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I. Introduction

An extensive literature has documented persistent time series variation and strong
correlation among daily market activity variables such as trading volume, transac-
tion intensity, and return volatility. These dependencies remain substantial across
weekly and monthly horizons. Numerous other studies demonstrate that these
trading variables follow a pronounced periodic pattern across the trading day;
there is a distinct intraday rhythm to market activity. Consequently, the features
that dominate the daily series and intraday pattern operate at different time scales
and display different stochastic properties. They have been explored in two largely
separate strands of the literature, both empirically and theoretically.

The time series branch of the literature has its origins among the very earliest
studies of daily return data. Motivated by initial contributions from Brada, Ernst
and Van Tassel (1967), Mandelbrot and Taylor (1967) and Clark (1973), this litera-
ture derives a tight quantitative link among the market activity variables, couched
within what we now label the mixture-of-distributions-hypothesis (MDH) frame-
work. It stipulates that return volatility is related to concurrent trading activity
either because the latter directly governs the former or because both are linked to
an underlying economic quantity, such as news arrivals. Serial correlation in news
arrivals may induce the persistent covariation we observe. Empirically, trading in-
tensity is captured either through the transaction count or trading volume. There
is an active debate regarding the relative merits of transaction count versus trade
size in the MDH context, with both widely used in existing empirical studies. Of
course, if trade size (volume per trade) is invariant or constant, these measures are
proportional and possess identical explanatory power for return volatility. As we
also document below, however, trade size varies systematically over time.

The intraday-oriented branch of the literature stresses the pronounced variation
and correlation in trading intensity and volatility within the daily market cycle.
For example, trading activity is often high at the open, moderate in the middle
of the trading day, and then higher again towards the market close, generating a
U-shaped pattern; see Wood, McInish and Ord (1985) for an early exploration.
These findings inspired theories that rationalize the clustering of trading activity
and return volatility in certain segments of the trading day, such as Admati and
Pfleiderer (1988) and Hong and Wang (2000). Since such features are operative at
a qualitative level across all major asset classes and market structures, they appear
universal and likely arise endogenously from the interaction of trading strategies,
the daily rhythm of news releases, and business activity. Despite their ubiquitous
nature, there is little theory that develops predictions regarding the quantitative
link among these series across the intraday cycle.

In this paper, we explore whether an MDH relationship applies simultaneously in
the time series and across the intraday pattern. This is motivated by the fact that,
in theory, the MDH relationship should remain valid for smaller discrete intraday
intervals, provided the underlying market remains liquid. This suggests that we
may undertake more powerful tests based on transaction level data. Moreover,
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while exploration of the distributional implications of the MDH for high-frequency
data has a lengthy history (see Harris (1987) for an early study) there are no
prior attempts at confronting the MDH with quantitative predictions regarding the
nature of the interaction among the activity variables across the intraday pattern.
As such, our tests are informative regarding the broader applicability of the theory
and the reasons behind its shortcomings.

We find the qualitative correlation structure of return volatility and trading
activity to be consistent with prior evidence. Nevertheless, our detailed tests of the
MDH relationships imply extremely strong rejections. These systemic violations
point towards a critical role for trade size in governing the joint distribution of the
market activity variables. This inspires our thorough investigation of an alternative
intraday trading invariance hypothesis, motivated by—yet not directly implied
by—the invariance principles developed in Kyle and Obizhaeva (2016a).

The Intraday Trading Invariance (ITI) hypothesis stipulates that traders consider
the exposure of the position they enter when submitting orders, so the transaction
size tends to shrink, all else equal, in more volatile environments. As a result, return
volatility will not be associated with a single trading intensity variable such as the
number of transactions or volume, but rather a combination of such variables. Our
exploration corroborates the main implications of the ITI hypothesis both for time
series data and for the interdependencies across the intraday pattern.

To illustrate the diverse nature of the evidence we explore, Figures 1 and 2
depict a set of activity variables for the E-mini S&P 500 futures contract from
January 2008 through September 2011. The figures are constructed from one-
minute observations on trading volume V , return volatility σ, transaction count
N , and trade size Q, across the time period of continuous trading in E-mini futures
from -7:00 (17:00 of the prior day) to 15:15 Central Time (CT).1

Figure 1 displays daily values for the activity variables, obtained by averaging
the one-minute observations across each trading day in our sample. As expected,
we observe a strong degree of covariation between trading volume, transaction in-
tensity, and return volatility. In particular, the persistent fluctuations in volatility
are mirrored by broadly similar movements in trading activity, even if the latter
series appear more irregular, or noisy. In addition, all major upward spikes in V
and N are matched by corresponding peaks in volatility. Perhaps more unexpect-
edly, the lower right panel reveals a strong negative correlation between trade size
and the other series. The dramatic decline in the average number of contracts ex-
changed per transaction, whenever volatility spikes, is particularly striking. This
pronounced inverse time series association between trade size and volatility has
hitherto not been explored in detail.2 It defies the idea that trading activity
“drives” return volatility, since this hypothesis implies a positive (or neutral) rela-
tionship between trade size and volatility. Instead, it suggests that agents actively

1Details on the construction of the measures are provided in Section III.A.
2The phenomenon is noted by Andersen and Bondarenko (2015) in their analysis of the forces

driving the dynamics of the so-called VPIN metric.
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Figure 1. This figure plots the time series averages of the following one-minute observations for

each trading day: volume Vd, volatility σd (annualized), number of transactions Nd, and trade size

Qd. The red line indicates the 2-week moving average. The sample period is January 4, 2008, to

September 30, 2011.

limit their asset exposures as volatility, or risk, increases. Our task is to ratio-
nalize these features of the data jointly with the distinct and equally pronounced
patterns observed across the intraday cycle below. Finally, we note that all series
in Figure 1 appear stationary and, in particular, are void of any clear time trend.

Figure 2 depicts the systematic intraday variation in market activity variables,
V , σ, N , and Q. The figure encompasses the full daily trading cycle in the futures
market, with three regional trading zones separated by dashed vertical lines. The
first regime spans -7:00 to 2:00 CT, covering the period before and during regular
trading in Asia; the second regime contains observations in the interval 2:00 to
8:30 CT, roughly corresponding to standard European trading hours; and the
third regime comprises 8:30 to 15:15 CT, matching active American trading hours.
The series depicted in Figure 2 are averages, across all trading days in the sample,
of the observations for each one-minute intraday interval.

There is extreme variation in the scaling of the diurnal pattern across the trading
day. Volume increases more than fifty-fold and the transaction count grows twenty-
five-fold as trading moves from Asian to American hours, while volatility and trade
size only roughly double. Nonetheless, in line with prior findings, there is a strong
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Figure 2. The figure depicts the averages, across all days, for contract volume Vt, annualized

realized volatility σt, trade size Qt, and number of trades Nt. The averages are computed at a gran-

ularity of one minute. The dashed vertical lines separate the three trading regimes corresponding

to regular trading hours in Asia, Europe, and America. The sample period is January 4, 2008, to

September 30, 2011.

commonality in the intraday variation of trading volume, transaction intensity,
and return volatility. They all display a U-shaped pattern within the individual
regions, and the pronounced spikes, typically associated with market openings or
announcements, roughly coincide. In contrast, the fluctuations in trade size are
more dissimilar across regions, with a distorted U-shape in the European zone
and a distinctly different pattern during American trading. The latter feature
represents a major discrepancy between the series in Figures 1 and 2. In contrast
to patterns in Figures 1, the trade size correlates positively – not negatively – with
return volatility in Figure 2. Rationalizing this distinct behavior across the time
series and intraday pattern within the MDH framework is a tall order, but we shall
see that the ITI offers a good resolution.3 Finally, we have confirmed – consistent
with prior evidence and the absence of arbitrage – that there is no systematic
variation in the asset price level across the trading day.

3Alexander and Peterson (2007), Moulton (2005) and Gabaix et al. (2003) study time series
variation in trade size, while Brennan and Subrahmanyam (1998) explore the intraday pattern.
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A key variable in our empirical analysis is trade size. Ideally, we want to infer the
number of contracts exchanged by the active party triggering a given transaction
by submitting, say, a marketable limit order. Unfortunately, this quantity is often
not discernible from the transaction data disseminated by exchanges. The problem
arises, in part, from the practice of recording large trades, crossing several standing
limit orders, as multiple transactions. For example, when a marketable order for 12
units is executed against four distinct limit orders involving, say, 2, 1, 5, and 4 units,
it may be recorded as four distinct trades, reflecting execution of four (passive)
limit orders, rather than as a single (active) order. Such issues can potentially
be resolved if the full message record of the exchange is available. However, this
is both expensive and cumbersome, requiring perfect alignment and sequencing of
transactions. In fact, given the market fragmentation for many assets, with trading
taking place simultaneously at several distinct venues, it is unclear whether proper
sequencing and integration of the trading record across market segments is feasible.

These concerns explain our exclusive focus on the E-mini S&P 500 futures con-
tract, traded on the CME Group Globex platform. This market has many desirable
attributes. First, it is extremely liquid, with a turnover among the top two globally
for exchange-traded futures, and it is a prime location for price discovery in the
U.S. equity market. Second, it is a centralized market. The E-mini contract trades
only through the Globex system; this ensures that we may identify the active trades
and sequence them correctly. Third, the market operates almost continuously on
weekdays, generating a huge degree of variation in the activity patterns across the
Asian, European, and American segments; this provides us with excellent statisti-
cal power to identify the intraday interdependencies among the activity variables.
Fourth, over our sample period, the CME Group data identifies the transaction
size from the perspective of the active participant; hence, for the example above,
we observe a single trade of 12 contracts. Fifth, the large tick size increases the
quoted depth at best bid and offer; the market is sufficiently deep that orders for
hundreds of contracts, worth tens of millions of dollars, regularly are consummated
in one trade, rather than being broken up and executed over time.

Exploiting one-minute observations, we develop a log-linear regression specifica-
tion relating the return variation per transaction and trade size. This representa-
tion encompasses the invariance relationship implied by a number of alternative
theories, as they offer differing predictions for the slope coefficient on the trade size.
In particular, MDH models stipulate coefficients of 0 or 1. Instead, we find the
slope coefficient to be significantly negative, and often close to −2, both in the time
series and intraday dimension. This implies that the return variation per trans-
action is inversely proportional to the square of the average trade size. As such,
our findings align well with the prediction arising from the market microstructure
invariance (MMI) principles, developed by Kyle and Obizhaeva (2016a). However,
they develop the theory for bets or meta-orders, which are executed over long
trading periods, not for transactions. The auxiliary assumptions required for their
invariance principle to carry over to our high-frequency setting are very strict.
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Hence, the hypotheses are distinct, and we refer to the invariance representation
explored in this study as “Intraday Trading Invariance,” or ITI.

Importantly, our tests for high-frequency trading invariance are unrelated to
prior empirical work on MMI. We explore the nonlinear ITI relationship minute-
by-minute, whereas MMI tests are couched in terms of the average trading intensity
and return volatility over longer, typically monthly, horizons. Moreover, the latter
focus on the variation of such monthly aggregates across distinct assets.4 Conse-
quently, existing tests of conformity with MMI rely on cross-stock comparisons. In
contrast, we explore only a single market, but we check the invariance hypothesis
across the pronounced variation over the daily trading cycle and, correspondingly,
our time series tests reflect the accuracy of the nonlinear ITI relationship over
one-minute observations. In fact, due to this inherent non-linearity, it is infeasible
to test our specification of the ITI over longer intervals without imposing much
stronger assumptions. In general, the ITI may not apply for time horizons that
involve systematic variation in the underlying activity variables.

Since the ITI hypothesis invokes a notion of invariance, one may suspect kinship
with the type of scaling laws documented elsewhere in the literature. For example,
econo-physics studies invariance properties in the distribution of tail events, see,
e.g., Gabaix et al. (2003) and Gillemot, Farmer and Lillo (2006). As we demon-
strate below, the invariance properties of tail events do not imply that the ITI
hypothesis holds, even if they can be compatible. Moreover, the scaling laws de-
rived by Kyle and Obizhaeva (2017) using dimensional analysis, leverage neutrality,
and invariance are consistent with the ITI relationships tested in this paper.

The remainder of this article proceeds as follows. Section II introduces the alter-
native MDH and ITI invariance hypotheses that we explore. Section III describes
the sample, explains the construction of the variables, and verifies that our data
display the usual features associated with tail invariance. Section IV provides an
initial look at the empirical evidence by testing the invariance theories via daily
time series observations. Section V develops the measurement and testing tech-
niques for our exploration of the intraday invariance hypotheses. Section VI reports
on the empirical results for both the time series and intraday pattern, documenting
an overwhelming degree of support for ITI relative to the MDH theories. Section
VII takes a detailed look at the performance of ITI during transitional periods, in-
cluding the period around scheduled announcements, flash crash events, and shifts
in trading from one regional market to another. Section VIII concludes. Section IX
is an appendix providing supplementary information on data filtering, derivation
of the estimation procedure, and additional empirical tests.

4Empirical studies of MMI hypotheses include Kyle and Obizhaeva (2016a), who study port-
folio transitions with multiple-day durations across individual stocks, and Kyle and Obizhaeva
(2016b), who rationalize the extent of market crashes through large (hidden) selling pressure,
showing that the market impact is roughly consistent with MMI. In addition, Kyle, Obizhaeva
and Tuzun (2016), Bae et al. (2016), and Kyle et al. (2017) explore monthly prints for individual
stocks, the number of buy-sell switching points in retail trading accounts, and the number of news
releases regarding firms, respectively, and relate these to monthly measures of market activity.
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II. High-Frequency Trading Invariance

This section reviews a set of theoretical hypotheses that motivate the type of invari-
ance propositions we explore in this paper. We cast them directly in a transaction
level setting to accommodate our subsequent empirical work. Section II.A intro-
duces basic notation for high-frequency observations, Section II.B presents some
popular MDH specifications, and Section II.C develops a high-frequency parallel
to the market microstructure invariance principle of Kyle and Obizhaeva (2016a),
which we label Intraday Trading Invariance.

A. Basic Setting

The sample begins at time 0 and contains D trading days, each comprising T
(small) intraday intervals of length ∆t = 1/T . Thus, the full sample spans [0, D]
and contains the consecutive non-overlapping intervals τ = 1, . . . , D ·T . In order to
identify the specific trading day and intraday time period associated with a specific
interval, we also use double-index notation (d, t), with d ∈ D = {1, ... , D} denoting
the trading day, and t ∈ T = {1, ... , T} the intraday interval. Hence, double-index
interval (d, t) corresponds to interval τ = (d−1) ·T +t in our single-index notation.

For each interval τ , or equivalently (d, t), we indicate the random realization of
any given quantity over the interval by including a tilde on top of the variable.
Hence, the average (unsigned) number of contracts per transaction is denoted by

Q̃τ or, alternatively, Q̃d,t. Similarly, using the single-index notation, we denote the

average transaction price (dollars per contract) over the interval by P̃τ , the average
percentage return variance (per unit time) by σ̃2

τ , the transaction rate (trades

per unit time) by Ñτ , and the cumulative trading volume (in contracts per unit

time) by Ṽτ . Furthermore, we denote the logarithmic values of these quantities

by corresponding lower case letters: q̃τ = log(Q̃τ ), p̃τ = log(P̃τ ), s̃τ = log(σ̃2
τ ),

ñτ = log(Ñτ ), and ṽτ = log(Ṽτ ). We note that, since Ṽτ = Ñτ · Q̃τ , we have,
ṽτ = ñτ + q̃τ . Finally, we refer to the expected value of a given variable in interval τ ,
conditional on information through time τ−1, by dropping the tilde. For example,
the time τ − 1 expected log trade size in interval τ is denoted, qτ = Eτ−1 [q̃τ ].

B. The Mixture-of-Distributions Hypothesis

There is a long history of theories stipulating a relationship between trading in-
tensity and return volatility, with the most celebrated contribution being Clark
(1973). This literature dates back at least to Osborne (1962), who observes that if
the returns associated with distinct trades are independent, then the return vari-
ance will be proportional to the number of transactions, σ2 ∼ N . Likewise, Brada,
Ernst and Van Tassel (1967) show that the return defined over a fixed (large) num-
ber of transactions is approximately Gaussian, lending additional support to this
proportionality relationship over intraday horizons. Osborne (1962) further notes
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that trading volume is proportional to the number of transactions, implying that
return volatility is proportional to volume as well, σ2 ∼ V .

The above hypotheses imply that the return distribution is generated through a
mixture of the distributions for trading activity and the i.i.d. return component as-
sociated with the individual trades, motivating the label “Mixture-of-Distributions
Hypothesis” (MDH). Historically, the only official data regarding trading activity
provided by the exchanges were the daily trading volume. Hence, subsequent
studies largely tested, and confirmed, the qualitative implications of the MDH by
documenting a strong positive association between the contemporaneous trading
volume and return volatility, e.g., Granger and Morgenstern (1970), Morgan (1976)
and Westerfield (1977).

To obtain an empirically tractable log-linear representation, we take logarithms
in the proportional volatility-volume specification. Moreover, since the true re-
turn volatility and trading intensity are latent variables that we proxy by realized
volatility measures and observed number of trades, we will only test trading invari-
ance through estimates of the relations among the expected values of the market
activity variables. Consequently, we take the expectations conditional on time
τ − 1 and, recognizing observation errors and frictions, we allow for an error term,
leading to the following regression-style relationship:

The Mixture-of-Distributions-Hypothesis in Volume (MDH-V)

(1) sτ = c + vτ + uτ , for τ = 1, . . . , D · T,

where c denotes a generic constant, and uτ is a mean-zero residual.

While the distinction between the number of transactions and trading volume
was largely ignored in the early literature, the identity of the relevant trading
activity measure became a topic of separate interest later on. Jones, Kaul and
Lipson (1994) find the number of trades better aligned with daily volatility, while
Ané and Geman (2000) stipulate that intraday returns are i.i.d. Gaussian, when
normalized by the (stochastic) transaction count. These studies suggest that the
relevant variable is the number of transactions, generating the following alternative
MDH specification:

The Mixture-of-Distributions-Hypothesis in Transactions (MDH-N)

(2) sτ = c + nτ + uτ , for τ = 1, . . . , D · T,

where c denotes a constant and uτ is a mean-zero residual.

Equations (1) and (2) provide special cases of a process evolving according to a
stochastic business-time clock, as formally introduced into the modeling of finan-
cial returns by Mandelbrot and Taylor (1967). In the above setting, the driving
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process for return variability is directly observed, but it may generally be a la-
tent economic variable such as economic news arrivals. Within this framework,
and using transaction level data, Harris (1987) also finds empirical support for the
association of volatility with both trading volume and the transaction count.5

The MDH specifications are intuitive, following directly from assumptions re-
garding the returns generated per transaction or per unit traded. Nonetheless,
once we let market activity be governed by an underlying (latent) business-time
clock, it becomes natural to contemplate more general relationships. In fact, Clark
(1973) experiments with alternative functional representations and finds support
for an increasing and convex impact of volume on volatility for daily data. However,
as noted by Epps and Epps (1976), this comes at a cost, because this type of non-
proportionality will not survive temporal aggregation. It renders the relationship
inconsistent with the identical representation for transaction data. Instead, Epps
and Epps (1976) argues that this type of specification is suitable at the intraday,
or even the transaction-by-transaction, level. The point is that price impact may
grow disproportionally with trade size. Thus, while the volatility per transaction
is constant for fixed trade size, we should allow for a separate impact of the trade
size, e.g., σ2/N ∼ Qβ, β ≥ 0. The above reasoning leads to a direct generalization
of equations (1) and (2):

The Generic Mixture-of-Distributions-Hypothesis (MDH)

(3) sτ − nτ = c + β qτ + uτ , for τ = 1, . . . , D · T,

where c is a constant, β ≥ 0, and uτ is a mean-zero residual.

Equation (3) encompasses MDH-V and MDH-N for β = 1 and β = 0, respec-
tively. At the same time, it allows for the trade size, qτ , to be related to return
volatility at the high-frequency level, beyond the effect of the sheer number of
transactions. The findings of Clark (1973) and Epps and Epps (1976) suggest
β > 1, while 0 < β < 1 would correspond to a quantitative effect that falls be-
tween the predictions of MDH-V and MDH-N. Regardless of the actual value of
β, if equation (3) is satisfied, the scenario describes specific invariant relationships
between return volatility and trading activity variables.

Finally, we add a caveat regarding empirical exploration of the MDH relationship
(3). It takes the form of a standard regression equation, suggesting that inference
is feasible via standard techniques. As always, this is only correct under suitable
regularity conditions. One primary requirement is that the specification is bal-
anced: the relevant variables are stationary or at least of corresponding stochastic

5In addition, Andersen (1996), Bollerslev and Jubinski (1999), and Liesenfeld (2001) refine
the volatility-trading intensity relationship in extended MDH specifications. Meanwhile, the
striking results in favor of the MDH-N from transaction returns in Ané and Geman (2000) are
not replicable according to Gillemot, Farmer and Lillo (2006), while Murphy and Izzeldin (2010)
document a large degree of imprecision in the moment extraction of Ané and Geman (2000), and
also conclude that normality of the standardized returns does not hold upon close scrutiny.
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order. Upon inspection, this is not a trivial condition. While we may, reasonably,
expect the volatility process to be stationary in the time dimension, this is more
problematic for the transaction intensity, as documented by Tauchen and Pitts
(1983). A variety of factors may induce an exogenous, secular trend in the trading
activity, including an overall growing economy, shifts in asset allocation strategies
of agents due to market innovations, and changes in the cost of trading. Thus, we
may want to limit our MDH explorations to shorter time series for which we can
ignore the impact of the secular trend, or we may seek to directly account for any
time-varying trend in the empirical specification.

C. Intraday Trading Invariance

Another source of hypotheses for our investigation of alternative high-frequency
trading invariance propositions comes from the recent work of Kyle and Obizhaeva
(2016a). They develop a model in which return volatility is driven by the price
impact of large speculative bets, representing portfolio reallocations among major
investors. They obtain a market microstructure invariance (MMI) hypothesis,
stating that the dollar risk transferred by a bet is invariant when measured in
units of business time, with the latter reflecting the rate of bet arrivals.

While Kyle and Obizhaeva (2016a) develop the MMI theory by applying their in-
variance principles to large speculative bets, executed through sequences of smaller
orders to reduce transaction costs, we obtain the Intraday Trading Invariance, or
ITI, by stipulating that similar relationships apply to transactions conducted over
short horizons. The sufficient conditions for the original invariance relationships to
carry over into a high-frequency setting are strict, and we do not argue that they
are valid in practice. Hence, we view the ITI as a purely empirical hypothesis, yet
motivated by the invariance relationships that emanate from the MMI principle.

Translating the Kyle and Obizhaeva (2016a) prediction that the dollar risk trans-
ferred by a bet is invariant, when measured in units of business time, to an intraday

setting, we obtain this assertion: the random variable, Ĩτ = Pτ Q̃τ σ̃τ/Ñ
1/2
τ , has an

invariant distribution across all intervals τ . Assuming the agents, actively engaged
in trading, are aware of the current volatility and transaction rates, στ and Nτ , this
implies that they adjust the scale of their trades to control the risk associated with
the change in their asset portfolios. In effect, trade size is random, but “drawn”
from a distribution that ensures the invariance relationship holds.

Our objective is not to test all implications of this invariance conjecture but
rather to confront and compare its performance to that of the MDH. First, we note
that, relative to the systematic variation in volatility and trading intensity across
the daily cycle captured in Figure 2, the expected fluctuation in the price level is
negligible. Hence, for exploration of the intraday pattern and, more generally, for
periods covering short intervals of time, the expected variation in the price level
is dwarfed by the variation in the other variables, and may effectively be treated
as constant. This is the approach we adopt below, as it also has the advantage of
rendering the discrepancy versus the MDH propositions transparent. Hence, our
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empirical hypothesis is not directly linked to the MMI theory.6

Consequently, over short intervals, we stipulate that the trading invariant is
proportional to a nonlinear function of the market activity variables, Ĩτ ∼ Q̃τ ·
σ̃τ/ Ñ

1/2
τ . Taking the logarithms on both sides and then taking expectations, condi-

tional on information at time τ−1, we obtain an invariance relationship reminiscent
of the general MDH representation (3),

Eτ−1[log Ĩτ ] = Eτ−1

[
log
(
Q̃τ · σ̃τ/ Ñ1/2

τ

)]
= c.

Rearranging and acknowledging the presence of an error term, we obtain a con-
venient representation of the trading invariance relationship that we explore em-
pirically:

Intraday Trading Invariance (ITI)

(4) sτ − nτ = c − 2 qτ + uτ , for τ = 1, . . . , D · T,

where c is a constant and uτ is a mean-zero residual.

Compared to the MDH specification (3), the ITI hypothesis imposes the con-
straint β = −2. This contrasts sharply to the MDH implication that β ≥ 0.

Intuitively, this stark discrepancy between the ITI hypothesis and MDH arises
from the notion, in the ITI, that current market conditions modify the agents’
desired trade sizes. All else equal, the ITI implies that the mean trade size drops
if the return volatility rises or the trading intensity declines. No such endogenous
response is present in the MDH. Empirically, this implies that the variation in trade
size is critical for disentangling the alternative theories. Specifically, if the trade
size does not vary systematically with market conditions, i.e., qτ is constant, we
have no ability to discriminate among the different theories, as return volatility will
move in line with the trading intensity, whether captured through the transaction
count or trading volume. Of course, Figures 1 and 2 reveal a large degree of
systematic variation in the trade size, both within and across trading days, which
greatly facilitates the empirical identification of the different effects.

III. Data Description

This section reviews the CME data available for our study, provides some summary
statistics, and describes how we filter the observations to construct the variables
ultimately used in the empirical analysis.

6For the intraday tests, the inclusion of the price level is literally immaterial. For complete-
ness, Appendix IX.A reports time series results that include the price level in a manner inspired
by the MMI. While the results do not change greatly, they are a bit weaker overall.
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A. The E-mini S&P 500 Futures Data

We rely on the best bid-offer (BBO) files for the E-mini S&P 500 futures contract
from CME DataMine. These “top-of-the-book” files provide tick-by-tick informa-
tion regarding the best quotes, order book depth, trade price, and trade size, time-
stamped to the second. The contract is traded exclusively on the CME Globex
platform, so we observe all transactions executed over our sample, covering nearly
four years, January 4, 2008 to September 30, 2011. The E-mini contract trades
almost twenty-four hours a day, five days a week. The trading hours are governed
by Central Time (CT), so all our references to time are expressed in CT.

The procedure behind the recording of trades and trade sizes is critical for our
empirical tests. When an executable order arrives, it is often matched with more
than one limit order resting at the top of the book at the time of execution. During
our sample period, the exchange reported all contracts traded at an identical price
against an incoming order as a single combined transaction quantity. Thus, the
trade size is reported from the perspective of the active party placing the executable
order. This convention is consistent with the notion of trade size associated with
the intraday invariance principle. Since most markets do not record transactions
in this manner, it will typically be impossible to test for invariance relationships
at the high-frequency level, as we do here, unless one is able to identify the active
orders initiating the recorded trades.7

The notional value of the E-mini S&P 500 futures contract is $50 times the value
of the S&P 500 stock index, denominated in index points. The contract has a
tick size of 0.25 index points ($12.50), equivalent to approximately 2 basis points
of notional value during our sample. It has four expiration months per year. We
use data for the front month contract until it reaches eight days to expiration, at
which point we switch into the next contract. This ensures that we use the most
actively traded contract throughout our analysis.

As indicated in Section I, our empirical analysis focuses on the uninterrupted
trading session from 17:00 to 15:15 the following day, covering three largely separate
regional zones. Thus, our trading week opens on Sunday at 17:00 and ends on
Friday at 15:15. Daily trading in the Globex market is initiated by a batch auction
at 17:00. The contracts traded during the opening auction are recorded during
the first second of trading after 17:00. To generate a sample with a homogeneous
trading protocol, we remove all transactions within the first second after 17:00.
There is also trading on Monday through Thursday between 15:30 and 16:30. The
market is often not particularly liquid in this trading window. Moreover, it involves
another batch auction and it is not open on the first trading day of the week
(Sunday afternoon) and post-holidays. In order to avoid issues of poor liquidity and
non-homogeneity, we exclude this fairly inactive trading hour from our analysis.

7For example, if the exchange counts each limit order involved in trading as a distinct trade,
the transaction count will reflect the limit order flow from the supply side that is intermediating
trades. This will inflate the number of (active) transactions and shrink the trade size relative to
the procedure used by the CME Group for the E-mini contract over our sample period.
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Intraday trading invariance should hold for any exogenously selected subset of
intervals within the trading day, so a priori exclusion of isolated or irregular trading
segments does not affect the validity of our testing procedures. As detailed in Sec-
tions I and V.A, we focus on three intraday regimes corresponding, approximately,
to the trading sessions in Asia, Europe, and America. They contain, respectively,
540, 390, and 405 one-minute intervals, constituting the three non-overlapping sets
of intraday intervals, Tr, r = 1, 2, 3. Furthermore, we exclude the entire day from
our sample if there is an unusually low level of activity during one or more of the
regimes. Such occurrences typically stem from a breakdown in data transmission
or slow holiday-related trading. Since our invariance tests rely on averaging obser-
vations for given time-of-day intervals intertemporally as well as across intraday
trading segments, it is critical to include regular trading data from the distinct
periods in equal measure. The filtering procedure and the days eliminated are
described in Appendix IX.B.8

After filtering, we have 899 complete trading days with, respectively, 236, 241, 237,
and 185 days in the years 2008–2011. We let Dy represent the trading days in each
calendar year, where y = {2008, 2009, 2010, 2011}. Hence, the observations for
regime r in year y are contained in the set Dy × Tr.

B. Descriptive Statistics

Figures 1 and 2 in Section I depict the time series and intraday evolution of the
market activity variables across our sample period based on underlying one-minute
observations. As detailed in the prior section, we have readily accessible data for
the price, number of active trades, trade size, and aggregate trading volume. The
return volatility is latent, however, and we use a (noisy) measure of realized volatil-
ity instead. The high liquidity of the E-mini contract renders it feasible to utilize
six consecutive squared ten-second returns to compute a standard realized volatil-
ity measure without any major detrimental effects from microstructure noise. This
provides a noisy, yet effectively unbiased, proxy for the true (average) spot variance
for each one-minute interval. Nonetheless, the depicted time series and intraday
estimates for volatility are precise and meaningful. They represent averages ob-
tained over a vast number of ten-second intervals, either across intervals within a
given trading day or across trading days. Consequently, these series benefit from
the same error diversification principle that accounts for the accuracy of standard
high-frequency realized-volatility estimators.9

The pronounced covariation among the activity variables, in both the time series
and intraday dimension, is evident from Figures 1 and 2. At the same time, there

8We have confirmed that this approach improves the homogeneity of the sample, but the
qualitative results are identical if we retain all trading periods across the sample.

9See Andersen, Bollerslev and Diebold (2010) or Ait-Sahalia and Jacod (2014) for a review of
volatility estimation from high-frequency data. Realized volatility measures are often obtained
from 78 five-minute or 390 one-minute squared returns. We obtain a substantial improvement
by averaging across nearly 1000 trading days or thousands of ten-second intraday intervals.
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are striking difference in the scaling of the variables across the regional trading
zones and some distinct discrepancies in the interaction among the variables across
the intraday pattern versus in the daily time series. Table 1 complements the
figures with basic summary statistics.

Table 1—Descriptive Statistics for the E-mini S&P 500 Futures

Asia Europe America Combined

Mean Min Max Ratio

Volatility 0.16 0.25 0.40 0.26 0.13 0.81 6.4
Volume 96 604 4788 1668 52 32328 624

# Trades 14 67 363 136 9 1272 144

Notional Value, $Mln 5 34 269 94 3 1804 614
Trade Size 6.0 8.5 13.4 9.0 4.6 28.7 6.3

Market Depth 56 274 999 406 36 3597 100

Bid-Ask Spread 26.4 25.6 25.1 25.8 25.1 27.9 1.1

The statistics are reported separately for the three regimes. The last four columns show the
mean, minimum, maximum, and maximum-to-minimum ratio for the entire day. The volatility
measure represents realized volatility, computed from six ten-second squared returns across each
one-minute interval, and then averaged across all observations and reported in annualized terms.
The volume, notional value, and number of trades are one-minute averages. Market depth is the
average sum of the number of contracts at the best bid and ask. The bid-ask spread is measured
in index points times 100.

It is striking to note from Table 1 that the average bid-ask spread for each
regime barely exceeds the minimum value of 0.25 index points. Hence, the spread
is binding and equals a single tick almost always, implying that the tick size is
“large” for this liquid market. Similarly, a disproportionate number of trades in all
three regimes involve a single contract, implying that the contract-size constraint
is binding as well.10

In contrast, the market is less constrained in terms of consummating large trans-
actions. This is evident from the extreme size variation across trades on display
in Figure 3. While over half of the trades involve one or two contracts, there are,
on average, a couple of transactions per minute during American trading hours
exceeding 500 contracts. Table 1 shows there usually is enough depth at the best
quotes to absorb trades of hundreds of contracts. Large trades are the primary
determinant of the average trade size, suggesting this statistic is robust to dis-
tortions stemming from the minimum contract size. In this respect, the market
provides a near ideal setting for exploring the interaction between trading intensity
and volatility: it has an integrated electronic trading platform, a uniformly high
degree of transaction activity, and a deep order book. The latter features allow us
to observe pronounced variation in the trade size over time.11

10This feature is documented in Figure 17 of the Appendix IX.C. For early work on the impact
of market frictions on the trading process, see, e.g., Harris (1994), Angel (1997), Goldstein and
Kavajecz (2000), and Schultz (2000).

11Further study of the relationship between tick size and average trade size takes us beyond
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Figure 3. The figure plots percentiles of the trade size Q. The statistics are computed at the

granularity of one-minute. The dashed vertical lines separate the three trading regimes.

We further note that, even during regular market conditions, we lose intermittent
observations, as we test for invariance only when the market displays meaningful
activity. The main constraint arises from our use of logarithmic values for each
one-minute observation. To render this feasible, we exclude all intervals that fea-
ture zero volume (no trading activity) or no price variability (all six ten-second
observations feature the identical price). The fraction of omitted observations in
the three regimes are 28.36%, 8.01% and 1.20%. One may worry that the elimina-
tion of data conditional on zero intra-interval price changes may induce a bias to
the estimated volatilities. As a robustness check, we also conduct our tests at the
five-minute sampling frequency, which enables us to retain nearly all observations.
We now filter only 1.26%, 0.12% and 0.11% of the observations across the three
regimes. Our results are qualitatively identical and quantitatively very similar, so
we only present results for the one-minute sampling. The latter provides a more
challenging setup and allows us to enhance the granularity of the tests around key
transition points, when the characteristics of the trading process shift abruptly.

C. Tail Invariance

A large literature documents the presence of a slow power law decay in the tails of
the marginal distribution for many financial market variables, including volatility
and trading intensity. Moreover, these features have been established at sampling
frequencies ranging from transaction level to monthly. As such, the laws governing
the tail behavior of volatility and trading intensity are often labelled scale-invariant,
meaning their large fluctuations are highly non-Gaussian and obey specific regu-
larities that elude traditional central limit theories. Instead, the behavior aligns
well with stable distributions whose tail characteristics survive aggregation.

Importantly, these tail invariant features are entirely distinct from the trading
invariance propositions explored in this paper, in the sense that neither implies

the scope of this paper.
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the other. However, the tail characteristics do capture important aspects of the
market dynamics. Furthermore, under certain conditions, they do shed additional
light on the alternative MDH theories. Thus, in this section we provide a brief
overview of the tail behavior of the activity variables across our sample.

The power laws pertain to the marginal distribution. Specifically, for observa-
tions on a variable y, the power law implies that the probability y exceeds a given
tail threshold x is proportional to an inverse power of x,

(5) P ( y > x ) ∼ 1 / xηy .

The exponent ηy in equation (5) captures the rate of decay in the extreme obser-
vations as the tail threshold increases. A lower value for ηy implies a heavier tail
and a more extreme deviation from Gaussian tail behavior.

In contrast, trading invariance stipulates that certain activity variables are gov-
erned by a joint nonlinear relationship, impacting their full joint distribution, as
illustrated through our derivation of equations (1)-(4). These specifications have
no direct implication for the shape of the tail of the variables, so the underlying
concepts of invariance are, in principle, entirely unrelated.

Nevertheless, since tail power laws are near universal, it is natural to entertain
the idea that both types of invariance apply simultaneously. In this case, under
suitable assumptions, the MDH governs the relative size of the tail exponents,
see, e.g., Gabaix et al. (2003, 2006).12 This reasoning does not carry over to
the ITI hypothesis, however, as it represents an equilibrium relationship among
multiple variables. An extreme realization for the transaction count, say, may be
accompanied either by an extreme value for volatility or the trade size, or by a
combination of less extreme observations for both. As such, the ITI does not imply
any simple relationship for the distinct tail exponents of the marginal distributions.

We now briefly summarize the empirical tail behavior of the activity variables
in our E-mini S&P 500 futures sample. A few unusual features of the sample
demand consideration. First, the series operate at distinctly different scales in the
three trading segments. Hence, the vast majority of the outliers occur during the
most active zone, namely American trading. Second, as a caveat, we note that
the manner in which individual trades are recorded varies across market settings,
so it is not obvious whether the transaction count series is comparable to those
used in prior studies. Third, since we focus on high-frequency observations, there
is a large degree of clustering among the outliers. The largest return volatility and
trading volume episodes are associated with the financial crisis, the flash crash
on May 6, 2010, and the aftermath of macroeconomic announcements. For these

12Nonetheless, the validity of an MDH relationship, along with the existence of power laws
for the tails of volatility and trading activity, does not guarantee a specific relationship among
the tail exponents. Such predictions also involve a restriction on the joint distribution of the
variables and the residual in the MDH relationship. Gillemot, Farmer and Lillo (2006) argue
that this condition is violated, even if the tests of Gabaix et al. (2003) are supportive of the
relationship.
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reasons, we conduct the analysis separately for each region, effectively treating
them as distinct; we focus primarily on the volatility and volume series; and we
analyze both raw and normalized one-minute observations. The normalization
reflects division by the median value over the respective trading segments for the
given day, so that we identify genuine outliers relative to the typical observations
under prevailing market conditions.
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Figure 4. The tail distribution (top 10%) of the one-minute observations for volume V , number of

trades N , and volatility σ in log-log scale. The regimes are depicted in blue (Asia), green (Europe)

and red (America). The right panels show the tail distribution for the series normalized to have a

median of unity each trading day.

Figure 4 depicts the top ten percentiles of the one-minute volume, trading inten-
sity, and volatility observations. If a power law applies, these log-log plots should
constitute straight lines for the largest observations, with the absolute value of the
(negative) slope representing the tail exponent. The lines for the different trading
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zones, depicted in the left panels, are naturally separated, reflecting the higher
activity levels—also in the tails—for the more active regions. However, once we
normalize the observations, as in the panels on the right, they are quite similar,
signaling that the size of the relative outliers and their decay rates across the three
trading regions are comparable. This is an interesting finding, although tail invari-
ance per se does not imply that these curves coincide, but merely that—sufficiently
far in the tail—they are linear. We conclude that, to first order, the power law
for the tail decay provides a good characterization for the activity variables in our
study. This confirms that our activity variables display characteristics consistent
with those observed for many other series.

As noted, under auxiliary assumptions, the relative values of the tail exponents
will be determined by the MDH relationship. The exponents for volume, both
across regimes and for raw as well as normalized data, in the top row of Figure 4
are close to 3, while the transaction count series in row two generate values between
3 and 4 and, finally, the volatility tail exponents associated with the bottom row fall
between 4 and 6. These values are roughly consistent with the estimates obtained
by Gabaix et al. (2003) for N and σ, but much higher for V , where they report a
value of 3/2.13 If we go along with the larger estimates of ησ = 6, or equivalently,
ησ2 = 3, and accept ηV = ηN = 3, then we confirm the required balance between
the tail exponents in the MDH-V and MDH-N relations.14 However, since these
estimates carry a great degree of uncertainty and the deviations from the above
values are quite sizable in many cases, the (indirect) evidence based on the tails of
the marginal distributions is at best mixed.

IV. Trading Invariance at the Daily Level

To set the stage, we initially explore standard MDH style regressions at the daily
level. In addition, given the subsequent focus on ITI, we also check whether the
average trade size adds explanatory power beyond the MDH specifications. Fol-
lowing equations (1) and (2), we aggregate the volume, transactions, and realized
volatility measures across the trading cycle to obtain daily observations, then apply
a logarithmic transformation and run the relevant regressions.

Since most prior work relies on data from markets with a single regional trading
session, we report results corresponding to the U.S. trading hours only in the left
panels of Figure 5, while the right panels reflect the full trading day. In the top
row, we observe the expected positive MDH-V association between return volatility
and trading volume. The second row documents an even closer MDH-N relation-
ship between the volatility and transaction intensity, as the observations appear
distributed quite tightly around the regression lines. In all cases, the regression
slopes are highly significant, ranging from 1.66 to 1.90, and significantly larger than

13In line with our results, Gillemot, Farmer and Lillo (2006) also obtain values for ηV that
exceed 3/2. As for Gabaix et al. (2003), their study is based on 15-minute observations.

14Recall the following rules for tail exponents of distributions of random variables x and y:
ηxα = ηx/α and ηxy = min(ηx, ηy).
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unity in all cases. Moreover, the degrees of explained variation for log volatility,
R2, are 53% and 48% in the first row, while it is 88% and 84% in the second,
consistent with the conclusion by various authors that the transaction count is a
better candidate for a business-time clock than the cumulative volume.
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Figure 5. The left panels reflect the logarithms of daily observations across the U.S. trading

hours. From top to bottom, they depict observations and regression lines for equations (1), (2),

and (4), respectively. The right panels present the corresponding plots for the logarithms of the

observations aggregated across the full trading day.

The regression slopes well in excess of unity in the two top rows indicate that the
basic MDH variants do not apply for daily data. While this may reflect a genuine
nonlinearity in the interplay among return volatility and trading intensity, it is
problematic in the sense that this nonlinear relationship cannot be valid across the
intraday sampling frequencies, as it is not preserved under temporal aggregation.
We explore the evidence for the intraday MDH relationships in Section VI.
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Besides the qualitative evidence regarding the MDH specifications, we also noted
the apparent association between return volatility and trade size in Figure 1. This
relationship is intrinsic to the ITI in equation (4). Consequently, the bottom row
of Figure 5 displays the corresponding data points and fitted regression line. They
are indeed negatively sloped with coefficients −2.01 and −1.94 which, notably, are
not statistically different from the value of −2 implied by equation (4).

In terms of the implied explanatory power for log volatility, the ITI relationship
displayed in the bottom row of Figure 5 reaches 92% and 94%, indicating a sizable
incremental increase relative to the MDH-N relationship, especially for the full
trading day regression.15 We further note that one of the outliers in the bottom
panels corresponds to the “flash crash” on May 6, 2010, when the volatility per
transaction significantly exceeded the ITI prediction. A detailed exploration of the
invariance relationships during this turbulent episode is provided in Section VII.B.

V. Testing Intraday Invariance

We now develop a formal framework for robust and powerful testing of the alter-
native intraday invariance hypotheses embedded within equation (3). Since they
involve high-frequency expectations or real-time interactions among rapidly fluc-
tuating variables, this requires careful measurement procedures.

A. Methodology for High-Frequency Measurement

In this section we develop practical measurement techniques for the latent log-
transformed high-frequency variables, so that they are amenable for analysis through
regression-based tests. For brevity, the more technical details behind our approach
are deferred to Appendix IX.D.

The intraday activity measures consist of persistent, non-negative random vari-
ables that are subject to sizable idiosyncratic shocks. The multiplicative error
models (MEM) provide a suitable framework for such settings.16

We let Ỹτ denote a strictly positive random variable (representing V , N , or σ2),
and stipulate that the dynamics of Ỹτ is given by,

(6) Ỹτ = Yτ · Ũτ ,

15We obtain this measure by rewriting the regression as s = c+n+βq+u, where the coefficient
for n is fixed at unity. This generates the identical slope coefficient for q as in Figure 5, but the
R2 now speaks to the explained variation for s alone. Since the coefficient on n is fixed, and not
estimated to fit optimally for the given sample realizations, the playing field is leveled vis-a-vis
the MDH relations in terms of the number of free parameters.

16The MEM family includes standard GARCH and stochastic volatility specifications. Early
on, it was used to capture high-frequency return dynamics through the interaction of daily
volatility factors and intraday diurnal features, see Andersen and Bollerslev (1997, 1998). Engle
(2002) formulates the general modeling framework and applies it to both volatility and trade
durations. Finally, Brownlees, Cipollini and Gallo (2011, 2012) provide successful applications
to dynamic modeling of high-frequency trading volume.
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where Ũτ is strictly positive, i.i.d., with a mean of one and variance of σ2
U . Equa-

tion (6) is a MEM model with time τ − 1 conditional expectation Eτ−1[Ỹτ ] = Yτ
and V arτ−1[Ỹτ ] = Y 2

τ ·σ2
U . The conditional dependence structure is captured by the

positive mean, Yτ , which is unspecified and can be highly complex, incorporating
long-run dependencies, diurnal patterns, and short-run serial correlation.

Our approach merely requires that we obtain unbiased estimates for Yτ over
each interval τ . A natural choice is to use the observed number of transactions
and trading volume in the interval as noisy, yet unbiased, estimators for the corre-
sponding ex-ante conditionally expected trading activity. Similarly, one may devise
a high-frequency realized volatility estimator with similar attributes for the return
variation, as detailed in Section III.B.

As documented in Appendix IX.D, one may now show that the corresponding
logarithmic values of the activity variables, ỹτ = log Ỹτ , take the form,

(7) ỹτ = yτ + c + ε̃τ ,

where yτ represents the conditionally expected logarithmic value of the activity
variable, while ε̃τ are i.i.d. random variables with zero mean and finite variance.

In principle, one may now simply include these indicators of the interval-by-
interval activity variables as proxies for the conditional expectations in the relevant
regression. However, the estimator in equation (7) inevitably will be noisy as the
variance of the error term, ε̃τ , typically is large. If the regressors are subject to
sizable measurement errors, we face severe errors-in-variables problems. Thus,
we do not propose tests that exploit observations from individual intervals, but
develop aggregation schemes that mitigate the errors, yet retain statistical power
and allow for a natural economic interpretation.

Since we aim to test the invariance hypotheses along both the time series and in-
traday dimension, we construct the variables accordingly. The time series variation
is obtained by aggregating a large set of log-transformed high-frequency observa-
tions each day, generating one data point per trading day. Similarly, the systematic
diurnal variation is captured by averaging the observations for each intraday inter-
val across many trading days, to isolate the time-of-day effect.

Formally, we obtain daily time series through the following aggregation scheme,

(8) yd =
1

T
·

T∑
t=1

ỹdt ≈ c +
1

T
·

T∑
t=1

ydt , for d = 1, . . . , D,

resulting in D daily observations.
Analogously, for the intraday pattern, time-of-day observations are generated as,

(9) yt =
1

D
·

D∑
d=1

ỹdt ≈ c +
1

D
·

D∑
d=1

ydt, for t = 1, . . . , T,

which produces T separate observations across the trading period.
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Finally, given the sharp differences across the separate regions, we also routinely
use time series that capture the evolution over time within a given region, rather
than across all three trading zones. We define the subset of intervals for a given
region on day d as {d} × Tr, where Tr, r = 1, 2, 3 represents the set of intervals
within each regime. Hence, the associated aggregation scheme becomes,

(10) yd,r =
1

|Tr|
·
∑
t∈Tr

ỹdt ≈ c +
1

|Tr|
·
∑
t∈Tr

ydt , for d = 1, . . . , D; r = 1, 2, 3,

where |Tr| denotes the number of elements in the set Tr. This generates three
distinct day-regime series, for a total of D · 3 data points.

The aggregation schemes in equations (8)-(10) utilize about one thousand data
points each. Thus, the law of large numbers ensures that the measurement errors
are small, and the measures approximate the fluctuations in the underlying average
of conditionally expected activity variables well, e.g., yd ≈ ỹd + c. This sets the
stage for meaningful inference exploiting standard regression techniques.

B. Regression-Based Tests for Intraday Invariance

We combine the log-linear representation of the intraday invariance hypotheses
in Section II with the measurement and aggregation techniques outlined in Sec-
tion V.A to obtain a robust regression-based framework for testing critical impli-
cations of the underlying theories. Specifically, for each of the activity variables,
we construct the regression variables through the procedures in equations (8)-(10).
For example, the time series evolution is represented through the fluctuations in
the ñd series, or the corresponding region-specific daily developments, as given by
ñd,r , over d = 1, . . . , D. Similarly, the trading intensity measure captures the intra-
day pattern through the variation of ñt across the intraday intervals t = 1, . . . , T .
Since each of these series should satisfy the invariance relationship under the null
hypothesis, we will at times simplify notation by employing j as a generic index for
the subscripts d, t, or (d, r) below, with j = 1, . . . , J , running, as necessary, across
the relevant trading days, time-of-day intervals, or day-and-region observations.

Accordingly, in terms of our aggregate activity variables, our log-linear regression
specification (3) now takes the form,

(11) sj − nj = c + β qj + uj , j = 1, . . . , J.

The intraday invariance hypotheses impose starkly different restrictions on equa-
tion (11), as the MDH-V implies β = 1, MDH-N predicts β = 0, and ITI stipulates
β = −2. This enables us to test the theories against one another in a unified setting
and compare their explanatory power through standard regression techniques.

The regression setting (11) has a number of noteworthy features. First, as already
emphasized, the aggregation schemes greatly reduce the impact of measurement er-
rors. Second, as is evident from the corresponding daily series depicted in Figures 1
and 2, the activity variables display a large degree of systematic variation across
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time and over the intraday cycle. The daily series fluctuate quite dramatically due
to major shifts in the market environment, and the intraday pattern covers sepa-
rate trading regions with huge discrepancies in the activity levels. These features
help ensure a high signal-to-noise ratio for the relevant variables. Third, the sepa-
rate tests for the region-specific time series ensure robustness against the impact of
structural breaks occurring within a single, and potentially quite illiquid, trading
zone. Fourth, trade size displays relatively little idiosyncratic variation in either di-
mension, alleviating lingering concerns regarding the impact of errors-in-variables
for the regressor. Fifth, the regressand s − n reflects a constraint implied by all
three theories, so it improves the efficiency of our test under the null hypothesis.
Equally importantly, it circumvents a severe multicollinearity problem, as all of the
activity variables are highly correlated. For example, the time series correlation
among n and q is 0.975. This renders alternative specifications featuring, say, n
and q as separate regressors susceptible to imprecise and misleading inference.

VI. Empirical Evidence on Intraday Invariance

This section presents tests for intraday invariance, using the high-frequency mea-
surement technique developed in Section V to mitigate the impact of noise and
errors. Section VI.A explores the predictions in the time series dimension, consis-
tent with the usual approach. In addition, using our comprehensive data, we check
for robustness across trading regions, over shorter subsamples and, in Section VI.B,
for more disaggregated series. Finally, Section VI.C provides empirical tests for
invariance in the intraday dimension, which is new to the literature. Again, we
explore robustness across subsamples and distinct trading regions.

A. Invariance in the Time Series Dimension

As an empirical matter, we observe large, persistent and correlated fluctuations in
the activity variables across days, as illustrated in Figure 1. The log-linear invari-
ance relations explored for daily data in Section IV point towards nonlinearities in
the MDH specifications that render them incompatible with corresponding repre-
sentations for intraday data, but that remains an empirical matter. In contrast,
the ITI hypothesis held up well for the daily data, but this functional relationship
is not consistent with temporal aggregation, if there is variability in the activity
variables across the trading day. Figure 2 makes it clear that not only is such in-
traday variability present, but it is very pronounced. Thus, it is also an empirical
question whether the ITI will apply at the high-frequency or transaction level.

As noted, the daily time series for each of the three trading regimes are distinct,
with each clearly affected by its specific regional pattern of trading activity and
economic news releases. In other words, we effectively have three alternative daily
series available for our tests. Thus, beyond aggregating all one-minute observa-
tions for each activity variable across the full trading day, following equation (8),
we also generate three (day-regime) data points per trading day by averaging sepa-
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rately each day across all intraday observations within the sets, D×Tr, r = 1, 2, 3,
according to equation (10). Furthermore, we consider the identical series, but for
each calendar year separately, thus exploiting only the data Dy×Tr, r = 1, 2, 3, for
generating the three data points per day for year y. The caveat is that day-regime
series (averaged over a singular regime) likely are noisier than the correspond-
ing full trading day series because they contain fewer observations and, for some
regimes, the liquidity is somewhat limited. This exacerbates potential measure-
ment errors, and we may note a downward bias in the regression slope due to
the errors-in-variable effect. To gauge the severity of such distortionary features,
we also perform a joint test, where we include all three day-regime time series
in one pooled regression, thus tripling the number of observations and generating
additional time series variation in the regressor. Both effects should enhance the
signal-to-noise ratio and improve inference.

To convey an initial sense of the findings, Figure 6 depicts the fit of the three sep-
arate invariance relationships through a parallel set of regressions to those provided
in Figure 5, except we now include observations from each of the three regions in
the left side panels. For each panel, the estimated and theoretical slope coefficient
are indicated by the full drawn and dashed line, respectively.

The top panels refer to the MDH-V specification (1). The left panel illustrates
a dramatic failure of this hypothesis in the pooled regression, exploiting all day-
regime observations. The estimated slope is 0.31 and highly different from unity,
which is the theoretical value. It is further evident that estimation for each indi-
vidual region alone would generate a steeper slope. In fact, the point estimates for
the Asian, European, and American trading zones are 0.52, 0.58, and 1.46, respec-
tively, with the American zone having a sufficiently large standard error that it is
insignificantly different from unity. Finally, in the right panel, the slope obtained
from data averaged across the full trading day results in a slope estimate of 0.89,
which is also not statistically different from unity at standard significance levels.

The middle row depicts outcomes for the MDH-N regression (2). The estimated
slope coefficients are now all larger, with the Asian and European values at 0.78
and 1.00 both consistent with the theoretical slope of one, while the American zone
produces a value significantly above unity at 1.54. As above, the pooled regression,
including all data points across the three regions, generates an excessively flat slope
of 0.44. Finally, if we average all one-minute observations across the trading day,
we obtain an estimate well above unity at 1.45, which is also evident from the steep
full drawn line in the right panel.

We conclude that the evidence for the basic versions of the MDH is, at best, mixed
and contradictory. Ideally, all regressions would generate similar slope coefficients,
but they vary sharply across trading zones. The lower values for the Asian and
European regimes seem too extreme to reflect solely an errors-in-variable effect.
Moreover, the observations deviate from the theoretical slopes in systematic ways,
creating distinct clouds in certain regions off the estimated regression line. Yet, in
all cases we do establish a significant positive slope coefficient.
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Figure 6. The panels reflect regressions for time series of high-frequency daily activity measures,

obtained by first computing the one-minute measures, then taking the logarithm and averaging across

the relevant segment of the trading day. The left panels concern measures obtained from the trad-

ing hours in the regional trading zones, while the right panels reflect the full trading day. From

top to bottom, they depict observations along with fitted (full-drawn) and theoretical (dashed)

regression lines for equations (1), (2), and (4).

Now, turning to the encompassing test for the invariance hypotheses, the bot-
tom panels present evidence based on regression (3). The outcome is striking.
The regression slopes are all negative and close to the ITI value of −2. In par-
ticular, contrary to the panels in the two top rows, the findings are near uniform
across all regional trading zones. Moreover, for the daily averaged observations
depicted in the bottom row of the right panel, the slope is estimated at −1.97
and is indistinguishable from −2. Details regarding the estimates for the encom-
passing regressions displayed in the left panels are provided in Panel A of Table 2.
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Table 2—Time-series Regression of s− n onto q

Panel A: 3 Regimes

Nobs c β se(c) se(β) R̄2

Asia 899 -3.53 -1.37 0.313 0.193 0.403
Europe 899 -3.26 -1.67 0.258 0.116 0.677

America 899 -3.15 -1.80 0.467 0.177 0.692
Pooled 2697 -2.57 -2.02 0.112 0.051 0.926

Panel B: 4 Years

Nobs c β se(c) se(β) R̄2

2008 708 -2.80 -1.93 0.098 0.043 0.939
2009 723 -2.22 -2.14 0.131 0.059 0.943
2010 711 -2.26 -2.17 0.154 0.084 0.927
2011 555 -3.21 -1.76 0.151 0.077 0.930

All 2697 -2.57 -2.02 0.112 0.051 0.926

This table reports on the OLS regressions sd,r −nd,r = c+ β · qd,r + ud,r. For each day, there are
three observations corresponding to the regimes r = 1, 2, 3. In Panel A, the coefficients, standard
errors, and R̄2 statistics are estimated separately for each regime. In Panel B, the regressions are
estimated separately for each calendar year. The last year ends September 30, 2011. MDH-V,
MDH-N and ITI predict β = 1, β = 0, and β = −2, respectively.

For the regime-specific regressions covering Asia and Europe, the slopes are less
steep at −1.37 and −1.67, consistent with a lower signal-to-noise ratio stemming
from errors-in-variables in the regressor, but for the American zone and the pooled
regression, exploiting the day-regime observations across all regimes jointly, we
obtain slopes that are indistinguishable from −2. The latter scenario, in particu-
lar, alleviates the errors-in-variable problem greatly and boosts the signal-to-noise
ratio. Hence, the findings are very well aligned with the ITI hypothesis.

The greater variation of the regressors in the pooled regressions suggest that we
may obtain sensible results also from shorter annual samples. Panel B of Table 2
reports on the findings from such annual subsample estimation. The slope coeffi-
cients are remarkably stable across time and all close to −2, except for the slightly
lower (absolute) value obtained over the abbreviated final year of the sample, 2011.
Thus, even for these moderate sample sizes, we find strong supportive evidence for
the ITI hypothesis. In contrast, we emphatically reject the MDH variants which,
if anything, would imply a positive slope coefficients for these regressions.

B. Invariance for Multi-Minute Bin Aggregation

Our empirical tests for intraday trading invariance depend critically on high-
frequency measurement of trading intensity and return volatility. The minute-
by-minute measures are invariably noisy. So far, we have performed aggregation
across a large number of intraday observations to obtain time series comprised of
reasonably precise daily measures. This approach involves a compromise where we
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sacrifice some systematic variation in the data along specific dimensions in order
to improve the precision of the variables and, especially, the regressor.

Figure 7. Scatter plot of sd,b −nd,b versus qd,b with data aggregated across the one-minute obser-

vations within bin b for each trading day d. As before, the three regimes are represented by distinct

colors.

In this section, we seek to retain more of the high-frequency variation in the
activity variables, while accepting that the individual measures become noisier.
Specifically, we aggregate the one-minute observations into 31 separate bins per
day. Each bin contains 90 consecutive minutes during the Asian regime, 39 minutes
in the European regime, and 27 minutes in the American regime. This binning
approach allows the measures to reflect both the intraday variation in trading
activity across time bins and the time-series variation across days. The procedure
generates 6, 10 and 15 day-bin observations for each day across the three regimes,
respectively. Furthermore, it ensures that the regimes are relatively homogeneous
in terms of the magnitude of the sampling and measurement errors. In total, we
have nearly 30,000 day-bin (D×31) observations for the relevant activity variables,
i.e., 31 observations for each of the variables over D = 899 days.17

Figure 7 depicts the scatter plot of sd,b−nd,b versus qd,b for all day-bin observations
along with the regression line obtained from the joint fit to all the data points.
Consistent with the presence of non-trivial measurement errors, the points are now
much more widely scattered around the regression line compared with Figure 6.

17A few observations are lost due to market closures or failures in the dissemination of data.
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Table 3—Time-series Regression of s− n onto q using binned Data

Panel A: 3 Regimes

Nobs c β se(c) se(β) R̄2

Asia 5394 -4.11 -0.99 0.191 0.098 0.348
Europe 8983 -3.87 -1.37 0.312 0.132 0.523

America 13473 -4.23 -1.38 0.515 0.187 0.445

Panel B: 4 Years

Nobs c β se(c) se(β) R̄2

2008 7303 -3.13 -1.78 0.089 0.032 0.858
2009 7465 -2.55 -1.98 0.106 0.040 0.847
2010 7347 -2.86 -1.91 0.111 0.063 0.782
2011 5735 -3.43 -1.67 0.123 0.056 0.806

All 27850 -2.93 -1.86 0.105 0.042 0.827

The table reports on OLS regressions sd,b − nd,b = c + β · qd,b + ud,b across days d and bins b.
In Panel A, the coefficients, standard errors, and R̄2 statistics are estimated separately for each
regime. In Panel B, the regressions are estimated separately for each calendar year. The last
year ends on September 30, 2011. MDH-V, MDH-N and invariance predict β = 1, β = 0, and
β = −2, respectively.

Nonetheless, as reported in Table 3, the slope estimate equals -1.84, which is close
to the theoretical value of −2 implied by invariance. Likewise, for the individual
years, the corresponding regression slopes attain a similar magnitude. In other
words, the large degree of variation in the regressor across the bins may be sufficient
to alleviate the severity of the errors-in-variable bias, both for the joint and the
year-by-year regressions. Also, as expected with these more noisy measures, the
regime-specific regressions have a less negative slope relative to earlier, consistent
with a greater bias due to the lower signal-to-noise ratio.

C. Invariance Across the Intraday Activity Pattern

The systematic variation in the activity variables across the intraday pattern, doc-
umented in Figure 2 and Table 1, is an order of magnitude larger than the time
series variation at the daily level depicted in Figure 1. As such, the daily activity
cycle will provide a powerful test of the alternative trading invariance hypotheses.
Moreover, it is a challenging test due to the heterogeneity in the market environ-
ment across the trading day. One, there are distinct spikes in activity at specific
times associated with the release of macroeconomic news. Two, the opening and
closing of related markets around the globe over the 24-hour cycle leads to a great
diversity in the participation rate of different investor types and associated trading
strategies over the trading day. A prime example is the arbitrage activities between
the E-mini contract and the SPDR S&P 500 exchange traded fund (the “spider”
or SPY), which is active only during regular trading in the U.S. equity markets.
Three, and related, there are dramatic shifts in activity, when the majority of
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trading moves from one regional zone to another. This implies that a rotating cast
of agents and institutions set the pace of the market over the course of the daily
trading period. Four, these features naturally lead to huge discrepancies in the liq-
uidity of the market among the different trading zones. All these factors render the
proposition that the interaction of the activity variables, every minute of the day,
satisfy the identical simple and uniform relationship quite heroic. Furthermore,
to the best of our knowledge, this is the first time that the invariance hypotheses
have been explored formally along this dimension.

The intraday test is based on regression (9) with, as before, the basic MDH-V
implying β = 1, the MDH-N stipulating β = 0, and the ITI predicting a strong neg-
ative association, β = −2. Consequently, the systematic intraday pattern provides
an equally clean test for the relative explanatory power of the different invariance
hypotheses as those based on the time series behavior, and, given the huge variation
across the daily activity cycle, it is arguably more powerful.

The regression results are presented in Figure 8 and Table 4.

Table 4—Indraday Regression of s− n onto q

Nobs c β se(c) se(β) R̄2

Unfiltered 1335 -2.57 -2.02 0.139 0.074 0.966
Filtered 1273 -2.55 -2.03 0.105 0.051 0.979

This table reports on the Intraday OLS regression, st − nt = c + β · qt + ut. MDH-V, MDH-N
and ITI predict β = 1, β = 0, and β = −2, respectively.
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Figure 8. Left panel: Intraday Scatter Plot of st −nt versus qt. The OLS regression line is solid

and the predicted invariance line is dashed. The blue crosses indicate the first 6 minutes of trading

and the Red Crosses the last 16 minutes of trading. The right panel presents the same scatter plot

as in the Left Panel, except that the minutes around the regional market openings and closes are

removed.

The top row of Table 4 offers strong support for the prediction of the ITI and
a stinging rebuke of the MDH theories. The slope coefficient is estimated with
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good precision to be −2.02. It is not statistically different from −2, while the flat
or positive slopes implied by the MDH variants are overwhelmingly rejected. The
left panel of Figure 8 depicts the scatter plot of the 1,335 separate one-minute
observations along with the fitted and theoretical regression lines. The clustering
of the data points along the steeply sloped lines is evident overall, but also within
each of the three trading regimes.

Most of the outliers in the left panel of Figure 8 stem from periods during which
active trading is transitioning from one trading regime to another. If we eliminate
observations corresponding to 3 minutes around 1:00 and 2:00 (the beginning of
European hours), the 3+30 minutes around 8:30 (the beginning of American hours
and the 9:00 news announcements) as well as the period 15:00-15:15 (the end of
American hours, following the closure of the cash market), then we obtain the
“filtered” results depicted in the right panel of Figure 8. The intraday invariance
predictions are again validated in the sense that the regression slope still equals the
predicted −2. At the same time, the vast majority of the outliers are eliminated
by this procedure, suggesting that intraday trading invariance offers a particularly
compelling account of the interaction among the activity variables in stable market
settings. The consistent results obtained across the three distinct trading zones
are especially noteworthy in this regard, as they differ dramatically in trading
intensity and liquidity, so the ITI relationship holds up well in very different market
conditions.

There are a variety of ways to assess the robustness of these quite remarkable
findings by focusing on specific subsamples. The main complication is the presence
of non-trivial measurement errors in our high-frequency observations. In particular,
if the regression design reduces the genuine variation of the regressor relative to
the size of the measurement errors, we will find, mechanically, that the regressions
have less explanatory power, and we may observe a distinct downward bias in
the (absolute) size of the estimated regression slope due to the errors-in-variables
effect. With these caveats in mind, we first investigate the performance of the
invariance hypothesis over annual subsamples. Due to the stability of the diurnal
pattern for the activity variables, this approach retains the pronounced variation
in the regressor, so the primary effect is simply a loss of observations.

Panel A of Table 5 reports the results for the year-by-year log-linear regressions.
The individual regression slopes are now scattered more widely, but there is no
evidence of any systematic deviation from the theoretical value of −2 implied by
the ITI hypothesis.

An alternative robustness check involves regime-by-regime regressions. This ap-
proach does reduce the sample variation of the regressor substantially, raising con-
cerns about the impact of measurement error. Panel B of Table 5 reports the
regression results for all observations within the individual regimes, while Panel C
reports the results when certain observations associated with the transition periods
between regimes are excluded, as in Table 4.

In Panel B, we now observe a clear drop in the (negative) slope coefficients. Panel
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Table 5—Intraday Regression of s− n onto q

Panel A: 4 Years

Nobs c β se(c) se(β) R̄2

2008 1335 -2.87 -1.89 0.122 0.068 0.956
2009 1335 -2.21 -2.14 0.135 0.075 0.960
2010 1335 -2.25 -2.17 0.180 0.094 0.933
2011 1335 -3.23 -1.75 0.141 0.069 0.936

All 1335 -2.57 -2.02 0.139 0.074 0.966

Panel B: 3 Regimes, Unfiltered

Nobs c β se(c) se(β) R̄2

Asia 540 -3.87 -1.15 0.285 0.191 0.679
Europe 390 -3.18 -1.72 0.402 0.201 0.781

America 405 -5.06 -1.05 0.623 0.243 0.346
Pooled 1335 -2.57 -2.02 0.139 0.074 0.966

Panel C: 3 Regimes, Filtered

Nobs c β se(c) se(β) R̄2

Asia 526 -3.81 -1.19 0.286 0.190 0.710
Europe 388 -3.12 -1.74 0.387 0.195 0.806

America 359 -3.21 -1.78 0.917 0.374 0.607
Pooled 1273 -2.55 -2.03 0.105 0.051 0.979

This table reports on OLS regressions of the form st − nt = c + β · qt + ut. In Panel A, the
coefficients, standard errors, and R̄2 statistics are estimated separately for each calendar year
and then for the whole sample. The last year ends September 30, 2011. In Panels B and C, the
regressions are estimated separately for each regime, except that in Panel C the minutes around
the regional market openings and closures are removed. MDH-V, MDH-N and ITI predict β = 1,
β = 0, and β = −2, respectively.

C shows that filtering improves matters considerably, but still leaves a non-trivial
gap between the estimated slopes and −2. The discrepancy is especially striking
for the Asian regime, where the diurnal pattern, and thus the systematic intraday
variation of the regressor, is less pronounced compared to the other regions, and
market activity generally is subdued.

As a final robustness check, we test the invariance relationship within each quar-
ter of our sample. Figure 9 displays the slope coefficient for the qt variable across
quarters. It is evident that the slope coefficient is economically close to the theo-
retical value of −2 in all instances.18

In summary, our findings are broadly consistent with the ITI principle, while the
MDH specifications are decidedly rejected. This implies, in particular, that there

18The confidence bands are obtained assuming we only face sampling error, but our con-
struction of expectation proxies through the MEM approach inevitably introduces non-trivial
measurement errors into the specification. While it is difficult to quantify this effect, it is clear
that the confidence bands are too narrow and should be viewed with some skepticism.
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Figure 9. The figure plots the slope coefficient β for OLS regressions st−nt = c+β ·qt+ut estimated

separately for each quarter. Also shown are confidence intervals computed as ±2 standard errors.

The red dashed line indicates the theoretical value predicted by invariance.

is strong support for the hypothesis that market participants actively adjust their
trade size in response to varying market conditions in a manner consistent with
the intraday trading invariance specification. Nonetheless, it is also evident that
temporary deviations from the predicted relationships occur when the trading en-
vironment is changing rapidly. We present additional evidence on the performance
of the ITI hypothesis during transition periods and turbulent market conditions in
Section VII below.

VII. Invariance during Market Transitions

Certain events corresponding to particularly turbulent market conditions generate
large outliers. In this section, we explore whether the intraday invariance principle
can accommodate these dramatic episodes of elevated market activity. Specifically,
we study the ITI relationship during macroeconomic announcements, during a so-
called flash crash, and for the cash market open and close.

A. Macroeconomic Announcements

We now examine whether intraday invariance provides a good characterization of
the market dynamics surrounding releases of macroeconomic announcements.

For the U.S. market, the most important announcements occur at 7:30. The
Employment Report is usually released at 7:30 on the first Friday of the month
and the Consumer Price Index at 7:30 on the second Friday of the month. Other
releases at this time of day include the Producer Price Index, the Employment Cost
Index, the U.S. Import/Export Price Indices, and Real Earnings. Market activity
variables often exhibit distinct spikes immediately after such releases. Rationaliz-
ing the interaction among the trading variables and return volatility in the periods
surrounding these events constitutes a challenging test for intraday invariance.
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Figure 10. The figure depicts averages across trading days for which an assumed 7:30 CT announce-

ment induced the largest subsequent increase in trading activity. The statistics include contract

volume Vt (per minute), volatility σt, average trade size Qt, and the number of trades. The averages

are computed at the granularity of one minute. The dashed vertical lines separate the trading

regimes. The solid vertical line indicates the timing of the announcement.

Since we seek to explore the robustness of the ITI during rapid changes in the
market conditions, we focus on the main outliers induced by the 7:30 macroeco-
nomic announcements. To identify the relevant events, we focus on the days with
the largest increase in trading activity immediately after the news release. Specif-
ically, we compute the ratio of the number of trades for the 10 minutes after 7:30
to the number of trades for the 60 minutes before 7:30. We then select the ten
percent of days (90 out of 899) with the highest ratio. On average, this procedure
identifies about two days each month with significant spikes in trading activity. In
every case, we confirm that these episodes include a 7:30 announcement. In line
with the terminology of Section III.A, we denote this subset of major announce-
ment days by DA. We also zoom in further on these news releases and study the
three minutes before and after 7:30; we denote this subset of minutes by TA.

Figure 10 depicts the intraday statistics averaged across the announcement days,
DA. Compared to the full sample statistics in Figure 2, the 7:30 spike is obviously
more pronounced for volume, number of trades, and volatility. Close inspection
also reveals a small, yet distinctive, downward shift in the average trade size.
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Figure 11. The figure provides scatter plots for (st − nt) versus qt. The left and right panels

plot averages across all days and 7:30 announcement days, respectively. The 3 minutes before 7:30

are indicated by red dots, the 3 minutes thereafter by a blue asterisk and two blue crosses, and all

other minutes by light gray dots. The regression line from Figure 8 is also shown.

Figure 11 displays the fit for the ITI relationship, as captured by the plot of
the averaged one-minute observations for volatility per transaction versus trade
size. The left panel includes all trading days, while the right contains only ma-
jor announcement days, DA. In both panels, the minutes within TA are marked
separately. The three minutes preceding 7:30 are represented by red dots, the 7:30-
7:31 interval by the blue asterisk, and the following two minutes by blue crosses.
The left panel reveals that none of the points surrounding the news release con-
stitute unusual outliers. On announcement days on right panel, they remain in
line with theoretical predictions, except for the exact one-minute interval covering
the release (blue asterisk). The latter observation lies above the regression line,
indicating excess volatility relative to trading volume. This is to be expected, if
the price jumps with little or no trading at the point of release, consistent with
the commonly observed dynamics around scheduled releases. The bid-ask spreads
widen and trading stalls just prior to the release. After the number is reported, the
quotes jump discretely in response to the news content, and only thereafter does
an avalanche of trading hit the market. In short, the public release of news at pre-
determined times allows the headline number to be incorporated into quotes prior
to any significant trading. Thus, modeling trading in the immediate aftermath
of announcements may require an adjustment for the fraction of return volatility
unrelated to order flow. Quantitatively, we find that the announcement-minute
variance is about 0.7 above the fitted line. This implies that it is only about twice
as large as during the same minute on normal days.

We conclude that, broadly speaking, the intraday invariance principle provides an
accurate description of the interdependencies among the market activity variables,
even around news releases, when the fluctuations are magnified greatly.19

19We have also confirmed that the results are qualitatively identical for the 9:00 macroeconomic
news releases, which include New and Existing Home Sales, the Housing Market Index, Consumer
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B. The Flash Crash

Figure 5 indicates that there is a major ITI outlier on the day of the flash crash.
Hence, the relationship likely fails rather decisively at some point during that par-
ticular day. This section illustrates that ITI, indeed, may provide a useful lens
through which to assess the stability of the market during the chaotic develop-
ments transpiring that day. Generating this type of insight should help us better
understand the dynamics behind other episodes of extreme market behavior.20
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Figure 12. The figure shows price P , volume V , volatility σ, and trade size Q on May 6, 2010. The

statistics are computed at a granularity of one minute. The solid vertical lines indicate the timing

of the flash crash.

The top left panel of Figure 12 depicts the price dynamics of the S&P 500 futures
on May 6, 2010. The vertical lines indicate the timing of the crash from 13:32 to
13:45 CT, as identified in the joint report by the CFTC and SEC (2010a,b). In the
morning, the market declined by about 3 percent amid rumors of a debt default
by Greece, elections in the U.K., and an upcoming jobs report in the U.S. From

Sentiment, and Business Inventories, among others. These results are available upon request.
20Kyle and Obizhaeva (2016b) include the flash crash in their discussion of market crashes

associated with the execution of large bets. Andersen and Bondarenko (2014, 2015) discuss
alternative early warning signs for market turbulence.
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13:40 to 13:45, prices first plummeted by 5.12% and then recovered by 5% over
the next ten minutes, after a pre-programmed circuit breaker within the CME
Globex platform halted trading for five seconds. Prices entered a free fall only
during the last minute of the event window. The crash was accompanied by record
trading volume and extreme realized volatility, as seen in Figure 12. This apparent
breakdown in the provision of market liquidity is obviously of great interest.

We now examine whether an ITI-type relationship was in effect during the crash.
Since the event lasted for less than an hour, the prior approach of averaging across a
large number of observations is infeasible, and we focus instead on a stricter impli-
cation of the underlying hypothesis. We assume that the invariant, log Idt , is iden-
tically and independently distributed, as stipulated in Section II.C, either in terms
of the raw statistic or after standardization for a time-of-day effect. We explore
these propositions by computing the average log Idt value over non-overlapping
four-minute intervals.21 Furthermore, we normalize them to obtain a zero mean
and unit variance version of the sequence, using observations for log Idt across all
days at the same point in time. We then simply assess the timing and extent of
ITI deviations by inspecting these intraday series for outliers.

The resulting realized values for the raw and standardized trading invariant
log Idt are displayed in Figure 13. For the standardized statistics on the right, we
observe three consecutive large outliers—exceeding 3 standard deviations each—
covering the minute including the five-second trading halt at the bottom of the
flash crash and the following eleven minutes.22 Thus, for the interval including the
brief trading halt and the subsequent two intervals, we find that the realizations
of log Idt, compared with the identical interval for the other days in the sample,
represent 100th, 99.9th, and 99.4th percentile events. In comparison, for the four-
minute interval ranging from five to one minute before prices bottomed out, the
value of log Idt corresponds to a 78th percentile event. In fact, prior to the three
large outliers, there were no observations of log Idt exceeding ±2 standard devi-
ations. In summary, the fluctuations in log Idt were contained within the typical
range both prior to the crash and during the time when prices dived, but it at-
tained extreme positive values at the exact time when the market collapsed and
then, after the five-second market break, as prices recovered swiftly.

How do we relate the breakdown in the ITI relationship, suggested by the con-
secutive outliers, to hypotheses regarding the cause of the collapse in liquidity
provision?

Menkveld and Yueshen (2015) document that the co-integrating relationship be-
tween the E-mini futures and the SPY ETF broke down one minute prior to the
trading halt and resumed about eight minutes afterwards. The three outliers in

21The four-minute block strikes a compromise between short blocks that adapt well to rapidly
changing market dynamics and long blocks that facilitate averaging out measurement errors.

22At 1:45:28 CT, the CME Stop Logic Functionality was triggered and the trading was paused
for five seconds to prevent a cascade of further price declines. When trading resumed at 1:45:33,
prices stabilized and shorty thereafter the E-mini began to recover.
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Figure 13. For May 6, 2010, this figure depicts the log invariant (left panel) and the log invariant

standardized to have zero mean and unit variance (right panel) at a 4-minute frequency. The red

lines in the left panel represent ±2 standard deviation bounds computed using observations across

all days. The solid vertical lines indicate the timing of the flash crash.

log Idt coincide with this diagnosis of market disruption. Several factors hampered
implementation of cross-market arbitrage. Margin requirements rose rapidly in
response to the spike in volatility, there were problems with connectivity across
trading platforms, and there was a general sense of confusion among market par-
ticipants.

Kirilenko et al. (2014) report (their Table II) that traders representing institu-
tional investors (Fundamental Buyers and Sellers) execute larger average trades
than those who intermediate the trading process. In the last few minutes prior to
the nadir of the crash, the participation rate of high-frequency traders increased,
but then dropped immediately as prices bottomed out (their Figure 6).

Combined, these findings suggest that the breakdown in arbitrage relationships,
occurring just as prices bottomed out, is associated with limited participation by
market makers and arbitrageurs. Since these intermediaries tend to execute small
orders, the average trade size rises, leading to unusually large realizations for the
invariant, log Idt. Hence, we conjecture the breakdown in the ITI relationship
reflects a sharp decline in intermediation relative to normal conditions. Notice
that this does not imply a breakdown in the invariance relationship based on
(large) bets, discussed by Kyle and Obizhaeva (2016a) and Kyle and Obizhaeva
(2016b), illustrating the difference between their theory and our high-frequency
ITI proposition.

C. The Cash Market Open and Close

We have argued that the ITI hypothesis provides a much better approximation to
the interaction among the volatility and trading processes in the S&P 500 futures
market than is feasible through the MDH theories. One primary reason is the
recognition that the trade size responds endogenously to the changes in volatility
and trading intensity across the daily trading cycle. Nonetheless, in Section VI.C,
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we also noted a systematic tendency for the ITI relationship to be violated when
the market transitions from one regional trading zone to another. In this section,
we assess the severity of this failure. During those transition phases, does it miss
qualitatively by predicting shifts in the trade size, that are opposite to the direction
of the actual changes? And quantitatively, how large are the actual deviation
between the predicted and observed trade sizes?

Given our basic ITI specification, we may express the implied average trade size
as a function of the expected volume and volatility, both of which we may estimate
as above, using the techniques developed in Section V.A. Specifically, from the ITI
relationship (4), and noting v = n+ q, we obtain the theory-implied trade size q∗t ,

(12) q∗t = c +
1

3
[ vt − st ] .

We identify the constant c via the (moment) condition, that the average implied
log trade size q∗t matches the sample average of the realized log trade size qt.

Figure 14 depicts the realized average log trade size qt and the corresponding
implied log trade size q∗t . The left panel shows that implied trade size generally
tracks the actual trade size very closely, confirming that ITI provides an accurate
account of how the average trade size responds to shifts in volume and return
volatility on a minute-by-minute basis.
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Figure 14. The left panel plots the empirical trade size qt and the implied trade size q∗t for each

one-minute interval t, averaged across all trading days in the sample. The right panel depicts the

prediction error qt − q∗t . The dashed vertical lines separate the three trading regimes.

A set of features of Figure 14 are noteworthy. First, the average log trade size
follows a distinct U-shaped pattern within each regime. The most striking devia-
tion from this pattern occurs from 1:00 to 2:00. Effectively, it represents a mixture
of Asian and European trading hours, due to a couple of institutional features.
One, there is no distinct opening time for European trading, as some exchanges in
continental Europe open at 1:00, while the venues in London open one hour later.
Two, the venues in Europe and America adhere to a summer time convention,
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whereas the major exchanges in Asia do not, thus further blurring the boundary
between Asian and European trading hours.

Second, in spite of the dramatic spikes in the trading volume and return volatil-
ity around the release of scheduled macroeconomic announcements, there are no
apparent outliers in average trade sizes at the typical times for those releases, such
as 7:30 and 9:00. This is consistent with the evidence in Section VII.A, that in-
traday trading invariance provides an excellent approximation to the interaction
among the market activity variables during announcement periods.

Third, the overall fit is excellent. The average trade size varies sixfold across the
trading day. The vast majority of this variation is captured by the ITI-implied
prediction involving a simple log-linear relationship based on the average trading
volume and return volatility. We are unaware of any alternative theory providing
comparable explanatory power for the systematic fluctuations in the transaction
size across the daily trading cycle.

Fourth, we observe large discontinuities, when market activity shifts from one
region to another. The trade size increases significantly when the European cash
markets open, and it increases even more as trading shifts away from Europe
and the U.S. cash markets open. In spite of the overall nice fit, there are clear
indications that the ITI is less accurate in these instances.

The actual deviations are hard to discern from the left panel of Figure 14, as the
close proximity of the predicted and observed trade sizes obscures the gap. Hence,
the right panel depicts the log prediction error qt−q∗t . Most of the errors fall in the
range ±10%. Since the typical trade size is less than 10 contracts, as documented
in Table 1, the average prediction errors amount to less than a single contract.

The right panel reveals the large discontinuity in trade size, when market activity
shifts from one region to another. The downward spikes at 1:00, 2:00 and 8:30
represent clear outliers, revealing that the actual trade sizes are lower than the
implied trade size, exactly at the time when an active regional cash market opens.
Notice that ITI, correctly in qualitative terms, predicts a sharp increase in the trade
size at these points but, systematically, the actual trade size jumps (quantitatively)
somewhat less than predicted. Likewise, ITI predicts a sharp increase in trade size
when trading transitions to a new regime, where the futures market is operating,
but the cash market is closed. As before, the directional prediction of ITI is
qualitatively correct but, in contrast to the case when the cash market is coming
on line, the actual trade size now jumps more than predicted. These effects are
visible at 15:00, as the U.S. cash market closes, and for the market opening at -7:00,
i.e., 17:00 the preceding day. These abrupt shifts in trade size pose an interesting
challenge for all theories of trade size.

Overall, we confirm our prior finding that the ITI provides a vastly superior
approximation to the dynamics of the trade size than the MDH theories. As a
striking illustration, we note that the jump in the number of transactions and
volume in the minutes prior to the close of the cash market at 15:00, of the order
of 300% and 200%, respectively, is accompanied by only a modest increase in
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return volatility; this is starkly at odds with either of the MDH specifications.
In contrast, ITI accommodates the majority of this effect through a simultaneous
sharp increase in the expected trade size.

In summary, at a qualitative level, the ITI hypothesis provides a truly impressive
fit to the intraday dynamics of trade size At specific times, however, a systematic
gap emerges between the predicted and actual trade sizes. The common trait,
characterizing negative versus positive outliers, is that the cash markets are just
opening for the former, while they are closed or closing for the latter. It suggests
that part of the explanation stems from the different population of active traders at
a given time. This reasoning is also consistent with the conjecture in Section VII.B
that the malfunctions during the flash crash were accompanied by a shift in the
proportion of intermediaries and arbitrageurs in the market. In other words, the
actual trade size may exceed the predicted one following the U.S. close and the
market opening at 17:00, because a relatively larger fraction of trades represent
institutional investors. The latter execute larger trades compared to market makers
and arbitrageurs, who trade frequently, but at small size.

We leave further investigation of why systematic deviations from the implied
trade size occur at the open and close of active cash markets as well as, possibly,
during certain longer stressful market episodes for future research.

VIII. Conclusion

The invariance properties of trading patterns in the E-mini S&P 500 are unexpected
and powerful results, which raise interesting challenges for empirical and theoretical
research in market microstructure. In particular, they highlight the importance of
viewing the high-frequency market environment through the lens of an equilibrium
involving the state of the primary activity variables. Since the discrepancy between
ITI and traditional MDH representations is most readily captured through the
notion of an endogenous trade size, we focused on the ability of ITI to mimic the
average transaction size in Section VII.C. However, the prior literature emphasizes
the correlation between market and return volatility, popularizing the notion of a
stochastic clock for the price process. Thus, to most effectively contrast our findings
to earlier work, we turn to this approach, exploring the ability of each hypothesis
to generate a homogeneous time scale for the volatility process.

We transform the estimated return volatility according to the business time clock
implied by the alternative high-frequency invariance theories. If a given represen-
tation is valid, it should produce a path for volatility bereft of systematic variation,
i.e., the volatility should be evolving at a steady pace in business time. The suit-
able transformation may be obtained straightforwardly from the MDH-V, MDH-N,
and ITI theories. Figure 15 depicts the time series for the actual (estimated) daily
realized volatility in the upper left panel, while the business-time transformed and
normalized log-volatility series according to the different hypotheses are provided
in the three other panels. Clearly, the MDH-V and MDH-N representations merely
generate a dampening of the underlying fluctuations in return volatility. They are
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Figure 15. Volatility computed using different stochastic clocks. Volatility is computed for each

trading day cumulating 1-min frequency observations. It is normalized to have mean 0.

not successful in eliminating the systematic variation in volatility over time, even
if it is evident that the MDH-N transformation has the more meaningful impact.
In contrast, the ITI panel in the bottom right panel has transformed volatility into
a largely invariant series, subject solely to homoskedastic shocks. The main devi-
ation from this pattern occurs around the financial crisis in 2008–2009, when the
innovations are larger, and there is a tendency for the discrepancies to be positive,
reflecting excess volatility relative to the ITI clock. Nonetheless, the improvement
is dramatic relative to the implied MDH clocks.

Figure 16 applies the same transformations to the volatility across the intraday
trading cycle. In this dimension, the MDH representations fail even more spec-
tacularly. If anything, the systematic diurnal pattern in volatility are exacerbated
by the MDH transformations. Clearly, the MDH failings are not linked to specific
event, but reflect a glaring inability to accommodate the joint intraday variation of
the activity variables in a consistent manner. In contrast, the ITI hypothesis again
provides a good fit, generating a near homogenous series across the full trading cy-
cle. Even so, minor systematic deviations are evident around the transition from
one regime to another. The positive errors at time −7:00 and 15:00 CT indicate
volatility exceeding the ITI prediction as the futures market is open, but related
cash markets are closed. In contrast, the negative outliers at 1:00 and 2:00 CT
as well as 8:30 CT correspond to times when the cash markets open in Europe
and U.S., and volatility is lower than ITI would imply. These specific features
were discussed at some length and motivate future research into the impact of a
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changing composition of active market participants during such transition points
in the trading day.

Figure 16. Volatility computed using different stochastic clocks. Intraday volatility is computed

at 1-min frequency and averaged across all trading days. It is normalized to have mean 0.

Despite the obvious importance of the S&P 500 futures market—often character-
ized as the primary location for price discovery in U.S. equities–it is of interest to
establish how universal our findings are. They could be an artifact of institutional
arrangements or other unique features of the E-mini futures market. Possibili-
ties include the large tick size, large contract size, tight integration with liquid
cash markets, important role of high-frequency traders, presence of specialized
automated trading algorithms, or specific features of the CME Globex matching
engine. Any novel insights along these dimensions would be informative for empiri-
cal market microstructure research. On the contrary, if intraday trading invariance
is a more universal phenomenon, then it speaks to deep structural issues related
to how trading in financial markets operates. For example, intraday trading in-
variance may be a characteristic of electronic platforms on which traders shred big
bets into many small orders, and it may also apply to non-electronic dealer mar-
kets in which bets are often executed as single trades. As such, intraday trading
invariance may provide a fruitful framework for analyzing a host of issues surround-
ing market organization, liquidity, functional operation, general trading motives,
and strategies. An empirical difficulty is the lack of a consistent recording of the
transaction size for the active market participant in most trading venues due to re-
porting conventions and the increasing fragmentation of trading across competing
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venues.23

From a theoretical viewpoint, our findings pose a difficult conceptual question.
Intraday trading invariance clearly reflects the spirit of the market microstruc-
ture invariance hypothesis, formulated for bet arrival rates and bet sizes. There
are theoretical models such as Kyle and Obizhaeva (2016a) consistent with that
hypothesis. Yet, trades are different from bets, traders usually shred bets into
multiple small trades, optimizing their strategies to control transactions costs, as
modeled in Kyle, Obizhaeva and Wang (2017).24 We note, however, that Kyle
and Obizhaeva (2017) suggest the combination of dimensional analysis, leverage
neutrality, and invariance may help to explain theoretically how order shredding
with restrictions on tick size and lot size might lead to intraday trading invariance.

In summary, the success of the invariance principle at the high-frequency level for
the S&P 500 futures raises intriguing possibilities to shed new light on the intrinsic
workings of modern financial markets. At a minimum, given the central position
of the E-mini futures trading for the functioning of global financial markets, the
issues raised pose a host of questions for future empirical and theoretical research.
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IX. Appendix

A. Inclusion of Price in an ITI-Style Representation

This section discusses the findings from a set of representative regressions that introduce the
price variation into the ITI hypothesis, inspired by the presence of P in the MMI specification.

As reported previously, variation in P is negligible for the regressions in Section VI.C, capturing
intraday variation. These regressions produce identical estimates for the slope coefficient, and
the overall fit is unchanged. The only difference arises for regressions exploring the time series
variation, as in Section VI.A. Table 6 provides results mirroring those in Table 2.

B. High-Frequency Data Included in the Analysis

The starting point is all one-minute observations available for the trading of E-mini S&P 500
futures contracts on the CME Group Globex platform. As described in Section III.A, our sample
covers January 4, 2008, to September 30, 2011. We use all observations within the continuous
trading session, initiated each Sunday through Thursday, and ranging from 17:00 to 15:15 CT
of the following day. Due to a few abbreviated trading sessions, light holiday-related trading
intensity, and occasional loss of the data dissemination, there are a few gaps in our series.

To obtain a balanced dataset, we adopt a conservative filtering procedure: we drop from the
sample an entire trading day if trading volume in any of the three regimes (Asian, European, or
American) is very low, defined as less than 1/3 of the regime’s average volume for the preceding
month. Most commonly, the low trading activity happens due to holidays or abbreviated trading
sessions. Overall, we discard 46 “irregular” trading days:

2008: 01/02, 02/04, 03/12-13, 03/24, 04/04, 06/12, 09/11, 11/03-04, 11/28, 12/11, 12/24, 12/26,
12/29, 12/31;

2009: 01/02, 03/12, 04/13, 06/11, 09/10, 09/14, 12/10, 12/24, 12/28-29, 12/31;

2010: 03/11, 04/05, 06/04, 06/10-11, 09/09, 11/26, 12/09, 12/10, 12/22-23, 12/27-29, 12/31;

2011: 03/10, 04/25, 06/09, 09/08.

The results are quantitatively very similar, if we adopt less aggressive filtering procedures.
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C. Additional Details on the Trade Size

Figure 17 reports additional evidence on the distribution of the trade size in our sample. The
heterogeneity is striking, with a large proportion of the transactions involving only a single or a
couple of contracts, as well as the non-trivial occurrence of large trades involving the transfer of
hundreds of contracts.
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Figure 17. The figure plots the proportion of trades with sizes Q = 1, Q ≤ 2, and Q ≤ 5 contracts

(left panel) and Q ≥ 200, Q ≥ 100, and Q ≥ 50 contracts (right panel) in blue, green, and red,

respectively. The proportions are computed at the granularity of one-minute. The dashed vertical

lines separate the three trading regimes.

D. Details on the Multiplicative Error Models

As in equation 6, we let Ỹτ denote the value of a strictly positive random variable, and stipulate
that the dynamics of Ỹτ is given by,

(13) Ỹτ = Yτ · Ũτ ,

where Ũτ is strictly positive and i.i.d. (1, σ2
U ). Equation (13) is a MEM model with Eτ−1[Ỹτ ] = Yτ

and V arτ−1[Ỹτ ] = Y 2
τ · σ2

U . The dependence structure is captured by the mean, Yτ , which is
unspecified and may incorporate complex temporal dependencies and seasonal patterns.

In this setting, we may construct simple unbiased estimators for σ 2
τ , Vτ and Nτ , subject to

standard regularity conditions, as long as the interval [τ −∆t, τ ] is sufficiently short so that the
intra-interval variation in the expected value is negligible. For volatility, we cumulate very high-
frequency squared returns from within the interval τ while, for the transaction variables, we rely
on the observed volume and transaction counts over the interval. Of course, sensible measures
require a minimum of market activity, so we discard the interval if any of these estimators is zero.
Hence, our tests involve only periods with a non-trivial degree of market activity.

Taking the logarithm of equation (13) and letting lower case letters denote the corresponding
logarithmic values, so, e.g., Eτ−1[ỹτ ] = yτ , we have,

(14) ỹτ = yτ + ũτ ,

where ũτ are i.i.d. random variables with mean E[log Ũτ ] and finite variance. The “innova-
tion” term ũτ is not centered, but has a negative mean, due to Jensen’s inequality, E[ũτ ] <

log
(
E[Ũτ ]

)
= 0. Importantly, however, the mean of ũτ is constant across τ , E[ũτ ] = c < 0.

Hence, equation (14) implies,

(15) ỹτ = yτ + c + ε̃τ ,
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where ε̃τ are i.i.d. random variables with zero mean and finite variance, while c denotes a generic
constant which will differ across the activity variables.

Equation (15) provides guidance for the construction of estimators amenable for inclusion in
log-linear regression-based tests. We construct unbiased estimators for the variables themselves,
which typically may be obtained through suitable sample averages over a short interval. The
logarithm of this sample average yields an estimator with an invariant bias which may be absorbed
into the constant term in regression tests. Such estimators are, however, very noisy due to
the presence of the sizable error term, ε̃τ , in equation (15). Below, we pursue the strategy of
mitigating the impact of measurement errors by averaging the estimator across a large number
of separate intervals, thus diversifying these errors.

Table 6—Time-series Regression of s− n+ 2p onto q

Panel A: 3 Regimes

Nobs c β se(c) se(β) R̄2

Asia 899 9.46 -0.68 0.238 0.141 0.208
Europe 899 8.70 -0.64 0.234 0.114 0.261

America 899 7.75 -0.56 0.685 0.260 0.135
Pooled 2697 11.15 -1.85 0.171 0.084 0.861

Panel B: 4 Years

Nobs c β se(c) se(β) R̄2

2008 708 10.94 -1.69 0.307 0.134 0.839
2009 723 11.28 -2.04 0.192 0.107 0.917
2010 711 11.76 -2.15 0.164 0.092 0.910
2011 555 11.04 -1.73 0.179 0.084 0.919

All 2697 11.15 -1.85 0.171 0.084 0.861

This table reports on OLS regressions of the form, sd,r − nd,r + 2pd,r = c + β · qd,r + ud,r. For
each day, there are three observations corresponding to the three regimes r = 1, 2, 3. In Panel A,
the coefficients, standard errors, and R̄2 statistics are estimated separately for each regime. In
Panel B, the data are pooled and the regressions are estimated separately for each calendar year,
and then for the whole sample. The last year ends on September 30, 2011. MDH-V, MDH-N
and ITI predict β = 1, β = 0, and β = −2, respectively.

First, we note that the results in Panel B, pooling the regime-day observations,
generate qualitatively similar conclusions to those in Table 2. In contrast, the
regime-specific regressions in the top three rows of Panel A lead to significantly
lower slope coefficients than the ITI value of −2, and the explanatory power of
the regression drops substantially. Hence, the inclusion of P does not appear
warranted. Nonetheless, for the pooled regression, which greatly enhances the
signal-to-noise ratio, the impact of the price variation is sufficiently blunted, that
the ITI relationship cannot be rejected. This is, of course, consistent with the
favorable results obtained for the pooled regressions in Panel B.


