Asymptotics of diagonal elements of projection matrices under many instruments/regressors

Stanislav Anatolyev
CERGE-EI, Czech Republic \& New Economic School, Russia
Pavel Yaskov
Steklov Mathematical Institute of RAS \& NUST 'MISIS'

A Online Appendix: Technical lemmas and proofs

Proof of Lemma 3.1. The result follows from Corollary 3.4 in Yaskov (2014).

Lemma A. 1 Let $\mathbb{P}\left(\lambda_{\min }\left(Z_{-1}^{\prime} Z_{-1}\right)<\delta n\right)=o(1 / n)$, and let $\mathbb{P}\left(\left\|z_{l}\right\|>K \sqrt{l}\right)=o(1 / l)$ for some $\delta, K>0$. If (MI) holds, then there exists a constant $C \in(0,1)$ such that, as $n \rightarrow \infty$, we have

$$
\mathbb{P}\left(P_{k k} \leq C \text { for all } 1 \leq k \leq n\right) \rightarrow 1
$$

Proof of Lemma A.1. Denoting $M_{n}=\max _{1 \leq k \leq n}\left\|z_{k}\right\|^{2}$ and $\lambda_{n}=\min _{1 \leq k \leq n} \lambda_{\min }\left(Z_{-k}^{\prime} Z_{-k}\right)$ we can see that $\mathbb{P}\left(M_{n}>K^{2} l\right) \leq \sum_{k=1}^{n} \mathbb{P}\left(\left\|z_{k}\right\|>K \sqrt{l}\right)=n \mathbb{P}\left(\left\|z_{l}\right\|>K \sqrt{l}\right)=o(1)$ and

$$
\mathbb{P}\left(\lambda_{n}<\delta n\right) \leq \sum_{k=1}^{n} \mathbb{P}\left(\lambda_{\min }\left(Z_{-k}^{\prime} Z_{-k}\right)<\delta n\right)=n \mathbb{P}\left(\lambda_{\min }\left(Z_{-1}^{\prime} Z_{-1}\right)<\delta n\right)=o(1)
$$

In addition, by the Sherman-Morrison formula, we have

$$
P_{k k}=f\left(z_{k}^{\prime}\left(Z_{-k}^{\prime} Z_{-k}\right)^{-1} z_{k}\right) \leq f\left(\left\|z_{k}\right\|^{2} / \lambda_{\min }\left(Z_{-k}^{\prime} Z_{-k}\right)\right) \leq f\left(M_{n} / \lambda_{n}\right) \leq f\left(K^{2} l /(\delta n)\right)
$$

on $\left\{M_{n} \leq K^{2} l, \lambda_{n} \geq \delta n\right\}$ for all $1 \leq k \leq n$, where $f(x)=x /(1+x), x \geq 0$. Since $l=O(n)$ and $\mathbb{P}\left(M_{n} \leq K^{2} l, \lambda_{n} \geq \delta n\right)=1-o(1)$, we get the desired result.

Lemma A. 2 For $l>k \geq 1$, let u_{l-k} and v_{k} be random vectors in \mathbb{R}^{l-k} and \mathbb{R}^{k}, respectively, such that $\mathbb{E} u_{l-k} u_{l-k}^{\prime}=I_{l-k}, \mathbb{E} v_{k} v_{k}^{\prime}=I_{k}$, and $\left(\left\{v_{k}\right\}_{k \geq 1}, d\right)$ satisfies Property P for some d. If $z_{l}=\left(u_{l-k}^{\prime}, v_{k}^{\prime}\right)^{\prime}$ and $k=k(l)=l-o(l), l \rightarrow \infty$, then $\left(\left\{z_{l}\right\}_{l \geq 2}, d\right)$ satisfies Property P.

Proof of Lemma A.2. For each $l>1$, let A_{l} be an $l \times l$ symmetric positive semi-definite matrix such that $\lambda_{\max }\left(A_{l}\right)$ is bounded over l. Write A_{l} as

$$
A_{l}=\left(\begin{array}{cc}
B_{m} & C_{m k} \\
C_{m k}^{\prime} & D_{k}
\end{array}\right)
$$

where $m=l-k, B_{m}, C_{m k}$, and D_{k} are $m \times m, m \times k$, and $k \times k$ matrices, respectively. Since $\lambda_{\max }\left(A_{l}\right)$ is uniformly bounded, $m=o(l)$, and $\left(\left\{v_{k}\right\}_{k \geq 1}, d\right)$ satisfies Property P, we have

$$
\frac{z_{l}^{\prime} A_{l} z_{l}-d \operatorname{tr}\left(A_{l}\right)}{l}=\frac{u_{m}^{\prime} B_{m} u_{m}+2 u_{m}^{\prime} C_{m k} v_{k}-d \operatorname{tr}\left(B_{m}\right)}{m} \cdot o(1)+o_{p}(1) .
$$

Therefore we only need to show that $d \operatorname{tr}\left(B_{m}\right) / m, u_{m}^{\prime} B_{m} u_{m} / m$, and $u_{m}^{\prime} C_{m k} v_{k} / m$ are bounded in probability.

Any random variable d is bounded in probability. In addition, $\operatorname{tr}\left(B_{m}\right) \leq m \lambda_{\max }\left(B_{m}\right) \leq$ $m \lambda_{\max }\left(A_{l}\right)=O(m)$. We also have $\mathbb{E} u_{m}^{\prime} B_{m} u_{m}=\operatorname{tr}\left(B_{m}\right)=O(m)$. By the Cauchy inequality, $2 \mathbb{E}\left|u_{m}^{\prime} C_{m k} v_{k}\right| \leq \mathbb{E} u_{m}^{\prime} u_{m}+\mathbb{E}\left(C_{m k} v_{k}\right)^{\prime}\left(C_{m k} v_{k}\right)=m+\operatorname{tr}\left(C_{m k}^{\prime} C_{m k}\right)=m+\operatorname{tr}\left(C_{m k} C_{m k}^{\prime}\right) \leq$ $m+m \lambda_{\max }\left(C_{m k} C_{m k}^{\prime}\right) \leq m+m \lambda_{\max }\left(A_{l} A_{l}^{\prime}\right)=m+m \lambda_{\max }\left(A_{l}\right)^{2}=O(m)$.

Lemma A. 3 Let $\lambda_{\max }\left(\mathbb{E} z_{l} z_{l}^{\prime}\right) \leq \lambda$ and $\mathbb{E}\left|a^{\prime} z_{l}\right| \mathbb{I}_{\{d>0\}} \geq c$ for some $\lambda, c>0$, any $l \geq 1$, and all $a \in \mathbb{R}^{l}$ with $a^{\prime} a=1$. If Property P holds for $\left(\left\{z_{l}\right\}_{l \geq 1}, d\right)$ and $\alpha<\mathbb{P}(d>0)$, then Condition A holds.

Proof of Lemma A.3. The result follows from Corollary 3.2 in Yaskov (2016).

Lemma A. 4 Let z_{l} be a random vector in \mathbb{R}^{l} for any $l \geq 1$ and $\left\{z_{l k}\right\}_{k=1}^{n}$ be IID copies of z_{l}. If $\varepsilon_{n} \sqrt{n} \rightarrow \infty$, then $S_{n}-\mathbb{E} S_{n} \xrightarrow{p} 0$ as $n \rightarrow \infty$ for all $l=O(n)$, where

$$
S_{n}=\operatorname{tr}\left(\sum_{k=1}^{n} z_{l k} z_{l k}^{\prime}+\varepsilon_{n} n I_{l}\right)^{-1}
$$

Proof of Lemma A.4. In what follows, we will write z_{k} instead of $z_{l k}$. Denote $\mathbb{E}\left[\cdot \mid z_{k}, \ldots, z_{n}\right]$, $1 \leq k \leq n$, by \mathbb{E}_{k}, and \mathbb{E} by \mathbb{E}_{n+1}. Then

$$
S_{n}-\mathbb{E} S_{n}=\sum_{k=1}^{n}\left(\mathbb{E}_{k}-\mathbb{E}_{k+1}\right) S_{n}=\sum_{k=1}^{n}\left(\mathbb{E}_{k}-\mathbb{E}_{k+1}\right)\left(S_{n}-S_{n}^{k}\right),
$$

where $S_{n}^{k}=\operatorname{tr}\left(C_{k}+\varepsilon_{n} n I_{l}\right)^{-1}$ and $C_{k}=\sum_{j \neq k} z_{j} z_{j}^{\prime}$. By (1), we get

$$
\left|S_{n}-S_{n}^{k}\right|=\left|\frac{z_{k}^{\prime}\left(C_{k}+\varepsilon_{n} n I_{l}\right)^{-2} z_{k}}{1+z_{k}^{\prime}\left(C_{k}+\varepsilon_{n} n I_{l}\right)^{-1} z_{k}}\right| \leq \frac{1}{\varepsilon_{n} n}\left|\frac{z_{k}^{\prime}\left(C_{k}+\varepsilon_{n} n I_{l}\right)^{-1} z_{k}}{1+z_{k}^{\prime}\left(C_{k}+\varepsilon_{n} n I_{l}\right)^{-1} z_{k}}\right| \leq \frac{1}{\varepsilon_{n} n} .
$$

Since $\left\{\left(\mathbb{E}_{k}-\mathbb{E}_{k+1}\right)\left(S_{n}-S_{n}^{k}\right)\right\}_{k=1}^{n}$ is a martingale difference sequence,

$$
\mathbb{E}\left(S_{n}-\mathbb{E} S_{n}\right)^{2}=\sum_{k=1}^{n} \mathbb{E}\left|\left(\mathbb{E}_{k}-\mathbb{E}_{k+1}\right)\left(S_{n}-S_{n}^{k}\right)\right|^{2} \leq \frac{n}{\left(\varepsilon_{n} n\right)^{2}}=o(1)
$$

Hence, we obtain the desired result.

Lemma A.5 Let $l=l(n) \rightarrow \infty, \lambda_{\min }^{*}\left(Z^{\prime} Z\right) / \sqrt{n} \xrightarrow{p} \infty$, and $\lambda_{\max }\left(\mathbb{E} z_{l} z_{l}^{\prime}\right)=O(1)$ as $n \rightarrow \infty$. Then for any continuous function f on $[0,1]$,

$$
\frac{1}{n} \sum_{k=1}^{n} f\left(P_{k k}\right)-\mathbb{E} f\left(P_{11}\right) \xrightarrow{p} 0 .
$$

Proof of Lemma A.5. Any continuous function on $[0,1]$ could be approximated by a smooth function. Therefore, we may consider only smooth functions for f. In what follows, we will omit the index l and write z_{i} instead of $z_{l i}$. The proof consists of verification of several claims.

Claim 1. There is a sequence $\lambda_{n}>0$ such that $\lambda_{n} \rightarrow \infty$ and $n^{-1} \sum_{i=1}^{n}\left[f\left(P_{i i}\right)-f_{i}\right] \xrightarrow{p} 0$, where $f_{i}=f\left(z_{i}^{\prime}\left(Z^{\prime} Z+\lambda_{n} I_{l}\right)^{-1} z_{i}\right)$.

Since $\lambda_{\min }^{*}\left(Z^{\prime} Z\right) \xrightarrow{p} \infty$, there are $\lambda_{n}>0$ that grow to infinity slower than $\lambda_{\min }^{*}\left(Z^{\prime} Z\right)$ (i.e. $\left.\lambda_{n} / \lambda_{\text {min }}^{*}\left(Z^{\prime} Z\right) \xrightarrow{p} 0\right)$. If $Z^{\prime} Z$ is non-degenerate, then $\lambda_{\min }\left(Z^{\prime} Z\right)=\lambda_{\min }^{*}\left(Z^{\prime} Z\right)$ and

$$
\begin{align*}
\left|z_{i}^{\prime}\left(Z^{\prime} Z\right)^{-1} z_{i}-z_{i}^{\prime}\left(Z^{\prime} Z+\lambda_{n} I_{l}\right)^{-1} z_{i}\right| & =\lambda_{n} z_{i}^{\prime}\left(Z^{\prime} Z\right)^{-1}\left(Z^{\prime} Z+\lambda_{n} I_{l}\right)^{-1} z_{i} \\
& \leq \lambda_{n} z_{i}^{\prime}\left(Z^{\prime} Z\right)^{-1 / 2}\left(Z^{\prime} Z+\lambda_{n} I_{l}\right)^{-1}\left(Z^{\prime} Z\right)^{-1 / 2} z_{i} \\
& \leq \frac{\lambda_{n}}{\lambda_{\min }\left(Z^{\prime} Z+\lambda_{n} I_{l}\right)} z_{i}^{\prime}\left(Z^{\prime} Z\right)^{-1} z_{i} \\
& \leq \frac{\lambda_{n}}{\lambda_{\min }^{*}\left(Z^{\prime} Z\right)} \tag{9}
\end{align*}
$$

We now show that the last inequalities still hold for degenerate $Z^{\prime} Z$. There is an $l \times l$ orthogonal matrix C and an $l \times l$ diagonal matrix D such that $Z^{\prime} Z=C D C^{\prime}$. Therefore, setting $v_{i}=C^{\prime} z_{i}$ and V to be a matrix with rows $v_{1}^{\prime}, \ldots, v_{n}^{\prime}$, we see that $P_{i i}=v_{i}^{\prime}\left(V^{\prime} V\right)^{+} v_{i}$ and $D=V^{\prime} V=\sum_{i=1}^{n} v_{i} v_{i}^{\prime}$. In particular, if d_{k}, the $k^{t h}$ diagonal entry of D, is zero, then the $k^{t h}$ entry of each v_{i} is zero. Assume without loss of generality that $d_{1} \geq \ldots \geq d_{m}>d_{m+1}=$ $\ldots=d_{l}=0$ for some $m<l$. Then for all $i, v_{i}=\left(u_{i}^{\prime}, 0, \ldots, 0\right)^{\prime}$ with $l-m$ zeros for some
$u_{i} \in \mathbb{R}^{m}$. As a result, $P_{i i}=u_{i}^{\prime}\left(U^{\prime} U\right)^{-1} u_{i}$ and $\lambda_{\text {min }}\left(U^{\prime} U\right)=\lambda_{\text {min }}^{*}\left(V^{\prime} V\right)=\lambda_{\min }^{*}\left(Z^{\prime} Z\right)$, where U is a matrix with rows $u_{1}^{\prime}, \ldots, u_{n}^{\prime}$. By (9),

$$
\begin{aligned}
\left|z_{i}^{\prime}\left(Z^{\prime} Z\right)^{+} z_{i}-z_{i}^{\prime}\left(Z^{\prime} Z+\lambda_{n} I_{l}\right)^{-1} z_{i}\right| & =\left|v_{i}^{\prime}\left(V^{\prime} V\right)^{+} v_{i}-v_{i}^{\prime}\left(V^{\prime} V+\lambda_{n} I_{l}\right)^{-1} v_{i}\right| \\
& =\left|u_{i}^{\prime}\left(U^{\prime} U\right)^{-1} u_{i}-u_{i}^{\prime}\left(U^{\prime} U+\lambda_{n} I_{m}\right)^{-1} u_{i}\right| \\
& \leq \frac{\lambda_{n}}{\lambda_{\min }\left(U^{\prime} U\right)}=\frac{\lambda_{n}}{\lambda_{\min }^{*}\left(Z^{\prime} Z\right)} .
\end{aligned}
$$

Because of the smoothness of f, the latter yields Claim 1.

Claim 2. $n^{-1} \sum_{i=1}^{n}\left[f_{i}-\mathbb{E}_{-i} f_{i}\right] \xrightarrow{p} 0$, where $\mathbb{E}_{-i}=\mathbb{E}\left[\cdot \mid z_{j}, j \neq i\right]$.

Since $\left|f_{i}\right|$ is bounded and $\left\{f_{i}-\mathbb{E}_{-i} f_{i}\right\}_{i=1}^{n}$ are exchangeable random variables,

$$
\mathbb{E}\left|\frac{1}{n} \sum_{i=1}^{n}\left[f_{i}-\mathbb{E}_{-i} f_{i}\right]\right|^{2}=O\left(n^{-1}\right)+O(1) \cdot \mathbb{E}\left[f_{1}-\mathbb{E}_{-1} f_{1}\right]\left[f_{2}-\mathbb{E}_{-2} f_{2}\right]
$$

Hence, we only need to show that $\mathbb{E}\left[f_{1}-\mathbb{E}_{-1} f_{1}\right]\left[f_{2}-\mathbb{E}_{-2} f_{2}\right]=o(1)$.
By (2),

$$
z_{i}^{\prime}\left(Z^{\prime} Z+\lambda_{n} I_{l}\right)^{-1} z_{i}=g\left(z_{i}\left(Z_{-i}^{\prime} Z_{-i}+\lambda_{n} I_{l}\right)^{-1} z_{i}\right)
$$

with $g(x)=x /(1+x), x \geq 0$, and Z_{-i} is obtained from Z by deleting its $i^{\text {th }}$ row. In addition, the function $h(x)=f(g(x))$ is second-order smooth on \mathbb{R}_{+}, and there is $C_{0}>0$ such that $\left|h^{(k)}(x)\right|^{2} \leq C_{0}$ on \mathbb{R}_{+}for each $k=0,1$. Put $f_{i j}=h\left(z_{i}^{\prime}\left(Z_{-i j}^{\prime} Z_{-i j}+\lambda_{n} I_{l}\right)^{-1} z_{i}\right)$ and $\mathbb{E}_{-i j}=\mathbb{E}\left[\cdot \mid Z_{-i j}\right], i \neq j$, for $Z_{-i j}\left(=Z_{-j i}\right)$ that is obtained by deleting $i^{\text {th }}$ and $j^{\text {th }}$ rows in Z. Since

$$
\mathbb{E}\left[f_{12}-\mathbb{E}_{-12} f_{12}\right]\left[f_{21}-\mathbb{E}_{-12} f_{21}\right]=\mathbb{E}\left(\mathbb{E}_{-12}\left[f_{12}-\mathbb{E}_{-12} f_{12}\right]\left[f_{21}-\mathbb{E}_{-12} f_{21}\right]\right)=0
$$

and $\mathbb{E}_{-1} f_{12}=\mathbb{E}_{-12} f_{12}=\mathbb{E}_{-12} f_{21}=\mathbb{E}_{-2} f_{21}$, it follows from Claim 2 and Claim 3 below that $\mathbb{E}\left[f_{1}-\mathbb{E}_{-1} f_{1}\right]\left[f_{2}-\mathbb{E}_{-2} f_{2}\right]=o(1)$. Indeed,

$$
\begin{aligned}
\mid \mathbb{E}\left[f_{1}-\right. & \left.\mathbb{E}_{-1} f_{1}\right]\left[f_{2}-\mathbb{E}_{-2} f_{2}\right]\left|=\left|\mathbb{E}\left[\left(f_{1}-f_{12}\right)+\left(f_{12}-\mathbb{E}_{-12} f_{12}\right)+\left(\mathbb{E}_{-1} f_{12}-\mathbb{E}_{-1} f_{1}\right)\right]\left[f_{2}-\mathbb{E}_{-2} f_{2}\right]\right|\right. \\
\leq & \left|\mathbb{E}\left[f_{12}-\mathbb{E}_{-12} f_{12}\right]\left[\left(f_{2}-f_{21}\right)+\left(f_{21}-\mathbb{E}_{-12} f_{21}\right)+\left(\mathbb{E}_{-2} f_{21}-\mathbb{E}_{-2} f_{2}\right)\right]\right| \\
& +2 C_{0}\left[\mathbb{E}\left|f_{1}-f_{12}\right|+\mathbb{E}\left|\mathbb{E}_{-1} f_{12}-\mathbb{E}_{-1} f_{1}\right|\right] \\
\leq & 2 C_{0}\left[\mathbb{E}\left|f_{1}-f_{12}\right|+\mathbb{E}\left|\mathbb{E}_{-1} f_{12}-\mathbb{E}_{-1} f_{1}\right|+\mathbb{E}\left|f_{2}-f_{21}\right|+\mathbb{E}\left|\mathbb{E}_{-2} f_{21}-\mathbb{E}_{-2} f_{2}\right|\right]=o(1) .
\end{aligned}
$$

Claim 3. $\mathbb{E}\left|f_{i}-f_{i j}\right| \rightarrow 0$ and $\mathbb{E}\left|\mathbb{E}_{-i} f_{i}-\mathbb{E}_{-i} f_{i j}\right| \rightarrow 0$ for any fixed $i, j, i \neq j$.

Formula (1) yields

$$
\Delta_{i j}=z_{i}^{\prime}\left[\left(Z_{-i}^{\prime} Z_{-i}+\lambda_{n} I_{l}\right)^{-1}-\left(Z_{-i j}^{\prime} Z_{-i j}+\lambda_{n} I_{l}\right)^{-1}\right] z_{i}=\frac{\left|z_{i}^{\prime}\left(Z_{-i j}^{\prime} Z_{-i j}+\lambda_{n} I_{l}\right)^{-1} z_{j}\right|^{2}}{1+z_{j}^{\prime}\left(Z_{-i j}^{\prime} Z_{-i j}+\lambda_{n} I_{l}\right)^{-1} z_{j}} \geq 0
$$

If $\Delta_{i j} \leq 1$, then, by the mean value theorem, $\left|f_{i}-f_{i j}\right| \leq C_{0} \Delta_{i j}$. If $\Delta_{i j}>1$, then $\left|f_{i}-f_{i j}\right| \leq$ $2 C_{0}$. By conditional Jensen's inequality,

$$
\mathbb{E}\left|\mathbb{E}_{-i}\left(f_{i}-f_{i j}\right)\right| \leq \mathbb{E}\left|f_{i}-f_{i j}\right| \leq 2 C_{0} \mathbb{E} \min \left\{\Delta_{i j}, 1\right\}
$$

and

$$
\mathbb{E} \min \left\{\Delta_{i j}, 1\right\}=\mathbb{E} \mathbb{E}_{-i} \min \left\{\Delta_{i j}, 1\right\} \leq \mathbb{E} \min \left\{\mathbb{E}_{-i} \Delta_{i j}, 1\right\}
$$

It follows from the equality $\mathbb{E}_{-i} z_{i} z_{i}^{\prime}=\mathbb{E} z z^{\prime}$ that

$$
\begin{aligned}
\mathbb{E}_{-i} \Delta_{i j} & =\mathbb{E}_{-i} \frac{z_{j}^{\prime}\left(Z_{-i j}^{\prime} Z_{-i j}+\lambda_{n} I_{l}\right)^{-1} z_{i} z_{i}^{\prime}\left(Z_{-i j}^{\prime} Z_{-i j}+\lambda_{n} I_{l}\right)^{-1} z_{j}}{1+z_{j}^{\prime}\left(Z_{-i j}^{\prime} Z_{-i j}+\lambda_{n} I_{l}\right)^{-1} z_{j}} \\
& \leq \lambda_{\max }\left(\mathbb{E} z z^{\prime}\right) \frac{z_{j}^{\prime}\left(Z_{-i j}^{\prime} Z_{-i j}+\lambda_{n} I_{l}\right)^{-2} z_{j}}{1+z_{j}^{\prime}\left(Z_{-i j}^{\prime} Z_{-i j}+\lambda_{n} I_{l}\right)^{-1} z_{j}} \leq \frac{\lambda_{\max }\left(\mathbb{E} z z^{\prime}\right)}{\lambda_{n}}=o(1)
\end{aligned}
$$

Hence, Claim 3 obtains.

Claim 4. $\mathbb{E}\left|n^{-1} \sum_{i=1}^{n} \mathbb{E}_{-i} f_{i}-\mathbb{E}_{-1} f_{1}\right| \rightarrow 0$.

Using that $\mathbb{E}_{-1} f_{12}=\mathbb{E}_{-12} f_{12}=\mathbb{E}_{-12} f_{21}=\mathbb{E}_{-2} f_{21}$, Claim 3, and the exchangeability of $\left\{\mathbb{E}_{-i} f_{i}-\mathbb{E}_{-1} f_{1}\right\}_{i=2}^{n}$, we derive that

$$
\begin{aligned}
\mathbb{E}\left|\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{-i} f_{i}-\mathbb{E}_{-1} f_{1}\right| & \leq \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left|\mathbb{E}_{-i} f_{i}-\mathbb{E}_{-1} f_{1}\right| \leq \mathbb{E}\left|\mathbb{E}_{-1} f_{1}-\mathbb{E}_{-2} f_{2}\right| \\
& =\mathbb{E}\left|\mathbb{E}_{-1} f_{1}-\mathbb{E}_{-1} f_{12}+\mathbb{E}_{-2} f_{21}-\mathbb{E}_{-2} f_{2}\right| \\
& \leq \mathbb{E}\left|\mathbb{E}_{-1} f_{1}-\mathbb{E}_{-1} f_{12}\right|+\mathbb{E}\left|\mathbb{E}_{-2} f_{21}-\mathbb{E}_{-2} f_{2}\right|=o(1) .
\end{aligned}
$$

Thus, Claim 4 is proven.

Claim 5. If $\lambda_{\text {min }}^{*}\left(Z^{\prime} Z\right) \xrightarrow{p} \infty$, then $n^{-1} \sum_{i=1}^{n} f\left(P_{i i}\right)-\mathbb{E}_{-1} f\left(P_{11}\right) \xrightarrow{p} 0$.

This follows from Claims 1-4.

Claim 6. $\mathbb{E}\left|\mathbb{E}_{-1} f_{1}-\mathbb{E} f_{1}\right|^{2} \rightarrow 0$.

To prove Claim 6 we need the assumption $\lambda_{\text {min }}^{*}\left(Z^{\prime} Z\right) / \sqrt{n} \xrightarrow{p} \infty$. Going back to the definition of λ_{n} in Claim 1, we can initially take λ_{n} growing faster than \sqrt{n} and slower than $\lambda_{\text {min }}^{*}\left(Z^{\prime} Z\right)$ (i.e. $\left.\lambda_{n} / \lambda_{\text {min }}^{*}\left(Z^{\prime} Z\right) \xrightarrow{p} 0\right)$. Let $\mathbb{E}_{i}=\mathbb{E}\left[\cdot \mid z_{2}, \ldots, z_{i}\right]$ and $\mathbb{E}_{1}=\mathbb{E}$. Using that $\mathbb{E}_{i}\left(\mathbb{E}_{-1} f_{1 i}\right)=\mathbb{E}_{i-1}\left(\mathbb{E}_{-1} f_{1 i}\right)$, we represent $\mathbb{E}_{-1} f_{1}-\mathbb{E} f_{1}$ as the sum of martingale differences

$$
\mathbb{E}_{-1} f_{1}-\mathbb{E} f_{1}=\sum_{i=2}^{n}\left(\mathbb{E}_{i}-\mathbb{E}_{i-1}\right) \mathbb{E}_{-1} f_{1}=\sum_{i=2}^{n}\left(\mathbb{E}_{i}-\mathbb{E}_{i-1}\right) \mathbb{E}_{-1}\left(f_{1}-f_{1 i}\right)
$$

where, by (1) and the inequalities given in the proof of Claim 3,
$\left|\mathbb{E}_{-1}\left(f_{1}-f_{1 i}\right)\right| \leq \mathbb{E}_{-1}\left|f_{1}-f_{1 i}\right| \leq 2 C_{0} \mathbb{E}_{-1} \min \left\{\Delta_{1 i}, 1\right\} \leq 2 C_{0} \min \left\{\mathbb{E}_{-1} \Delta_{1 i}, 1\right\} \leq \frac{2 C_{0}}{\lambda_{n}} \lambda_{\max }\left(\mathbb{E} z z^{\prime}\right)$.
Claim 6 now follows from

$$
\mathbb{E}\left|\mathbb{E}_{-1} f_{1}-\mathbb{E} f_{1}\right|^{2}=\sum_{i=2}^{n} \mathbb{E}\left|\left(\mathbb{E}_{i}-\mathbb{E}_{i-1}\right) \mathbb{E}_{-1}\left(f_{1}-f_{1 i}\right)\right|^{2} \leq \frac{4 C_{0}^{2} \lambda_{\max }\left(\mathbb{E} z z^{\prime}\right)^{2} n}{\lambda_{n}^{2}}=o(1) .
$$

We finish the proof of the lemma by noting that $\mathbb{E} f_{1}-\mathbb{E} f\left(P_{11}\right)=o(1)$ (see the proof of Claim 1).

Proof of Theorem 3.2. For the sake of simplicity, we further omit index l when writing $z_{l k}$. Fix k. By Property P, for any $\varepsilon>0$,

$$
z_{k}^{\prime}\left(Z_{-k}^{\prime} Z_{-k}+\varepsilon n I_{l}\right)^{-1} z_{k}-d_{k} \operatorname{tr}\left(Z_{-k}^{\prime} Z_{-k}+\varepsilon n I_{l}\right)^{-1} \xrightarrow{p} 0
$$

because of the independence of z_{k} and Z_{-k}, where Z_{-k} is obtained by removing $k^{\text {th }}$ row in Z. Hence, there exist $\left\{\varepsilon_{n}\right\}_{n=1}^{\infty}$ tending to zero arbitrarily slowly, such that

$$
z_{k}^{\prime}\left(Z_{-k}^{\prime} Z_{-k}+\varepsilon_{n} n I_{l}\right)^{-1} z_{k}-d_{k} S_{n k} \xrightarrow{p} 0,
$$

where $S_{n k}=\operatorname{tr}\left(Z_{-k}^{\prime} Z_{-k}+\varepsilon_{n} n I_{l}\right)^{-1}$. In particular, we can take $\varepsilon_{n} \sqrt{n} \rightarrow \infty$. Lemma A. 4 now yields $z_{k}^{\prime}\left(Z_{-k}^{\prime} Z_{-k}+\varepsilon_{n} n I_{l}\right)^{-1} z_{k}-d_{k} \mathbb{E} S_{n k} \xrightarrow{p} 0$.

By Condition A, $\varepsilon_{n} n / \lambda_{\min }\left(Z^{\prime} Z\right) \xrightarrow{p} 0$. Arguing as in Claim 1 in the proof of Lemma A.5, we derive that

$$
\left|P_{k k}-z_{k}^{\prime}\left(Z^{\prime} Z+\varepsilon_{n} n I_{l}\right)^{-1} z_{k}\right| \leq \min \left\{\varepsilon_{n} n / \lambda_{\min }\left(Z^{\prime} Z\right), 1\right\}=o_{p}(1) .
$$

By (2) and the above arguments,

$$
z_{k}^{\prime}\left(Z^{\prime} Z+\varepsilon_{n} n I_{l}\right)^{-1} z_{k}=g\left(z_{k}^{\prime}\left(Z_{-k}^{\prime} Z_{-k}+\varepsilon_{n} n I_{l}\right)^{-1} z_{k}\right)=g\left(d_{k} \mathbb{E} S_{n k}\right)+e_{n}
$$

where $g(x)=x /(x+1), e_{n} \xrightarrow{p} 0$, and $\left|e_{n}\right| \leq 2$ a.s. Since $\mathbb{P}\left(\lambda_{\min }\left(Z^{\prime} Z\right)>0\right) \rightarrow 1$ and $P_{k k}$ are identically distributed over k, we have

$$
\mathbb{E} P_{k k}=\frac{1}{n} \mathbb{E} \sum_{j=1}^{n} P_{j j}=\frac{l}{n}+o(1) \rightarrow \alpha
$$

As a result, $\mathbb{E} g\left(d_{k} \mathbb{E} S_{n k}\right)=\mathbb{E} g\left(d \mathbb{E} S_{n k}\right) \rightarrow \alpha$. Note that $f(s)=\mathbb{E} g(s d)$ is a strictly increasing continuous function with $f(0)=0$ and $f(s) \rightarrow \mathbb{P}(d>0), s \rightarrow \infty$, whenever $\mathbb{P}(d>0)>0$. Therefore, $\mathbb{E} S_{n k} \rightarrow c$ for $c>0$ solving $f(c)=\alpha$. Such c exists when $\alpha \in(0, \mathbb{P}(d>0))$. Combining the above estimates, we infer that $P_{k k} \xrightarrow{p} g\left(c d_{k}\right)=c d_{k} /\left(1+c d_{k}\right)$.

Lemma A. 6 Under the conditions of Lemma 3.4(a) or (b), there is $C>0$ such that, for any $l \times l$ positive semi-definite symmetric matrix A_{l} and $b>1$,

$$
\begin{equation*}
\mathbb{E}\left|x_{l}^{\prime} A_{l} x_{l}-\operatorname{tr}\left(A_{l}\right)\right| \leq C b \sqrt{l} \lambda_{\max }\left(A_{l}\right)+C l \lambda_{\max }\left(A_{l}\right) \max _{k \geq 1} \mathbb{E} e_{k}^{2} \mathbb{I}_{\left\{\left|e_{k}^{2}-1\right|>b^{2}\right\}} \tag{10}
\end{equation*}
$$

Proof of Lemma A.6. First, assume that $\xi_{l}=e_{l}, l \geq 1$. Write $A_{l}=\left(a_{i j}\right)_{i, j=1}^{l}$. Then

$$
x_{l}^{\prime} A_{l} x_{l}-\operatorname{tr}\left(A_{l}\right)=\sum_{k=1}^{l} a_{k k}\left(e_{k}^{2}-1\right)+2 \sum_{1 \leq j<k \leq l} a_{j k} e_{j} e_{k}=\sum_{k=1}^{l} a_{k k}\left(e_{k}^{2}-1\right)+2 \sum_{k=2}^{l} E_{k},
$$

where

$$
E_{k}=\left(\sum_{j=1}^{k-1} a_{j k} e_{j}\right) e_{k},
$$

$2 \leq k \leq l$. Note that $\left\{E_{k}\right\}_{k=2}^{l}$ and $\left\{a_{k k}\left(e_{k}^{2}-1\right)\right\}_{k=1}^{l}$ are martingale difference sequences. By the Cauchy-Schwartz inequality,

$$
\left(\mathbb{E}\left|\sum_{k=2}^{l} E_{k}\right|\right)^{2} \leq \mathbb{E}\left|\sum_{k=2}^{l} E_{k}\right|^{2}=\sum_{k=2}^{l} \mathbb{E} E_{k}^{2}=\sum_{k=2}^{l} \sum_{j=1}^{k-1} a_{j k}^{2} \leq \operatorname{tr}\left(A_{l}^{2}\right) .
$$

By the Burkholder-Davis-Gundy inequality,

$$
\mathbb{E}\left|\sum_{k=1}^{l} a_{k k}\left(e_{k}^{2}-1\right)\right| \leq C \mathbb{E}\left|\sum_{k=1}^{l} a_{k k}^{2}\left(e_{k}^{2}-1\right)^{2}\right|^{1 / 2}
$$

where $C>0$ is an absolute constant. Since $\sqrt{x+y} \leq \sqrt{x}+\sqrt{y}$ for $x, y \geq 0$,

$$
\mathbb{E}\left|\sum_{k=1}^{l} a_{k k}^{2}\left(e_{k}^{2}-1\right)^{2}\right|^{1 / 2} \leq I_{1}+I_{2},
$$

where

$$
\begin{aligned}
& I_{1}=\mathbb{E}\left|\sum_{k=1}^{l} a_{k k}^{2}\left(e_{k}^{2}-1\right)^{2} \mathbb{I}_{\left\{\left|\left.\right|_{k} ^{2}-1\right| \leq b^{2}\right\}}\right|^{1 / 2}, \\
& I_{2}=\mathbb{E}\left|\sum_{k=1}^{l} a_{k k}^{2}\left(e_{k}^{2}-1\right)^{2} \mathbb{I}_{\left\{\left|e_{k}^{2}-1\right|>b^{2}\right\}}\right|^{1 / 2} .
\end{aligned}
$$

By Jensen's inequality,

$$
I_{1} \leq\left|\sum_{k=1}^{l} a_{k k}^{2} \mathbb{E}\left(e_{k}^{2}-1\right)^{2} \mathbb{I}_{\left\{\left|e_{k}^{2}-1\right| \leq b^{2}\right\}}\right|^{1 / 2} \leq \sqrt{2 b^{2} \operatorname{tr}\left(A_{l}^{2}\right)}
$$

Here we also used $\mathbb{E}\left(e_{k}^{2}-1\right)^{2} \mathbb{I}_{\left\{\left(\left|e_{k}^{2}-1\right| \leq b^{2}\right\}\right.} \leq b^{2} \mathbb{E}\left|e_{k}^{2}-1\right| \leq 2 b^{2}$. In addition,

$$
I_{2} \leq \sum_{k=1}^{l}\left|a_{k k}\right| \mathbb{E} e_{k}^{2} \mathbb{I}_{\left\{\left|e_{k}^{2}-1\right|>b^{2}\right\}}=\operatorname{tr}\left(A_{l}\right) \max _{k \geq 1} \mathbb{E} e_{k}^{2} \mathbb{I}_{\left\{\left|e_{k}^{2}-1\right|>b^{2}\right\}},
$$

where we also have used that $\sqrt{x+y} \leq \sqrt{x}+\sqrt{y}$ for $x, y \geq 0$ and $\left|e_{k}^{2}-1\right| \leq e_{k}^{2}$ when $b>1$ and $\left|e_{k}^{2}-1\right|>b^{2}$. The above estimates yield

$$
\begin{equation*}
\mathbb{E}\left|x_{l}^{\prime} A_{l} x_{l}-\operatorname{tr}\left(A_{l}\right)\right| \leq C b \sqrt{\operatorname{tr}\left(A_{l}^{2}\right)}+C \operatorname{tr}\left(A_{l}\right) \max _{k \geq 1} \mathbb{E} e_{k}^{2} \mathbb{I}_{\left\{\left|e_{k}^{2}-1\right|>b^{2}\right\}}, \tag{11}
\end{equation*}
$$

where $x_{l}=\left(e_{1}, \ldots, e_{l}\right)^{\prime}$ and $C>0$ is an absolute constant.
Consider the case with $x_{l}=\left(\xi_{1}, \ldots, \xi_{l}\right)^{\prime}$. By the definition of ξ_{j}, there are $l \times k$ matrices $\Gamma_{l k}$ such that $\Gamma_{l k} v_{k} \rightarrow x_{l}$ in probability and in mean square as $k \rightarrow \infty$ for $v_{k}=\left(e_{1}, \ldots, e_{k}\right)^{\prime}$. Since $\left\{e_{k}\right\}_{k \geq 1}$ is an orthonormal sequence, we have
(1) $\Gamma_{l k} \Gamma_{l k}^{\prime}=\mathbb{E}\left(\Gamma_{l k} v_{k}\right)\left(\Gamma_{l k} v_{k}\right)^{\prime} \rightarrow \mathbb{E} x_{l} x_{l}^{\prime}=I_{l}$,
(2) $v_{k}^{\prime}\left(\Gamma_{l k}^{\prime} A_{l} \Gamma_{l k}\right) v_{k}=\left(\Gamma_{l k} v_{k}\right)^{\prime} A_{l}\left(\Gamma_{l k} v_{k}\right) \xrightarrow{p} x_{l}^{\prime} A_{l} x_{l}$,
(3) $\operatorname{tr}\left(\Gamma_{l k}^{\prime} A_{l} \Gamma_{l k}\right)=\operatorname{tr}\left(\Gamma_{l k} \Gamma_{l k}^{\prime} A_{l}\right) \rightarrow \operatorname{tr}\left(A_{l}\right)$,
(4) $\operatorname{tr}\left(\left(\Gamma_{l k}^{\prime} A_{l} \Gamma_{l k}\right)^{2}\right)=\operatorname{tr}\left(\Gamma_{l k} \Gamma_{l k}^{\prime} A_{l} \Gamma_{l k} \Gamma_{l k}^{\prime} A_{l}\right) \rightarrow \operatorname{tr}\left(A_{l}^{2}\right)$.

We need a version of the Fatou lemma that states that $\mathbb{E}|\zeta| \leq \underline{\varliminf_{k \rightarrow \infty}} \mathbb{E}\left|\zeta_{k}\right|$ if $\zeta_{k} \xrightarrow{p} \zeta$. Put $B_{k}=\Gamma_{l k}^{\prime} A_{l} \Gamma_{l k}$. By the Fatou lemma and (11),

$$
\begin{aligned}
\mathbb{E}\left|x_{l}^{\prime} A_{l} x_{l}-\operatorname{tr}\left(A_{l}\right)\right| & \leq \varliminf_{k \rightarrow \infty} \mathbb{E}\left|v_{k}^{\prime} B_{k} v_{k}-\operatorname{tr}\left(B_{k}\right)\right| \\
& \leq \varliminf_{k \rightarrow \infty}\left[C b \sqrt{\operatorname{tr}\left(B_{k}^{2}\right)}+C \operatorname{tr}\left(B_{k}\right) \max _{j \geq 1} \mathbb{E} e_{j}^{2} \mathbb{I}_{\left\{\left|e_{j}^{2}-1\right|>b^{2}\right\}}\right] \\
& \leq C b \sqrt{\operatorname{tr}\left(A_{l}^{2}\right)}+C \operatorname{tr}\left(A_{l}\right) \max _{k \geq 1} \mathbb{E} e_{k}^{2} \mathbb{I}_{\left\{\left|e_{k}^{2}-1\right|>b^{2}\right\}} \\
& \leq C b \lambda_{\max }\left(A_{l}\right) \sqrt{l}+C l \lambda_{\max }\left(A_{l}\right) \max _{k \geq 1} \mathbb{E} e_{k}^{2} \mathbb{I}_{\left\{\left|e_{k}^{2}-1\right|>b^{2}\right\}} .
\end{aligned}
$$

Hence, we get the desired inequality.
Proof of Lemma 3.4. If $\left\{e_{k}\right\}_{k \geq 1}$ are IID and x_{l} is given in (a), then

$$
\max _{k \geq 1} \mathbb{E} e_{k}^{2} \mathbb{I}_{\left\{\left|e_{k}^{2}-1\right|>b^{2}\right\}}=\mathbb{E} e_{1}^{2} \mathbb{I}_{\left\{\left|e_{1}^{2}-1\right|>b^{2}\right\}}
$$

and the desired result follows from Lemma A.6. Indeed, dividing both sides of (10) by l, letting $l \rightarrow \infty$ and then $b \rightarrow \infty$, we infer that $\left(\left\{x_{l}\right\}_{l \geq 1}, 1\right)$ satisfies Property P. Multiplying by d, we conclude that $\left(\left\{d x_{l}\right\}_{l \geq 1}, d^{2}\right)$ satisfies Property P.

If $\left\{e_{k}\right\}_{k \geq 1}$ are independent with $\mathbb{E}\left|e_{k}\right|^{2+\delta} \leq C$ and x_{l} is as in (b), then, for $b>1$,

$$
\max _{k \geq 1} \mathbb{E} e_{k}^{2} \mathbb{I}_{\left\{\left|e_{k}^{2}-1\right|>b^{2}\right\}} \leq \max _{k \geq 1} \frac{\mathbb{E} e_{k}^{2+\delta}}{\left(b^{2}+1\right)^{\delta / 2}} \leq \frac{C}{\left(b^{2}+1\right)^{\delta / 2}}
$$

The rest of the proof follows the same argument as above.
Consider (c), where x_{l} is a centered random vector with a log-concave density and $\mathbb{E} x_{l} x_{l}^{\prime}=$ I_{l}. By Lemma 2.5 in Pajor and Pastur (2009), $\operatorname{var}\left(x_{l}^{\prime} A_{l} x_{l} / l\right) \leq \delta_{l}$ for some $\delta_{l}=o(1)$ and all $l \times l$ symmetric positive semi-definite matrices A_{l} with $\lambda_{\max }\left(A_{l}\right) \leq 1$. Obviously, this implies that $\left(\left\{x_{l}\right\}_{l \geq 1}, 1\right)$ satisfies Property P. Multiplying by d, we get the desired result.

Suppose $x_{l}=F_{l}\left(v_{m}\right)$, where F_{l} and v_{m} are as in (d). Then, $f=\varphi \circ F_{l}$ is a c-Lipschitz function for any 1-Lipschitz function $\varphi: \mathbb{R}^{l} \rightarrow \mathbb{R}$. Indeed, for all $u, v \in \mathbb{R}^{m}$,

$$
\left|\varphi\left(F_{l}(u)\right)-\varphi\left(F_{l}(v)\right)\right| \leq\left\|F_{l}(u)-F_{l}(v)\right\| \leq c\|u-v\| .
$$

Since $\lambda_{\max }\left(\operatorname{var}\left(v_{m}\right)\right) \leq C$ for all m, the density of v_{m} has the form $\exp \{-U(v)\}$ for a convex function $U=U(v)$ such that $\partial^{2} U(v)-(1 / C) I_{m}=\operatorname{var}\left(v_{m}\right)^{-1}-(1 / C) I_{m}$ is positive semidefinite for all $v \in \mathbb{R}^{m}$.

Hence, by Theorem 2.7 and Proposition 1.3 in Ledoux (2001) (see also examples in Section 3.2 in El Karoui, 2009), there is $C_{1}=C_{1}(C, c)>0$ such that, for any 1-Lipschitz function $\varphi: \mathbb{R}^{l} \rightarrow \mathbb{R}$ and $f=\varphi \circ F_{l}$,

$$
\mathbb{P}\left(\left|\varphi\left(x_{l}\right)-\operatorname{med}\left(\varphi\left(x_{l}\right)\right)\right|>t\right)=\mathbb{P}\left(\left|f\left(v_{m}\right)-\operatorname{med}\left(f\left(v_{m}\right)\right)\right|>t\right) \leq 2 \exp \left\{-C_{1} t^{2}\right\}, \quad t>0,
$$

where $\operatorname{med}(\xi)$ is a median of a random variable $\xi .^{8}$ Now, by Lemma 7 in El Karoui (2009), $\left(\left\{x_{l}\right\}_{l \geq 1}, 1\right)$ satisfies Property P. Multiplying by d, we finish the proof.

[^0]Lemma A. 7 Let $\left\{e_{k}\right\}_{k \geq 1}$ be independent random variables with $\mathbb{E} e_{k}=0$ and $\mathbb{E} e_{k}^{2}=1$. If $\mathbb{E}\left|e_{k}\right| \geq c$ for some $c>0$ and all $k \geq 1$, then, for any $\left\{a_{k}\right\}_{k \geq 0}$ with $\sum_{k \geq 0} a_{k}^{2}=1$,

$$
\mathbb{E}\left|a_{0}+\sum_{k \geq 1} a_{k} e_{k}\right| \geq \frac{c}{\sqrt{32+c^{2}}}
$$

Proof of Lemma A.7. Note that $\mathbb{E}\left|a_{0}+\sum_{k \geq 1} a_{k} e_{k}\right|^{2}=\sum_{k \geq 0} a_{k}^{2}=1$. We may assume without loss of generality that there is a finite set of non-zero a_{k} (otherwise, we can take a limit). By Jensen's inequality,

$$
\left|a_{0}\right|=\mathbb{E}\left|a_{0}+\mathbb{E} \sum_{k \geq 1} a_{k} e_{k}\right| \leq \mathbb{E}\left|a_{0}+\sum_{k \geq 1} a_{k} e_{k}\right|=I
$$

In addition,

$$
\sqrt{1-a_{0}^{2}} \mathbb{E}\left|\sum_{k \geq 1} \tilde{a}_{k} e_{k}\right|-\left|a_{0}\right| \leq I
$$

where $\tilde{a}_{k}=a_{k} / \sqrt{1-a_{0}^{2}}, k \geq 1$, and $\sum_{k \geq 1} \tilde{a}_{k}^{2}=1$. If we prove that

$$
\begin{equation*}
\mathbb{E}\left|\sum_{k \geq 1} \tilde{a}_{k} e_{k}\right| \geq \frac{c}{2 \sqrt{2}}, \tag{12}
\end{equation*}
$$

then we obtain the desired bound:

$$
I \geq \inf _{b \in[0,1]} \max \left\{\frac{c}{2 \sqrt{2}} \sqrt{1-b^{2}}-b, b\right\}=\frac{c}{\sqrt{32+c^{2}}}
$$

Let us prove (12). Write a_{k} instead of \tilde{a}_{k} and let $\left\{\tilde{e}_{k}\right\}_{k \geq 1}$ be an independent copy of $\left\{e_{k}\right\}_{k \geq 1}$. Then

$$
\mathbb{E}\left|\sum_{k \geq 1} a_{k}\left(e_{k}-\tilde{e}_{k}\right)\right| \leq \mathbb{E}\left|\sum_{k \geq 1} a_{k} e_{k}\right|+\mathbb{E}\left|\sum_{k \geq 1} a_{k} \tilde{e}_{k}\right|=2 \mathbb{E}\left|\sum_{k \geq 1} a_{k} e_{k}\right| .
$$

In addition, by Jensen's inequality, $\mathbb{E}\left|e_{k}-\tilde{e}_{k}\right| \geq \mathbb{E}\left|e_{k}-\mathbb{E}\left[\tilde{e}_{k} \mid e_{k}\right]\right|=\mathbb{E}\left|e_{k}\right|$ for all $k \geq 1$. Since $\left\{e_{k}-\tilde{e}_{k}\right\}_{k \geq 1}$ are independent symmetric random variables, then $\left\{e_{k}-\tilde{e}_{k}\right\}_{k \geq 1}=\left\{d_{k}\left|e_{k}-\tilde{e}_{k}\right|\right\}_{k \geq 1}$ in distribution, where $\left\{d_{k}\right\}_{k \geq 1}$ are IID random variables that have $\mathbb{P}\left(d_{k}= \pm 1\right)=1 / 2$ and are independent of $\left\{\left|e_{k}-\tilde{e}_{k}\right|\right\}_{k \geq 1}$. By Jensen's inequality,

$$
\mathbb{E}\left|\sum_{k \geq 1} a_{k} d_{k} \mathbb{E}\right| e_{k}-\tilde{e}_{k}| | \leq \mathbb{E}\left|\sum_{k \geq 1} a_{k} d_{k}\right| e_{k}-\tilde{e}_{k}| |=\mathbb{E}\left|\sum_{k \geq 1} a_{k}\left(e_{k}-\tilde{e}_{k}\right)\right| .
$$

By Khinchin's inequality with explicit constants (see Theorem 1 in Szarek, 1975),

$$
\frac{c}{\sqrt{2}} \leq \frac{1}{\sqrt{2}}\left(\sum_{k \geq 1} a_{k}^{2}\left(\mathbb{E}\left|e_{k}\right|\right)^{2}\right)^{1 / 2} \leq \frac{1}{\sqrt{2}}\left(\sum_{k \geq 1} a_{k}^{2}\left(\mathbb{E}\left|e_{k}-\tilde{e}_{k}\right|\right)^{2}\right)^{1 / 2} \leq \mathbb{E}\left|\sum_{k \geq 1} a_{k} d_{k} \mathbb{E}\right| e_{k}-\tilde{e}_{k}| |
$$

Additional references

El Karoui, N (2009): "Concentration of measure and spectra of random matrices: applications to correlation matrices, elliptical distributions and beyond," Annals of Applied Probability, 19, 2362-2405.

Pajor, A. and L. Pastur (2009):"On the limiting empirical measure of eigenvalues of the sum of rank one matrices with log-concave distribution," Studia Mathematica, 195, 11-29. Szarek, V. (1975): "On the best constants in the Khinchin inequality," Studia Mathematica, 58, 197-208.

[^0]: ${ }^{8} \operatorname{med}(\xi)$ is any such point μ that $\mathbb{P}(\xi<\mu) \leq 1 / 2 \leq \mathbb{P}(\xi \leq \mu)$.

