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A Online Appendix: Technical lemmas and proofs

Proof of Lemma 3.1. The result follows from Corollary 3.4 in Yaskov (2014). OJ

Lemma A.1 Let P(\yin(Z',Z_1) < dn) = o(1/n), and let P(||z] > KV1) = o(1/1) for
some 0, K > 0. If (MI) holds, then there exists a constant C' € (0,1) such that, as n — oo,
we have

P(Py < C foralll <k <n)—1.

Proof of Lemma A.1. Denoting M, = maxj<g<, ||2x||* and A\, = minj<p<p Amin(Z" 72 1)

we can see that P(M, > K21) <37 P(||z]| > KV1) = nP(||z]| > K1) = o(1) and

P(A, < 0n) < PAin(Z' 1 Z-4) < 0n) = nPAwin(Z'Z-1) < 6n) = o(1).
k=1

In addition, by the Sherman-Morrison formula, we have
Pox = f(51(ZLZ-) " ) < Izl Amin( 2L Z-k)) < f(Ma/Na) < K1/ (00))

on {M, < K?I,\, > dn} for all 1 <k <n, where f(x) =xz/(1+ ), x > 0. Since [ = O(n)
and P(M,, < K%l,\, > dn) =1 —o0(1), we get the desired result. []

Lemma A.2 Forl >k > 1, let uj_j, and vi, be random vectors in R'=F and R, respectively,
such that Buj_gu) . = I, Bogv), = Iy, and ({vg}r>1,d) satisfies Property P for some d. If
2= (uj_p,v.) and k =k(l) =1—o0(l), | = oo, then ({z}i>2,d) satisfies Property P.



Proof of Lemma A.2. For each [ > 1, let A; be an [ x [ symmetric positive semi-definite

matrix such that Ap.c(4;) is bounded over [. Write A; as

Bm ka
A=

where m =1l —k, B,,, C.k, and Dy are m x m, m x k, and k x k matrices, respectively. Since
Amax(A;) is uniformly bounded, m = o(l), and ({vy }r>1,d) satisfies Property P, we have

y Az —dtr(A) Bty + 2u,, Crpvy, — dtr(By,)
l N m

-o(1) + 0,(1).

Therefore we only need to show that d tr(B,,)/m, u,, By, /m, and u,, Cprvr/m are bounded
in probability.

Any random variable d is bounded in probability. In addition, tr(B,,) < mAnax(Bm) <
MAmax (A1) = O(m). We also have Eu), B,,u,, = tr(B,,) = O(m). By the Cauchy inequality,
2E|ul, Crokvr| < Eul um + E(Crupvr) (Crpvr) = m + tr(ClCok) = m + tr(CopCl ) <
m + MAmax(ConkC! 1) < M+ MAmax (A1 A4]) = m 4+ mAnax(A))? = O(m). O

Lemma A.3 Let Apax(Ez127) < A and Ela'z|Iigs0y > ¢ for some X\, ¢ >0, any 1 > 1, and all
a € R with a’a = 1. If Property P holds for ({z1}1>1,d) and o < P(d > 0), then Condition
A holds.

Proof of Lemma A.3. The result follows from Corollary 3.2 in Yaskov (2016). O

Lemma A.4 Let z; be a random vector in R' for any | > 1 and {z.}?_, be IID copies of

2. If en/n — o0, then S, — ES, 50 asn — oo foralll = O(n), where

n -1
Sn = tr (Z Zlkzzllk + €n7’LIl> .

k=1
Proof of Lemma A.4. In what follows, we will write zj instead of zj.. Denote E[-|z, . .., 2],
1 <k <n, by Eg, and E by E,,.;. Then

n n

Sp—ESy = (B — Biy1)Sn = Y (B — B (S0 — SP),

k=1 k=1
where S* = tr(Cy + e,nl;}) "' and C}, = > ek 2% By (1), we get
1

T oepn

Z];(Ck + 5nn]l)*2zk
1+ Z];(Ck + enn]l)—lzk

Z;C(Ok + 5nn]l)*1zk 1
1+ 2, (Cr +ennd)) 1z | — eqn

|Sn—5’f|=\

n




Since {(Ex — Ep11)(S, — S¥)}1_, is a martingale difference sequence,

E(S, —ES,) Zm (Ex — Egy1)(S, — SH)? < = o(1).
Hence, we obtain the desired result. [J

min

Lemma A.5 Let | = 1(n) — oo, X5, (Z'Z)//n 5 00, and Apax(Bz12)) = O(1) as n — co.

Then for any continuous function f on [0,1],
—Zf (Pu) — Ef(P1) 2 0.

Proof of Lemma A.5. Any continuous function on [0,1] could be approximated by a
smooth function. Therefore, we may consider only smooth functions for f. In what follows,
we will omit the index [ and write z; instead of z;. The proof consists of verification of

several claims.

Claim 1. There is a sequence \, > 0 such that \, — oo and n~! Z?Zl[f(Pii) — fil 20
where f; = f(zU(Z'Z + \o1) 71 2;).

Since A%, (Z'Z) & 00, there are ), > 0 that grow to infinity slower than A}

. (Z'Z) (ie.
An/A

min

'Z) 2 0). If Z'Z is non-degenerate, then Ay (Z'Z) = N5, (Z'Z) and

mln( min

20(Z'Z) 2y — 222 + M) 2| = M2 (Z2'2) N2 Z + ML) 2

<M 2 Z'Z) VA2 Z + N D)2 Z) 7V,

A
< i 7'7
/\mm(Z’Z + A Il) ( )

= N2 “

We now show that the last inequalities still hold for degenerate Z'Z. There is an [ x [
orthogonal matrix C' and an [ x [ diagonal matrix D such that Z’Z = CDC’. Therefore,
setting v; = C'z; and V to be a matrix with rows v},...,v), we see that P; = v{(V'V)Tv;
and D = V'V = """ vl In particular, if dj, the k" diagonal entry of D, is zero, then the
k" entry of each v; is zero. Assume without loss of generality that dy > ... > dp, > dpy1 =

.= d; = 0 for some m < [. Then for all i, v; = (u},0,...,0) with [ — m zeros for some



u; € R™. As a result, P; = u;(U'U) u; and A\pin (U'U) = Xo,, (VIV) = N

(Z2'Z), where U

is a matrix with rows uf,...,u,,. By (9),

22" Z) 2 — 20(Z' 2 4+ NoDy) " Pz| = |0l (VI V) Ty — 0l (VIV 4 N D) ™ g

= [uf(U'U) g — w(U'U 4 Nd) ™ g
D
Amin(U'U) N5 (2'2)

min

<

Because of the smoothness of f, the latter yields Claim 1.
Claim 2. n™ 'S0 [f; —E_;fi] 5 0, where E_; = E[:|2;,5 # i].

Since |f;| is bounded and {f; — E_; f;}}, are exchangeable random variables,

n 2

S B

=1

E =0 HY+0Q1)-Elfy —E_1fi][fo — E_ofa).

Hence, we only need to show that E[f; — E_; fi|[fo — E_ofo] = o(1).
By (2),
(27 4+ Md)) 2 = g(zi( 2 2+ Aad)) " )

with g(x) = x/(1 + z), * > 0, and Z_; is obtained from Z by deleting its i row. In
addition, the function h(z) = f(g(x)) is second-order smooth on R, and there is Cy > 0
such that [ (2)]> < Cy on Ry for each k = 0,1. Put fi; = h(z{(Z" ;Z_ij + \Dy) ' 2;) and
E_;; =E[|Z_i], i # j, for Z_;; (= Z_;;) that is obtained by deleting i and ;" rows in Z.

Since

]E[f12 - E—12f12][f21 - E—12f21] =K (E—IQ[fH - E—12f12][f21 - E—12f21]) =0

and E_; fio = E_15f10 = E_15fo1 = E_5f5, it follows from Claim 2 and Claim 3 below that
E[fl — E*lfl][fQ — E,zfz] = 0(1) Indeed,

E[fi = E_1fillf = E—ofo]| = [E[(f1 = fi2) + (fiz — E-12f12) + (Boifi2 — E_1 f1)][fo — E—o f5]]
< |Elfi2 = E_1afia][(fo = for) + (for —E12fo1) + (E_afor — E o fo)]|
+ 2CH[E| f1 — fi2| + E[E_1 f12 — E_1 f1]]

<2GH[Elf1 = fiz| + E[E 1 fi2 — E_1 fil + E[fo — fa| + E[E_ofor — E_2fo]] = o(1).



Claim 3. E|f; — fi;| = 0 and E|E_;f; — E_; f;;| — 0 for any fixed i, j, i # j.

Formula (1) yields

_ AZL 2 + M) )

Aij = Z’Z[(Z,—iZ—i + >\n]l)_1 - (Z/—ijZ—ij + )‘nIl)_l]zi

If A;; <1, then, by the mean value theorem, |f; — fi;| < Co Ay If Ay; > 1, then | f; — fi;] <

2Cy. By conditional Jensen’s inequality,
ElE_i(f; — fi;)| < E|fi — fi;] < 2Co Emin{A;, 1}
and
]Emin{AZ-j, 1} = EE_Z min{Aij, 1} S E min{]E_iAij, 1}
It follows from the equality E_;z;z; = Ez2’ that

Z;'(ZlfijZ—ij + )\nll)_lzizg(Z’ -Z_ij + )\nIl)_lzj'

E_A; = E_
iAij L+ 25(Z20 5 Z 5+ Aadh) 71z
LT 4 M) 22 Amax (E2 2/
< AnlBer) 2T A 5 D) )
1+ Zj(Z_ijZ—ij + >\nIl)_ Zj )\n

Hence, Claim 3 obtains.
Claim 4. E|TL71 Z?:l E—zfz — E_1f1| — 0.

USil’lg that ]E_lflg = E_12f12 = E_12f21 = E_gfgl, Claim 3, and the exchangeability of
{E_;fi —E_1 f1}",, we derive that

1 & 1<
E|— E_f, —E_ < - EE_f, —E_ <E|E_ —E_
n; f Lfif < n; | f 1f1’ ‘ 11 2f2\
= E[E_fi —E_ifio+E_sfs1 —E_of5]

< E|E_ 1 fi —E_qfio| + E|E_ofo1 — E_ofs] = o(1).

Thus, Claim 4 is proven.

Claim 5. If \*

min

(2'Z) B 0o, then n=t 327, f(Py) —E_1f(Py) 2 0.
This follows from Claims 1-4.

Claim 6. E|E_1f1 — Ef1|2 — 0.



To prove Claim 6 we need the assumption X (Z'Z)/y/n 2 oco. Going back to the

definition of A, in Claim 1, we can initially take ), growing faster than y/n and slower

(Z2'Z) (ie. \i/Ns(Z2'Z) 5 0). Let By = E[|2y,...,2] and E; = E. Using that

than \*

E;(E_1f1;) = Ei_1(E_1f1;), we represent E_; f{ — Ef; as the sum of martingale differences

n n

E fi—Efi=) (Bi—E )E 1fi=) (Bi—E1)E(fi — fu),

i=2 i=2
where, by (1) and the inequalities given in the proof of Claim 3,

| , 20 ,
E_1(fi—f1)| < E_q]fi—ful <2CoE_; min{Ay;, 1} < 2C;min{E_;Ay;,1} < )\—OAmax(EZZ )

n

Claim 6 now follows from

“ AC2 M pax (E22")%n
EIE_.fi ~ EA = S E|(E ~ E)Bo(f — fi)l? < "B _ )
=2

n

We finish the proof of the lemma by noting that Ef; — Ef(P1;) = o(1) (see the proof of
Claim 1). O
Proof of Theorem 3.2. For the sake of simplicity, we further omit index [ when writing

zix- Fix k. By Property P, for any € > 0,
(2 W Zg +end)) ay — ditr(Z 2+ en) P B0

because of the independence of z, and Z_j, where Z_;, is obtained by removing &% row in

Z. Hence, there exist {e,}°, tending to zero arbitrarily slowly, such that
Z];(ZLkZ,k + €nn[l)712k — dkSnk ﬂ) 0,

where Sy, = tr(Z' , Z_y +e&,nl;)". In particular, we can take €,1/n — co. Lemma A.4 now
yields 2,(Z" . Z_x + enn)) " 2p — diES,y, 5 0.
By Condition A, e,n/Anin(Z'Z) 2 0. Arguing as in Claim 1 in the proof of Lemma A.5,

we derive that
|Pir — 2p(Z'Z + ennd)) ' 2| < min{e,n/Auin(Z2'2), 1} = 0,(1).
By (2) and the above arguments,

2 (Z'Z +eond) 2 = g2 (2 Z 1 4 eand)) L 21) = g(diES,k) + en,



where g(z) = z/(x + 1), e, = 0, and |e,| < 2 a.s. Since P(Ayin(Z2'Z) > 0) — 1 and Py, are

identically distributed over k, we have
EP lEiP L o(l) =
=— i =—=40 .
kk n . 77 n

As a result, Eg(diyES,x) = Eg(dES,x) — a. Note that f(s) = Eg(sd) is a strictly increasing
continuous function with f(0) = 0 and f(s) — P(d > 0), s — oo, whenever P(d > 0) > 0.
Therefore, ES,,, — ¢ for ¢ > 0 solving f(c¢) = a. Such c exists when a € (0,P(d > 0)).

Combining the above estimates, we infer that Py — g(edy) = cdi /(1 + edy). O

Lemma A.6 Under the conditions of Lemma 3.4(a) or (b), there is C > 0 such that, for

any | x | positive semi-definite symmetric matriz A; and b > 1,
E|z) Az — tr(A)| < ChVIAmax (A1) + Clmax (A)) max Eeilje j-0)- (10)

Proof of Lemma A.6. First, assume that & =¢;, [ > 1. Write 4; = (aw)w ;- Then
l !

xlAlml—tr Al :Zakk —1 + 2 Z ajkejek:Zakk —1 —I—QZEk,

k=1 1<j<k<i k=1

k—1
E, = E a;re; | €k,
Jj=1

2 < k < 1. Note that {F}}._, and {agr(e? — 1)}!_, are martingale difference sequences. By

where

the Cauchy-Schwartz inequality,

(E >2<E

By the Burkholder-Davis-Gundy inequality;,

Zakk —1) Zakk ~ 1)

where C' > 0 is an absolute constant. Since \/z +y < /x + /y for 2,y > 0,

l

2B

k=2

l 2
S r| -

k=2

! | k-1
ZEEZ = Z Za?k, < tr(A}).
k=2

k=2 j=1

< CE

1/2
S Il + -[2a

l

E Zaik(ei —1)?




where

. 1/2
]1 = E Zazk(ei - 1)2H{|e%—1|§62} s

k=1

! 1/2
I, = E apy (e} — 1)2H{|ei—1|>b2}

k=1

By Jensen’s inequality;,

1/2
<y /2b%tr(A?).

Here we also used E(ef — 1)*I((e2_1j<p2y < b*Elef — 1] < 2b°. In addition,

l
L< ) a6 = 1) e y<m
k=1

l

I, < Z |akk’]E€i]I{‘ei_l|>b2} = tl“(Al) rilgf(EeiHﬂe%—lbe}a
k=1 B

where we also have used that /= +y < /x + /y for z,y > 0 and |ef — 1| < e} when b > 1

and |e7 — 1| > b, The above estimates yield

Elzj Az, — tr(A)] < Cby/tr(A?) + Ctr(A) 1’2'31}(]}56]%]1{‘6%_1‘>b2}7 (11)
where x; = (eq,...,¢) and C' > 0 is an absolute constant.

Consider the case with z; = (&,...,&)". By the definition of §;, there are [ x k matrices
[y such that I'jpvp — ; in probability and in mean square as k — oo for v, = (eq,...,ex).
Since {eg }r>1 is an orthonormal sequence, we have

(1) Ty, = E(Tjpvr) (Tivr)” — Exyx) = I,

(2) v (T Al ) vk = (Do) Ai(Tiev) N ] Az,

(3) tr(Iy, Al k) = tr(Ty ), A — tr(A),

(4) tr((T, AT )?) = tr(Cp Dy ATy D) Ay) — tr(A7).
We need a version of the Fatou lemma that states that E[¢| < lim E|¢| if ¢ = ¢. Put

k—o00

By, =T, All'jx. By the Fatou lemma and (11),

E|zjAjx; — tr(A;)| < lim E|v, Byvg — tr(By)|

k—o0
S kIL_TO[Cb\ / tI‘(BZ) + CtI‘(Bk) I?ZaIX Ee?ﬂ{‘e?,1|>b2}]

< Oby/tr(A7) + Ctr(A;) max Eeilfjez—1502)

< ChAmax (A) VI 4 Clmax (A) max Eefljjez —1j5p21-



Hence, we get the desired inequality. [J

Proof of Lemma 3.4. If {e;};>1 are IID and z; is given in (a), then

2 _ 2
max Beylee 1502y = Beglper 11502

and the desired result follows from Lemma A.6. Indeed, dividing both sides of (10) by I,
letting [ — oo and then b — oo, we infer that ({z;};>1, 1) satisfies Property P. Multiplying
by d, we conclude that ({dz;};>1,d?) satisfies Property P.

If {ex}r>1 are independent with Eleg [>T < C and a; is as in (b), then, for b > 1,

s
max Ee21.2 21 < max Ee?’ ¢
ko1 R Ale—1>0th = S LY (B2 +1)92 = (2 +1)/2

The rest of the proof follows the same argument as above.

Consider (c¢), where z; is a centered random vector with a log-concave density and Ex;z) =
I;. By Lemma 2.5 in Pajor and Pastur (2009), var(x;A;z;/1) < ¢§; for some §; = o(1) and all
[ x | symmetric positive semi-definite matrices A; with Apax(A4;) < 1. Obviously, this implies
that ({z;};>1,1) satisfies Property P. Multiplying by d, we get the desired result.

Suppose x; = Fy(v,,), where F; and v, are as in (d). Then, f = ¢ o F; is a c¢-Lipschitz

function for any 1-Lipschitz function ¢ : R — R. Indeed, for all u,v € R™,
[p(Fi(u) — p(Fi(v))| < ([ Fi(w) — Fi(v)|| < eflu —vf].

Since Amax(var(vy,)) < C for all m, the density of v, has the form exp{—U(v)} for a convex
function U = U(v) such that 9*U(v) — (1/C)1,, = var(v,,)~' — (1/C)1,, is positive semi-
definite for all v € R™.

Hence, by Theorem 2.7 and Proposition 1.3 in Ledoux (2001) (see also examples in
Section 3.2 in El Karoui, 2009), there is C; = C(C,¢) > 0 such that, for any 1-Lipschitz

function ¢ : R' = R and f = ¢ o F},
P(lp(21) — med(p(x))| > t) = P(|f (vm) — med(f (vm))| > t) < 2exp{=C1t*}, >0,

where med(¢) is a median of a random variable £.8 Now, by Lemma 7 in El Karoui (2009),

({x1}1>1, 1) satisfies Property P. Multiplying by d, we finish the proof. [J

8med(€) is any such point p that P(§ < p) < 1/2 < P(€ < p).



Lemma A.7 Let {e;}r>1 be independent random variables with Ee, = 0 and IE@,Qc =1.1If

Elex| > ¢ for some ¢ >0 and all k > 1, then, for any {ax}r=0 with Y7, g0 =1,

ag + E aL€r

k>1

c

V32 + 2

Proof of Lemma A.7. Note that E |ag + D k1 akek‘Q = Y 4>00r = 1. We may assume

E >

without loss of generality that there is a finite set of non-zero a; (otherwise, we can take a

limit). By Jensen’s inequality,

lag| =E aO+EZakek <E ao—l—Zakek =1.

k>1 k>1

In addition,
\/1'— a@E j{:éikek ——|a0|§;]7
k>1
where @ = ax/+/1—ad, k> 1, and ), ., a; = 1. If we prove that
c
E[S dpep| > -5 12
RN R 2

then we obtain the desired bound:

C C
[> inf max{ ——=vVI—02 —bbp = —.
 befo] {2\/5 } V32 + 2

Let us prove (12). Write ay instead of a; and let {éx}r>1 be an independent copy of

{ex}r>1. Then

E <E +E =2E

Z ap(ex — €x)

k>1

E Q€

k>1

E aCy

k>1

E A€

k>1

In addition, by Jensen’s inequality, E|e, — éx| > E|ex — E[éx|ex]| = Elex| for all & > 1. Since
{ex—€x }x>1 are independent symmetric random variables, then {ex—€j }i>1 = {di|ex—€x|}i>1
in distribution, where {dj},>1 are IID random variables that have P(d, = £1) = 1/2 and
are independent of {|ex — éx|}r>1. By Jensen’s inequality,

Z ardy|ex — €|

k>1

E\|Y " ardiEle, — &|| <E =K

k>1

Z ap(ex — )

k>1

By Khinchin’s inequality with explicit constants (see Theorem 1 in Szarek, 1975),

1/2 1/2
- (Z az<E|ek|>2) < (Z 2 (Eley — ékw) <E

k>1 k>1

j{:<1kdkﬂik% —>ék|

k>1

-

<
ﬁ_
0

10
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