-concavity of distributions (see Proposition 3.1 in Saumard &

Wellner, 2014). Therefore, the normalized vl−1 still has a log-concave density.

Moreover, for any non-zero vector b ∈ Rl−1, u = v′l−1b/
√
b′b is a random variable with

zero mean, unit variance, and a log-concave density. Therefore, by Theorem 1 in Adamczak

et al. (2014), there is an absolute constant κ > 0 such that P(|u| > κt) ≤ e−t for all

t ≥ 1. This implies that Eu4 ≤ C for some absolute constant C > 0. Hence, E|a′zl|4 ≤

8a40 + 8(b′b)2C ≤ 8 + 8C for any a = (a0, b
′)′ with a0 ∈ R, b ∈ Rl−1, and a20 + b′b = 1. By

footnote 5, there is c > 0 such that E|z′la| ≥ c for all l ≥ 1 and a ∈ Rl with a′a = 1.

By Lemma 3.4(c), Lemma A.2, and Lemma A.3, ({zl}l≥1, 1) satisfies Property P and

Condition A holds. The rest of the proof follows the same lines as the proof of Theorem 4.2.

�

Proof of Theorem 4.4. We can normalize zl to zl = (1, w′l−1)
′ for wl−1 = (Evl−1v′l−1)−1/2vl−1.

Since λmax((Evl−1v′l−1)−1/2) ≤ 1/
√
λ, vl−1 = Fl−1(ul−1), and Fl−1 consists of c-Lipschitz func-
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tions, we can write wl−1 = Gl−1(ul−1) for some (c/
√
λ)-Lipschitz map Gl−1 : Rl−1 → Rl−1.

Hence, by Lemma 3.4(d) and Lemma A.2, ({zl}l≥1, 1) satisfies Property P.

Now, let us show that Condition A holds. Let ϕb : Rl−1 → R be defined by ϕb(x) = x′b

for some b ∈ Rl−1 with b′b = 1. Then ϕb is a 1-Lipschitz function. Arguing as in the

proof of Lemma 3.4(d) and using Theorem 2.7 and Proposition 1.3 in Ledoux (2001), we

arrive at the inequality P(|w′l−1b − med(w′l−1b)| > t) ≤ 2 exp{−C1t
2}, t > 0, for some

C1 = C1(c/
√
λ,C) > 0, where med(ξ) is a median of a random variable ξ, and C > 0 satisfies

λmax(var(ul−1)) ≤ C. By Proposition 1.8 in Ledoux (2001), there are Ck = Ck(C1) > 0,

k = 2, 3, such that

P(|w′l−1b− E(w′l−1b)| > t) = P(|w′l−1b| > t) ≤ C3 exp{−C2t
2}, t > 0.

Hence, E(w′l−1b)
4 ≤ C4(b

′b)2 for some C4 > 0 and all b ∈ Rl−1. As a result,

E(z′la)4 ≤ 8a20 + 8E(w′l−1b)
4 ≤ 8 + 8C4

for all a = (a0, b
′)′ with a0 ∈ R, b ∈ Rl−1, and a20 + b′b = 1. By footnote 5, E|z′la| ≥ c for

some c > 0 and all a ∈ Rl with a′a = 1. By Lemma A.3, Condition A holds.

The rest of the proof follows the same lines as the proof of Theorem 4.2. �

Proof of Theorem 4.5. We can normalize zl so that zl = (1, v′l−1)
′ satisfies Evl−1v′l−1 = Il−1

(and Ezlz′l = Il, since Evl−1 has zero entries), where vl−1 = (ξ1, . . . , ξl−1)
′ and each ξj is an

infinite linear combination (in L2) of {ek}k≥1. By construction, there is an (l−1)×∞ matrix

Γl−1 such that vl−1 = Γl−1e (in L2) and Il−1 = Evl−1v′l−1 = EΓl−1ee
′Γ′l−1 = Γl−1Γ

′
l−1, where

e = (e1, e2, . . .)
′.

Hence, for any a = (a0, . . . , al−1)
′ ∈ Rl with a′a = 1, there is b = (b1, b2, . . .)

′ with

a20 + b′b = 1 such that z′la = a0 + e′b. One can take b = Γ′l−1(a1, . . . , al−1)
′. The rest of the

proof follows the same lines as the proof of Theorem 4.2. �

Proof of Theorem 4.6. The proof is similar to the proof of Theorem 4.5. �

Proof of Theorem 5.1. The instrument matrix Z is degenerate with positive probability.

If zlk = (dk1, . . . , dkl)
′, 1 ≤ k ≤ n, then dkqdkr = 0 for all k, q, r with q 6= r. As a result,

(Z ′Z)+ is a diagonal matrix with diagonal entries

sq =

1/
∑n

k=1 dkq if
∑n

k=1 dkq > 0,

0 otherwise,
q = 1, . . . , l.
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Consider the case k = 1 without loss of generality. We have

P11 = z′l1(Z
′Z)+zl1 =

l∑
q=1

d1q∑n
k=2 dkq + d1q

,

where 0/0 = 0. Let us show that P11
d→ 1/(ξ + 1), where ξ ∼ Po(1/α). By Poisson’s limit

theorem,

P(P11 ≤ x) =
l∑

q=1

P
(

1∑n
k=2 dkq + 1

≤ x, d1q = 1

)
= P

(
1∑n

k=2 dk1 + 1
≤ x

)
→ P

(
1

ξ + 1
≤ x

)

for almost all x ≥ 0, where we used that nP(d11 = 1) = n/l→ 1/α. Hence, P11
d→ ζ.

Consider normalized zl =
√
l(d1, . . . , dl)

′. Then Ezlz′l = Il, λmax(Ezlz′l) = 1, and

λ∗min(Z ′Z) ≥ l. By Lemma A.5 and (5), αn
p→ limn→∞ EP11 = Eζ and

∆n =
1

n

n∑
k=1

P 2
kk − α2

n

p→ lim
n→∞

var(P11) = var(ζ).

�

Proof of Corollary 5.2. Note that P11 is the same as in the proof of Theorem 5.1. Let

us demonstrate that P11
d→ 1/(ξ + 1), where ξ is given in Corollary 5.2. Note that P11 takes

values 1/(m+ 1) with m = 0, 1, . . . By the independence of d1q and {dkq}nk=2, we have

P
(
P11 =

1

m+ 1

)
=

l∑
q=1

P
(

1∑n
k=2 dkq + 1

=
1

m+ 1
, d1q = 1

)
=

l∑
q=1

P(ξq = m)pq,

where ξq follows the Binomial distribution with parameters (n− 1, pq) and

pq =

∫ q/l

(q−1)/l
f(u) du.

As f is bounded by say C > 0, we conclude that pq ≤ C/l for all q. Therefore, by the Le

Cam inequality,

∞∑
m=0

∣∣∣∣P(ξq = m)− e−(n−1)pq ((n− 1)pq)
m

m!

∣∣∣∣ ≤ 2np2q ≤ 2n

(
C

l

)2

= o(1). (6)

Thus,

P
(
P11 =

1

m+ 1

)
=

l∑
q=1

pqe
−(n−1)pq ((n− 1)pq)

m

m!
+ o(1).
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Fix m and make gm(u) = exp{−u}um/m!, u ≥ 0. Also, define

fn(u) = l

∫ q/l

(q−1)/l
f(v) dv, (q − 1)/l ≤ u < q/l, (7)

for q = 1, . . . , l and fn(1) = 0. Write

l∑
q=1

pqe
−(n−1)pq ((n− 1)pq)

m

m!
=

∫ 1

0

gm((n− 1)fn(u)/l)f(u) du.

By the Lebesgue differentiation theorem, (n− 1)fn(u)/l → f(u)/α for almost all u ∈ [0, 1].

Hence, by the Lebesgue dominated convergence theorem,

P
(
P11 =

1

m+ 1

)
=

∫ 1

0

gm((n− 1)fn(u)/l)f(u) du+ o(1)

=

∫ 1

0

gm(f(u)/α)f(u) du+ o(1).

The latter is equivalent to P11
d→ 1/(ξ + 1).

The rest of the proof follows the same lines as the proof of Theorem 5.1. We only need

to note that, for normalized zl =
√
l(d1, . . . , dl)

′, λ∗min(Z ′Z) ≥ l and λmax(Ezlz′l) ≤ C, where

C gives an upper bound for f = f(u). �

Proof of Theorem 5.3. We further assume that zl = dul is normalized so that Eulu′l = Il.

By Lemma 3.4 and Lemma A.2, ({zl}l≥1, d) satisfies Property P (recall that d2 = d). It was

verified in the proofs of Theorems 4.2 through 4.6 that E|u′la| ≥ c0 for some c0 > 0, all l ≥ 1,

and any a ∈ Rl with a′a = 1. Then, there is c > 0 such that E|z′la|I{d>0} = P(d = 1)E|u′la| ≥

c. Therefore, by Lemma A.3, Condition A holds.

Set π = P(d = 1). By Theorem 3.2,

Pkk
p→ cdk

1 + cdk
=
αdk
π

for any fixed k, where c > 0 solves E(cd)/(1 + cd) = πc/(1 + c) = α. In addition, by Lemma

A.5 and (5), αn
p→ limn→∞ EP11 = α and

∆n =
1

n

n∑
k=1

P 2
kk − α2

n

p→ lim
n→∞

var(P11) = α21− π
π

.

�

Proof of Corollary 5.4. Inequalities
∑m

j=1 djk ≤ 1 that hold for any fixed k imply that

dikdjk = 0 for all i, j, k with i 6= j. As a result, Z ′Z is a block-diagonal matrix with diagonal
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blocks Z ′jZj, j = 1, . . . ,m, having the same structure as Z ′Z in Theorem 5.3, with dk replaced

by djk, respectively. Hence, by d2jk = djk,

Pkk = z′lk(Z
′Z)−1zlk =

m∑
j=1

djku
′
lk(Z

′
jZj)

−1ulk.

By Theorem 5.3, djku
′
lk(Z

′
jZj)

−1ulk
p→ αdjk/P(dj = 1) for any j = 1, . . . ,m. Since m is fixed,

we get

Pkk
p→

m∑
j=1

αdjk
P(dj = 1)

.

As shown in the proof of Theorem 5.3, Condition A holds for each block Z ′jZj. Since the

number of blocks is finite, Condition A holds for Z ′Z. By Lemma A.5 and (5), αn
p→

limn→∞ EP11 = αm and

∆n =
1

n

n∑
k=1

P 2
kk − α2

n

p→ lim
n→∞

var(P11) =
m∑
j=1

α2

P(dj = 1)
− (αm)2.

�

Proof of Theorem 5.6. Write zl = (w′5, vu
′
l−5)

′ for w5 = (1, v, v2, v3, v4)′ and ul−5 =

(d1, . . . , dl−5)
′. We may further assume that w5 and ul−5 are normalized to Ezlz′l = Il

by the linear transformation (w5, vul−5) → (w̄5, vūl−5), where w̄5 = (Ew5w
′
5)
−1/2w5 and

ūl−5 = (2d1 − 1, . . . , 2dl−5 − 1)′.

By Lemmas A.2 and 3.4, ({zl}l≥1, v2) satisfies Property P. By the Khintchin inequality,

for any a ∈ R5 and b = (b1, . . . , bl−5)
′ ∈ Rl−5 with a′a+ b′b = 1,

E(a′w5 + vb′ul−5)
4 ≤ 8E(a′w5)

4 + 8Ev4E

(
l−5∑
q=1

bq(2dq − 1)

)4

≤ 8E(w′5w5)
2 + C

for some constant C > 0. This and footnote 5 imply that E|z′la| = E|z′la|I{|v|>0} ≥ c for some

c > 0, all l ≥ 1, and a ∈ Rl with a′a = 1. Hence, by Lemma A.3, Condition A holds.

Now, by Theorem 3.2, Pkk
p→ cv2k/(1 + cv2k) for any fixed k, where c > 0 solves the

equation E(cv2)/(1 + cv2) = α. Finally, by Lemma A.5 and (5),

αn
p→ lim

n→∞
EP11 = E

cv2

1 + cv2
= α

and

∆n =
1

n

n∑
k=1

P 2
kk − α2

n

p→ lim
n→∞

var(P11) = var

(
cv2

1 + cv2

)
.
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�

Proof of Theorem 5.7. We need to introduce a few facts that derive from the definition

of B-splines. First, setting dq = 1 if (q − 1)/l ≤ z < q/l and dq = 0 otherwise, we see that

dqdr = 0 for all q 6= r. Second, let {ũq}lq=1 be independent random variables such that each

ũq is independent of z and distributed as q− lz conditionally on dq = 1. That is, the density

of ũq is equal to f((q− u)/l)/l, u ∈ [0, 1], where f(u) is the density of z. Then each variable

ūq =

q − lz if dq = 1,

ũq if dq = 0,

has the same distribution as ũq, and is independent of dq. Moreover, zl = (ū1d1, (1 −

ū1)d1, ū2d2, (1− ū2)d2, . . . , (1− ūl)dl)′ for linear B-splines.

Suppose now that ((ūkq, dkq))
l
q=1, k = 1, . . . , n, are IID copies of ((ūq, dq))

l
q=1. Then

zlk = (ūk1dk1, (1− ūk1)dk1, . . . , (1− ūkl)dkl)′,

k = 1, . . . , n, are IID copies of zl.

As the instrument matrix Z is degenerate with positive probability, set P = Z(Z ′Z)+Z ′.

Since dkqdkr = 0 for all k, q, r with q 6= r, (Z ′Z)+ is a block diagonal matrix with 2 × 2

diagonal blocks (Sq)
+, where

Sq =
n∑
k=1

dkqvkqv
′
kq,

and vkq = (ūkq, 1− ūkq)′, q = 1, . . . , l. Consider, without loss of generality, Pkk for k = 1:

P11 = z′l1(Z
′Z)+zl1 =

l∑
q=1

d1qv
′
1q

(
n∑
k=1

dkqvkqv
′
kq

)+

v1q.

Fix x ≥ 0. Using the independence of v1q and d1q, we deduce that P(P11 ≤ x) = I, where

I =
∑l

q=1 P(Aq)P(d1q = 1), and

Aq =

{
v′1q

(
n∑
k=2

dkqvkqv
′
kq + v1qv

′
1q

)+

v1q ≤ x

}
. (8)

If z ∼ U [0, 1], then {(dkq, vkq)}nk=1 are identically distributed over q. In particular, P(Aq)

is constant over q, and I = P(A1) since P(d1q = 1) = 1/l. Because (d11, v11) is independent of∑n
k=2 dk1vk1v

′
k1 and because (dk1)

n
k=1 and (vk1)

n
k=1 are independent collections of IID random
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elements, we have

I = P

v′( ξn∑
j=1

ṽj ṽ
′
j + vv′

)+

v ≤ x

 ,

where ξn =
∑n

j=2 dj1 is independent of all other random variables involved, and (v, ṽ1, ṽ2, . . .)

are IID copies of v11. Next, if z ∼ U [0, 1], then v has the same distribution as (z, 1− z)′. In

addition, by the Poisson limit theorem, ξn
d→ ξ ∼ Po(1/α) since nP(d11 = 1)→ 1/α. Hence,

I =
∞∑
m=1

P

(
v′

(
m∑
j=1

ṽj ṽ
′
j + vv′

)+

v ≤ x

)
P(ξn = m) + P(v′V (0)v ≤ x)P(ξn = 0)

=
∞∑
m=1

P

(
v′

(
m∑
j=1

ṽj ṽ
′
j + vv′

)+

v ≤ x

)
P(ξ = m) + P(v′V (0)v ≤ x)P(ξ = 0) + o(1)

= P(v′V (ξ)v ≤ x) + o(1).

This finishes the proof. �
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Figure 1. Illustrations for examples of Section 5
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Notes: each figure illustrates one of examples of Section 5: (i) Theorem 5.1 with a = plimαn and ∆ =

plim ∆n. (ii) Theorem 5.3 with a = plimαn and ∆ = plim ∆n. (iii) Theorem 5.6 with a = plimαn and

∆ = plim ∆n. (iv) Theorem 5.7 for z ∼ U [0, 1] with a = Ev′V (ξ)v and ∆ = var(v′V (ξ)v).
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