Asymptotics of diagonal elements of projection matrices under many instruments/regressors

Stanislav Anatolyev
CERGE-EI, Czech Republic & New Economic School, Russia
Pavel Yaskov
Steklov Mathematical Institute of RAS & NUST ‘MISIS’

A Online Appendix: Technical lemmas and proofs

Proof of Lemma 3.1. The result follows from Corollary 3.4 in Yaskov (2014). □

Lemma A.1 Let $P(\lambda_{\min}(Z'_{-1}Z_{-1}) < \delta n) = o(1/n)$, and let $P(||z|| > K\sqrt{l}) = o(1/l)$ for some $\delta, K > 0$. If (MI) holds, then there exists a constant $C \in (0, 1)$ such that, as $n \to \infty$, we have

$$P(P_{kk} \leq C \text{ for all } 1 \leq k \leq n) \to 1.$$

Proof of Lemma A.1. Denoting $M_n = \max_{1 \leq k \leq n} ||z_k||^2$ and $\lambda_n = \min_{1 \leq k \leq n} \lambda_{\min}(Z'_{-k}Z_{-k})$, we can see that $P(M_n > K^2l) \leq \sum_{k=1}^{n} P(||z_k|| > K\sqrt{l}) = nP(||z|| > K\sqrt{l}) = o(1)$ and

$$P(\lambda_n < \delta n) \leq \sum_{k=1}^{n} P(\lambda_{\min}(Z'_{-k}Z_{-k}) < \delta n) = nP(\lambda_{\min}(Z'_{-1}Z_{-1}) < \delta n) = o(1).$$

In addition, by the Sherman-Morrison formula, we have

$$P_{kk} = f(z_k'(Z'_{-k}Z_{-k})^{-1}z_k) \leq f(||z_k||^2/\lambda_{\min}(Z'_{-k}Z_{-k})) \leq f(M_n/\lambda_n) \leq f(K^2l/(\delta n))$$

on $\{M_n \leq K^2l, \lambda_n \geq \delta n\}$ for all $1 \leq k \leq n$, where $f(x) = x/(1 + x)$, $x \geq 0$. Since $l = O(n)$ and $P(M_n \leq K^2l, \lambda_n \geq \delta n) = 1 - o(1)$, we get the desired result. □

Lemma A.2 For $l > k \geq 1$, let u_{l-k} and v_k be random vectors in \mathbb{R}^{l-k} and \mathbb{R}^k, respectively, such that $\mathbb{E}u_{l-k}u'_{l-k} = I_{l-k}$, $\mathbb{E}v_kv_k' = I_k$, and $\{v_k\}_{k \geq 1, d}$ satisfies Property P for some d. If $z_l = (u'_{l-k}, v_k')'$ and $k = k(l) = l - o(l)$, $l \to \infty$, then $\{z_l\}_{l \geq 2, d}$ satisfies Property P.
Proof of Lemma A.2. For each \(l > 1 \), let \(A_l \) be an \(l \times l \) symmetric positive semi-definite matrix such that \(\lambda_{\max}(A_l) \) is bounded over \(l \). Write \(A_l \) as

\[
A_l = \begin{pmatrix}
B_m & C_{mk} \\
C_{mk} & D_k
\end{pmatrix},
\]

where \(m = l - k \), \(B_m \), \(C_{mk} \), and \(D_k \) are \(m \times m \), \(m \times k \), and \(k \times k \) matrices, respectively. Since \(\lambda_{\max}(A_l) \) is uniformly bounded, \(m = o(l) \), and \(\{v_k\}_{k \geq 1} \) satisfies Property P, we have

\[
\frac{z'_l A_l z_l - d \tr(A_l)}{l} = \frac{u'_m B_m u_m + 2u'_m C_{mk} v_k - d \tr(B_m)}{m} \cdot o(1) + o_p(1).
\]

Therefore we only need to show that \(d \tr(B_m)/m, u'_m B_m u_m / m, \) and \(u'_m C_{mk} v_k/m \) are bounded in probability.

Any random variable \(d \) is bounded in probability. In addition, \(\tr(B_m) \leq m \lambda_{\max}(B_m) \leq m \lambda_{\max}(A_l) = O(m) \). We also have \(\mathbb{E} u'_m B_m u_m = \tr(B_m) = O(m) \). By the Cauchy inequality,

\[
2\mathbb{E} |u'_m C_{mk} v_k| \leq \mathbb{E} u'_m u_m + \mathbb{E} (C_{mk} v_k)^t (C_{mk} v_k) = m + \tr(C'_{mk} C_{mk}) \leq m + m \lambda_{\max}(C_{mk} C_{mk}) \leq m + m \lambda_{\max}(A_l A'_l) = m + m \lambda_{\max}(A_l)^2 = O(m).
\]

Lemma A.3 Let \(\lambda_{\max}(\mathbb{E} z_l z'_l) \leq \lambda \) and \(\mathbb{E} |a' z_l| |d > 0| \geq c \) for some \(\lambda, c > 0 \), any \(l \geq 1 \), \(a \in \mathbb{R}^l \) with \(a'a = 1 \). If Property P holds for \(\{z_l\}_{l \geq 1} \) and \(\alpha < \mathbb{P}(d > 0) \), then Condition A holds.

Proof of Lemma A.3. The result follows from Corollary 3.2 in Yaskov (2016). \(\square \)

Lemma A.4 Let \(z_l \) be a random vector in \(\mathbb{R}^l \) for any \(l \geq 1 \) and \(\{z_{lk}\}_{k=1}^n \) be IID copies of \(z_l \). If \(\varepsilon_n \sqrt{n} \to \infty \), then \(S_n - \mathbb{E} S_n \xrightarrow{p} 0 \) as \(n \to \infty \) for all \(l = O(n) \), where

\[
S_n = \tr \left(\sum_{k=1}^n z_{lk} z'_{lk} + \varepsilon_n n I_l \right)^{-1}.
\]

Proof of Lemma A.4. In what follows, we will write \(z_k \) instead of \(z_{lk} \). Denote \(\mathbb{E}[-z_k, \ldots, z_n] \), \(1 \leq k \leq n \), by \(\mathbb{E}_k \), and \(\mathbb{E} \) by \(\mathbb{E}_{n+1} \). Then

\[
S_n - \mathbb{E} S_n = \sum_{k=1}^n (\mathbb{E}_k - \mathbb{E}_{k+1}) S_n = \sum_{k=1}^n (\mathbb{E}_k - \mathbb{E}_{k+1})(S_n - S_n^k),
\]

where \(S_n^k = \tr(C_k + \varepsilon_n n I_l)^{-1} \) and \(C_k = \sum_{j \neq k} z_j z'_j \). By (1), we get

\[
|S_n - S_n^k| = \left| \frac{z'_k (C_k + \varepsilon_n n I_l)^{-2} z_k}{1 + z'_k (C_k + \varepsilon_n n I_l)^{-1} z_k} \right| \leq \frac{1}{\varepsilon_n n} \left| \frac{z'_k (C_k + \varepsilon_n n I_l)^{-1} z_k}{1 + z'_k (C_k + \varepsilon_n n I_l)^{-1} z_k} \right| \leq \frac{1}{\varepsilon_n n}.
\]
Since \(\{(E_k - E_{k+1})(S_n - S_n^k)\}_{k=1}^n \) is a martingale difference sequence,

\[
E(S_n - ES_n)^2 = \sum_{k=1}^n E[(E_k - E_{k+1})(S_n - S_n^k)]^2 \leq \frac{n}{(\varepsilon_n n)^2} = o(1).
\]

Hence, we obtain the desired result. \(\square \)

Lemma A.5 Let \(l = l(n) \to \infty, \lambda^*_\text{min}(Z'Z)/\sqrt{n} \xrightarrow{P} \infty, \) and \(\lambda^*_\text{max}(Ez_i z'_i) = O(1) \) as \(n \to \infty. \) Then for any continuous function \(f \) on \([0,1],\)

\[
\frac{1}{n} \sum_{k=1}^n f(P_{kk}) - Ef(P_{11}) \xrightarrow{P} 0.
\]

Proof of Lemma A.5. Any continuous function on \([0,1]\) could be approximated by a smooth function. Therefore, we may consider only smooth functions for \(f. \) In what follows, we will omit the index \(l \) and write \(z_i \) instead of \(z_{il}. \) The proof consists of verification of several claims.

Claim 1. There is a sequence \(\lambda_n > 0 \) such that \(\lambda_n \to \infty \) and \(n^{-1} \sum_{i=1}^n |f(P_{ii}) - f_i| \xrightarrow{P} 0, \) where \(f_i = f(z'_i(Z'Z + \lambda_n I_l)^{-1}z_i). \)

Since \(\lambda^*_\text{min}(Z'Z) \xrightarrow{P} \infty, \) there are \(\lambda_n > 0 \) that grow to infinity slower than \(\lambda^*_\text{min}(Z'Z) \) (i.e. \(\lambda_n/\lambda^*_\text{min}(Z'Z) \xrightarrow{P} 0). \) If \(Z'Z \) is non-degenerate, then \(\lambda^*_\text{min}(Z'Z) = \lambda^*_\text{min}(Z'Z) \) and

\[
|z'_i(Z'Z)^{-1}z_i - z'_i(Z'Z + \lambda_n I_l)^{-1}z_i| = \lambda_n z'_i(Z'Z)^{-1/2}(Z'Z + \lambda_n I_l)^{-1/2}z_i \\
\leq \lambda_n z'_i(Z'Z)^{-1/2}(Z'Z + \lambda_n I_l)^{-1/2}z_i \\
\leq \frac{\lambda_n z'_i(Z'Z)^{-1}z_i}{\lambda^*_\text{min}(Z'Z)}.
\]

We now show that the last inequalities still hold for degenerate \(Z'Z. \) There is an \(l \times l \) orthogonal matrix \(C \) and an \(l \times l \) diagonal matrix \(D \) such that \(Z'Z = CDC'. \) Therefore, setting \(v_i = C'z_i \) and \(V \) to be a matrix with rows \(v'_1, \ldots, v'_n, \) we see that \(P_{ii} = v'_i(V'V)^+v_i \) and \(D = V'V = \sum_{i=1}^n v_i v'_i. \) In particular, if \(d_k, \) the \(k^{th} \) diagonal entry of \(D, \) is zero, then the \(k^{th} \) entry of each \(v_i \) is zero. Assume without loss of generality that \(d_1 \geq \ldots \geq d_m > d_{m+1} = \ldots = d_l = 0 \) for some \(m < l. \) Then for all \(i, v_i = (u'_i, 0, \ldots, 0)' \) with \(l - m \) zeros for some
Claim 2. Because of the smoothness of \(u \), we only need to show that
\[
|z_i'(Z'Z)^+ z_i - z_i'(Z'Z + \lambda_n I_l)^{-1} z_i| = |v_i'(V'V)^+ v_i - v_i'(V'V + \lambda_n I_l)^{-1} v_i|
\]
\[
= |u_i'(U'U)^{-1} u_i - u_i'(U'U + \lambda_n I_m)^{-1} u_i|
\]
\[
\leq \frac{\lambda_n}{\lambda_{\min}(U'U)} = \frac{\lambda_n}{\lambda_{\min}(Z'Z)}.
\]
Because of the smoothness of \(f \), the latter yields Claim 1.

Claim 2. \(n^{-1} \sum_{i=1}^n [f_i - \mathbb{E}_{-i} f_i] \overset{p}{\to} 0 \), where \(\mathbb{E}_{-i} = \mathbb{E}[\cdot | z_j, j \neq i] \).

Since \(|f_i| \) is bounded and \(\{f_i - \mathbb{E}_{-i} f_i\}_{i=1}^n \) are exchangeable random variables,
\[
\mathbb{E} \left| \frac{1}{n} \sum_{i=1}^n [f_i - \mathbb{E}_{-i} f_i] \right|^2 = O(n^{-1}) + O(1) \cdot \mathbb{E}[f_1 - \mathbb{E}_{-1} f_1][f_2 - \mathbb{E}_{-2} f_2].
\]
Hence, we only need to show that \(\mathbb{E}[f_1 - \mathbb{E}_{-1} f_1][f_2 - \mathbb{E}_{-2} f_2] = o(1) \).

By (2),
\[
z_i'(Z'Z + \lambda_n I_l)^{-1} z_i = g(z_i(Z'_{-i} Z_{-i} + \lambda_n I_l)^{-1} z_i)
\]
with \(g(x) = x/(1 + x), x \geq 0 \), and \(Z_{-i} \) is obtained from \(Z \) by deleting its \(i^{th} \) row. In addition, the function \(h(x) = f(g(x)) \) is second-order smooth on \(\mathbb{R}_+ \), and there is \(C_0 > 0 \) such that \(|h^{(k)}(x)|^2 \leq C_0 \) on \(\mathbb{R}_+ \) for each \(k = 0, 1 \). Put \(f_{ij} = h(z_i'(Z'_{-ij} Z_{-ij} + \lambda_n I_l)^{-1} z_i) \) and \(\mathbb{E}_{-ij} = \mathbb{E}[\cdot | Z_{-ij}], i \neq j \), for \(Z_{-ij} (= Z_{-ji}) \) that is obtained by deleting \(i^{th} \) and \(j^{th} \) rows in \(Z \).

Since
\[
\mathbb{E}[f_{12} - \mathbb{E}_{-12} f_{12}][f_{21} - \mathbb{E}_{-12} f_{21}] = \mathbb{E} (\mathbb{E}_{-12}[f_{12} - \mathbb{E}_{-12} f_{12}][f_{21} - \mathbb{E}_{-12} f_{21}]) = 0
\]
and \(\mathbb{E}_{-1} f_{12} = \mathbb{E}_{-12} f_{12} = \mathbb{E}_{-12} f_{21} = \mathbb{E}_{-2} f_{21} \), it follows from Claim 2 and Claim 3 below that \(\mathbb{E}[f_1 - \mathbb{E}_{-1} f_1][f_2 - \mathbb{E}_{-2} f_2] = o(1) \). Indeed,
\[
| \mathbb{E}[f_1 - \mathbb{E}_{-1} f_1][f_2 - \mathbb{E}_{-2} f_2] | = | \mathbb{E}[(f_1 - f_{12}) + (f_{12} - \mathbb{E}_{-12} f_{12}) + (\mathbb{E}_{-1} f_{12} - \mathbb{E}_{-1} f_1)][f_2 - \mathbb{E}_{-2} f_2] |
\]
\[
\leq | \mathbb{E}[f_{12} - \mathbb{E}_{-12} f_{12}][f_2 - f_{21}] + (f_{21} - \mathbb{E}_{-12} f_{21}) + (\mathbb{E}_{-2} f_{21} - \mathbb{E}_{-2} f_{2})]|
\]
\[
+ 2C_0|\mathbb{E}|f_1 - f_{12}| + \mathbb{E}|\mathbb{E}_{-1} f_{12} - \mathbb{E}_{-1} f_1| \]
\[
\leq 2C_0|\mathbb{E}|f_1 - f_{12}| + \mathbb{E}|\mathbb{E}_{-1} f_{12} - \mathbb{E}_{-1} f_1| + \mathbb{E}|f_2 - f_{21}| + \mathbb{E}|\mathbb{E}_{-2} f_{21} - \mathbb{E}_{-2} f_{2}| = o(1).
\]
Claim 3. \(\mathbb{E}|f_i - f_{ij}| \to 0 \) and \(\mathbb{E}|\mathbb{E}_{-i}f_i - \mathbb{E}_{-i}f_{ij}| \to 0 \) for any fixed \(i, j, i \neq j \).

Formula (1) yields
\[
\Delta_{ij} = |z'_{ij}((Z_{-i}Z_{-i} + \lambda_n I_i)^{-1} - (Z_{-ij}Z_{-ij} + \lambda_n I_i)^{-1})z_j| = \frac{|z'_{ij}(Z_{-ij}Z_{-ij} + \lambda_n I_i)^{-1}z_j|^2}{1 + z'_{ij}(Z_{-ij}Z_{-ij} + \lambda_n I_i)^{-1}z_j} \geq 0.
\]

If \(\Delta_{ij} \leq 1 \), then, by the mean value theorem, \(|f_i - f_{ij}| \leq C_0 \Delta_{ij} \). If \(\Delta_{ij} > 1 \), then \(|f_i - f_{ij}| \leq 2C_0 \). By conditional Jensen’s inequality,
\[
\mathbb{E}|\mathbb{E}_{-i}(f_i - f_{ij})| \leq \mathbb{E}|f_i - f_{ij}| \leq 2C_0 \mathbb{E}\min\{\Delta_{ij}, 1\}
\]
and
\[
\mathbb{E}\min\{\Delta_{ij}, 1\} = \mathbb{E}\mathbb{E}_{-i}\min\{\Delta_{ij}, 1\} \leq \mathbb{E}\min\{\mathbb{E}_{-i}\Delta_{ij}, 1\}.
\]

It follows from the equality \(\mathbb{E}_{-i}z_{ij}z'_{ij} = \mathbb{E}zz' \) that
\[
\mathbb{E}_{-i}\Delta_{ij} = \mathbb{E}_{-i}z'_{ij}(Z'_{-ij}Z_{-ij} + \lambda_n I_i)^{-1}z_{ij}z'_{ij}(Z'_{-ij}Z_{-ij} + \lambda_n I_i)^{-1}z_j \leq \lambda_{\max}(\mathbb{E}zz') \frac{z'_{ij}(Z'_{-ij}Z_{-ij} + \lambda_n I_i)^{-2}z_j}{1 + z'_{ij}(Z'_{-ij}Z_{-ij} + \lambda_n I_i)^{-1}z_j} \leq \frac{\lambda_{\max}(\mathbb{E}zz')}{\lambda_n} = o(1).
\]
Hence, Claim 3 obtains.

Claim 4. \(\mathbb{E}|n^{-1}\sum_{i=1}^{n} \mathbb{E}_{-i}f_i - \mathbb{E}_{-1}f_1| \to 0 \).

Using that \(\mathbb{E}_{-1}f_{12} = \mathbb{E}_{-12}f_{12} = \mathbb{E}_{-12}f_{21} = \mathbb{E}_{-2}f_{21} \), Claim 3, and the exchangeability of \(\{\mathbb{E}_{-1}f_i - \mathbb{E}_{-1}f_1\}_{i=2}^{n} \), we derive that
\[
\mathbb{E}\left| \frac{1}{n}\sum_{i=1}^{n} \mathbb{E}_{-i}f_i - \mathbb{E}_{-1}f_1 \right| \leq \frac{1}{n}\sum_{i=1}^{n} \mathbb{E}|\mathbb{E}_{-i}f_i - \mathbb{E}_{-i}f_{ij}| \leq \mathbb{E}|\mathbb{E}_{-1}f_1 - \mathbb{E}_{-2}f_2| = \mathbb{E}|\mathbb{E}_{-1}f_1 - \mathbb{E}_{-1}f_{12} + \mathbb{E}_{-2}f_{21} - \mathbb{E}_{-2}f_2| \leq \mathbb{E}|\mathbb{E}_{-1}f_1 - \mathbb{E}_{-1}f_{12}| + \mathbb{E}|\mathbb{E}_{-2}f_{21} - \mathbb{E}_{-2}f_2| = o(1).
\]
Thus, Claim 4 is proven.

Claim 5. If \(\lambda_{\min}^*(Z'Z) \xrightarrow{p} \infty \), then \(n^{-1}\sum_{i=1}^{n} f(P_i) - \mathbb{E}_{-1}f(P_{11}) \xrightarrow{p} 0 \).

This follows from Claims 1–4.

Claim 6. \(\mathbb{E}|\mathbb{E}_{-1}f_1 - \mathbb{E}f_1|^2 \to 0 \).
To prove Claim 6 we need the assumption $\lambda_{\min}^*(Z'Z)/\sqrt{n} \overset{p}{\to} \infty$. Going back to the definition of λ_n in Claim 1, we can initially take λ_n growing faster than \sqrt{n} and slower than $\lambda_{\min}^*(Z'Z)$ (i.e. $\lambda_n/\lambda_{\min}^*(Z'Z) \overset{p}{\to} 0$). Let $E_i = E[\cdot|z_2, \ldots, z_i]$ and $E_1 = E$. Using that $E_i(E_{-1}f_{1i}) = E_{i-1}(E_{-1}f_{1i})$, we represent $E_{-1}f_1 - EF_1$ as the sum of martingale differences

$$E_{-1}f_1 - EF_1 = \sum_{i=2}^{n} (E_i - E_{i-1})E_{-1}f_1 = \sum_{i=2}^{n} (E_i - E_{i-1})E_{i-1}(f_i - f_{1i}),$$

where, by (1) and the inequalities given in the proof of Claim 3,

$$|E_{-1}(f_i - f_{1i})| \leq E_{-1}|f_i - f_{1i}| \leq 2C_0E_{-1}\min\{\Delta_{1i}, 1\} \leq 2C_0\min\{E_{-1}\Delta_{1i}, 1\} \leq \frac{2C_0}{\lambda_n}\lambda_{\max}(Ezz').$$

Claim 6 now follows from

$$E|E_{-1}f_1 - EF_1|^2 = \sum_{i=2}^{n} E|(E_i - E_{i-1})E_{i-1}(f_i - f_{1i})|^2 \leq \frac{4C_0^2\lambda_{\max}(Ezz')^2n}{\lambda_n^2} = o(1).$$

We finish the proof of the lemma by noting that $EF_1 - EF(P_{11}) = o(1)$ (see the proof of Claim 1). \(\square\)

Proof of Theorem 3.2. For the sake of simplicity, we further omit index l when writing z_{lk}. Fix k. By Property P, for any $\epsilon > 0$,

$$z_k'(Z'_{-k}Z_{-k} + \epsilon nI_l)^{-1}z_k - d_ktr(Z'_{-k}Z_{-k} + \epsilon nI_l)^{-1} \overset{p}{\to} 0$$

because of the independence of z_k and Z_{-k}, where Z_{-k} is obtained by removing k^{th} row in Z. Hence, there exist $\{\epsilon_n\}_{n=1}^\infty$ tending to zero arbitrarily slowly, such that

$$z_k'(Z'_{-k}Z_{-k} + \epsilon_n nI_l)^{-1}z_k - d_kS_{nk} \overset{p}{\to} 0,$$

where $S_{nk} = tr(Z'_{-k}Z_{-k} + \epsilon_n nI_l)^{-1}$. In particular, we can take $\epsilon_n \sqrt{n} \to \infty$. Lemma A.4 now yields $z_k'(Z'_{-k}Z_{-k} + \epsilon_n nI_l)^{-1}z_k - d_k\epsilon_n S_{nk} \overset{p}{\to} 0$.

By Condition A, $\epsilon_n n/\lambda_{\min}(Z'Z) \overset{p}{\to} 0$. Arguing as in Claim 1 in the proof of Lemma A.5, we derive that

$$|P_{kk} - z_k'(Z'Z + \epsilon_n nI_l)^{-1}z_k| \leq \min\{\epsilon_n n/\lambda_{\min}(Z'Z), 1\} = o_p(1).$$

By (2) and the above arguments,

$$z_k'(Z'Z + \epsilon_n nI_l)^{-1}z_k = g(z_k'(Z'_{-k}Z_{-k} + \epsilon_n nI_l)^{-1}z_k) = g(d_k\epsilon_n S_{nk}) + \epsilon_n.$$
where \(g(x) = x/(x+1) \), \(e_n \overset{p}{\to} 0 \), and \(|e_n| \leq 2 \) a.s. Since \(P(\lambda_{\min}(Z'Z) > 0) \to 1 \) and \(P_{kk} \) are identically distributed over \(k \), we have

\[
\mathbb{E}P_{kk} = \frac{1}{n} \mathbb{E} \sum_{j=1}^{n} P_{jj} = \frac{l}{n} + o(1) \to \alpha.
\]

As a result, \(\mathbb{E}g(d_k \mathbb{E}S_{nk}) = \mathbb{E}g(d \mathbb{E}S_{nk}) \to \alpha \). Note that \(f(s) = \mathbb{E}g(sd) \) is a strictly increasing continuous function with \(f(0) = 0 \) and \(f(s) \to \mathbb{P}(d > 0) \), \(s \to \infty \), whenever \(\mathbb{P}(d > 0) > 0 \). Therefore, \(\mathbb{E}S_{nk} \to c \) for \(c > 0 \) solving \(f(c) = \alpha \). Such \(c \) exists when \(\alpha \in (0, \mathbb{P}(d > 0)) \). Combining the above estimates, we infer that \(P_{kk} \overset{p}{\to} g(cd_k) = cd_k/(1 + cd_k) \). □

Lemma A.6 Under the conditions of Lemma 3.4(a) or (b), there is \(C > 0 \) such that, for any \(l \times l \) positive semi-definite symmetric matrix \(A_l \) and \(b > 1 \),

\[
\mathbb{E}|x'_l A_l x_l - \text{tr}(A_l)| \leq Cb\sqrt{l}\lambda_{\max}(A_l) + Cl\lambda_{\max}(A_l) \max_{k \geq 1} \mathbb{E}e^2_k \mathbb{I}_{\{|e^2_k| > \beta_1^2\}}. \tag{10}
\]

Proof of Lemma A.6. First, assume that \(\xi_l = e_l \), \(l \geq 1 \). Write \(A_l = (a_{ij})_{i,j=1}^l \). Then

\[
x'_l A_l x_l - \text{tr}(A_l) = \sum_{k=1}^{l} a_{kk}(e^2_k - 1) + 2 \sum_{1 \leq j < k \leq l} a_{jk}e_j e_k - \sum_{k=1}^{l} a_{kk}(e^2_k - 1) + 2 \sum_{k=2}^{l} E_k,
\]

where

\[
E_k = \left(\sum_{j=1}^{k-1} a_{jk}e_j \right) e_k,
\]

\(2 \leq k \leq l \). Note that \(\{E_k\}_{k=2}^l \) and \(\{a_{kk}(e^2_k - 1)\}_{k=1}^l \) are martingale difference sequences. By the Cauchy-Schwartz inequality,

\[
\left(\mathbb{E} \left| \sum_{k=2}^{l} E_k \right|^2 \right)^{1/2} \leq \mathbb{E} \left| \sum_{k=2}^{l} E_k \right|^2 \leq \sum_{k=2}^{l} \mathbb{E}E_k^2 = \sum_{k=2}^{l} \sum_{j=1}^{k-1} a_{jk}^2 \leq \text{tr}(A_l^2).
\]

By the Burkholder-Davis-Gundy inequality,

\[
\mathbb{E} \left| \sum_{k=1}^{l} a_{kk}(e^2_k - 1) \right| \leq C\mathbb{E} \left| \sum_{k=1}^{l} a_{kk}^2(e^2_k - 1)^2 \right|^{1/2},
\]

where \(C > 0 \) is an absolute constant. Since \(\sqrt{x+y} \leq \sqrt{x} + \sqrt{y} \) for \(x, y \geq 0 \),

\[
\mathbb{E} \left| \sum_{k=1}^{l} a_{kk}^2(e^2_k - 1)^2 \right|^{1/2} \leq I_1 + I_2,
\]

7
where
\[
I_1 = \mathbb{E} \left[\sum_{k=1}^{l} a_{kk}^2 (e_k^2 - 1)^2 \mathbb{I}_{[\kappa^2_k - 1] \leq b^2} \right]^{1/2},
\]
\[
I_2 = \mathbb{E} \left[\sum_{k=1}^{l} a_{kk}^2 (e_k^2 - 1)^2 \mathbb{I}_{[\kappa^2_k - 1] > b^2} \right]^{1/2}.
\]
By Jensen’s inequality,
\[
I_1 \leq \left| \sum_{k=1}^{l} a_{kk}^2 \mathbb{E}(e_k^2 - 1)^2 \mathbb{I}_{[\kappa^2_k - 1] \leq b^2} \right|^{1/2} \leq \sqrt{2b^2 \text{tr}(A^2_k)}.
\]
Here we also used \(\mathbb{E}(e_k^2 - 1)^2 \mathbb{I}_{[\kappa^2_k - 1] \leq b^2} \leq b^2 \mathbb{E}|e_k^2 - 1| \leq 2b^2 \). In addition,
\[
I_2 \leq \sum_{k=1}^{l} |a_{kk}| \mathbb{E}e_k^2 \mathbb{I}_{[\kappa^2_k - 1] > b^2} = \text{tr}(A) \max_{k \geq 1} \mathbb{E}e_k^2 \mathbb{I}_{[\kappa^2_k - 1] > b^2},
\]
where we also have used that \(\sqrt{x + y} \leq \sqrt{x} + \sqrt{y} \) for \(x, y \geq 0 \) and \(|e_k^2 - 1| \leq e_k^2 \) when \(b > 1 \) and \(|e_k^2 - 1| > b^2 \). The above estimates yield
\[
\mathbb{E}|x'_i A_i x_i - \text{tr}(A_i)| \leq Cb \sqrt{\text{tr}(A_i^2)} + C \text{tr}(A_i) \max_{k \geq 1} \mathbb{E}e_k^2 \mathbb{I}_{[\kappa^2_k - 1] > b^2}, \tag{11}
\]
where \(x_i = (e_1, \ldots, e_l)' \) and \(C > 0 \) is an absolute constant.

Consider the case with \(x_l = (\xi_1, \ldots, \xi_l)' \). By the definition of \(\xi_j \), there are \(l \times k \) matrices \(\Gamma_{ik} \) such that \(\Gamma_{ik} v_k \rightarrow x_l \) in probability and in mean square as \(k \rightarrow \infty \) for \(v_k = (e_1, \ldots, e_k)' \).

Since \(\{e_k\}_{k \geq 1} \) is an orthonormal sequence, we have
\[(1) \quad \Gamma_{ik} \Gamma_{ik}' = \mathbb{E}(\Gamma_{ik} v_k)(\Gamma_{ik} v_k)' \rightarrow \mathbb{E}x_l x'_l = I_l,
\]
\[(2) \quad v'_k(\Gamma_{ik}' A_i \Gamma_{ik})v_k = (\Gamma_{ik} v_k)' A_i (\Gamma_{ik} v_k) \overset{p}{\rightarrow} x'_l A_i x_l,
\]
\[(3) \quad \text{tr}(\Gamma_{ik}' A_i \Gamma_{ik}) = \text{tr}(\Gamma_{ik} \Gamma_{ik}') \rightarrow \text{tr}(A_i),
\]
\[(4) \quad \text{tr}(\Gamma_{ik}' A_i \Gamma_{ik})^2 = \text{tr}(\Gamma_{ik}' A_i \Gamma_{ik} \Gamma_{ik}' A_i) \rightarrow \text{tr}(A_i^2).
\]
We need a version of the Fatou lemma that states that \(\mathbb{E}|\zeta| \leq \lim_{k \rightarrow \infty} \mathbb{E}|\zeta_k| \) if \(\zeta_k \overset{p}{\rightarrow} \zeta \). Put \(B_k = \Gamma_{ik} A_i \Gamma_{ik} \). By the Fatou lemma and (11),
\[
\mathbb{E}|x'_l A_i x_l - \text{tr}(A_i)| \leq \lim_{k \rightarrow \infty} \mathbb{E}|v'_k B_k v_k - \text{tr}(B_k)|
\]
\[
\leq \lim_{k \rightarrow \infty} \left[Cb \sqrt{\text{tr}(B_k^2)} + C \text{tr}(B_k) \max_{j \geq 1} \mathbb{E}e_j^2 \mathbb{I}_{[\kappa^2_j - 1] > b^2} \right]
\]
\[
\leq Cb \sqrt{\text{tr}(A_i^2)} + C \text{tr}(A_i) \max_{k \geq 1} \mathbb{E}e_k^2 \mathbb{I}_{[\kappa^2_k - 1] > b^2}
\]
\[
\leq Cb \lambda_{\max}(A_i) \sqrt{l} + C l \lambda_{\max}(A_i) \max_{k \geq 1} \mathbb{E}e_k^2 \mathbb{I}_{[\kappa^2_k - 1] > b^2}.
\]
The rest of the proof follows the same argument as above.

Proof of Lemma 3.4. If \(\{e_k\}_{k \geq 1} \) are IID and \(x_l \) is given in (a), then

\[
\max_{k \geq 1} \mathbb{E} e_k^2 \mathbb{I}_{\{|e_k^2 - 1| > b^2\}} = \mathbb{E} e_1^2 \mathbb{I}_{\{|e_1^2 - 1| > b^2\}}
\]

and the desired result follows from Lemma A.6. Indeed, dividing both sides of (10) by \(l \), letting \(l \to \infty \) and then \(b \to \infty \), we infer that \(\{x_l\}_{l \geq 1} \) satisfies Property P. Multiplying by \(d \), we conclude that \(\{dx_l\}_{l \geq 1} \) satisfies Property P.

If \(\{e_k\}_{k \geq 1} \) are independent with \(\mathbb{E}|e_k|^{2+\delta} \leq C \) and \(x_l \) is as in (b), then, for \(b > 1 \),

\[
\max_{k \geq 1} \mathbb{E} e_k^2 \mathbb{I}_{\{|e_k^2 - 1| > b^2\}} \leq \max_{k \geq 1} \frac{\mathbb{E} e_k^{2+\delta}}{(b^2 + 1)^{\delta/2}} \leq \frac{C}{(b^2 + 1)^{\delta/2}}.
\]

The rest of the proof follows the same argument as above.

Consider (c), where \(x_l \) is a centered random vector with a log-concave density and \(\mathbb{E} x_l x_l' = I_l \). By Lemma 2.5 in Pajor and Pastur (2009), \(\operatorname{var}(x_l' A_l x_l/l) \leq \delta_l \) for some \(\delta_l = o(1) \) and all \(l \times l \) symmetric positive semi-definite matrices \(A_l \) with \(\lambda_{\max}(A_l) \leq 1 \). Obviously, this implies that \(\{x_l\}_{l \geq 1} \) satisfies Property P. Multiplying by \(d \), we get the desired result.

Suppose \(x_l = F_l(v_m) \), where \(F_l \) and \(v_m \) are as in (d). Then, \(f = \varphi \circ F_l \) is a \(c \)-Lipschitz function for any 1-Lipschitz function \(\varphi : \mathbb{R}^l \to \mathbb{R} \). Indeed, for all \(u, v \in \mathbb{R}^m \),

\[
|\varphi(F_l(u)) - \varphi(F_l(v))| \leq \|F_l(u) - F_l(v)\| \leq c\|u - v\|.
\]

Since \(\lambda_{\max}(\operatorname{var}(v_m)) \leq C \) for all \(m \), the density of \(v_m \) has the form \(\exp\{-U(v)\} \) for a convex function \(U = U(v) \) such that \(\partial^2 U(v) - (1/C)I_m = \operatorname{var}(v_m)^{-1} - (1/C)I_m \) is positive semi-definite for all \(v \in \mathbb{R}^m \).

Hence, by Theorem 2.7 and Proposition 1.3 in Ledoux (2001) (see also examples in Section 3.2 in El Karoui, 2009), there is \(C_1 = C_1(C, c) > 0 \) such that, for any 1-Lipschitz function \(\varphi : \mathbb{R}^l \to \mathbb{R} \) and \(f = \varphi \circ F_l \),

\[
\mathbb{P}(|\varphi(x_l) - \operatorname{med}(\varphi(x_l))| > t) = \mathbb{P}(|f(v_m) - \operatorname{med}(f(v_m))| > t) \leq 2\exp\{-C_1 t^2\}, \quad t > 0,
\]

where \(\operatorname{med}(\xi) \) is a median of a random variable \(\xi \).\(^8\) Now, by Lemma 7 in El Karoui (2009), \(\{x_l\}_{l \geq 1} \) satisfies Property P. Multiplying by \(d \), we finish the proof. \(\square \)

\(^8\) \(\operatorname{med}(\xi) \) is any such point \(\mu \) that \(\mathbb{P}(\xi < \mu) \leq 1/2 \leq \mathbb{P}(\xi \leq \mu) \).
Lemma A.7 Let \(\{e_k\}_{k\geq 1} \) be independent random variables with \(\mathbb{E}e_k = 0 \) and \(\mathbb{E}e_k^2 = 1 \). If \(\mathbb{E}|e_k| \geq c \) for some \(c > 0 \) and all \(k \geq 1 \), then, for any \(\{a_k\}_{k\geq 0} \) with \(\sum_{k\geq 0} a_k^2 = 1 \),

\[
\mathbb{E} \left| a_0 + \sum_{k\geq 1} a_k e_k \right| \geq \frac{c}{\sqrt{32 + c^2}}.
\]

Proof of Lemma A.7. Note that \(\mathbb{E} \left| a_0 + \sum_{k\geq 1} a_k e_k \right|^2 = \sum_{k\geq 0} a_k^2 = 1 \). We may assume without loss of generality that there is a finite set of non-zero \(a_k \) (otherwise, we can take a limit). By Jensen’s inequality,

\[
|a_0| = \mathbb{E} \left| a_0 + \mathbb{E} \sum_{k\geq 1} a_k e_k \right| \leq \mathbb{E} \left| a_0 + \sum_{k\geq 1} a_k e_k \right| = I.
\]

In addition,

\[
\sqrt{1 - \mathbb{E}a_0^2} \left| \sum_{k\geq 1} \tilde{a}_k e_k \right| - |a_0| \leq I,
\]

where \(\tilde{a}_k = a_k/\sqrt{1 - a_0^2} \), \(k \geq 1 \), and \(\sum_{k\geq 1} \tilde{a}_k^2 = 1 \). If we prove that

\[
\mathbb{E} \left| \sum_{k\geq 1} \tilde{a}_k e_k \right| \geq \frac{c}{2\sqrt{2}},
\]

then we obtain the desired bound:

\[
I \geq \inf_{b \in [0,1]} \max \left\{ \frac{c}{2\sqrt{2} \sqrt{1 - b^2}} - b, b \right\} = \frac{c}{\sqrt{32 + c^2}}.
\]

Let us prove (12). Write \(a_k \) instead of \(\tilde{a}_k \) and let \(\{\tilde{e}_k\}_{k\geq 1} \) be an independent copy of \(\{e_k\}_{k\geq 1} \). Then

\[
\mathbb{E} \left| \sum_{k\geq 1} a_k (e_k - \tilde{e}_k) \right| \leq \mathbb{E} \left| \sum_{k\geq 1} a_k e_k \right| + \mathbb{E} \left| \sum_{k\geq 1} a_k \tilde{e}_k \right| = 2 \mathbb{E} \left| \sum_{k\geq 1} a_k e_k \right|.
\]

In addition, by Jensen’s inequality, \(\mathbb{E}|e_k - \tilde{e}_k| \geq \mathbb{E}|e_k - \mathbb{E}[\tilde{e}_k|e_k]| = \mathbb{E}|e_k| \) for all \(k \geq 1 \). Since \(\{e_k - \tilde{e}_k\}_{k\geq 1} \) are independent symmetric random variables, then \(\{e_k - \tilde{e}_k\}_{k\geq 1} = \{d_k|e_k - \tilde{e}_k|\}_{k\geq 1} \) in distribution, where \(\{d_k\}_{k\geq 1} \) are IID random variables that have \(\mathbb{P}(d_k = \pm 1) = 1/2 \) and are independent of \(\{|e_k - \tilde{e}_k|\}_{k\geq 1} \). By Jensen’s inequality,

\[
\mathbb{E} \left| \sum_{k\geq 1} a_k d_k \mathbb{E}|e_k - \tilde{e}_k| \right| \leq \mathbb{E} \left| \sum_{k\geq 1} a_k d_k |e_k - \tilde{e}_k| \right| = \mathbb{E} \left| \sum_{k\geq 1} a_k (e_k - \tilde{e}_k) \right|.
\]

By Khinchin’s inequality with explicit constants (see Theorem 1 in Szarek, 1975),

\[
\frac{c}{\sqrt{2}} \leq \frac{1}{\sqrt{2}} \left(\sum_{k\geq 1} a_k^2 (\mathbb{E}|e_k|)^2 \right)^{1/2} \leq \frac{1}{\sqrt{2}} \left(\sum_{k\geq 1} a_k^2 (\mathbb{E}|e_k - \tilde{e}_k|)^2 \right)^{1/2} \leq \mathbb{E} \left| \sum_{k\geq 1} a_k d_k \mathbb{E}|e_k - \tilde{e}_k| \right|.
\]

□
Additional references

