Asymptotics of diagonal elements of projection matrices under many instruments/regressors

Stanislav Anatolyev

CERGE-EI, Czech Republic & New Economic School, Russia Pavel Yaskov

Steklov Mathematical Institute of RAS & NUST 'MISIS'

A Online Appendix: Technical lemmas and proofs

Proof of Lemma 3.1. The result follows from Corollary 3.4 in Yaskov (2014). \Box

Lemma A.1 Let $\mathbb{P}(\lambda_{\min}(Z'_{-1}Z_{-1}) < \delta n) = o(1/n)$, and let $\mathbb{P}(||z_l|| > K\sqrt{l}) = o(1/l)$ for some $\delta, K > 0$. If (MI) holds, then there exists a constant $C \in (0, 1)$ such that, as $n \to \infty$, we have

$$\mathbb{P}(P_{kk} \leq C \text{ for all } 1 \leq k \leq n) \to 1.$$

Proof of Lemma A.1. Denoting $M_n = \max_{1 \le k \le n} ||z_k||^2$ and $\lambda_n = \min_{1 \le k \le n} \lambda_{\min}(Z'_{-k}Z_{-k})$ we can see that $\mathbb{P}(M_n > K^2 l) \le \sum_{k=1}^n \mathbb{P}(||z_k|| > K\sqrt{l}) = n\mathbb{P}(||z_l|| > K\sqrt{l}) = o(1)$ and

$$\mathbb{P}(\lambda_n < \delta n) \le \sum_{k=1}^n \mathbb{P}(\lambda_{\min}(Z'_{-k}Z_{-k}) < \delta n) = n\mathbb{P}(\lambda_{\min}(Z'_{-1}Z_{-1}) < \delta n) = o(1).$$

In addition, by the Sherman-Morrison formula, we have

$$P_{kk} = f(z'_k (Z'_{-k} Z_{-k})^{-1} z_k) \le f(||z_k||^2 / \lambda_{\min}(Z'_{-k} Z_{-k})) \le f(M_n / \lambda_n) \le f(K^2 l / (\delta n))$$

on $\{M_n \leq K^2 l, \lambda_n \geq \delta n\}$ for all $1 \leq k \leq n$, where $f(x) = x/(1+x), x \geq 0$. Since l = O(n)and $\mathbb{P}(M_n \leq K^2 l, \lambda_n \geq \delta n) = 1 - o(1)$, we get the desired result. \Box

Lemma A.2 For $l > k \ge 1$, let u_{l-k} and v_k be random vectors in \mathbb{R}^{l-k} and \mathbb{R}^k , respectively, such that $\mathbb{E}u_{l-k}u'_{l-k} = I_{l-k}$, $\mathbb{E}v_kv'_k = I_k$, and $(\{v_k\}_{k\ge 1}, d)$ satisfies Property P for some d. If $z_l = (u'_{l-k}, v'_k)'$ and k = k(l) = l - o(l), $l \to \infty$, then $(\{z_l\}_{l\ge 2}, d)$ satisfies Property P. **Proof of Lemma A.2.** For each l > 1, let A_l be an $l \times l$ symmetric positive semi-definite matrix such that $\lambda_{\max}(A_l)$ is bounded over l. Write A_l as

$$A_l = \begin{pmatrix} B_m & C_{mk} \\ C'_{mk} & D_k \end{pmatrix},$$

where m = l - k, B_m , C_{mk} , and D_k are $m \times m$, $m \times k$, and $k \times k$ matrices, respectively. Since $\lambda_{\max}(A_l)$ is uniformly bounded, m = o(l), and $(\{v_k\}_{k \ge 1}, d)$ satisfies Property P, we have

$$\frac{z_l'A_l z_l - d\operatorname{tr}(A_l)}{l} = \frac{u_m' B_m u_m + 2u_m' C_{mk} v_k - d\operatorname{tr}(B_m)}{m} \cdot o(1) + o_p(1).$$

Therefore we only need to show that $d \operatorname{tr}(B_m)/m$, $u'_m B_m u_m/m$, and $u'_m C_{mk} v_k/m$ are bounded in probability.

Any random variable d is bounded in probability. In addition, $\operatorname{tr}(B_m) \leq m\lambda_{\max}(B_m) \leq m\lambda_{\max}(A_l) = O(m)$. We also have $\mathbb{E}u'_m B_m u_m = \operatorname{tr}(B_m) = O(m)$. By the Cauchy inequality, $2\mathbb{E}|u'_m C_{mk} v_k| \leq \mathbb{E}u'_m u_m + \mathbb{E}(C_{mk} v_k)'(C_{mk} v_k) = m + \operatorname{tr}(C'_{mk} C_{mk}) = m + \operatorname{tr}(C_{mk} C'_{mk}) \leq m + m\lambda_{\max}(A_l A'_l) = m + m\lambda_{\max}(A_l)^2 = O(m)$. \Box

Lemma A.3 Let $\lambda_{\max}(\mathbb{E}z_l z'_l) \leq \lambda$ and $\mathbb{E}|a' z_l| \mathbb{I}_{\{d>0\}} \geq c$ for some $\lambda, c > 0$, any $l \geq 1$, and all $a \in \mathbb{R}^l$ with a'a = 1. If Property P holds for $(\{z_l\}_{l\geq 1}, d)$ and $\alpha < \mathbb{P}(d > 0)$, then Condition A holds.

Proof of Lemma A.3. The result follows from Corollary 3.2 in Yaskov (2016). \Box

Lemma A.4 Let z_l be a random vector in \mathbb{R}^l for any $l \ge 1$ and $\{z_{lk}\}_{k=1}^n$ be IID copies of z_l . If $\varepsilon_n \sqrt{n} \to \infty$, then $S_n - \mathbb{E}S_n \xrightarrow{p} 0$ as $n \to \infty$ for all l = O(n), where

$$S_n = \operatorname{tr}\left(\sum_{k=1}^n z_{lk} z'_{lk} + \varepsilon_n n I_l\right)^{-1}.$$

Proof of Lemma A.4. In what follows, we will write z_k instead of z_{lk} . Denote $\mathbb{E}[\cdot|z_k, \ldots, z_n]$, $1 \le k \le n$, by \mathbb{E}_k , and \mathbb{E} by \mathbb{E}_{n+1} . Then

$$S_n - \mathbb{E}S_n = \sum_{k=1}^n (\mathbb{E}_k - \mathbb{E}_{k+1})S_n = \sum_{k=1}^n (\mathbb{E}_k - \mathbb{E}_{k+1})(S_n - S_n^k),$$

where $S_n^k = \operatorname{tr}(C_k + \varepsilon_n n I_l)^{-1}$ and $C_k = \sum_{j \neq k} z_j z'_j$. By (1), we get

$$|S_n - S_n^k| = \left| \frac{z_k'(C_k + \varepsilon_n nI_l)^{-2} z_k}{1 + z_k'(C_k + \varepsilon_n nI_l)^{-1} z_k} \right| \le \frac{1}{\varepsilon_n n} \left| \frac{z_k'(C_k + \varepsilon_n nI_l)^{-1} z_k}{1 + z_k'(C_k + \varepsilon_n nI_l)^{-1} z_k} \right| \le \frac{1}{\varepsilon_n n} \frac{1}$$

Since $\{(\mathbb{E}_k - \mathbb{E}_{k+1})(S_n - S_n^k)\}_{k=1}^n$ is a martingale difference sequence,

$$\mathbb{E}(S_n - \mathbb{E}S_n)^2 = \sum_{k=1}^n \mathbb{E}|(\mathbb{E}_k - \mathbb{E}_{k+1})(S_n - S_n^k)|^2 \le \frac{n}{(\varepsilon_n n)^2} = o(1).$$

Hence, we obtain the desired result. \Box

Lemma A.5 Let $l = l(n) \to \infty$, $\lambda_{\min}^*(Z'Z)/\sqrt{n} \xrightarrow{p} \infty$, and $\lambda_{\max}(\mathbb{E}z_l z_l) = O(1)$ as $n \to \infty$. Then for any continuous function f on [0, 1],

$$\frac{1}{n}\sum_{k=1}^{n}f(P_{kk}) - \mathbb{E}f(P_{11}) \xrightarrow{p} 0.$$

Proof of Lemma A.5. Any continuous function on [0, 1] could be approximated by a smooth function. Therefore, we may consider only smooth functions for f. In what follows, we will omit the index l and write z_i instead of z_{li} . The proof consists of verification of several claims.

Claim 1. There is a sequence $\lambda_n > 0$ such that $\lambda_n \to \infty$ and $n^{-1} \sum_{i=1}^n [f(P_{ii}) - f_i] \xrightarrow{p} 0$, where $f_i = f(z'_i(Z'Z + \lambda_n I_l)^{-1} z_i)$.

Since $\lambda_{\min}^*(Z'Z) \xrightarrow{p} \infty$, there are $\lambda_n > 0$ that grow to infinity slower than $\lambda_{\min}^*(Z'Z)$ (i.e. $\lambda_n/\lambda_{\min}^*(Z'Z) \xrightarrow{p} 0$). If Z'Z is non-degenerate, then $\lambda_{\min}(Z'Z) = \lambda_{\min}^*(Z'Z)$ and

$$|z_{i}'(Z'Z)^{-1}z_{i} - z_{i}'(Z'Z + \lambda_{n}I_{l})^{-1}z_{i}| = \lambda_{n}z_{i}'(Z'Z)^{-1}(Z'Z + \lambda_{n}I_{l})^{-1}z_{i}$$

$$\leq \lambda_{n}z_{i}'(Z'Z)^{-1/2}(Z'Z + \lambda_{n}I_{l})^{-1}(Z'Z)^{-1/2}z_{i}$$

$$\leq \frac{\lambda_{n}}{\lambda_{\min}(Z'Z + \lambda_{n}I_{l})}z_{i}'(Z'Z)^{-1}z_{i}$$

$$\leq \frac{\lambda_{n}}{\lambda_{\min}^{*}(Z'Z)}.$$
(9)

We now show that the last inequalities still hold for degenerate Z'Z. There is an $l \times l$ orthogonal matrix C and an $l \times l$ diagonal matrix D such that Z'Z = CDC'. Therefore, setting $v_i = C'z_i$ and V to be a matrix with rows v'_1, \ldots, v'_n , we see that $P_{ii} = v'_i(V'V)^+v_i$ and $D = V'V = \sum_{i=1}^n v_i v'_i$. In particular, if d_k , the k^{th} diagonal entry of D, is zero, then the k^{th} entry of each v_i is zero. Assume without loss of generality that $d_1 \geq \ldots \geq d_m > d_{m+1} =$ $\ldots = d_l = 0$ for some m < l. Then for all $i, v_i = (u'_i, 0, \ldots, 0)'$ with l - m zeros for some $u_i \in \mathbb{R}^m$. As a result, $P_{ii} = u'_i (U'U)^{-1} u_i$ and $\lambda_{\min}(U'U) = \lambda^*_{\min}(V'V) = \lambda^*_{\min}(Z'Z)$, where U is a matrix with rows u'_1, \ldots, u'_n . By (9),

$$\begin{aligned} |z_i'(Z'Z)^+ z_i - z_i'(Z'Z + \lambda_n I_l)^{-1} z_i| &= |v_i'(V'V)^+ v_i - v_i'(V'V + \lambda_n I_l)^{-1} v_i| \\ &= |u_i'(U'U)^{-1} u_i - u_i'(U'U + \lambda_n I_m)^{-1} u_i| \\ &\leq \frac{\lambda_n}{\lambda_{\min}(U'U)} = \frac{\lambda_n}{\lambda_{\min}^*(Z'Z)}. \end{aligned}$$

Because of the smoothness of f, the latter yields Claim 1.

Claim 2. $n^{-1} \sum_{i=1}^{n} [f_i - \mathbb{E}_{-i}f_i] \xrightarrow{p} 0$, where $\mathbb{E}_{-i} = \mathbb{E}[\cdot|z_j, j \neq i]$.

Since $|f_i|$ is bounded and $\{f_i - \mathbb{E}_{-i}f_i\}_{i=1}^n$ are exchangeable random variables,

$$\mathbb{E}\left|\frac{1}{n}\sum_{i=1}^{n}[f_{i}-\mathbb{E}_{-i}f_{i}]\right|^{2} = O(n^{-1}) + O(1) \cdot \mathbb{E}[f_{1}-\mathbb{E}_{-1}f_{1}][f_{2}-\mathbb{E}_{-2}f_{2}].$$

Hence, we only need to show that $\mathbb{E}[f_1 - \mathbb{E}_{-1}f_1][f_2 - \mathbb{E}_{-2}f_2] = o(1).$

By (2),

$$z'_{i}(Z'Z + \lambda_{n}I_{l})^{-1}z_{i} = g(z_{i}(Z'_{-i}Z_{-i} + \lambda_{n}I_{l})^{-1}z_{i})$$

with g(x) = x/(1+x), $x \ge 0$, and Z_{-i} is obtained from Z by deleting its i^{th} row. In addition, the function h(x) = f(g(x)) is second-order smooth on \mathbb{R}_+ , and there is $C_0 > 0$ such that $|h^{(k)}(x)|^2 \le C_0$ on \mathbb{R}_+ for each k = 0, 1. Put $f_{ij} = h(z'_i(Z'_{-ij}Z_{-ij} + \lambda_n I_l)^{-1}z_i)$ and $\mathbb{E}_{-ij} = \mathbb{E}[\cdot|Z_{-ij}], i \ne j$, for Z_{-ij} (= Z_{-ji}) that is obtained by deleting i^{th} and j^{th} rows in Z. Since

$$\mathbb{E}[f_{12} - \mathbb{E}_{-12}f_{12}][f_{21} - \mathbb{E}_{-12}f_{21}] = \mathbb{E}\left(\mathbb{E}_{-12}[f_{12} - \mathbb{E}_{-12}f_{12}][f_{21} - \mathbb{E}_{-12}f_{21}]\right) = 0$$

and $\mathbb{E}_{-1}f_{12} = \mathbb{E}_{-12}f_{12} = \mathbb{E}_{-12}f_{21} = \mathbb{E}_{-2}f_{21}$, it follows from Claim 2 and Claim 3 below that $\mathbb{E}[f_1 - \mathbb{E}_{-1}f_1][f_2 - \mathbb{E}_{-2}f_2] = o(1)$. Indeed,

$$\begin{split} |\mathbb{E}[f_1 - \mathbb{E}_{-1}f_1][f_2 - \mathbb{E}_{-2}f_2]| &= |\mathbb{E}[(f_1 - f_{12}) + (f_{12} - \mathbb{E}_{-12}f_{12}) + (\mathbb{E}_{-1}f_{12} - \mathbb{E}_{-1}f_1)][f_2 - \mathbb{E}_{-2}f_2]| \\ &\leq |\mathbb{E}[f_{12} - \mathbb{E}_{-12}f_{12}][(f_2 - f_{21}) + (f_{21} - \mathbb{E}_{-12}f_{21}) + (\mathbb{E}_{-2}f_{21} - \mathbb{E}_{-2}f_2)]| \\ &\quad + 2C_0[\mathbb{E}|f_1 - f_{12}| + \mathbb{E}|\mathbb{E}_{-1}f_{12} - \mathbb{E}_{-1}f_1|] \\ &\leq 2C_0[\mathbb{E}|f_1 - f_{12}| + \mathbb{E}|\mathbb{E}_{-1}f_{12} - \mathbb{E}_{-1}f_1| + \mathbb{E}|f_2 - f_{21}| + \mathbb{E}|\mathbb{E}_{-2}f_{21} - \mathbb{E}_{-2}f_2|] = o(1). \end{split}$$

Claim 3. $\mathbb{E}|f_i - f_{ij}| \to 0$ and $\mathbb{E}|\mathbb{E}_{-i}f_i - \mathbb{E}_{-i}f_{ij}| \to 0$ for any fixed $i, j, i \neq j$.

Formula (1) yields

$$\Delta_{ij} = z'_i [(Z'_{-i}Z_{-i} + \lambda_n I_l)^{-1} - (Z'_{-ij}Z_{-ij} + \lambda_n I_l)^{-1}] z_i = \frac{|z'_i (Z'_{-ij}Z_{-ij} + \lambda_n I_l)^{-1} z_j|^2}{1 + z'_j (Z'_{-ij}Z_{-ij} + \lambda_n I_l)^{-1} z_j} \ge 0$$

If $\Delta_{ij} \leq 1$, then, by the mean value theorem, $|f_i - f_{ij}| \leq C_0 \Delta_{ij}$. If $\Delta_{ij} > 1$, then $|f_i - f_{ij}| \leq 2C_0$. By conditional Jensen's inequality,

$$\mathbb{E}|\mathbb{E}_{-i}(f_i - f_{ij})| \le \mathbb{E}|f_i - f_{ij}| \le 2C_0 \mathbb{E}\min\{\Delta_{ij}, 1\}$$

and

$$\mathbb{E}\min\{\Delta_{ij},1\} = \mathbb{E}\mathbb{E}_{-i}\min\{\Delta_{ij},1\} \le \mathbb{E}\min\{\mathbb{E}_{-i}\Delta_{ij},1\}.$$

It follows from the equality $\mathbb{E}_{-i}z_iz_i' = \mathbb{E}zz'$ that

$$\mathbb{E}_{-i}\Delta_{ij} = \mathbb{E}_{-i} \frac{z'_{j}(Z'_{-ij}Z_{-ij} + \lambda_{n}I_{l})^{-1}z_{i}z'_{i}(Z'_{-ij}Z_{-ij} + \lambda_{n}I_{l})^{-1}z_{j}}{1 + z'_{j}(Z'_{-ij}Z_{-ij} + \lambda_{n}I_{l})^{-2}z_{j}} \leq \lambda_{\max}(\mathbb{E}zz') \frac{z'_{j}(Z'_{-ij}Z_{-ij} + \lambda_{n}I_{l})^{-2}z_{j}}{1 + z'_{j}(Z'_{-ij}Z_{-ij} + \lambda_{n}I_{l})^{-1}z_{j}} \leq \frac{\lambda_{\max}(\mathbb{E}zz')}{\lambda_{n}} = o(1).$$

Hence, Claim 3 obtains.

Claim 4. $\mathbb{E}|n^{-1}\sum_{i=1}^{n}\mathbb{E}_{-i}f_i - \mathbb{E}_{-1}f_1| \to 0.$

Using that $\mathbb{E}_{-1}f_{12} = \mathbb{E}_{-12}f_{12} = \mathbb{E}_{-12}f_{21} = \mathbb{E}_{-2}f_{21}$, Claim 3, and the exchangeability of $\{\mathbb{E}_{-i}f_i - \mathbb{E}_{-1}f_1\}_{i=2}^n$, we derive that

$$\mathbb{E} \left| \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{-i} f_{i} - \mathbb{E}_{-1} f_{1} \right| \leq \frac{1}{n} \sum_{i=1}^{n} \mathbb{E} |\mathbb{E}_{-i} f_{i} - \mathbb{E}_{-1} f_{1}| \leq \mathbb{E} |\mathbb{E}_{-1} f_{1} - \mathbb{E}_{-2} f_{2}| \\
= \mathbb{E} |\mathbb{E}_{-1} f_{1} - \mathbb{E}_{-1} f_{12} + \mathbb{E}_{-2} f_{21} - \mathbb{E}_{-2} f_{2}| \\
\leq \mathbb{E} |\mathbb{E}_{-1} f_{1} - \mathbb{E}_{-1} f_{12}| + \mathbb{E} |\mathbb{E}_{-2} f_{21} - \mathbb{E}_{-2} f_{2}| = o(1).$$

Thus, Claim 4 is proven.

Claim 5. If $\lambda_{\min}^*(Z'Z) \xrightarrow{p} \infty$, then $n^{-1} \sum_{i=1}^n f(P_{ii}) - \mathbb{E}_{-1}f(P_{11}) \xrightarrow{p} 0$.

This follows from Claims 1–4.

Claim 6. $\mathbb{E}|\mathbb{E}_{-1}f_1 - \mathbb{E}f_1|^2 \to 0.$

To prove Claim 6 we need the assumption $\lambda_{\min}^*(Z'Z)/\sqrt{n} \xrightarrow{p} \infty$. Going back to the definition of λ_n in Claim 1, we can initially take λ_n growing faster than \sqrt{n} and slower than $\lambda_{\min}^*(Z'Z)$ (i.e. $\lambda_n/\lambda_{\min}^*(Z'Z) \xrightarrow{p} 0$). Let $\mathbb{E}_i = \mathbb{E}[\cdot|z_2, \ldots, z_i]$ and $\mathbb{E}_1 = \mathbb{E}$. Using that $\mathbb{E}_i(\mathbb{E}_{-1}f_{1i}) = \mathbb{E}_{i-1}(\mathbb{E}_{-1}f_{1i})$, we represent $\mathbb{E}_{-1}f_1 - \mathbb{E}f_1$ as the sum of martingale differences

$$\mathbb{E}_{-1}f_1 - \mathbb{E}f_1 = \sum_{i=2}^n (\mathbb{E}_i - \mathbb{E}_{i-1})\mathbb{E}_{-1}f_1 = \sum_{i=2}^n (\mathbb{E}_i - \mathbb{E}_{i-1})\mathbb{E}_{-1}(f_1 - f_{1i}),$$

where, by (1) and the inequalities given in the proof of Claim 3,

 $|\mathbb{E}_{-1}(f_1 - f_{1i})| \le \mathbb{E}_{-1}|f_1 - f_{1i}| \le 2C_0 \mathbb{E}_{-1} \min\{\Delta_{1i}, 1\} \le 2C_0 \min\{\mathbb{E}_{-1}\Delta_{1i}, 1\} \le \frac{2C_0}{\lambda_n} \lambda_{\max}(\mathbb{E}zz').$

Claim 6 now follows from

$$\mathbb{E}|\mathbb{E}_{-1}f_1 - \mathbb{E}f_1|^2 = \sum_{i=2}^n \mathbb{E}|(\mathbb{E}_i - \mathbb{E}_{i-1})\mathbb{E}_{-1}(f_1 - f_{1i})|^2 \le \frac{4C_0^2\lambda_{\max}(\mathbb{E}zz')^2n}{\lambda_n^2} = o(1).$$

We finish the proof of the lemma by noting that $\mathbb{E}f_1 - \mathbb{E}f(P_{11}) = o(1)$ (see the proof of Claim 1). \Box

Proof of Theorem 3.2. For the sake of simplicity, we further omit index l when writing z_{lk} . Fix k. By Property P, for any $\varepsilon > 0$,

$$z'_k(Z'_{-k}Z_{-k} + \varepsilon nI_l)^{-1}z_k - d_k \operatorname{tr}(Z'_{-k}Z_{-k} + \varepsilon nI_l)^{-1} \xrightarrow{p} 0$$

because of the independence of z_k and Z_{-k} , where Z_{-k} is obtained by removing k^{th} row in Z. Hence, there exist $\{\varepsilon_n\}_{n=1}^{\infty}$ tending to zero arbitrarily slowly, such that

$$z'_k (Z'_{-k} Z_{-k} + \varepsilon_n n I_l)^{-1} z_k - d_k S_{nk} \xrightarrow{p} 0,$$

where $S_{nk} = \operatorname{tr}(Z'_{-k}Z_{-k} + \varepsilon_n n I_l)^{-1}$. In particular, we can take $\varepsilon_n \sqrt{n} \to \infty$. Lemma A.4 now yields $z'_k (Z'_{-k}Z_{-k} + \varepsilon_n n I_l)^{-1} z_k - d_k \mathbb{E} S_{nk} \xrightarrow{p} 0$.

By Condition A, $\varepsilon_n n / \lambda_{\min}(Z'Z) \xrightarrow{p} 0$. Arguing as in Claim 1 in the proof of Lemma A.5, we derive that

$$|P_{kk} - z'_k (Z'Z + \varepsilon_n n I_l)^{-1} z_k| \le \min\{\varepsilon_n n / \lambda_{\min}(Z'Z), 1\} = o_p(1).$$

By (2) and the above arguments,

$$z'_{k}(Z'Z + \varepsilon_{n}nI_{l})^{-1}z_{k} = g(z'_{k}(Z'_{-k}Z_{-k} + \varepsilon_{n}nI_{l})^{-1}z_{k}) = g(d_{k}\mathbb{E}S_{nk}) + e_{n},$$

where g(x) = x/(x+1), $e_n \xrightarrow{p} 0$, and $|e_n| \le 2$ a.s. Since $\mathbb{P}(\lambda_{\min}(Z'Z) > 0) \to 1$ and P_{kk} are identically distributed over k, we have

$$\mathbb{E}P_{kk} = \frac{1}{n}\mathbb{E}\sum_{j=1}^{n}P_{jj} = \frac{l}{n} + o(1) \to \alpha.$$

As a result, $\mathbb{E}g(d_k\mathbb{E}S_{nk}) = \mathbb{E}g(d\mathbb{E}S_{nk}) \to \alpha$. Note that $f(s) = \mathbb{E}g(sd)$ is a strictly increasing continuous function with f(0) = 0 and $f(s) \to \mathbb{P}(d > 0), s \to \infty$, whenever $\mathbb{P}(d > 0) > 0$. Therefore, $\mathbb{E}S_{nk} \to c$ for c > 0 solving $f(c) = \alpha$. Such c exists when $\alpha \in (0, \mathbb{P}(d > 0))$. Combining the above estimates, we infer that $P_{kk} \xrightarrow{p} g(cd_k) = cd_k/(1 + cd_k)$. \Box

Lemma A.6 Under the conditions of Lemma 3.4(a) or (b), there is C > 0 such that, for any $l \times l$ positive semi-definite symmetric matrix A_l and b > 1,

$$\mathbb{E}|x_l'A_lx_l - \operatorname{tr}(A_l)| \le Cb\sqrt{l}\lambda_{\max}(A_l) + Cl\lambda_{\max}(A_l)\max_{k\ge 1}\mathbb{E}e_k^2\mathbb{I}_{\{|e_k^2 - 1| > b^2\}}.$$
(10)

Proof of Lemma A.6. First, assume that $\xi_l = e_l, l \ge 1$. Write $A_l = (a_{ij})_{i,j=1}^l$. Then

$$x_l'A_lx_l - \operatorname{tr}(A_l) = \sum_{k=1}^l a_{kk}(e_k^2 - 1) + 2\sum_{1 \le j < k \le l} a_{jk}e_je_k = \sum_{k=1}^l a_{kk}(e_k^2 - 1) + 2\sum_{k=2}^l E_k,$$

where

$$E_k = \left(\sum_{j=1}^{k-1} a_{jk} e_j\right) e_k,$$

 $2 \leq k \leq l$. Note that $\{E_k\}_{k=2}^l$ and $\{a_{kk}(e_k^2-1)\}_{k=1}^l$ are martingale difference sequences. By the Cauchy-Schwartz inequality,

$$\left(\mathbb{E}\left|\sum_{k=2}^{l} E_{k}\right|\right)^{2} \leq \mathbb{E}\left|\sum_{k=2}^{l} E_{k}\right|^{2} = \sum_{k=2}^{l} \mathbb{E}E_{k}^{2} = \sum_{k=2}^{l} \sum_{j=1}^{k-1} a_{jk}^{2} \leq \operatorname{tr}(A_{l}^{2}).$$

By the Burkholder-Davis-Gundy inequality,

$$\mathbb{E}\left|\sum_{k=1}^{l} a_{kk}(e_k^2 - 1)\right| \le C \mathbb{E}\left|\sum_{k=1}^{l} a_{kk}^2(e_k^2 - 1)^2\right|^{1/2},$$

where C > 0 is an absolute constant. Since $\sqrt{x+y} \le \sqrt{x} + \sqrt{y}$ for $x, y \ge 0$,

$$\mathbb{E}\left|\sum_{k=1}^{l} a_{kk}^{2} (e_{k}^{2} - 1)^{2}\right|^{1/2} \leq I_{1} + I_{2},$$

where

$$I_{1} = \mathbb{E} \left| \sum_{k=1}^{l} a_{kk}^{2} (e_{k}^{2} - 1)^{2} \mathbb{I}_{\{|e_{k}^{2} - 1| \leq b^{2}\}} \right|^{1/2},$$

$$I_{2} = \mathbb{E} \left| \sum_{k=1}^{l} a_{kk}^{2} (e_{k}^{2} - 1)^{2} \mathbb{I}_{\{|e_{k}^{2} - 1| > b^{2}\}} \right|^{1/2}.$$

By Jensen's inequality,

$$I_1 \le \left| \sum_{k=1}^l a_{kk}^2 \mathbb{E}(e_k^2 - 1)^2 \mathbb{I}_{\{|e_k^2 - 1| \le b^2\}} \right|^{1/2} \le \sqrt{2b^2 \operatorname{tr}(A_l^2)}.$$

Here we also used $\mathbb{E}(e_k^2-1)^2 \mathbb{I}_{\{(|e_k^2-1| \le b^2\}} \le b^2 \mathbb{E}|e_k^2-1| \le 2b^2$. In addition,

$$I_2 \le \sum_{k=1}^{l} |a_{kk}| \mathbb{E}e_k^2 \mathbb{I}_{\{|e_k^2 - 1| > b^2\}} = \operatorname{tr}(A_l) \max_{k \ge 1} \mathbb{E}e_k^2 \mathbb{I}_{\{|e_k^2 - 1| > b^2\}},$$

where we also have used that $\sqrt{x+y} \leq \sqrt{x} + \sqrt{y}$ for $x, y \geq 0$ and $|e_k^2 - 1| \leq e_k^2$ when b > 1and $|e_k^2 - 1| > b^2$. The above estimates yield

$$\mathbb{E}|x_l'A_lx_l - \operatorname{tr}(A_l)| \le Cb\sqrt{\operatorname{tr}(A_l^2)} + C\operatorname{tr}(A_l)\max_{k\ge 1}\mathbb{E}e_k^2\mathbb{I}_{\{|e_k^2 - 1| > b^2\}},\tag{11}$$

where $x_l = (e_1, \ldots, e_l)'$ and C > 0 is an absolute constant.

Consider the case with $x_l = (\xi_1, \ldots, \xi_l)'$. By the definition of ξ_j , there are $l \times k$ matrices Γ_{lk} such that $\Gamma_{lk}v_k \to x_l$ in probability and in mean square as $k \to \infty$ for $v_k = (e_1, \ldots, e_k)'$. Since $\{e_k\}_{k\geq 1}$ is an orthonormal sequence, we have

(1) $\Gamma_{lk}\Gamma'_{lk} = \mathbb{E}(\Gamma_{lk}v_k)(\Gamma_{lk}v_k)' \to \mathbb{E}x_lx'_l = I_l,$ (2) $v'_k(\Gamma'_{lk}A_l\Gamma_{lk})v_k = (\Gamma_{lk}v_k)'A_l(\Gamma_{lk}v_k) \xrightarrow{p} x'_lA_lx_l,$ (3) $\operatorname{tr}(\Gamma'_{lk}A_l\Gamma_{lk}) = \operatorname{tr}(\Gamma_{lk}\Gamma'_{lk}A_l) \to \operatorname{tr}(A_l),$

(4)
$$\operatorname{tr}((\Gamma_{lk}^{\prime}A_{l}\Gamma_{lk})^{2}) = \operatorname{tr}(\Gamma_{lk}\Gamma_{lk}^{\prime}A_{l}\Gamma_{lk}\Gamma_{lk}^{\prime}A_{l}) \to \operatorname{tr}(A_{l}^{2})$$

We need a version of the Fatou lemma that states that $\mathbb{E}|\zeta| \leq \lim_{k \to \infty} \mathbb{E}|\zeta_k|$ if $\zeta_k \xrightarrow{p} \zeta$. Put $B_k = \Gamma'_{lk} A_l \Gamma_{lk}$. By the Fatou lemma and (11),

$$\begin{split} \mathbb{E}|x_l'A_lx_l - \operatorname{tr}(A_l)| &\leq \lim_{k \to \infty} \mathbb{E}|v_k'B_kv_k - \operatorname{tr}(B_k)| \\ &\leq \lim_{k \to \infty} [Cb\sqrt{\operatorname{tr}(B_k^2)} + C\operatorname{tr}(B_k)\max_{j \geq 1} \mathbb{E}e_j^2 \mathbb{I}_{\{|e_j^2 - 1| > b^2\}}] \\ &\leq Cb\sqrt{\operatorname{tr}(A_l^2)} + C\operatorname{tr}(A_l)\max_{k \geq 1} \mathbb{E}e_k^2 \mathbb{I}_{\{|e_k^2 - 1| > b^2\}} \\ &\leq Cb\lambda_{\max}(A_l)\sqrt{l} + Cl\lambda_{\max}(A_l)\max_{k \geq 1} \mathbb{E}e_k^2 \mathbb{I}_{\{|e_k^2 - 1| > b^2\}}. \end{split}$$

Hence, we get the desired inequality. \Box

Proof of Lemma 3.4. If $\{e_k\}_{k\geq 1}$ are IID and x_l is given in (a), then

$$\max_{k \ge 1} \mathbb{E}e_k^2 \mathbb{I}_{\{|e_k^2 - 1| > b^2\}} = \mathbb{E}e_1^2 \mathbb{I}_{\{|e_1^2 - 1| > b^2\}}$$

and the desired result follows from Lemma A.6. Indeed, dividing both sides of (10) by l, letting $l \to \infty$ and then $b \to \infty$, we infer that $(\{x_l\}_{l \ge 1}, 1)$ satisfies Property P. Multiplying by d, we conclude that $(\{dx_l\}_{l \ge 1}, d^2)$ satisfies Property P.

If $\{e_k\}_{k\geq 1}$ are independent with $\mathbb{E}|e_k|^{2+\delta} \leq C$ and x_l is as in (b), then, for b > 1,

$$\max_{k\geq 1} \mathbb{E} e_k^2 \mathbb{I}_{\{|e_k^2 - 1| > b^2\}} \leq \max_{k\geq 1} \frac{\mathbb{E} e_k^{2+\delta}}{(b^2 + 1)^{\delta/2}} \leq \frac{C}{(b^2 + 1)^{\delta/2}}.$$

The rest of the proof follows the same argument as above.

Consider (c), where x_l is a centered random vector with a log-concave density and $\mathbb{E}x_l x'_l = I_l$. By Lemma 2.5 in Pajor and Pastur (2009), $\operatorname{var}(x'_l A_l x_l/l) \leq \delta_l$ for some $\delta_l = o(1)$ and all $l \times l$ symmetric positive semi-definite matrices A_l with $\lambda_{\max}(A_l) \leq 1$. Obviously, this implies that $(\{x_l\}_{l\geq 1}, 1)$ satisfies Property P. Multiplying by d, we get the desired result.

Suppose $x_l = F_l(v_m)$, where F_l and v_m are as in (d). Then, $f = \varphi \circ F_l$ is a c-Lipschitz function for any 1-Lipschitz function $\varphi : \mathbb{R}^l \to \mathbb{R}$. Indeed, for all $u, v \in \mathbb{R}^m$,

$$|\varphi(F_l(u)) - \varphi(F_l(v))| \le ||F_l(u) - F_l(v)|| \le c||u - v||.$$

Since $\lambda_{\max}(\operatorname{var}(v_m)) \leq C$ for all m, the density of v_m has the form $\exp\{-U(v)\}$ for a convex function U = U(v) such that $\partial^2 U(v) - (1/C)I_m = \operatorname{var}(v_m)^{-1} - (1/C)I_m$ is positive semidefinite for all $v \in \mathbb{R}^m$.

Hence, by Theorem 2.7 and Proposition 1.3 in Ledoux (2001) (see also examples in Section 3.2 in El Karoui, 2009), there is $C_1 = C_1(C,c) > 0$ such that, for any 1-Lipschitz function $\varphi : \mathbb{R}^l \to \mathbb{R}$ and $f = \varphi \circ F_l$,

$$\mathbb{P}(|\varphi(x_l) - \text{med}(\varphi(x_l))| > t) = \mathbb{P}(|f(v_m) - \text{med}(f(v_m))| > t) \le 2\exp\{-C_1 t^2\}, \quad t > 0,$$

where $med(\xi)$ is a median of a random variable ξ .⁸ Now, by Lemma 7 in El Karoui (2009), $(\{x_l\}_{l\geq 1}, 1)$ satisfies Property P. Multiplying by d, we finish the proof. \Box

⁸med(ξ) is any such point μ that $\mathbb{P}(\xi < \mu) \le 1/2 \le \mathbb{P}(\xi \le \mu)$.

Lemma A.7 Let $\{e_k\}_{k\geq 1}$ be independent random variables with $\mathbb{E}e_k = 0$ and $\mathbb{E}e_k^2 = 1$. If $\mathbb{E}|e_k| \geq c$ for some c > 0 and all $k \geq 1$, then, for any $\{a_k\}_{k\geq 0}$ with $\sum_{k\geq 0} a_k^2 = 1$,

$$\mathbb{E}\left|a_0 + \sum_{k \ge 1} a_k e_k\right| \ge \frac{c}{\sqrt{32 + c^2}}.$$

Proof of Lemma A.7. Note that $\mathbb{E} |a_0 + \sum_{k\geq 1} a_k e_k|^2 = \sum_{k\geq 0} a_k^2 = 1$. We may assume without loss of generality that there is a finite set of non-zero a_k (otherwise, we can take a limit). By Jensen's inequality,

$$|a_0| = \mathbb{E} \left| a_0 + \mathbb{E} \sum_{k \ge 1} a_k e_k \right| \le \mathbb{E} \left| a_0 + \sum_{k \ge 1} a_k e_k \right| = I.$$

In addition,

$$\sqrt{1-a_0^2} \mathbb{E} \left| \sum_{k \ge 1} \tilde{a}_k e_k \right| - |a_0| \le I,$$

where $\tilde{a}_k = a_k / \sqrt{1 - a_0^2}$, $k \ge 1$, and $\sum_{k\ge 1} \tilde{a}_k^2 = 1$. If we prove that

$$\mathbb{E}\left|\sum_{k\geq 1} \tilde{a}_k e_k\right| \geq \frac{c}{2\sqrt{2}},\tag{12}$$

then we obtain the desired bound:

$$I \ge \inf_{b \in [0,1]} \max\left\{\frac{c}{2\sqrt{2}}\sqrt{1-b^2} - b, b\right\} = \frac{c}{\sqrt{32+c^2}}.$$

Let us prove (12). Write a_k instead of \tilde{a}_k and let $\{\tilde{e}_k\}_{k\geq 1}$ be an independent copy of $\{e_k\}_{k\geq 1}$. Then

$$\mathbb{E}\left|\sum_{k\geq 1}a_k(e_k-\tilde{e}_k)\right|\leq \mathbb{E}\left|\sum_{k\geq 1}a_ke_k\right|+\mathbb{E}\left|\sum_{k\geq 1}a_k\tilde{e}_k\right|=2\mathbb{E}\left|\sum_{k\geq 1}a_ke_k\right|.$$

In addition, by Jensen's inequality, $\mathbb{E}|e_k - \tilde{e}_k| \ge \mathbb{E}|e_k - \mathbb{E}[\tilde{e}_k|e_k]| = \mathbb{E}|e_k|$ for all $k \ge 1$. Since $\{e_k - \tilde{e}_k\}_{k\ge 1}$ are independent symmetric random variables, then $\{e_k - \tilde{e}_k\}_{k\ge 1} = \{d_k|e_k - \tilde{e}_k|\}_{k\ge 1}$ in distribution, where $\{d_k\}_{k\ge 1}$ are IID random variables that have $\mathbb{P}(d_k = \pm 1) = 1/2$ and are independent of $\{|e_k - \tilde{e}_k|\}_{k\ge 1}$. By Jensen's inequality,

$$\mathbb{E}\left|\sum_{k\geq 1}a_kd_k\mathbb{E}|e_k-\tilde{e}_k|\right|\leq \mathbb{E}\left|\sum_{k\geq 1}a_kd_k|e_k-\tilde{e}_k|\right|=\mathbb{E}\left|\sum_{k\geq 1}a_k(e_k-\tilde{e}_k)\right|.$$

By Khinchin's inequality with explicit constants (see Theorem 1 in Szarek, 1975),

$$\frac{c}{\sqrt{2}} \leq \frac{1}{\sqrt{2}} \left(\sum_{k \geq 1} a_k^2 (\mathbb{E}|e_k|)^2 \right)^{1/2} \leq \frac{1}{\sqrt{2}} \left(\sum_{k \geq 1} a_k^2 (\mathbb{E}|e_k - \tilde{e}_k|)^2 \right)^{1/2} \leq \mathbb{E} \left| \sum_{k \geq 1} a_k d_k \mathbb{E}|e_k - \tilde{e}_k| \right|.$$

10

Additional references

EL KAROUI, N (2009): "Concentration of measure and spectra of random matrices: applications to correlation matrices, elliptical distributions and beyond," *Annals of Applied Probability*, 19, 2362–2405.

PAJOR, A. AND L. PASTUR (2009): "On the limiting empirical measure of eigenvalues of the sum of rank one matrices with log-concave distribution," *Studia Mathematica*, 195, 11–29. SZAREK, V. (1975): "On the best constants in the Khinchin inequality," *Studia Mathematica*, 58, 197–208.