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We examine invariance relationships in tick-by-tick transaction data in the U.S. stock market.

Over the period 1993–2001, monthly regression coefficients of the log of the trade arrival rate

on the log of trading activity have an almost constant value of 0.666, close to the value of

two-thirds predicted by market microstructure invariance. Over the 2001–2014 period, after

decimalization and the increasing use of electronic order matching systems and algorithmic

trading, the coefficients increase to about 0.79. The evidence suggests that changes in coeffi-

cients are due to increasing importance of minimum lots size in a world where algorithmic

traders split orders into tiny pieces.

Published by Elsevier B.V.

We examine the time-series and cross-sectional implications of the market microstructure invariance hypotheses, described

by Kyle and Obizhaeva (2016), for transaction frequencies and transaction sizes in the U.S. equity market. According to invari-

ance principles, trading in all securities is similar after accounting for differences in the flow of risk transfer among traders. The

empirical results show that predictions based on the invariance principles fit the data much better than alternatives, especially

for earlier years before algorithmic trading led to the extensive use of order splitting. Deviations from invariance benchmarks

may be attributed to market microstructure frictions related to institutional details such as minimum tick size and minimum

lot size.
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Regardless of the nature of the security and absent institutional frictions, trading in securities markets may be modeled

as the same trading game, played at different speeds for different assets. Asset managers place bets or meta-orders, which

approximately represent uncorrelated decisions to buy or sell specific numbers of shares; the arrival times of bets are random.

Each bet of institutional size may be executed as a sequence of many smaller orders submitted milliseconds apart. The expected

arrival rate of new bets determines the pace of business time in each market. Trading in liquid securities occurs at fast speeds,

with new bets arriving over short horizons, perhaps only a few seconds or minutes. Trading in illiquid securities takes place

slowly, with new bets arriving over longer horizons, perhaps a few days or even months.

Market microstructure invariance has useful practical applications. Invariance suggests a parsimonious characterization of

how different securities trade. It generates operational time-series and cross-sectional predictions for many variables; it helps

to understand transaction costs, trading volumes, trade counts, and trade sizes. For practitioners, models based on invariance

principles allow analysts to develop transaction cost models for securities for which data are limited or unavailable. For regula-

tors and practitioners who design markets, invariance makes it possible to predict market activity for securities that have not

yet traded and to assess effects of contemplated fees and other market frictions on trading and liquidity.

Trade counts and trade sizes are predictable based on dollar volume and returns variance. Since the predictions are consistent

with market microstructure invariance, our results increase confidence in the invariance hypothesis.

The invariance hypotheses imply that the dollar risks transferred by bets and the dollar costs of executing bets are the same

across markets when measured per unit of business-time, which corresponds to the expected arrival rate of bets. Invariance

implies a specific decomposition of the order flow. Let trading activity be a measure of aggregate risk transfer in calendar time,

defined as the product of chronological (daily) dollar volume and chronological (daily) return volatility. Then, in frictionless

markets, invariance implies that the number of bets (per day) is proportional to the two-thirds power of trading activity, and the

distribution of bet sizes as a fraction of (daily) volume is inversely proportional to the two-thirds power of trading activity. Kyle

and Obizhaeva (2016) provide empirical evidence in favor of the invariance hypothesis using a sample of portfolio transitions

as proxies for bets.

We extend the invariance principle from bets (or meta-orders) to transactions (or prints) resulting from executing bets as

small pieces over time in different trading venues. If one assumes that each bet is split into some number of trades, and this

number of trades is approximately the same across time and assets, then the exponents of two-thirds will show up in the

relationships between trades and trading activity as well. These predictions are then tested for the number of trades and the

distribution of trade sizes in the Trades and Quotes (TAQ) dataset, which contains tick-by-tick transactions over the period

1993–2014 for the stocks listed in the U.S. market, and compared with the fit of predictions generated by alternative models.

The empirical results supplement previous findings because they are based on a much broader sample of all publicly reported

transactions in the U.S. stock market, rather than a small subset of transactions related exclusively to portfolio transitions. This

advantage comes at the expense of having to deal with transaction data affected by order splitting practices, intermediation,

market frictions, and institutional features of trading and trade reporting.

Over the 1993–2001 subperiod, a time series of month-by-month cross-sectional regression coefficients of the log of trade

arrival rates on the log of trading activity shows that the estimated coefficients remained virtually constant. The estimated

coefficient of 0.666 is indeed strikingly close to the benchmark invariance prediction of two-thirds. After 2001, the monthly

estimates increase from about 0.690 in 2001 to about 0.77 in 2014; this breakdown in the invariance relationships is both

statistically and economically significant. The evidence suggests that changes in fit in the recent period are due to the increasing

importance of minimum lots sizes in a world in which algorithmic traders split their orders into many pieces. Our results also

indicate further changes in trends in 2008–2009; identifying why these changes occurred is left for future research.

For the years 1993, 2001, and 2014, the empirical distributions of logs of scaled print sizes for stocks sorted into ten dollar-

volume groups and four price-volatility groups tell a similar story. In 1993, consistent with invariance, all 40 empirical distri-

butions resemble a bell-shaped normal density function with common mean and variance across the forty subgroups. In 2014,

the shape of the distributions looks much less like the shape of a normal distribution than in 1993. Furthermore, average scaled

trade sizes decreased during the 1993–2014 period by a factor of about 7. The results clearly reject the hypothesis that scaled

trade sizes are distributed as a common log-normal random variable. The rejection arises due to clearly visible microstructure

effects related to tick size, censoring of trades at the minimum round-lot threshold, and clustering of trades at round-lot sizes

such as 100, 1,000, and 5000 shares. These results are consistent with the findings of Alexander and Peterson (2007) and O’Hara

et al. (2014).

Invariance principles explain a substantial fraction of the variation in trade arrival rates and average trade sizes across stocks,

especially in the first half of the sample.

Specifically, when the slope coefficient is restricted to be ±2∕3 as predicted by the invariance hypothesis and only intercepts

are estimated in separate month-by-month regressions, the time series of R2s fluctuates around 0.88. Glosten and Harris (1988)

find that average trade size (in shares) is negatively related to market depth. Brennan and Subrahmanyam (1998) regress average

trade sizes on return volatility, standard deviation of trading volume, market capitalization, number of analysts following a

stock, number of institutional investors holding a stock, and the proportion of shares institutional investors hold. Although

their samples of dependent variables are not exactly the same as ours, the R2 of 0.92 in their cross-sectional regressions with

multiple explanatory variables is only modestly larger than the average R2 of 0.88 in our regressions with coefficients fixed at

levels predicted by invariance. This small difference suggests that other variables offer only limited improvement in explanatory

power over the invariance hypothesis.

In practice, trade sizes and transaction counts may depend on structural issues such as tick sizes, on size-based secondary
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precedence rules, on fixed trade-ticket charges by clearing entities, and on minimum lot sizes that provide incentives to exe-

cute large trades. The unexplained time-series and cross-sectional variation in the variables of interest are likely to be related

to complex interactions between market frictions and stock characteristics, such as volume, volatility, and stock price. These

market frictions are studied by Harris (1994), Angel (1997), Goldstein and Kavajecz (2000), and Schultz (2000).

A new perspective on their results about market frictions comes from examining the data through the lens of the invariance

hypothesis. We introduce two new measures of frictions which take into account that trading games in different financial mar-

kets run at different speeds. We define effective price volatility as price volatility in business time. Effective tick size is defined

as the ratio of tick size to price volatility in business time. Effective lot size is defined as a ratio of lot size to a median bet or,

equivalently, to volume in business time. Both of these measures are closely related to effective price volatility in the U.S. equity

market, where tick sizes and lot sizes do not vary much across assets. In addition to the 88% of the variation in print arrival

rates and average print sizes explained by the invariance principle, an additional 4.5% and 5.5% can be attributed to variations

in effective price volatility during the 1993–2000 and 2001–2014 periods, respectively. Disentangling the effects of lot size and

tick size further is difficult because they operate in opposite directions. Yet, among the two main frictions, minimum lot size

seems to become more important and tick size seems to become less important after minimum tick size was cut to one cent in

2001.

Building theoretical microfoundations for the invariance hypothesis is an important issue. Kyle and Obizhaeva (2017a) show

that invariance predictions for bets can be derived in the context of a dynamic equilibrium infinite-horizon model with informed

trading, noise trading, market making, endogenous production of information, and linear market impact. The key assumptions

in the model is that each informed trader must pay some cost for generating a bet, and this cost is the same across time periods

and traders. Kyle and Obizhaeva (2018a) and Kyle and Obizhaeva (2018b) clarify that invariance predictions for bets come from

several generic properties of theoretical models rather than specific modeling details. Building a theoretical model delivering

invariance predictions for trades is difficult because it requires modeling how traders strategically break bets into peices for

execution over time, for example, along the lines of Kyle et al. (2018). Yet, invariance predictions for trades can be justified using

the approach of Kyle and Obizhaeva (2017b), which is based on dimensional analysis, leverage neutrality, and a bet-invariance

assumption.

In the remainder of the paper, we provide the implications of the invariance hypothesis for transaction sizes and counts,

discuss the design of our empirical tests and institutional details related to microstructure of trading, present our results, and

examine the effects of market frictions.

1. Testable implications of the invariance hypothesis

In this section, we review the empirical hypothesis of market microstructure invariance developed by Kyle and Obizhaeva

(2016, 2017a,b), show how to apply the hypothesis to transaction frequencies and transaction sizes in the TAQ dataset, and

briefly discuss alternative hypotheses.

An invariance hypothesis. According to market microstructure invariance, trading in all assets is similar after accounting for

differences in the flow of risk transfer among traders, which measures business time. Asset managers buy and sell securities by

placing bets that represent decisions to acquire long-term positions of a specific size, distributed approximately independently

from other such decisions. Intermediaries with short-term trading strategies clear markets by taking the other side of bets. The

same trading game is played at a fast pace in active, liquid markets and at a slow pace in inactive, illiquid markets. The expected

arrival rate of bets determines the speed of business time in each market.

Suppose bets arrive at an expected rate of 𝛾 it bets per day and their sizes are random variables Q̃it shares for asset i at time t.

The random variable Q̃it has a zero mean; positive values represent buying, and negative values represent selling. Let Vit be the

expected daily share volume per day. This variable is equal to the product of the expected number of bets per day 𝛾 it and their

average size E[|Q̃ it|], adjusted for an intermediation multiplier 𝜁 it:

Vit =
𝜁it

2
· 𝛾it · E[|Q̃ it|]. (1)

Total volume is divided by the factor 2 because each unit of volume has both a buy side and a sell side.

The parameter 𝜁 it in equation (1) measures short-term intermediation trading by market makers, high-frequency traders,

and other arbitragers who intermediate among long-term bets. Intuitively, it reflects the typical length of intermediation chains

in the market; the longer the intermediation chains, the larger the 𝜁 it . No intermediation implies 𝜁 it = 1. If each bet is interme-

diated by a single market maker, similar to a New York Stock Exchange (NYSE) specialist intermediating every bet in the market,

then 𝜁 it = 2. If each bet is intermediated by two market makers, who lay off positions trading with one another, similar to

NASDAQ dealers in the early 1990s, then 𝜁 it = 3. If each bet goes through the hands of multiple short-term intermediaries

before finding its place in portfolios of long-term traders, then 𝜁 it > 3.

Let Wit denote daily trading activity, an aggregate measure of risk transfer per day. Let Pit be the price in dollars per share

and 𝜎it be returns daily volatility. Then, trading activity Wit is defined as the product of returns volatility 𝜎it and expected dollar

volume Pit · Vit per day:

Wit = 𝜎it · Pit · Vit. (2)
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Plugging equation (1) into equation (2) yields another equation for trading activity:

Wit =
𝜁it

2
· 𝜎it · Pit · E[|Q̃ it|] · 𝛾it. (3)

This equation shows that trading activity Wit , which is easy to calculate from the data on prices and trading volume, can be

decomposed into the product of much less readily obtainable characteristics such as expected bet arrival rate 𝛾 it and average

bet size E[|Q̃ it|]. The invariance principle helps to predicts how these characteristics 𝛾 it and E[|Q̃ it|] vary across markets with

different levels of trading activity Wit .

According to market microstructure invariance, the dollar risks transferred by bets per unit of business time 1∕𝛾 it are the

same across assets and time. More specifically, the random variable Ĩit , defined as

Ĩit ≔
Pit · Q̃ it · 𝜎it

𝛾1∕2

it

d
= Ĩ, (4)

has an invariant probability distribution denoted Ĩ. Here, the risk transferred by a bet Q̃ it per unit of business time is equal to the

product of its dollar size Pit · Q̃ it and returns volatility per unit of business time 𝜎it · 𝛾
−1∕2

it
.

Take the expectation of equation (4) and use the result to eliminate 𝜎jt · Pjt · E
[|Q̃ jt|] in equation (3) to obtain the following

testable prediction concerning how expected bet arrival rate 𝛾 it varies with trading activity Wit:

𝛾it = 𝜇𝛾 · W
2∕3

it
. (5)

Divide the absolute value of equation (4) by equation (2) and plug in 𝛾 jt from equation (5) to obtain an analogous prediction for

bet size:

|Q̃ it|
Vit

d
= 𝜇q · W

−2∕3

it
· |̃I|. (6)

The parameters 𝜇𝛾 and 𝜇q depend on the volume multiplier 𝜁 it and moments of random variable |̃I|.3 In these equations, the

distribution of the random variable Ĩ is approximately the same across assets and time. In what follows, we make an identifying

assumption that the volume multiplier 𝜁 it is also somewhat constant, and therefore 𝜇𝛾 and 𝜇q do not have indices i and t. Of

course, in reality the volume multiplier 𝜁 it may change over time and assets. As we discus later, this variation might explain the

difference between our results for samples before and after the year 2000.

Equations (5) and (6) imply that when expected bet arrival rate 𝛾 it is scaled by W
−2∕3

it
and all of the percentiles of the distri-

butions of bet sizes |Q̃ it|∕Vit are scaled by W
2∕3

it
, the results are constanacross markets and time. In line with these predictions,

Kyle and Obizhaeva (2016) find that the distributions of logs of scaled portfolio transition orders, (2∕3) · ln(Wit) + ln(|Qit|∕Vit),
which can be thought of as proxies for bets, are all similar to a normal distribution with log-variance of 2.53.

Equations (5) and (6) characterize the flow of bets into the markets with different trading activity Wit . Differences in trading

activity come from both differences in average bet sizes and differences in expected bet arrival rates. For example, if 𝜁 it and Ĩ are

indeed constant, then—fixing returns volatility 𝜎it—it follows that a 1% increase in trading activity Wit comes from an increase

by two-thirds of 1% in the expected bet arrival rate 𝛾 it and an increase of one-third of 1% of the scaling of the entire distribution

of unsigned bet sizes Pit|Q̃ it|. This is also equivalent to a downward shift by two-thirds of 1% in the distribution of unsigned bet

sizes as a fraction of share volume, |Q̃ it|∕Vit .

Kyle and Obizhaeva (2016) also discuss an invariance hypothesis related to transaction costs. In this paper, we focus only on

order flow and leave testing the implications for market impact and bid-ask spreads for future research.

Invariance implications for TAQ print data. The TAQ dataset reports transaction prices and share quantities for all trades in

stocks listed in the United States from 1993 to 2014. Each report of a trade execution is called a “print.” We test implications of

the invariance hypothesis using data on TAQ print sizes and the number of TAQ prints recorded per day.

Testing invariance in this way is not straightforward because prints are different from bets. One bet may generate multiple

prints. To minimize transaction costs, traders often break bets or meta-orders into smaller pieces—as documented in Keim and

Madhavan (1995), among others—and execute them at several venues, trading with multiple counterparties at multiple prices.

Let X̃it denote the number of shares in a single print for asset i and at time t. Let 𝜉it the number of prints into which each bet

is broken. Then, the distribution of print sizes X̃it differs from the distribution of bet sizes Q̃it by a factor 𝜉it:

X̃it =
|Q̃ it|
𝜉it

. (7)

3 The specific parameter values are𝜇𝛾 = 𝜇𝛾,it ≔ E
[
𝜁it

2
· |̃I|]−2∕3

and 𝜇q = 𝜇q,it ≔ E
[
𝜁it

2
· |̃I|]−1∕3

, where the subscripts i and t can be dropped under the assump-

tion made below that 𝜁 it is constant across time and assets.
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Let Nit denote the expected number of prints per day for asset i at time t. Each bet Q̃it results on average in 𝜉 it prints, and

its execution inflates trading volume by a factor of 𝜁 it∕2 due to induced intermediation volume. Thus, the expected number of

prints Nit differs from the expected number of bets 𝛾 it by a factor of 𝜉it · 𝜁 it∕2:

Nit = 𝜉it ·
𝜁it

2
· 𝛾it. (8)

Using predictions (5) and (6) for the number of bets and their sizes, one obtains similar testable implications for the number

of prints and their sizes with the exponents 𝛼n = − 𝛼x = 2∕3:

Nit = 𝜇n · W
𝛼n

it
, (9)

|X̃it|
Vit

d
=𝜇x · W

𝛼x

it
· |̃I|. (10)

The values of the exponents 𝛼n and 𝛼x may be different 2/3 under alternative hypotheses introduced below. The proportionality

coefficients 𝜇n and 𝜇x depend on the volume multiplier 𝜁 it , the order-splitting multiplier 𝜉 it , and moments of |̃I|.4
As a benchmark for interpreting our results, we make two identifying assumptions. First, assume that a constant order-

splitting multiplier 𝜉 exists such that 𝜉 it = 𝜉 for any asset i and time t. Second, assume that a constant volume multiplier 𝜁
exists such that 𝜁 it = 𝜁 for any asset i and time t. For simplicity of exposition, results may be interpreted under the identifying

assumptions that 𝜉 = 1 and 𝜁 = 2. This case would correspond to the hypothesis that each bet is executed as one print against

a single intermediary and makes 𝜇n and 𝜇x in equations (9) and (10) constant across markets with no indices i and t. These

predictions can be written in the form of regressions.

In actual markets, parameters 𝜉 and 𝜁 may vary in cross-section and time-series. In practice, the order-splitting multiplier

𝜉 depends on specific details of order-splitting algorithms used by traders—as modeled by Almgren and Chriss (2000) and

Obizhaeva and Wang (2013)—and it may potentially vary across stocks in a complex and systematic manner that depends on

bet size, tick size, lot size, and perhaps other factors. For example, tiny orders may be executed as one print and gigantic orders

may be executed as thousands of small prints. The amount of intermediation may also fluctuate with volatility, trading volume,

and other factors. We discuss these microstructure issues in detail later.

Two alternative hypotheses. We also consider two alternative hypotheses about trading processes that make different predic-

tions about the implied exponents 𝛼n and 𝛼x in equations (9) and (10).

The first alternative hypothesis, invariance of print frequency, asserts that the expected number of prints is the same for all

stocks, implying 𝛼n = − 𝛼x = 0 in equations (9) and (10). If returns volatility is approximately the same across markets, this

hypothesis implies that the number of prints is constant across markets, and only their average dollar sizes change. Of course,

this hypothesis is empirically unrealistic; actively traded stocks are well-known to have more prints than inactively traded

stocks. This benchmark is interesting because the illiquidity measure of Amihud (2002)—the empirical application of the notion

that illiquidity is the price response per dollar traded on a percentage basis—is implicitly based on the assumption that the

standard deviation of order imbalances is proportional to trading volume. This assumption holds only if the number of bets is

constant across markets and time, as stated in the first alternative hypothesis.5

The second alternative hypothesis, invariance of print sizes, asserts that the number of prints is proportional to trading activity,

implying that 𝛼n = − 𝛼x = 1 in equations (9) and (10). If returns volatility is approximately the same across markets, this

hypothesis implies that average dollar sizes of prints are constant across markets, and only their number per day changes.

Related models are discussed in Tauchen and Pitts (1983), Harris (1987), Jones et al. (1994), Hasbrouck (1999), and Ané and

Geman (2000), among others.

Although extreme, these two hypotheses provide convenient benchmarks for thinking about the relationship between invari-

ance and the literature on print sizes and print frequencies.

Institutional details related to the microstructure of TAQ data. Although we make the identifying assumptions that the order-

splitting multiplier is constant (𝜉it = 𝜉) and the volume multiplier is constant (𝜁 it = 𝜁), we do not expect these assumptions

to perfectly describe the U.S. equity market. Instead, these assumptions generate benchmarks that can be used to evaluate the

economic significance of various institutional arrangements related to tick size, lot size, and intermediation.

Changes in institutional arrangements in the U.S. equity market may have affected the order-splitting multiplier 𝜉 it and

volume multiplier 𝜁 it over the 1993–2014 sample period. If these multipliers changed through time, they affected only the

4 Specific parameter values are𝜇n = 𝜇n,it ≔ (𝜉it · 𝜁it∕2) · E
[
𝜁it

2
· |̃I|]−2∕3

and𝜇x = 𝜇x,it ≔ 𝜉−1
it

· E
[
𝜁it

2
· |̃I|]−1∕3

, where the subscripts i and t can be dropped under

the assumption below that 𝜉 it and 𝜁 it are constant across time and assets.
5 Amihud (2002) defines an illiquidity measure as the ratio of the absolute value of daily returns |r| to daily dollar volume V · P. This measure can be thought

of as an empirical proxy for the market impact parameter 𝜆 in Kyle (1985), scaled by P2 to represent the percentage price change per dollar traded. The value

of 𝜆 is equal to the ratio of fundamental volatility 𝜎v to the standard deviation of order imbalances 𝜎u , and also scaled by P2 to represent the percentage price

change per dollar traded. The absolute value of daily returns |r| in the numerator of the Amihud illiquidity ratio is a good proxy for a theoretical variable 𝜎v∕P.

The daily volume V · P in the denominator of the Amihud ratio is a reasonable proxy for a theoretical variable 𝜎u · P only if the number of bets 𝛾 executed per

day is constant across time and assets. While equations for share volume V · P = 𝛾 · |Q| · P and the standard deviation of order imbalances 𝜎u · P = 𝛾1/2 · |Q| · P

show that V · P is proportional to 𝜎u only when 𝛾 is constant, our tests reject the hypothesis of invariant print frequencies.
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constant terms in equations (9) and (10), when expressed as OLS regressions, and not the slope coefficients on trading activity

Wit . If these multipliers are correlated with trading activity, they induce omitted-variable bias.

Progress in computing technology and regulatory changes have significantly affected trading. The degree of order splitting

varies with order size, ticker symbol, prices, and time. Our results imply that less order splitting occurred in the earlier part of

our sample, and large bets may result in more prints than small bets in the later part of our sample.

At the NYSE in the early 1990s, traders typically executed large bets as block trades in the “upstairs” market, in which case

at least one side of a reported block trade might correspond precisely to a bet. Prior to the changes in order handling rules in

1997, NASDAQ dealers often took the other side of entire bets because customers themselves could not place their own orders

into a central limit order book, and NASDAQ dealers were unhappy if customers “bagged” them by dumping many blocks into

the market one after another. As the use of the NYSE’s Direct Order Transfer (DOT) system became more commonly used by

professional traders in the 1990s, the use of electronic order submission strategies and order splitting increased. For NASDAQ

stocks, this practice accelerated after new order handling rules were implemented in the late 1990s. Splitting was therefore

more significant in the first half of our sample (2001–2014) than in the second half (1993–2000).

Another important market friction is tick size. In May and June of 1997, the major U.S. stock exchanges reduced tick sizes

from 12.5 cents (1∕8 of a dollar) to 6.25 cents (1∕16 of a dollar). Before that, tick sizes were also reduced for some subsamples

of stocks. In September 1992, the AMEX reduced tick sizes from 1∕8 of a dollar to 1∕16 of a dollar for stocks priced under five

dollars. In 1995, NASDAQ stocks with bid quotations at or above ten dollars per share were traded with tick sizes of 1∕8 of a

dollar, and NASDAQ stocks with bid quotations below ten dollars per share were traded with tick sizes of 1∕32 of a dollar, as

mentioned in Bessembinder (2000).

In 2001, the tick size was further cut from 6.25 cents (1∕16th of a dollar) to one cent. As a result, some quoted bid-ask spreads

decreased, and fewer shares were shown at the best bid and best offer. Traders used electronic interfaces to place scaled limit

orders of small size at adjacent price points separated by one cent, and this led to smaller print sizes for bets of the same size.

Regulation National Market System (NMS), introduced in 2005, further encouraged market fragmentation and competition

among multiple trading venues based on speed and efficiency of electronic interfaces, which led to significant order shred-

ding across both time and trading venues. Over the period 2001–2014, continued improvements in computer technology have

widened the use of electronic order handling systems and have made it practical to shred bets for many thousands of shares

into tiny pieces of 100 shares or fewer.

Several institutional details associated with trade reporting may have further influenced the magnitude of order splitting

parameter 𝜉:

∙ Traders shred bets to hide their sizes, and this order splitting is likely to depend on the price level because prices affect the

dollar value of a 100-share trade. Thus, splitting may depend more on the dollar value of a trade than the number of shares

traded.

∙ Larger bets are likely to be matched against multiple bets of smaller sizes, possibly resulting in disproportionably more TAQ

prints for larger bets than for smaller ones.

∙ “Tape shredding” affects trading patterns. As suggested by Caglio and Mayhew (2016), large orders may be broken up into

more trades than small orders to generate additional revenue from sales of consolidated trade and quote data.

∙ The number of prints per order and their sizes may depend upon details of the procedures exchanges use to report transac-

tions. Exchanges may report transactions either from the perspective of the active party placing the executable order or the

passive party whose limit orders were executed. Sometimes the rules of reporting are asymmetric across buy and sell orders

as well as across different trading venues and time periods.

∙ During the sample period, odd-lot transactions were executed through a separate odd-lot trading system, and these small

trades were not reported for dissemination on the consolidated tape, as discussed by O’Hara et al. (2014).

∙ Although traders may have increasingly shredded orders into “odd lots” of fewer than 100 shares, some traders probably

resist splitting orders into numerous odd lots.

∙ Under NYSE Rule 411(b), broker-dealer member firms are obligated to consolidate a customer’s odd-lot orders if the share

amount of such orders exceeded 100 shares; brokers-dealer member firms could combine (or “bunch”) multiple odd-lot

orders from different customers after prior approval. Other exchanges had similar provisions and brought enforcement cases

against member firms that did not comply with those rules.

∙ Buy and sell orders are treated asymmetrically. According to the Consolidated Tape Association (CTA), the exchanges are

required to collect and report last sale data (CTA Plan (1992) Section VIII). At the NYSE, for example, the member represent-

ing the seller has the obligation to report the trade. Because the rules required reporting of “sales” and not “trades,” order

splitting may be intrinsically more important for intended buy orders than intended sell orders.

The volume multiplier most likely also varies with intended order size, ticker symbol, and time. In 1993, the volume mul-

tiplier was probably larger for orders traded on NASDAQ than for orders traded on the NYSE. Atkyn and Dyl (1997) claim that

because NASDAQ dealers were either buyers or sellers in almost every trade on NASDAQ, the NASDAQ trading volume was

inflated by at least a factor of 2 relative to the number of trades actually occurring between end investors. Over time, these pat-

terns may have changed, as dealers’ participation rates in trade facilitation has decreased and trades from other trading systems

have begun to be reported on the consolidated tape through the NASDAQ system.



7A.S. Kyle et al. / Journal of Financial Markets 49 (2020) 100513

Technological developments have most likely increased the amount of intermediation in securities markets during

2003–2014. The number of TAQ prints has soared because of order splitting and intermediation by high-frequency traders,

who now account for a significant share of trading volume, as described by Chordia et al. (2011) and Hendershott et al. (2011).

For example, Kirilenko et al. (2017) find that high-frequency traders account for more than 30% of stock index futures trading

volume but hold their inventories for only a few minutes. Smaller print sizes could also be the result of a larger number of

liquidity suppliers providing the same aggregate size using smaller orders.

Another important market friction for the extent of intermediation is the tick size. The primary channel by which tick size

influences trade sizes is by increasing the value of secondary precedence rules. When the secondary precedence rules are impor-

tant, market makers may submit substantial size to obtain precedence for larger portions of their orders than they would if the

secondary precedence rules were not important. Changes in tick size affect trading decisions by changing incentives to provide

liquidity and shred orders, as discussed in Harris (1994). When volatility is high and stock price is high, the tick size is small

relative to a typical day’s trading range, and better opportunities thus exist for order splitting and intermediation. Although

firms can implement stocks splits to adjust percentage tick sizes, these adjustments occur infrequently and with long time lags,

as noted by Angel (1997).

2. Data

We use the NYSE TAQ database, which contains trades and quotes reported on the consolidated tape by each participant in

the Consolidated Tape Association (CTA) for all stocks listed on all exchanges during the entire 1993–2014 sample period. The

data are accessed through Wharton Research Data Services (WRDS).

2.1. Data description

Because we do not attempt to sign trades as buys (positive) or sells (negative) based on whether they are executed at the bid

or ask price, our analysis employs only data on trades, not quotes. For each trade, the dataset contains the time, exchange, ticker

symbol, number of shares traded, execution price, trade condition, and other parameters. There are about 50 billion records,

with the number of data entries exponentially increasing over time from over 5 million records per month in 1993 to over 400

million records per month in 2014.

We transform the very large raw data files into a smaller dataset. First, bad records are removed using standard filters. The

TAQ database provides information about the quality of recorded trades using condition and correction codes. We eliminate

prints with condition codes 8, 9, A, C, D, G, L, N, O, R, X, Z or with correction codes greater than 1. The correction code 8 indicates,

for example, that the trade was canceled.

Second, the remaining prints are aggregated in a specific way to reduce the size of the data set while preserv-

ing information about the monthly distributions of trade sizes. For each ticker symbol and each day, each print is

placed into one of 55 bins constructed based on the number of shares traded. Letting X denote the size of a print in

shares, “even” bins correspond to prints of the following exact “even” sizes of X = 100, X = 200, X = 300, X = 400,

X = 500, X = 1, 000, X = 2, 000, X = 3, 000, X = 4, 000, X = 5, 000, X = 10, 000, X = 15, 000, X = 20, 000, X = 25, 000,

X = 30, 000, X = 40, 000, X = 50, 000, X = 60, 000, X = 70, 000, X = 75, 000, X = 80, 000, X = 90, 000, X = 100, 000,

X = 200, 000, X = 300, 000, X = 400, 000, and X = 500, 000 shares. “Odd” bins correspond to prints with trade sizes X

between adjacent even bins—that is, X < 100, 100 < X < 200, …, 400, 000 < X < 500, 000, and 500, 000 < X. Note that

the size of bins grows approximately at a log-rate. Prints with even sizes are considered separately because trades tend to cluster

in round-lot sizes.

The result is a much smaller dataset storing the number of trades by day, ticker symbol, and bin. To simplify the subsequent

analysis, we make the approximate assumption that the assumed average print size in a bin (in shares) is equal to a midpoint

of that bin. If print size is larger than 500,000 shares, we assign it to the 55th bin and assume its size to be 1,000,000 shares.

This simplified aggregation makes it possible to capture the most important properties of print-size distributions while imple-

menting our analysis efficiently. The convenience comes, however, at the expense of introducing some additional noise, which

may slightly affect results. As a robustness check in the Appendix, we present the results of our tests for different percentiles

for three periods: April 1993, April 2001, and April 2014 for the data aggregated by bins in Table A.7 and for the raw data in

Table A.8; all results are quantitatively similar to each other. Also, Table A.17 shows that the dollar volume computed from the

aggregated data and the raw data are very similar to each other for all bins; Table A.18 provides further results.

For each day and each ticker symbol, the small database also stores the open price; the close price; the number of trades

per day; the dollar volume per day; the share volume per day; the close-to-close return; and the volatility, defined as the daily

standard deviation of returns over the past 20 trading days from the TAQ data.

We use the data collected for each stock, each size bin, and each day to average the frequency distributions of scaled print

sizes and to construct an empirical distribution of print sizes (in shares) for each stock and each month in the sample. Aggre-

gation by month makes it possible to build better empirical approximations to theoretical distributions of bet sizes, given that

many inactively-traded stocks have very few daily prints.

In addition to calculating the average number of prints per day, we calculate several statistics describing the possibly com-

plicated shape of the distribution of print sizes. We consider the average print size and various percentiles of trade-size distri-

butions. We refer to these percentiles as trade-weighted percentiles. For example, the xth trade-weighted percentile corresponds
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to a print size such that prints with sizes below this threshold constitute x% of all prints for a given stock in a given month. Note

that trade-weighted percentiles effectively put the same weight onto prints of different sizes, which tends to emphasize small

trades. For example, if the sample contains 99 prints of 100-share lots and one print of 100,000 shares, then the distribution of

print sizes is mostly concentrated at the 100-share level. All trade-weighted percentiles below the 99th percentile are equal to

100 shares. The total trading volume and average print size, however, are largely determined by one big print of 100,000 shares.

Because large trades are economically more important than small trades, we also investigate the right tail of print-size distri-

butions in more detail by examining volume-weighted percentiles based on trades’ contributions to total volume. The contribution

to the total volume by trades from a given print-size bin is calculated based on its midpoint.

The volume-weighted distributions give the percentage of trading volume resulting from prints of different sizes. The xth

volume-weighted percentile corresponds to a trade size such that trades with sizes below this threshold constitute x% of total

trading volume. In the example in the previous paragraph, percentiles 1–9 are 100 shares and percentiles 10–99 are 100,000

shares.

We report empirical results for both trade- and volume-weighted distributions. Of course, if we know a trade-weighted

distribution of print sizes, then we can easily calculate a volume-weighted distribution as well. For the purpose of comparing

trade-weighted and volume-weighted distributions, the log-normal is a useful benchmark. One can show (using a change in

probability measure) that if the log of trade-weighted print size is distributed as  (𝜇, 𝜎2), then the log of volume-weighted

print size is distributed as  (𝜇 + 𝜎2, 𝜎2). The only difference between the two distributions is the shift in mean; the log-

variance remains the same.

To acquire share and exchange codes for stocks in our sample, the monthly data are matched with the Center for Research

and Security Prices (CRSP) data, which is accessed through WRDS. Only common stocks listed on the NYSE, AMEX, and NASDAQ

from 1993 through 2014 are included in our study. Stocks that had splits or reverse splits in a given month are eliminated from

the sample for that month. For each stock and each month, using the TAQ data, we compute average daily volume (in dollars

and in shares), average price, and the standard deviation of close-to-close daily returns.

As robustness checks, we also rerun our tests for two alternative measures of daily returns volatility. First, we use an ARCH(5)

model to predict one-day ahead volatility. Second, we compute daily volatility by using the standard deviation of the 5-day log

return cumulative from the previous 50 trading days. In both cases, the average daily volume is also recalculated over the same

corresponding trading window (5-day or 50-days) as volatility for consistency. We convert daily volatility and daily volume

measures to monthly numbers by averaging them within the month. As a robustness check, we also implemented our tests on

the data aggregated over annual frequency rather than monthly frequency. Tables A.9, A.10, A.11, and A.12 report the robustness

results for volatility estimations, elimination of 10-share stocks, and annual data aggregation. These results are very similar to

our main results.

In Table A.19 and Figure A.13 in the Appendix, we also present our results for alternative measures of volatility adjusted for

tick size following Harris (1990). The results remain quantitatively similar.6

Our final sample includes 1,383,857 stock-month observations, covering on average about 5262 stocks for each of the 263

months between February 1993 and December 2014.

2.2. Descriptive statistics

We present descriptive statistics in Table 1. Panel A reports statistics for the 1993–2000 subperiod. Panel B reports statistics

for the 2001–2014 subperiod. Statistics are calculated for all securities in aggregate, as well as separately for 10 groups of stocks

sorted by average dollar volume. Instead of dividing the securities into 10 deciles with the same number of securities, volume

break points are set at the 30th, 50th, 60th, 70th, 75th, 80th, 85th, 90th, and 95th percentiles of dollar volume for the universe

of stocks listed on the NYSE with CRSP share codes of 10 and 11. Group 1 contains stocks in the bottom 30th percentile. Group

10 contains stocks in the top 5th percentile. Group 10 approximately covers the universe of S&P 100 stocks. The top five groups

approximately cover the universe of S&P 500 stocks. Smaller percentiles for the more active stocks make it possible to focus on

the stocks that are the most economically important. For each month, the thresholds are recalculated and stocks are reshuffled

across groups.

Summary statistics before 2001. Panel A of Table 1 reports statistical properties of securities and prints in the sample before

2001. For the entire sample of stocks, the average trading volume is $6.186 million per day, ranging from $0.15 million for the

lowest volume decile to $176.99 million for the highest volume decile. The average volatility for the entire sample is 4% per

day. The volatility tends to be higher for smaller stocks. The volatility is 4.5% for the lowest-volume decile and 2.9% for the

highest-volume group. Thus, the measure of trading activity, equal to the product of dollar volume and volatility, increases from

0.15 · 0.045 to 176.99 · 0.029—that is, by a factor of 760 from the lowest-to the highest-volume group.

Before 2001, the average print size is equal to $23, 629, ranging from $11, 441 for low-volume stocks to $89, 338 for high-

volume stocks. This corresponds to a decrease from 7.6% to 0.05% of daily volume from the lowest-to the highest-volume group.

The median is much lower than the mean because infrequent large prints make the distribution of print sizes positively skewed.

The trade-weighted median ranges from $5, 682 for low-volume stocks to $28, 567 for high-volume stocks, corresponding to a

6 The variance adjustment is 𝜎2 − 1

6
·
(

Tick Size

P

)2

.
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Table 1

Descriptive statistics. This table reports descriptive statistics for securities and prints. Each observation represents averages for one security over one month. Panel A

reports statistics for data from February 1993 to December 2000. Panel B reports statistics for data from January 2001 to December 2014. Both panels show the average

print size, the trade-weighted median print size, the volume-weighted median print size (in dollars), the average number of prints per day, the daily dollar volume (in

thousands of dollars), the average volatility of daily returns, the average price, and the percentage of trades and the percentage of volume in the 100-share lot, in the

1000-share lot, and in the even lots for all samples as well as for 10 volume groups. Volume groups are based on average dollar trading volume with thresholds

corresponding to the 30th, 50th, 60th, 70th, 75th, 80th, 85th, 90th, and 95th percentiles of the dollar volume for NYSE-listed common stocks. Volume group 1 has stocks

with the lowest volume, and volume group 10 has stocks with the highest volume.

Volume groups: All 1 2 3 4 5 6 7 8 9 10

Panel A: 1993–2000

Avg. Print Size ($) 23,629 11,441 27,378 36,432 43,558 49,274 53,421 60,364 67,904 78,139 89,338

Med. (VW) Print Size ($) 111,195 48,999 158,303 190,228 218,529 218,038 250,510 255,284 291,867 317,847 373,248

Med. (TW) Print Size ($) 9363 5682 10,842 13,407 15,402 16,910 18,024 20,049 21,909 24,599 28,567

Avg # of Prints, 𝛾 142 17 73 126 185 257 333 409 549 852 2830

Avg. Daily Volume ($ 1000) 6186 151 1197 2808 5051 7999 11,263 15,847 23,901 42,408 176,985

Avg. Daily Volatility 0.040 0.045 0.031 0.032 0.030 0.030 0.030 0.029 0.029 0.029 0.029

Avg. Price ($) 17.58 10.25 20.38 24.50 27.84 31.57 34.73 38.34 43.03 49.98 64.43

100-Shares: % Prints/%Vol 16/2 15/2 17/2 18/2 19/2 20/2 21/2 21/2 21/2 22/2 25/3

1000-Shares: % Prints/%Vol 18/14 18/15 18/13 17/12 16/12 15/11 15/11 14/10 14/10 13/10 13/10

Even Lots: %Prints/% Vol 80/61 80/63 80/60 80/59 80/58 80/57 80/57 79/56 79/55 79/56 81/58

# Obs 634,322 391,611 93,732 37,272 33,145 14,896 14,155 13,039 12,276 11,831 12,365

Panel B: 2001–2014

Avg. Print Size ($) 6424 3645 6715 8776 10,379 11,913 13,308 14,863 17,003 19,852 26,335

Med. (VW) Print Size ($) 29,900 27,916 23,464 26,460 29,278 27,822 41,432 36,663 42,728 53,538 83,227

Med. (TW) Print Size ($) 2895 1642 3244 4163 4793 5419 6005 6647 7469 8378 10,533

Avg # of Prints, 𝛾 3013 399 2178 3584 5069 6733 8323 10,062 12,846 17,651 37,495

Avg. Daily Volume ($ 1000) 24,408 937 8295 16,961 27,429 40,200 54,090 72,872 102,484 162,619 503,229

Avg. Daily Volatility 0.031 0.035 0.026 0.025 0.024 0.024 0.023 0.022 0.022 0.022 0.022

Avg. Price ($) 21.16 12.56 26.77 32.00 34.92 37.81 40.92 44.46 48.24 51.77 63.33

100-Shares: % Prints/%Vol 57/25 56/23 64/33 61/31 60/29 58/28 57/28 56/28 55/27 53/25 49/20

1000-Shares: % Prints/%Vol 3/6 4/6 2/4 2/4 2/4 2/4 2/4 2/4 2/4 3/4 3/5

Even Lots: %Prints/% Vol 86/63 85/60 90/68 89/68 89/67 88/66 88/65 87/65 87/64 86/62 84/59

# Obs 749,535 477,127 97,347 39,485 36,846 17,455 16,780 16,222 15,858 15,815 16,600

decrease from 3.8% to 0.016% of daily volume. The invariance hypothesis predicts that the shape of the distributions of trade sizes

as a fraction of daily volume must be similar across stocks, with the only difference that their log-means are shifted downward

by two-thirds of the increase in a log-trading activity (equation (10)). Because trading activity increases by a factor of 760 from

the lowest to the highest deciles, a back-of-the-envelope calculation suggests that the distributions of trade sizes as a fraction

of volume should be shifted downward by a factor of 7602/3 ≈ 80. This estimate is less than the observed differences in means

of 7.6%∕0.05% ≈ 150 and medians of 3.8%∕0.016% ≈ 240 between the highest- and lowest-volume groups.

In the 1993–2001 subperiod, the average number of prints recorded per day is 142 for the entire sample, increasing monoton-

ically from 17 to 2, 830 from the first to the tenth volume group. The number of prints increases by a factor of 2, 830∕17 ≈ 166.

The invariance hypothesis predicts that the expected number of prints should increase by two-thirds of the increase in trading

activity (equation (9))—that is, 7602/3 ≈ 80. This back-of-the envelope calculation suggests that the number of prints increases

more than predicted, potentially reflecting a more intensive order splitting in high-volume groups where the stocks also tend

to have higher price levels, but further investigation is certainly warranted.

Some print sizes are unusually common in the TAQ data. Before 2001, even-sized trades account for over 61% of volume

traded and 80% of trades executed. The fraction of even-prints is stable across volume groups. The prevalence of these prints

validates our choice of bins with even-share bins considered separately. About 16% of all transactions and 2% of volume traded

are executed in 100-share prints. These trades represent 15% of transactions for low-volume stocks and 25% of transactions for

high-volume stocks. The number of 1000-share prints is also significant. The large fraction of 1000-share prints for low-volume

stocks relative to high-volume stocks—18% versus 14%—probably reflects the regulatory rule according to which the NASDAQ

market makers had to post quotes for at least 1000 shares prior to 1997.

It may also be partially related to the difference in typical price levels for low-volume and high-volume stocks, which makes

1000-lot trades to be of a smaller dollar value for stocks with lower volume.

Summary statistics after 2001. Panel B of Table 1 provides statistical properties of the sample after 2001. Daily volume more

than tripled from $6.18 million before 2001 to over $24.4 million after 2001. Volatility decreased from 4.0% to 3.1% per day.

These numbers imply that trading activity doubled from the 1993–2001 to 2001–2014 subperiods. The average number of prints

increased by a factor of 21 from 143 to 3, 013, and the average print size decreased by more than a factor of 3 from $23, 629 to

$6, 424. Back-of-the-envelope calculations implied by the invariance hypothesis suggest that the changes in print arrival rates

and print sizes cannot be explained only by differences in levels of trading activity between the two subperiods but must be
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attributed to other factors. One of these factors is the order splitting that became increasingly prevalent over time, especially

after the reduction in tick size to one cent on January 29, 2001, for NYSE stocks and on April 9, 2001, for NASDAQ stocks. The

growth of algorithms and tape shredding have likely influenced patterns of trading as well. During the 2001–2014 subperiod,

for example, 100-share trades account for 57% of all transactions and 25% of volume traded, with these numbers reaching peaks

of 73% and 41% in 2013. Trades of 1000 shares became less important in this half of the sample. Evident order splitting is likely

to significantly affect tests of the invariance hypothesis using TAQ data after 2001.

2.2.1. Frequency and sizes of TAQ prints during the 1993–2014 period

In Fig. 1, we plot the 263 scaled numbers of monthly total prints, calculated as Ni · W
−2∕3

i
, where Ni is the total number of

prints per month and Wi is trading activity. To simplify notation, we drop time subscripts for the rest of this paper. Fig. 1 also

shows the averages of the 20th, 50th, and 80th percentiles of the trade- and volume-weighted distributions of logs of scaled

print sizes, calculated as ln(|X̃i|∕Vi · W
2∕3

i
), where |X̃i| is the print size. To facilitate comparison across stocks and across time,

all variables are scaled by W
−2∕3

i
and W

2∕3

i
as implied by the invariance hypothesis. The left panel shows the scaled variables

averaged across low-volume stocks (group 1). The right panel shows the scaled variables averaged across high-volume stocks

(groups 9 and 10).

A comparison of the left column to the right column of Fig. 1 reveals that the profiles of volume-weighted percentiles of

scaled trade sizes and the scaled number of prints per month are very similar across stocks. This similarity is evidence in favor

of the invariance hypothesis.

Trading patterns differ significantly across the 1993–2000 and 2001–2014 subperiods. For high-volume stocks, the per-

centiles of print sizes and print rates do not change much prior to the beginning of decimalization in 2001. Afterward, per-

centiles of print size decrease steadily, and the average number of prints correspondingly increases. For low-volume stocks,

similar changes started to occur even before 2001. Because most low-volume stocks are NASDAQ stocks, the pre-2001 decrease

in print sizes and increase in print arrival rates may be explained by the reduction in tick size from 12.5 cents (1∕8 of a dollar)

to 6.25 cents (1∕16 of a dollar) announced at NASDAQ in 1997. Also, for some subsets of low-priced NASDAQ and AMEX stocks,

tick sizes were reduced from 1∕8 to either 1∕16 or 1∕32 as earlier as in 1992 and 1995. With the exception of the largest print

sizes in high-volume stocks, the downward trend in scaled print sizes and the upward trend in scaled number of prints seems to

end at around 2007, and all variables stabilize at some constant levels. A similar pattern can be found in figures in Hendershott

et al. (2011). In the following sections, we examine these patterns in more detail.

3. Results

The invariance hypothesis and the two alternative models make distinctively different predictions—all three nested in equa-

tions (9) and (10)—concerning the differences in the distributions of print sizes and their frequencies across stocks and time. We

run our tests based on both the number of prints and distributions of their sizes to determine which models provides the most

reasonable description of the data.

3.1. Tests based on print frequency

Comparison of three models. According to each model, the scaled number of prints W
−𝛼n

i
· Ni per day is constant across stocks.

The three models differ only in the exponent a used to normalize the average number of prints. The invariance hypothesis

implies 𝛼n = 2∕3, the model of invariant print size implies an = 0, and the model of invariant print frequency implies 𝛼n = 1.

Fig. 2 shows how the log-number of prints ln(N · W−𝛼n ) changes with trading activity W, when the number of prints are

scaled in three different ways, respectively, according to predictions of the three models. The figure has three columns and four

rows. Each of the three columns contains plots of the log of the average number of prints per day N against the log of trading

activity W, where the average number of prints is scaled according to each of the three models, respectively. The four rows

present results for the NYSE in April 1993, for NASDAQ in April 1993, for all exchanges in April 2001, and for all exchanges

in April 2014. Results are presented for different periods because trading has changed dramatically over time. Also, trading

patterns of the NYSE- and NASDAQ-listed stocks differed historically because of differences in regulatory rules across exchanges

during the earlier part of the sample; therefore, our results are presented separately for the NYSE- and NASDAQ-listed stocks in

April 1993. We choose the month of April to avoid seasonality, as trades tend to cluster much less before the end of the calendar

quarter, as shown by Moulton (2005). Each observation corresponds to the average number of prints per day for a given stock

in a given month. Each subplot has about 6000 observations. If the model is correctly specified, the points are expected to line

up along a horizontal line.

In subplots for the invariance hypothesis, observations are scattered around horizontal lines for each of the three years. In

this sense, the invariance hypothesis explains the data well, especially for the NYSE stocks traded in April 1993. The levels of the

horizontal lines move up from the top to bottom figures, showing that the average number of prints has increased over time.

For April 1993, the average number of prints is slightly higher for the NYSE stocks than for the NASDAQ stocks. Some NASDAQ

stocks with low trading activity have outliers with a very small number of prints. A few of the most illiquid NASDAQ stocks also

have outliers with a very large number of prints in April 1993. The outliers for the small stocks may be due to the short sample
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Fig. 1. Time series of percentiles of scaled TAQ print size and mean number of prints, 1993–2014. The figure shows the dynamics of the 20th, 50th, and 80th percentiles for

logarithms of the pooled scaled print sizes as well as the means of the scaled number of prints per month from 1993 to 2014. Volume groups are based on average dollar

trading volume with thresholds corresponding to the 30th, 50th, 60th, 70th, 75th, 80th, 85th, 90th, and 95th percentiles of the dollar volume for common NYSE-listed

stocks. Trade-weighted percentiles and volume-weighted percentiles are shown for stocks in volume group 1 (low volume) and volume groups 9 and 10 (high volume).

For each print, the logarithm of scaled print size is calculated based on the midpoint of the print size bin, scaled according to the invariance hypothesis. The logarithm

of the scaling factor is ln
(

W
2∕3

i
· |Xi|∕Vi

)
, where |Xi| is a midpoint of a print size bin in shares, Vi is the average daily volume in shares, and Wi is the measure of trading

activity equal to the product of dollar volume and returns standard deviation. The scaled number of total monthly prints is calculated as Ni · W
−2∕3

i
, where Ni is the total

number of trades per month. The stock-level distributions of scaled print sizes are averaged across stocks for volume groups 1 and 9–10 in a given month. The trade- and

volume-weighted percentiles are plotted on this figure.
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Fig. 2. The scaled number of TAQ prints plotted against trading activity for three models. The figure shows the logarithm of the scaled number of prints across different

levels of the logarithm of trading activity Wi . The scaled number of prints is defined by NiW
−𝛼n
i

, with 𝛼n = 2∕3 for the invariance hypothesis, 𝛼n = 0 for the model of

invariant bet frequency, and 𝛼n = 1 for the model of invariant bet size. Four subsamples are considered: NYSE-listed stocks in April 1993, NASDAQ-listed stocks in April

1993, both NYSE and NASDAQ stocks in April 2001 and both NASDAQ and NYSE stocks in April 2014. Trading activity Wi is calculated as the product of average daily dollar

Pi · Vi volume and the percentage standard deviation of daily returns 𝜎 i for a given month.
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Fig. 3. Time series of monthly OLS coefficient estimates for number of trades, 1993–2014.

The figure shows the dynamics of coefficients from regressions of number of prints on the measure of trading activity Wi from 1993 to 2014. The coefficient an is calculated

from monthly regressions

ln
(

Nit

)
= 𝜇nt + ant · ln

(
Wit

W∗

)
+ 𝜖it ,

where Ni is the average number of prints per day in a given month. The invariance hypothesis predicts an = 2∕3, and alternative models predict that ant = 0 or ant = 1.

Trading activity Wi is defined as the product of dollar volume and daily percentage standard deviation of returns, and W∗ measures trading activity of the benchmark stock.

period because one month may be not enough to obtain a good estimate of mean volume for small illiquid stocks.

In subplots for the model of invariant print frequency, observations are lined up across a line with a positive slope. The

model attributes all differences in trading activity entirely to differences in print sizes. Because changes in trading activity are

also partially explained by changes in print arrival rates, the model tends to underestimate the number of prints for high-volume

stocks and overestimate it for low-volume stocks.

In subplots for the model of invariant print size, observations are lined up along a line with a negative slope. The model

attributes all differences in trading activity entirely to differences in trading rates. Because some part of these differences is

actually explained by differences in print sizes, the model tends to overestimate the number of prints for high-volume stocks

and underestimate it for low-volume stocks.

3.1.1. OLS estimates of the number of TAQ prints

The distinctly different predictions of the models can be nested into a simple linear regression,

ln
(

Nit

)
= 𝜇nt + ant · ln

(
Wit

W∗

)
+ 𝜖it, (11)

where W∗ is an arbitrary scaling constant specified below. The equation relates the log of the average daily number of prints Ni

for each month for stock i to the level of trading activity Wi , where Wi is average daily notional volume times standard deviation

of daily returns for stock i for each month. The invariance hypothesis predicts an = 2∕3, the model of invariant print frequency

predicts an = 0, and the model of invariant print size predicts an = 1. For each month, we estimate the parameters 𝜇n and an

using an OLS regression with one observation per stock per month. The constant term 𝜇n is scaled to represent the log of the

expected number of prints for a benchmark stock with trading activity W∗. The scaling constant W∗ = (40)(106)(0.02) measures

trading activity for an arbitrary benchmark stock with a price of $40 per share, trading volume of 1 million shares per day, and

daily volatility of 2% per day.

Fig. 3 shows the time series of coefficients from the monthly regressions (11) between February 1993 and December 2014.

The time series is constructed with 263 month-by-month regression coefficients an from monthly regression equation (11).

We denote the estimate of coefficients as 𝜇n,T and ân,T for month T. The superimposed horizontal line represents an = 2∕3, the

value predicted by the invariance hypothesis. The figure shows two distinctive sub-periods, 1993–2000 and 2001–2014. Both the

constant term 𝜇n and the coefficient an changed over time and may have time trends that are different over the 1993–2000 and

2001–2014 subperiods. Over the 1993–2000 subperiod, all estimated coefficients an remained virtually constant. The average

value of 0.666 is strikingly close to the predicted values of 2∕3. Over the 2001–2014 subperiod, the estimates began to drift

up from the values implied by the invariance hypothesis, increasing from about 0.65 to about 0.77 by the end of 2014. Around

2009, the upward trend in the time-series estimates slowed down and even reversed its direction; the explanation for this

change remains unclear.

Following the approach of Fama and MacBeth (1973), Table 2 presents estimates of the coefficients in the pooled-over-

time regression (11), adjusted for time trends visible in Fig. 3. The six columns show the results for all stocks, the subsets of

NYSE/AMEX-listed stocks, and the subset of NASDAQ-listed stocks, each shown during the 1993–2000 and 2001–2014 subperi-

ods. To account for time trends in monthly coefficients, we calculate the Newey–West standard errors with three lags relative

to a linear time trend, estimated by OLS regressions from the estimated coefficients 𝜇n,T and ân,T for each month T. The linear
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Table 2

OLS estimates of number of TAQ prints.

This table presents Fama–MacBeth estimates 𝜇n and an from monthly regressions

ln(Nit) = 𝜇nt + ant · ln

(
Wit

W∗

)
+ 𝜖it .

Each month has one observation for each stock i. The value of Ni is the average number of prints per day. Trading activity Wi is the product of average daily dollar

volume Vi · Pi and the percentage standard deviation 𝜎i of daily returns in a given month. The scaling constant W∗ = (40)(106)(0.02) corresponds to the measure

of trading activity for a benchmark stock with a price of $40 per share, trading volume of 1 million shares per day, and daily volatility of 0.02. Newey–West

standard errors are calculated with three lags relative to a linear time trend estimated by OLS regressions from the estimated coefficients 𝜇n,T and ân,T for each

month: 𝜇n,T = 𝜇n,0 + 𝜇n,t · (T − T)∕12 + 𝜖T and ân,T = an,0 + an,t · (T − T)∕12 + 𝜖T , where T is the number of months from the beginning of the sample and T is the

mean month. “Avg Adj-R2” denotes the adjusted R2 averaged over monthly regressions, and “Avg # of Obs” denotes the number of stocks averaged over monthly

regressions. The estimates are reported for 1993–2000 and 2001–2014 subperiods.

All stocks NYSE/AMEX NASDAQ

1993–2000 2001–2014 1993–2000 2001–2014 1993–2000 2001–2014

𝜇n,0 6.147

0.017

8.513

0.041

6.109

0.012

8.396

0.040

6.143

0.020

8.646

0.048

𝜇n,t 0.093

0.007

0.148

0.013

0.042

0.005

0.178

0.012

0.141

0.008

0.115

0.015

an,0 0.666

0.002

0.790

0.005

0.626

0.001

0.760

0.005

0.679

0.002

0.816

0.006

an,t −0.001

0.001

0.007

0.001

0.002

0.000

0.006

0.001

0.003

0.001

0.003

0.002

Avg Adj-R2 0.87 0.92 0.91 0.93 0.86 0.91

Avg # of Obs 6621 4452 2189 1759 4432 2694

time trend is estimated from the equations 𝜇n,T = 𝜇n,0 + 𝜇n,t · (T − T)∕12 + 𝜖T and ân,T = an,0 + an,t · (T − T)∕12 + 𝜖T , where T

is the number of months from the beginning of the subsample and T is the mean month in the subsample. For the subperiod

February 1993 to December 2000, T = 1 for February 1993 and T = 95 for December 2000—implying T = 48. For the subperiod

January 2001 to December 2014, T = 1 for January 2001 and T = 168 for December 2014—implying T = 84.5. Table 2 contains

estimates of 𝜇n,0, 𝜇n,t, an,0, and an,t.

For the 1993–2000 subperiod, the point estimate of an,0 is equal to 0.666, statistically indistinguishable from the predicted

value of 2∕3. For the subperiod 2001–2014, the point estimate of an,0 is equal to 0.79. The standard errors of these estimates are

0.002 and 0.005, respectively. Note also that the alternative models predicting an,0 = 0 and an,0 = 1 are clearly rejected. For

the period 1993–2000, the estimated time trend coefficient an,t of −0.001 per year is statistically insignificant. The estimates for

an,0 of 0.626 and 0.76 for NYSE stocks during the two sub-periods 1993–2000 and 2001–2014, respectively, are smaller than the

corresponding estimates for an,0 of 0.679 and 0.816 for NASDAQ stocks.

For the 2001–2014 period, the estimated time trend coefficient an,t of 0.007 per year is statistically significant; it approxi-

mately corresponds to the increase in an by 0.11, from about 0.66 to about 0.77, over the 13-year period.

The point estimate of intercept 𝜇n,0 is equal to 6.147 for the 1993–2000 subperiod and 8.513 for the 2001–2014 subperiod,

indicating an increase in the average number of prints over time. The constant terms 𝜇n,t of 0.093 and 0.148 for those subperiods

also show statistically significant upward time trends, corresponding to growth rates in the number of prints per year of about

9.3% and 14.8% for the two subperiods, respectively.

The combined results for both subperiods are consistent with the following interpretation: Over the 1993–2000 subperiod,

the invariance hypothesis held due to a reasonably close correspondence between TAQ prints and bets. Over the 2001–2014

subperiod, the invariance relationship broke down because order splitting and intermediation have increased over time and

affected high-volume stocks more than low-volume stocks after decimalization in 2001. These results may be also related to

differences in degrees of order splitting and intermediation across low-price and high-price stocks. We discuss these patterns

further in Subsection 3.3.

3.2. Tests based on TAQ print sizes

Comparison of three models. We now examine the trade- and volume-weighted distributions of print sizes scaled for differ-

ences in trading activity as suggested by the three models. The three models predict that the distributions of W𝛼x · |X̃|∕V are

constant across stocks and time, but the models make different assumptions about the exponent 𝛼x. The invariance model pre-

dicts 𝛼x = 2∕3, the model of invariant print frequency predicts 𝛼x = 0, and the model of invariant print size predicts 𝛼x = 1.

To approximate the distribution, we calculate print size |X| based on the mid-point of a print-size bin where it was placed.

For each month and for each volume group, the stock-level distributions of scaled print sizes are combined by averaging

across stocks in each volume group the frequency distributions of the number of prints in each bin. The results are plotted
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Fig. 4. Time series of monthly OLS coefficient estimates for trade-weighted percentiles, and volume-weighted percentiles, 1993–2014.

The figure shows the dynamics of coefficients from regressions of various percentiles on the measure of trading activity Wi from 1993 to 2014. The coefficient ax is calculated

from monthly regressions

ln
(

X̃it

Vit

)
= 𝜇xt + axt · ln

(
Wit

W∗

)
+ 𝜖it ,

where the left-hand side is the pth (20th, 50th and 80th) percentiles of the distribution of logarithms of print sizes X̃i . The invariance hypothesis predicts ax = − 2∕3, and

alternative models predict that ax = 0 or ax = − 1. Panel C shows the coefficient ax from similar monthly regressions, but these regressions are based on percentiles Q
p

i
,

where percentiles are calculated based on the contribution to total trading volume. The invariance hypothesis predicts ax = − 2∕3, and alternative models predict that

ax = 0 or ax = − 1. Trading activity Wi is defined as the product of dollar volume and daily percentage standard deviation of returns, and W∗ measures trading activity

of the benchmark stock.

in Figs. 5 and 6. For illustrative purposes, only results for April 1993 are presented, but the data for the entire 1993–2014 period

are examined more closely below.

Fig. 5 shows the distributions of logarithms of scaled print sizes for the NYSE stocks. The figure has three rows and six

columns. The three rows contain plots for low-volume stocks in volume group 1, medium-volume stocks in volume groups

2 through 8, and high-volume stocks in volume group 9–10, respectively. The first three columns contain plots of the trade-

weighted distributions, with the density of logs of scaled print sizes on the vertical axis. The second three columns contain plots

of the volume-weighted distributions, with the volume contribution of these trades on the vertical axis. In each of the three

columns, print sizes are scaled according to the three models. If one of the three models is correct, then the three distributions

in the column corresponding to that model should be the same across rows.

To make it easier to interpret results, we superimpose the bell-shaped densities of a normal distribution with the com-

mon means and variances equal to the means and variances of trade- and volume-weighted distributions of scaled print sizes

based on the entire sample. As previously discussed, if trade-weighted distributions are log-normally distributed, then volume-

weighted distributions are log-normally distributed as well. If scaled sizes are distributed as a log-normal, then the three plots

in each column of plots are expected to coincide with the superimposed common normal density.

The first column presents the three trade-weighted distributions implied by the invariance hypothesis; they have similar

means, variance, and supports. The shapes of the distributions bear some resemblance to the superimposed normal density,

but the fit is by no means exact. The low-volume group matches the superimposed normal better than the medium- and high-

volume groups. The fourth column presents the volume-weighted distributions implied by the invariance hypothesis; they are
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Fig. 5. Trade-weighted and volume-weighted distributions of scaled TAQ print size for three models, NYSE-listed stocks, April 1993. This figure shows the distribution of

the logarithm of scaled print sizes for three different models for NYSE-listed stocks traded in April 1993. The print sizes are scaled as W
𝛼x

i
· |Xi|∕Vi , with 𝛼x = 2∕3 for the

invariance model, 𝛼 = 0 for the model of invariant bet frequency, and 𝛼x = 1 for the model of invariant bet size. Trading activity Wi is calculated as the product of dollar

volume Pi · Vi and the daily percentage standard deviation of returns 𝜎 i . Panel A shows trade-weighted distributions, and Panel B shows volume-weighted distributions.

The subplots show stock-level distributions averaged across stocks in volume group 1 (low volume), volume groups 2–8, and volume groups 9–10 (high volume). Volume

groups are based on average dollar trading volume with thresholds corresponding to the 30th, 50th, 60th, 70th, 75th, 80th, 85th, 90th, and 95th percentiles of the dollar

volume for NYSE-listed common stocks. All subplots in each of the size columns show a fitted normal distribution (in dashed lines) with moments calculated based on a

pooled data.

even more similar to the superimposed common normal density. Thus, the invariance hypothesis explains a substantial part of

variation in the distribution of print sizes, especially in the distribution of economically important large trades. The print sizes

seem to be distributed similarly to a log-normal; Kyle and Obizhaeva (2016) find that the distribution of portfolio-transition

orders is close to a log-normal as well.

For the model of invariant print frequency, the trade-weighted densities are in the second column and the volume-based

densities are in the fifth column; they are much less stable across volume groups. In both columns, the distributions shift to the

left as trading volume increases, which suggests that the first alternative model understates print sizes for high-volume stocks

and overestimates them for low-volume stocks. The model fails to account for the fact that some variation in trading activity is

explained by variation in the number of prints.

For the model of invariant print size, the trade-weighted densities are in the third column and the volume-based densities are

in the sixth column; they are clearly unstable across volume groups as well. In both columns, the distributions shift to the right

as trading volume increases. The second alternative model overstates print sizes for high-volume stocks and underestimates

them for low-volume stocks. The alternative models clearly provide worse explanations for the observed variations in print

sizes than the invariance hypothesis.

Fig. 6 shows our results for the sample of NASDAQ stocks. Similar to the NYSE stocks, the distributions of print sizes are more

stable across volume groups when print sizes are scaled according to the invariance hypothesis. Compared with the NYSE dis-

tributions, the NASDAQ distributions are less smooth and have more spikes, especially the trade-based densities. We attribute

these patterns to a regulatory rule that required NASDAQ dealers to quote prices for at least 1000 shares, leading to a dispropor-

tionably large number of 1000-share NASDAQ trades recorded on the consolidated tape before 1997.

Implications for log-normal distributions. The invariance hypothesis makes predictions about the mean of the distribution of

bet size, not the shape of the distribution. Calibrating the shape of distributions is nevertheless important. Kyle and Obizhaeva

(2016) find that the distribution of portfolio transition orders closely resembles a log-normal with a large log-variance and

therefore heavy tails. Kyle and Obizhaeva (2018c) predict the size and frequency of stock market crashes based on extrapolating

the frequency of tail events in the distribution of portfolio transition orders to bets on the market as a whole.

Comparing distributions of bet size and trade size may provide insights about the order splitting algorithms used by traders.

Therefore, we examine whether the distribution of trade size resembles a log-normal by superimposing onto the graphs of the

distributions of log of trade size a normal distribution with mean consistent with invariance and common log variance. Fig. 5

presents the results for NYSE stocks, and Fig. 6 presents the results for NASDAQ stocks. As previously discussed, if the log of
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Fig. 6. Trade-weighted and volume-weighted distributions of scaled TAQ print size for three models, NASDAQ-Listed Stocks, April 1993. This figure shows the distribution of

the logarithm of scaled print sizes for three different models for NASDAQ-listed stocks traded in April 1993. The print sizes are scaled as W
𝛼x

i
· |Xi|∕Vi , with 𝛼x = 2∕3 for the

invariance model, 𝛼x = 0 for the model of invariant bet frequency, and 𝛼x = 1 for the model of invariant bet size. Trading activity Wi is calculated as the product of dollar

volume Pi · Vi and the daily percentage standard deviation of returns 𝜎 i . Panel A shows trade-weighted distributions, and panel B shows volume-weighted distributions.

The subplots show stock-level distributions averaged across stocks in volume group 1 (low volume), volume groups 2–9, and volume groups 9–10 (high volume). Volume

groups are based on average dollar trading volume with thresholds corresponding to the 30th, 50th, 60th, 70th, 75th, 80th, 85th, 90th, and 95th percentiles of the dollar

volume for NASDAQ-listed common stocks. All subplots in each of the size columns show a fitted normal distribution (in dashed lines) with moments calculated based on

a pooled data.

trade-weighted scaled print sizes is distributed as  (𝜇, 𝜎2), then the log of volume-weighted scaled print sizes is distributed

as  (𝜇 + 𝜎2, 𝜎2).
For NYSE stocks, the constraint implies that the volume-weighted mean of 0.97 should be the same as the sum of the trade-

weighted mean of −1.15 and its variance of 1.90. As −1.15 + 1.90 = 0.75 ≠ 0.97, we see that the constraint fails to hold by a

margin of only about 25%. The log-variance of 3.04 for the volume-based distribution is much larger than the log-variance of 1.90

for the trade-weighted distribution. This discrepancy is inconsistent with log-normality, which implies that these log-variances

should be the same.

For NASDAQ stocks, the volume-weighted mean of 1.2 should be the same as the sum of the trade-weighted mean of −0.19

and its variance of 1.93. As −0.19 + 1.93 = 1.72 ≠ 1.2, we see that this constraint fails to hold by a margin of about 30%. The

log-variance of 1.98 for the volume-based distribution is similar to the log-variance of 1.93 for the trade-weighted distribution,

consistent with the predictions of log-normality. Because these moment restrictions are not perfectly satisfied in the data,

the hypothesis of log-normality can be valid only as a very rough approximation at best. Deviations from log-normality include

clustering of trades in even-lot sizes (especially prints of 1000 shares on NASDAQ), censoring and rounding of odd lots, clustering

of 100-share trades, and the possibility that very large trades follow a fatter-tailed power-law distribution rather than a log-

normal distribution.

OLS regression estimates of TAQ print sizes, February 1993 to December 2014. We test implications of the invariance hypothesis

for print sizes using OLS regressions in which the left-side variable is either a mean or a percentile of either the trade- or volume-

weighted distributions of logs of print sizes. For each stock in a given month, the trade- and volume-weighted distributions of

logs of print sizes are constructed. Letting f(.) denote a functional that corresponds to either the mean or the pth percentiles

(20th, 50th, 80th) of these distributions, these variables are regressed on logs of trading activity:

f

(
ln

(
X̃it

Vit

))
= 𝜇xt + axt · ln

(
Wit

W∗

)
+ 𝜖it. (12)

Equations (11) and (12) are closely related. Expected trading volume V is equal to the product of the expected number of

prints N and expected print size E
[
X̃
]
, V = N · E

[
X̃
]
, implying that the left side of equation (11) is ln N = − ln

(
E
[
X̃
]
∕V

)
. Thus,

the left-hand side variable in equation (12) is similar to reversing the sign on the left-hand-side variable in the regression

equation (11). For example, if X̃∕V were distributed log-normally with the same variance across stocks, then the coefficient
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Table 3

Regression estimates of TAQ print sizes, February 1993 to December 2000.

This table presents Fama–MacBeth estimates 𝜇x and ax from the monthly regressions of the mean and percentiles of print size on trading activity W for

the sample from February 1993 to December 2000. The coefficients 𝜇Q and aQ are based on monthly regressions

ln

( |Xit |
Vit

)
= 𝜇xt + axt · ln

(
Wit

W∗

)
+ 𝜖it ,

where the left-hand side is either the mean or the pth (20th, 50th and 80th) percentile of the distribution of logarithms of (unsigned) print sizes |Xi|,
expressed as a fraction of daily volume Vi in a given month. The means and percentiles are calculated based on both trade-weighted and

volume-weighted distributions. One observation corresponds to each month and each stock i with trading activity Wi , defined as the product of the

average daily dollar volume Vi · Pi and the percentage standard deviation 𝜎i of daily returns. The scaling constant W∗ = (40)(106)(0.02) corresponds to

the trading activity of the benchmark stock with a price of $40 per share, trading volume of 1 million shares per day, and volatility of 2% per day.

Newey–West standard errors are calculated with three lags relative to a linear time trend estimated by OLS regressions from the estimated coefficients

𝜇x,T and âx,T for each month: 𝜇x,T = 𝜇x,0 + 𝜇x,t · (T − T)∕12 + 𝜖T and âx,T = ax,0 + ax,t · (T − T)∕12 + 𝜖T , where T is the number of months from the

beginning of the sample and T is the mean month. “Avg Adj-R2” denotes the adjusted R2 averaged over monthly regressions, and “Avg # of Obs” denotes

the number of stocks averaged over monthly regressions.

Trade-weighted distribution Volume-weighted distribution

Mean 20th 50th 80th Mean 20th 50th 80th

𝜇x,0 −7.238

0.020

−8.495

0.027

−7.289

0.031

−6.260

0.014

−4.684

0.020

−6.364

0.016

−4.887

0.019

−3.326

0.026

𝜇x,t −0.047

0.008

−0.039

0.011

−0.046

0.012

−0.064

0.006

−0.137

0.008

−0.101

0.006

−0.157

0.008

−0.153

0.011

ax,0 −0.741

0.002

−0.781

0.003

−0.750

0.002

−0.725

0.003

−0.560

0.003

−0.661

0.002

−0.579

0.003

−0.481

0.003

ax,t 0.008

0.001

0.012

0.001

0.007

0.001

0.005

0.001

−0.007

0.001

−0.001

0.001

−0.009

0.001

−0.009

0.001

Avg Adj-R2 0.90 0.87 0.88 0.88 0.69 0.83 0.68 0.52

Avg # of Obs 6621 6621 6621 6621 6621 6621 6621 6621

estimates for an and ax would be the same in absolute value and opposite in sign in all of the regressions in equations (12) and

(11), but the constant terms 𝜇n and 𝜇x would be different. In our data (as we show below), X̃∕V deviates from a log-normal

distribution sufficiently to make the coefficients an and ax vary across regression specifications.

Fig. 4 shows the time series of coefficients of the monthly regressions from February 1993 to December 2014. Plotted are

the time series of 263 month-by-month regression coefficients ax from regression equation (12) for the 20th, 50th, and 80th

percentiles of print sizes over the 1993–2014 period. Panel A presents results for trade-weighted distributions. Panel B presents

results for volume-weighted distributions. Superimposed horizontal lines represent the level of −2∕3, the benchmark predicted

by the invariance hypothesis.

As before, the figure shows two distinct subperiods. Over the 1993–2000, all estimated coefficients remain close to −2∕3.

The estimates of ax are lower than the predicted value of −2∕3 for the 20th, 50th, and 80th percentiles of trade-weighted dis-

tributions; they fluctuate between −0.70 and −0.82, implying that small print sizes as a fraction of volume decrease faster with

trading activity than predicted by the invariance hypothesis. For the 50th and 80th percentiles of volume-weighted distribu-

tions, the estimates of ax fluctuate between −0.45 and −0.70, somewhat higher than predicted by the invariance hypothesis,

and all estimates for the 20th volume-weighted percentiles are close to −2∕3.

Over the 2001–2014 subperiod, the estimates begin to drift away from their initial levels. For the volume-weighted per-

centiles, the estimates of ax decrease from about −0.45 to −0.82 for the 80th percentile, from about −0.54 to −0.89 for the 50th

percentile, and from −0.645 to −0.75 for the 20th percentile. For the trade-weighted percentiles, the estimates for the 20th and

50th percentiles do not exhibit any definite patterns, but the estimates for the 80th percentile decrease from about −0.71 to

−0.77. As before, the behavior of estimated coefficients changes in 2009. Overall, changes in the large print sizes (right tails) are

more significant than changes in the small print sizes (left tails).

Table 3 reports the estimates from regressions in equation (12) pooled over the 1993–2000 period. The first four columns

show estimates for the means and percentiles of the trade-weighted distributions. The last four columns show estimates for the

means and percentiles of the volume-weighted distributions. Because the monthly estimates of𝜇x,T and âx,T for each month T are

changing over time, we add a linear time trend. The table reports Fama–MacBeth estimates of the coefficients, with Newey–West

standard errors calculated with three lags relative to a linear time trend estimated by OLS regressions from the estimated coeffi-

cients 𝜇x,T and âx,T for each month. As before, the equations estimated for the time trend are 𝜇x,T = 𝜇x,0 + 𝜇x,t · (T − T)∕12 + 𝜖T

and âx,T = ax,0 + ax,t · (T − T)∕12 + 𝜖T , where T is the number of months from the beginning of the subsample and T is the

median month in the subsample.

For the trade-weighted distributions, the estimate of ax,0 is equal to −0.741 for the means. This estimate is larger in absolute

value by 0.075 than the estimate of 0.666 for the number of prints in Table 2. For the trade-weighted percentiles, the estimated

coefficients range from −0.781 for the 20th percentile to −0.725 for the 80th percentile. All of these estimates are larger in

absolute value than the value of −2∕3 predicted by the invariance hypothesis, which implies that print sizes as a faction of

volume tend to decrease with trading activity faster than implied by the theory. For the volume-weighted distributions, the
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estimated coefficient ax,0 is equal to −0.56 for the means; the estimates range from −0.661 for the 20th percentile to −0.481 for

the 80th percentile. Across means and percentiles, the standard errors of estimates ax,0 range from 0.002 to 0.003; these values

are similar in magnitude to the averages of standard errors of ax from the cross-sectional monthly regressions (12), in which

those values range from 0.002 to 0.065. The data suggests that the invariance hypothesis ax,0 = − 2∕3 explains the data much

better than the alternatives ax,0 = 0 and ax,0 = − 1, but all three models are statistically rejected.

For the trade-weighted distributions, the estimated time trend coefficient ax,t ranges from 0.008 to 0.012 per year and is

statistically significant. For the volume-weighted distributions, the time-trend coefficient is either statistically insignificant or

negative.

The estimated intercept 𝜇x,0 of −7.238 in the regression for the trade-weighted means implies that the median print size for

the benchmark stock is equal to exp(−7.238), or 0.07% of daily volume. The estimated intercepts of −8.490 and −6.260 in the

regressions for the 20th and 80th percentiles suggest that the average 20th and 80th print-size percentiles are equal to 0.02%

and 0.19% of daily volume for the benchmark stock, respectively. Under the assumption of log-normality, Kyle and Obizhaeva

(2016) note that the fraction of volume generated by trades larger than z standard deviations above the log-mean (which equals

the median) is given by 1 − (z − 𝜎), where 𝜎 is the standard deviation for the distribution of the log of trade sizes; based on

the trade-weighted variance of 1.90 in Fig. 5, log-normality would imply that about 91% of volume occurs in print sizes larger

than 0.07% of daily volume (median trade). The standard errors of 𝜇x,0 in cross-sectional regressions are similar in magnitude

and range between 0.014 and 0.031, across means and percentiles. The negative and statistically significant estimates of time

trend 𝜇x,t indicate that the print sizes have been gradually decreasing during the 1993–2000 subperiod, with a downward drift

that is especially pronounced in the right tails of the distributions.

The R2 is lower in regressions based on volume-weighted distributions than in regressions based on trade-weighted distri-

butions. For the means, the values of R2 are 0.90 and 0.69, respectively. The difference in R2 increases monotonically from a

difference between 0.87 and 0.83 for the 20th percentiles to a difference between 0.88 and 0.52 for the 80th percentiles. These

numbers show more unexplained variation in large print sizes than in small print sizes. Note that some of this variation may

result from the rounding of large odd-size trades to the mid-point of bins or from the small number of observations in the largest

bins.

Table 4 reports the estimates for regressions in equation (12) for the 2001–2014 subperiod. For the means, the estimates of

ax,0 are −0.779 for trade-weighted distributions and −0.776 for volume-weighted distributions. These estimates are larger in

absolute value than the corresponding estimates of −0.741 and −0.560 for the 1993–2000 subperiod in Table 3. All but one of

the estimates of −0.757, −0.769, and −0.811 for the 20th, 50th, and 80th trade-weighted percentiles, respectively, and −0.796,

−0.843, and −0.779 for the 20th, 50th, and 80th volume-weighted percentiles, respectively, are also higher in absolute values

than the estimates of −0.781, −0.750, −0.725, −0.661, −0.579, and −0.481 for the earlier subperiod. The biggest changes occur

in the estimates for the 80th percentile of trade-weighted distributions and the 50th and 80th percentiles of volume-weighted

distributions, which suggests that recent technological and regulatory changes had the largest effect on the right tail of print-

size distributions. The standard errors of ax,0 are between 0.003 and 0.004, similar to the averages of standard errors of ax in

monthly regressions (12). This fact validates the adjustment for time trend in the Fama–MacBeth procedure; without inclusion

of a time trend, the standard errors would have been higher.

The estimates of the intercept 𝜇x,0 for the 1993–2000 subperiod are lower than for the 2001–2014 subperiod for the means as

well as for all percentiles. For the pooled sample, for example, the estimate of −9.029 in Table 4 is lower than the corresponding

estimate of −7.238 in Table 3; these estimates imply that a typical print size for the benchmark stock fell from 0.07% to 0.01%

of daily volume over the 1993–2000 subperiod. The estimated time trend 𝜇x,t is negative and statistically significant in all

columns, except for the 20th percentile of trade-weighted distributions, also implying that the distributions of print sizes have

been shifting downward.

3.3. Detailed analysis of market frictions over time

We next study how market frictions such as tick size and lot size affect the trading process. More specifically, we examine

whether these market frictions can help explain variations across markets in the number and size distribution of prints that

cannot be explained by the invariance hypothesis.

To facilitate our analysis, we introduce several new concepts that measure restrictiveness of market frictions in the spirit of

the invariance hypothesis. We also discuss why these measures are related to price volatility and share volume in business time

as well as to each other.

Effective price volatility and effective tick size. Tick size imposes a restriction on the minimum price change. The tick size

changed from 1∕8 of a dollar to 1∕16 of a dollar in the late 1990s and then to one cent in 2001. To assess the restrictiveness of this

friction, one can compare it with price volatility—that is, with a typical price change. Based on the same intuition, practitioners

often measure price volatility in units of tick size. For example, if a $40 stock has a volatility of 2% per day, then daily dollar price

volatility is equal to $0.80 = $40 · 0.02 and a tick size of $0.01 is equal to 1∕80 of price volatility.

The invariance hypothesis suggests defining the relative tick size as a fraction of price volatility in business time, not in

calendar time. Business time is proportional to the expected arrival rate of bets 𝛾 jt , or in terms of trading activity it is also

proportional to W
2∕3

jt
, as shown in equation (5). Hence, define effective price volatility in asset j and time t as
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Table 4

Regression estimates of TAQ print sizes, January 2001 to December 2014.

This table presents Fama–MacBeth estimates 𝜇x and ax from the monthly regressions of the mean and percentiles of print size on trading activity W for

the sample from January 2001 to December 2014. The coefficients 𝜇x and ax are based on monthly regressions

ln

( |Xit |
Vit

)
= 𝜇xt + axt · ln

(
Wit

W∗

)
+ 𝜖it ,

where the left-hand side is either the mean or the pth (20th, 50th and 80th) percentile of the distribution of logarithms of (unsigned) print sizes |Xi|,
expressed as a fraction of daily volume Vi in a given month. The means and percentiles are calculated based on both trade- and volume-weighted

distributions. One observation corresponds to each month and each stock i with trading activity Wi , defined as the product of the average daily dollar

volume Vi · Pi and the percentage standard deviation 𝜎i of daily returns. The scaling constant W∗ = (40)(106)(0.02) corresponds to the trading activity

of the benchmark stock with a price of $40 per share, trading volume of 1 million shares per day, and volatility of 2% per day. Newey–West standard

errors are calculated with three lags relative to a linear time trend estimated by OLS regressions from the estimated coefficients 𝜇x,T and âx,T for each

month 𝜇x,T = 𝜇x,0 + 𝜇x,t · (T − T)∕12 + 𝜖T and âx,T = ax,0 + ax,t · (T − T)∕12 + 𝜖T , where T is the number of months from the beginning of the sample and

T is the mean month. “Avg Adj-R2” denotes the adjusted R2 averaged over monthly regressions, and “Avg # of Obs” denotes the number of stocks

averaged over monthly regressions.

Trade-weighted distribution Volume-weighted distribution

Mean 20th 50th 80th Mean 20th 50th 80th

𝜇x,0 −9.029

0.030

−9.519

0.024

−9.268

0.038

−8.633

0.039

−7.420

0.058

−9.004

0.047

−8.123

0.059

−6.304

0.059

𝜇x,t −0.097

0.009

−0.013

0.007

−0.084

0.012

−0.173

0.012

−0.192

0.018

−0.091

0.015

−0.251

0.018

−0.251

0.018

ax,0 −0.779

0.003

−0.757

0.003

−0.769

0.003

−0.811

0.004

−0.776

0.007

−0.796

0.006

−0.843

0.009

−0.779

0.010

ax,t 0.000

0.001

0.005

0.001

0.003

0.001

−0.006

0.001

−0.018

0.002

−0.005

0.002

−0.021

0.002

−0.026

0.003

Avg Adj-R2 0.907 0.866 0.884 0.913 0.892 0.892 0.862 0.760

Avg # of Obs 4452 4452 4452 4452 4452 4452 4452 4452

Effective Price Volatilityjt ≔ Pjt · 𝜎jt ·
(

Wjt

W∗

)−1∕3

. (13)

This measure is scaled by a constant W
−1∕3
∗ , previously defined as trading activity in the benchmark stock, so that effective price

volatility is exactly equal to daily price volatility for the benchmark stock. In comparison with calendar-time volatility, effective

price volatility is lower for more liquid stocks and higher for less liquid stocks to take into account that business time runs faster

in more liquid securities.

Now define effective tick size as the ratio of the dollar tick size to effective price volatility:

Effective Tick Sizejt ≔
Tick Sizejt

Pjt ·𝜎jt

P∗·𝜎∗
·
(

Wjt

W∗

)−1∕3
. (14)

The presence of P∗ · 𝜎∗ in the denominator scales the definition of relative tick size to make it exactly equal to the dollar tick

size for the benchmark stock. A higher effective price volatility makes the effective tick size lower. We conjecture that lower

effective tick size may encourage traders to shred meta-orders into a larger number of trades and may affect the amount of

intermediation.

Effective share volume and effective lot size. Round lot size imposes a restriction on the minimum number of shares in prints

on the tape. For most stocks in the sample, the lot size is equal to 100 shares. An odd lot comprises orders smaller than a round

lot (e.g., 30 shares) or the non-round-lot portion of larger orders (e.g., the 30-share portion of a 530-share order); these odd-lot

transactions are executed according to special, often less flexible rules, and information about them is not disseminated to the

tape, as described in detail by Hasbrouck et al. (1993).

To assess how restrictive this friction is, one can compare it with the size of a median bet in the corresponding market.

Equation (10) implies that median bet size is also proportional to share volume in business time, which we refer to as effective

share volume:

Effective Share Volumejt ≔ Vjt ·
(

Wjt

W∗

)−2∕3

. (15)

This measure takes into account that business time runs faster by a factor of W
2∕3

jt
in more liquid securities. Scaling it by the

constant W
−2∕3
∗ makes effective share volume equal to daily share volume for the benchmark stock.

Now define effective lot size as the ratio of the lot size to effective share volume:

Effective Lot Sizejt ≔
Lot Sizejt

Vjt

V∗
·
(

Wjt

W∗

)−2∕3
. (16)
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Practitioners often measure order size as a fraction of daily volume and restrict their trading rate to a fixed fraction—say, 5%—of

volume in order to control transaction costs. Scaling by V∗ makes the effective lot size equal to the lot size for the benchmark

stock. A lower effective share volume makes the effective lot size larger and therefore more binding, in the sense that a larger

fraction of bets falls below that threshold. Some small bets may be executed as odd lots and not recorded on the consolidated

tape, some may not be executed at all, and some may be rounded up to round-lot size. The extent of such censoring and rounding

is expected to be related to effective lot size.

Since Wjt = Vjt · Pjt · 𝜎jt , the product of effective tick size (14) and effective lot size (16) equals to the product of tick size

and lot size:

Effective Tick Sizejt · Effective Lot Sizejt = Tick Sizejt · Lot Sizejt (17)

For most stocks in our sample (with one-cent tick size and 100-share lot size), the right-hand side of this equation is a constant

equal to one dollar. It relates to the minimum possible dollar cost (and profit) per transaction in the market.

For a given month in the sample, dollar tick size and lot size are usually constant across most of the U.S. stocks, implying that

effective tick size and effective lot size are closely related to each other and to effective price volatility. In the following analysis,

we therefore examine how trading patterns differ across stocks with different levels of effective price volatility.

The effects of the two market frictions on the number of prints and print-size distributions are difficult to separate. For exam-

ple, higher effective price volatility makes effective tick size lower, but it also makes effective lot size higher; lower effective

share volume has similar implications. The first effect, operating through lower effective tick size, probably encourages more

intermediation and more order splitting of bets into smaller trades placed at finer adjacent price points as a strategy to avoid

front-running, leading to more prints of smaller sizes. The second effect, operating through higher effective lot size, probably

encourages more censoring and rounding up of odd-lot trades, thus leading to fewer prints of larger sizes in the data sample.

Distributions of print sizes over time. We next examine how market frictions affect trading in the U.S. equity market cross-

sectionally and through time. After sorting stocks into 10 volume groups and 4 effective price-volatility groups, we analyze

distributions of the logs of scaled print sizes ln
(

Xi

Vi
· W

2∕3

i

)
, with the scaling factor W

2∕3

i
implied by the invariance hypothesis.

According to the invariance hypothesis, these 40 distributions are the same in frictionless markets. To examine how these

Fig. 7. Trade-weighted distributions of scaled TAQ print sizes, NYSE-listed stocks, April 1993. This figure shows distributions of the logarithms of scaled print sizes for NYSE

stocks in April 1993. For each trade, the scaled print size is calculated as ln
(

W
2∕3

i
· |Xi|∕Vi

)
based on the invariance hypothesis, where |Xi| is the midpoint of the print size

bin in shares, Vi is the average daily volume in shares, and Wi measures trading activity as the product of dollar volume and the daily percentage standard deviation of

returns. Ten volume groups are constructed based on average dollar trading volume with thresholds corresponding to the 30th, 50th, 60th, 70th, 75th, 80th, 85th, 90th,

and 95th percentiles of the dollar volume for common NYSE-listed stocks. Four equally spaced volatility groups are constructed based on effective price volatility, defined

as Pi · 𝜎i · (Wi∕W∗)−1∕3. The subplots show stock-level distributions averaged across stocks for volume groups 1 (low volume), 4, 7, 9, and 10 (high volume) and for all four

price volatility groups 1 (low price volatility), 2, 3, and 4 (high price volatility). The 100-share trades are highlighted in light gray; the 1000-share trades are highlighted in

dark gray. Each subplot also shows a normal distribution with the pooled average print size mean of −1.15 and standard deviation of 1.38. M is the number of stocks, and

N is the average number of prints per day for the stocks in a given subgroup.
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distributions change over the entire sample period, we examine the shape of the distributions for the months April 1993, April

2001, and April 2014.

Because dollar tick size and lot size are constant during selected months, sorting stocks into effective price-volatility groups

allows us to study the effects of variations in both effective tick size and lot size.

Trade-weighted distributions for NYSE-listed stocks, April 1993. In April 1993, NYSE-listed stocks were priced in increments

of 12.5 cents (1∕8 of a dollar). Most of the stocks were traded in multiples of 100-share lots, even though some of them were

traded in multiples of 10-share lots, as described in Hasbrouck et al. (1993).

Fig. 7 shows the trade-weighted distributions of logs of scaled print sizes for 5 of the 10 vol groups and all 4 effective price-

volatility groups for the NYSE-listed stocks in April 1993. The 100-share trades are highlighted in light gray and 1000-share

trades in dark gray. The number of stocks in each subgroup and the average number of trades per day for these stocks are

also reported. On each subplot, the density of a normal distribution with the mean of −1.15 and standard deviation of 1.38 is

superimposed, calculated for the pooled sample in April 1993. If the invariance hypothesis holds, identification assumptions

are valid, and bet sizes are distributed as a log-normal, then all distributions are expected to be invariant across 40 subplots

and coincide with the superimposed normal density. For most subgroups, distributions are indeed close to the superimposed

normal.

The data are clearly truncated below the 100-share odd-lot boundary and cluster in 100-share trades, shown in light gray, in

the left tails of the distributions. Because variation in levels of dollar volume within groups is small, the 100-share trades usually

fall into the same bin or into two adjacent bins. The only exception is the first volume group, where large variation in trading

activity makes the 100-share trades spread over more than four bins.

The distributions have spikes because of clustering of trades at round-lot levels. Spikes are visible at the 100-share level and

the 1000-share level, marked by the clustering of light gray and dark gray columns. Spikes at 200-share and 500-share levels are

also visible but not explicitly marked. For example, the sample contains more trades of 5000 shares than 4000 or 6000 shares,

and far more than 4900 or 5100 shares. For the subsample of stocks with low volume and low price volatility, large variation in

trading activity smooths out spikes in the distribution of print sizes.

Fig. 8. Volume-weighted distributions of scaled TAQ print sizes, NYSE-listed stocks, April 1993. This figure shows distributions of total volume across different scaled print

size bins for the NYSE stocks in April 1993. For each stock, the volume distribution is calculated as the contribution to the total volume by trades from a given trade size

bin. The x-axis is the log of scaled print sizes, defined by ln
(

W
2∕3

i
· |Xi |

Vi

)
according to the invariance hypothesis, where |Xi| is a print size in shares (midpoint of a bin), Vi

is the average daily volume in shares, and Wi is the measure of trading activity equal to the product of dollar volume and returns standard deviation. Ten volume groups

are constructed based on average dollar trading volume with thresholds corresponding to the 30th, 50th, 60th, 70th, 75th, 80th, 85th, 90th, and 95th percentiles of the

dollar volume for NYSE-listed common stocks. Four equally spaced volatility groups are constructed based on effective price volatility, defined as Pi · 𝜎i · (Wi∕W∗)−1∕3. The

subplots show stock-level distributions averaged across stocks for volume groups 1 (low volume), 4, 7, 9, and 10 (high volume) and for all four price volatility groups 1 (low

price volatility), 2, 3, and 4 (high price volatility). The 100-share trades are highlighted in light gray, and the 1000-share trades are highlighted in dark gray. Each subplot

also shows a normal distribution with the pooled average print size mean of 1.1 and standard deviation of 1.74. M is the number of stocks, and N is the average number of

prints per day for the stocks in a given subgroup.
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A visual inspection suggests that, holding effective price volatility fixed, the supports of distributions stay relatively constant

across volume groups, but their shapes become more skewed to the right as volume increases, especially when price volatility

is low, consistent with large orders being shredded into smaller trades.

Holding dollar volume fixed, the distributions vary across effective price-volatility groups in a systematic way as well. When

effective price volatility increases, the 100-share boundary becomes more binding, the truncation threshold shifts to the right,

and the effects of censoring and rounding to the 100-share boundary become more pronounced. At the same time, the relative

tick size decreases, thus encouraging more order splitting. The first effect seems to dominate, because the average number of

prints decreases with price volatility. For high-volume stocks, for example, the average number of prints decreases monotoni-

cally from 1, 139 prints recorded per day for low-volatility stocks to only 285 prints for high-volatility stocks. In the absence of

any market frictions, the number of trades is expected to be relatively constant within a given volume group because volatility

does not vary much.

Volume-weighted distributions for NYSE-listed stocks, April 1993. Fig. 8 shows the volume-weighted distributions of logs of

scaled print sizes for the NYSE stocks in April 1993. In comparison with the trade-weighted distributions in Fig. 7, the volume-

weighted distributions put more weight onto larger trades and allow us to see more clearly the distribution of large print sizes.

According to Hasbrouck et al. (1993), a block of 10,000 shares was not a particularly large trade in 1993. Some block trades

(of 10,000 shares or more), especially block trades in illiquid stocks, were executed in the upstairs market. The average size of

upstairs-facilitated blocks was about 43,000 shares.

In comparison with the trade-weighted distributions in Fig. 7, the volume-weighted distributions are more stable across

subgroups and more closely resemble the superimposed normal distribution. On most plots, the space below the bell-shaped

density function is filled up. The truncation at the odd-lot boundary is almost invisible, because the numerous 100-share trades

almost “disappear” from the left tail of the distribution, as they contribute little to overall volume.

Small gaps in the distributions relative to a log-normal can be seen in mid-range print sizes between 1000 shares and 10,000

shares. Perhaps these gaps represent intended orders shredded into smaller trades. The strong visual resemblance of the graphs

to a log-normal, as in Kyle and Obizhaeva (2016), are consistent with the interpretation that most of the largest orders in 1993

appear to have been executed as single blocks, generating large print sizes. An exception is the low-volume group for which

the largest orders appear to be shredded because the distributions are skewed to the right. Although the volume-weighted

Fig. 9. Trade-weighted distributions of scaled TAQ print sizes, NASDAQ-listed stocks, April 1993. This figure shows distributions of the logarithms of scaled print sizes for

NASDAQ stocks in April 1993. For each trade, the scaled print size is calculated as ln
(

W
2∕3

i
· |Xi|∕Vi

)
based on the invariance hypothesis, where |Xi| is the midpoint of

the print size bin in shares, Vi is the average daily volume in shares, and Wi measures trading activity as the product of dollar volume and the daily percentage standard

deviation of returns. Ten volume groups are constructed based on average dollar trading volume with thresholds corresponding to the 30th, 50th, 60th, 70th, 75th, 80th,

85th, 90th, and 95th percentiles of the dollar volume for common NYSE-listed stocks. Four equally spaced volatility groups are constructed based on effective price volatility,

defined as Pi · 𝜎i · (Wi∕W∗)−1∕3 . The subplots show stock-level distributions averaged across stocks for volume groups 1 (low volume), 4, 7, 9, and 10 (high volume) and

for all four price volatility groups 1 (low price volatility), 2, 3, and 4 (high price volatility). The 100-share trades are highlighted in light gray; the 1000-share trades are

highlighted in dark gray. Each subplot also shows a normal distribution with the pooled average print size mean of −0.19 and standard deviation of 1.39. M is the number

of stocks, and N is the average number of prints per day for the stocks in a given subgroup.
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Fig. 10. Trade-weighted distributions of scaled TAQ print sizes, all stocks, April 2001. This figure shows distributions of the logarithms of scaled print sizes for NYSE and

NASDAQ stocks in April 2001. For each trade, the scaled print size is calculated as ln
(

W
2∕3

i
· |Xi|∕Vi

)
based on the invariance hypothesis, where |Xi| is the midpoint of

the print size bin in shares, Vi is the average daily volume in shares, and Wi measures trading activity as the product of dollar volume and the daily percentage standard

deviation of returns. Ten volume groups are constructed based on average dollar trading volume with thresholds corresponding to the 30th, 50th, 60th, 70th, 75th, 80th,

85th, 90th, and 95th percentiles of the dollar volume for common NYSE-listed stocks. Four equally spaced volatility groups are constructed based on effective price volatility,

defined as Pi · 𝜎i · (Wi∕W∗)−1∕3. The subplots show stock-level distributions averaged across stocks for volume groups 1 (low volume), 4, 7, 9, and 10 (high volume) and

for all four price volatility groups 1 (low price volatility), 2, 3, and 4 (high price volatility). The 100-share trades are highlighted in light gray; the 1000-share trades are

highlighted in dark gray. Each subplot also shows a normal distribution with the pooled average print size mean of −1.35 and standard deviation of 1.33. M is the number

of stocks, and N is the average number of prints per day for the stocks in a given subgroup.

distributions are much smoother than the trade-weighted distributions, small spikes are still detectable. These spikes, which

likely correspond to clusters of trades at the levels of 1000 shares, 5000 shares, and 10,000 shares, are clearly visible, for example,

in distributions for stocks with high volume and high effective price volatility. A few spikes in the far-right tails of several

distributions suggest that occasional very large prints occur in the data more often than explained by log-normality.

Trade-weighted distributions for NASDAQ-listed stocks, April 1993. In April 1993, the NASDAQ-listed stocks usually had the

minimum lot size of 100 shares. Quotes were restricted to increments of 1∕8 of a dollar if the bid price exceeded $10.00, but

trades were permitted in finer increments of 1∕64 of a dollar for all stocks, even though these prices were then rounded to the

nearest eighths for reporting, as described in Christie et al. (1994) and Smith et al. (1998).

Also, in 1988, the Securities and Exchange Commission required NASDAQ market makers to have a quotation size of at least

1000 shares for most stocks. The rule mostly affected large stocks, and, indeed, we observe larger spikes in subplots for high-

volume stocks. For small stocks, the rule was slightly different. For example, orders smaller than 1000 shares could be executed

through the Small Order Execution System (SOES) in stocks that were trading at prices lower than $250 per share. After 1996,

the minimum quote size restriction was gradually removed. Under the Actual Size Rule, the minimum quote size was reduced

from 1000 to 100 shares, first for 50 pilot stocks in January 1997, then for an additional 104 stocks in November 1997, and finally

for all others.

Fig. 9 shows the trade-weighted distributions of logs of scaled print sizes for NASDAQ stocks in April 1993. The biggest

difference between the trade-weighted distributions of the NASDAQ stocks and the NYSE stocks is the very large fraction of

1000-share trades, shown as dark gray spikes, typically in the middle of the NASDAQ distributions. These spikes can be attributed

to the requirement to quote at least 1000 shares. In line with this explanation, we do not observe the clustering at the 1000-

share level after 2001 (unreported). Apart from the clustering in the 1000-share level and truncation at the 100-share level, the

distributions bear some resemblance to the superimposed normal distribution.

Trade-weighted distributions for all stocks, April 2001 and 2014. After decimalization in 2001, U.S. stocks traded in increments

of one cent. The round-lot size was 100 shares; odd-lot trades accounted for a large fraction of trades, but they are not reported

in the TAQ dataset. The U.S. stock market is fragmented into multiple trading venues. Angel et al. (2011, 2015) discuss other

recent innovations in trading.

Figs. 10 and 11 show the trade-weighted distributions of logs of scaled print sizes for all stocks traded in April 2001 and April
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Fig. 11. Trade-weighted distributions of scaled TAQ print sizes, all stocks, April 2014. This figure shows distributions of the logarithms of scaled print sizes for NYSE and

NASDAQ stocks in April 2014. For each trade, the scaled print size is calculated as ln
(

W
2∕3

i
· |Xi|∕Vi

)
based on the invariance hypothesis, where |Xi| is the midpoint of

the print size bin in shares, Vi is the average daily volume in shares, and Wi measures trading activity as the product of dollar volume and the daily percentage standard

deviation of returns. Ten volume groups are constructed based on average dollar trading volume with thresholds corresponding to the 30th, 50th, 60th, 70th, 75th, 80th,

85th, 90th, and 95th percentiles of the dollar volume for common NYSE-listed stocks. Four equally spaced volatility groups are constructed based on effective price volatility,

defined as Pi · 𝜎i · (Wi∕W∗)−1∕3 . The subplots show stock-level distributions averaged across stocks for volume groups 1 (low volume), 4, 7, 9, and 10 (high volume) and

for all four price volatility groups 1 (low price volatility), 2, 3, and 4 (high price volatility). The 100-share trades are highlighted in light gray; the 1000-share trades are

highlighted in dark gray. Each subplot also shows a normal distribution with the pooled average print size mean of −2.25 and standard deviation of 1.10. M is the number

of stocks, and N is the average number of prints per day for the stocks in a given subgroup.

2014, respectively. In 2001, decimalization and use of electronic interfaces led to a significant increase in order splitting, the

effect of which is clearly seen in both figures.

The frequency of trades increased significantly over time. For high-volume and low-volatility stocks, for example, the number

of trades has increased from about 325 trades per day in April 1993 to 16, 230 trades per day in April 2001 and 41, 295 trades

per day in April 2014. The distributions of scaled print sizes shifted substantially to the left during the 1993–2014 period. Based

on the means of superimposed normals, for example, the median print size dropped from 0.11% of daily volume for the NYSE

stocks in April 1993 and 0.08% for the NASDAQ stocks to 0.003% in 2001 and only 0.001% in 2014. The market for block trades

seems almost to have disappeared, and trading is now dominated by transactions of 100 shares. Indeed, trades of 100 shares

constitute about 57% of trades executed and 38% of volume traded in 2014.

Note that the estimated log-variances of 2.05 in 1993, 1.78 in 2001, and 1.21 in 2014 for trade-weighted distributions of

scaled print sizes are lower than the variance of 2.50 for the distributions of portfolio-transition orders, reported by Kyle and

Obizhaeva (2016). A gradual decrease in log-variance is consistent with the hypothesis that large bets in liquid stocks in 2014

result in disproportionately more prints than small bets in illiquid stocks.

Regressions with effective price volatility. Table 5 presents Fama–MacBeth estimates of 𝜇n and a𝜎 from monthly regressions:

ln(Nit) = 𝜇nt +
2

3
· ln

(
Wit

W∗

)
+ a𝜎t · ln

(
Pit · 𝜎it

P∗ · 𝜎∗
·
(

Wit

W∗

)−1∕3
)

+ 𝜖it. (18)

The regression effectively imposes the invariance restriction of an = 2∕3 in regression (11) and adds effective price volatility

as an additional explanatory variable to capture the effect of both market frictions. The table reports Fama–MacBeth estimates

of the coefficients, with Newey–West standard errors calculated with three lags relative to a linear time trend estimated by

OLS regressions from the estimated monthly coefficients 𝜇n,T and â𝜎,T for each month. Specifically, the specification is 𝜇n,T =
𝜇n,0 + 𝜇n,t · (T − T)∕12 + 𝜖T and â𝜎,T = a𝜎,0 + a𝜎,t · (T − T)∕12 + 𝜖T , where T is the number of months from the beginning of the

subsample, and T is the mean month in the subsample. The six columns show the results for the entire sample as well as subsets

of NYSE/AMEX-listed stocks and NASDAQ-listed stocks during the 1993–2000 and 2001–2014 subperiods.
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Table 5

OLS estimates of number of TAQ prints with effective volatility.

This table presents Fama–MacBeth estimates 𝜇n and a𝜎 from monthly regressions

ln(Nit) = 𝜇nt +
2

3
· ln

(
Wit

W∗

)
+ a𝜎t · ln

(
Pit · 𝜎it

P∗ · 𝜎∗
·
(

Wit

W∗

)−1∕3
)

+ 𝜖it .

One observation corresponds to each month and each stock i with trading activity Wi , defined as the product of the average daily dollar volume Vi · Pi and the

percentage standard deviation 𝜎i of daily returns. Effective price volatility is defined as Pi · 𝜎i ·
(

Wi

W∗

)−1∕3

, with the effective price volatility of the benchmark

stocks P∗ · 𝜎∗ equal to 40 · 0.02. The value of Ni is the average number of prints per day. The scaling constant W∗ = (40)(106)(0.02) corresponds to the measure of

trading activity for the benchmark stock with a price of $40 per share, trading volume of 1 million shares per day, and daily volatility of 2%. Newey–West

standard errors are calculated with three lags relative to a linear time trend estimated by OLS regressions from the estimated coefficients 𝜇n,T and â𝜎,T for each

month: 𝜇n,T = 𝜇n,0 + 𝜇n,t · (T − T)∕12 + 𝜖T and â𝜎,T = a𝜎,0 + a𝜎,t · (T − T)∕12 + 𝜖T , where T is the number of months from the beginning of the sample and T is

the mean month. “Avg Adj-R2” denotes the adjusted R2 averaged over monthly regressions. The table also reports the average R2 from the restricted regressions

with a𝜎 = 0 as well as the average R2 from unconstrained regressions

ln(Nit) = 𝜇nt +
2

3
ln

(
Wit

W∗

)
+ b1 · ln

(
Vit

(106)

)
+ b2 · ln

(
Pit

(40)

)
+ b3 · ln

(
𝜎it

(0.02)

)
+ 𝜖it .

“Avg # of Obs” is the number of stocks averaged over monthly regressions. The estimates are reported for 1993–2000 and 2001–2014 subperiods.

All stocks NYSE/AMEX NASDAQ

1993–2000 2001–2014 1993–2000 2001–2014 1993–2000 2001–2014

𝜇n,0 6.270

0.016

7.952

0.023

6.316

0.009

7.998

0.025

6.247

0.020

7.942

0.027

𝜇n,t 0.087

0.007

0.116

0.007

0.024

0.004

0.151

0.007

0.125

0.009

0.093

0.008

a𝜎,0 −0.471

0.003

−0.608

0.009

−0.338

0.005

−0.475

0.008

−0.497

0.003

−0.676

0.010

a𝜎,t −0.007

0.001

−0.020

0.003

−0.007

0.002

−0.027

0.002

−0.023

0.001

−0.013

0.003

Avg Adj-R2 0.918 0.955 0.924 0.955 0.917 0.959

Avg# of Obs 6621 4452 2189 1759 4432 2694

Regression with coefficient on effective price volatility a𝜎 = 0.

Avg Adj-R2 0.873 0.899 0.908 0.917 0.857 0.881

Regression with separate coefficients for price, volume, and volatility.

Avg Adj-R2 0.928 0.970 0.940 0.974 0.923 0.975

The point estimates for a𝜎,0 are negative and statistically significant for all subsamples. The estimates of −0.471, −0.338,

and −0.497 for the 1993–2000 subperiod are smaller in absolute terms than the corresponding estimates of −0.608, −0.475,

and −0.676 for the 2001–2014 subperiod. The standard errors range from 0.003 to 0.001. The point estimates of a𝜎,t are equal

to −0.007, −0.02, −0.007, −0.027, −0.023, and −0.013, with standard errors between 0.001 and 0.003. The number of prints

is inversely related to effective price volatility. Higher effective volatility implies fewer prints in the context of the invariance

hypothesis. The estimates of 𝜇n,0 and 𝜇n,t are not too different from the corresponding estimates in Table 2.

The significant increase in values of R2 in regression equation (18), relative to values of R2 in regression (11) constrained

with an = 2∕3, shows that differences in effective price volatility partially explain the cross-sectional variation in the number

of prints unexplained by the invariance hypothesis. For the entire sample period, adding effective price volatility as an explana-

tory variable increases the R2 from 0.873 to 0.918 for the 1993–2000 subperiod and from 0.899 to 0.955 for the 2001–2014

subperiod. For NYSE stocks, the R2 increases from 0.908 to 0.917 to 0.924 and 0.955; for NASDAQ stocks, the R2 increases from

0.857 to 0.881 to 0.917 and 0.959 during the two subperiods.

Finally, we analyze the R2 in the regression that imposes the invariance restriction an = 2∕3 in regression (11), but allows

the coefficients on the three components of trading activity Wi (volume Vi, price Pi , and volatility 𝜎i) to vary freely:

ln(Nit) = 𝜇nt +
2

3
ln

(
Wit

W∗

)
+ b1 · ln

(
Vit

(106)

)
+ b2 · ln

(
Pit

(40)

)
+ b3 · ln

(
𝜎it

(0.02)

)
+ 𝜖it. (19)

Table 6 presents the results. For the 1993–2000 subperiod, the estimates are b̂1,0 = 0.122 for the coefficient on volume Vi ,

b̂2,0 = −0.370 for the coefficient on price Pi , and b̂3,0 = −0.514 for the coefficient on volatility 𝜎i. For the entire 2001–2014

period, the estimates are b̂1,0 = 0.259 for the coefficient on volume Vi, b̂2,0 = −0.281 for the coefficient on price Pi, and b̂3,0 =
−0.492 for the coefficient on volatility 𝜎i. All coefficients are statistically different from zero. Similar patterns are observed for

other subperiods and subsamples of the NYSE stocks and the NASDAQ stocks. The exponents for volatility b̂3,0 behave similarly to

the exponents for price b̂2,0 and differently from the exponents for volume b̂1,0, but the p-values of statistical tests of the linear

restriction b2,0 = b3,0 = − 2 × b1,0 are less than 0.001. This implies that the rejection of the invariance hypothesis might

depend in a subtle manner on how effective price-volatility influences incentives to shred orders and make intermediation
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Table 6

OLS estimates of number of TAQ prints with price, volatility, and volume.

This table presents Fama–MacBeth estimates 𝜇n and a𝜎 from monthly regressions

ln(Nit ) = 𝜇nt +
2

3
ln

(
Wit

W∗

)
+ b1 · ln

(
Vit

(106)

)
+ b2 · ln

(
Pit

(40)

)
+ b3 · ln

(
𝜎it

(0.02)

)
+ 𝜖it .

One observation corresponds to each month and each stock i with trading activity Wi , defined as the product of the average daily dollar volume Vi · Pi and

the percentage standard deviation 𝜎i of daily returns. Effective price volatility is defined as Pi · 𝜎i ·
(

Wi

W∗

)−1∕3

, with the effective price volatility of the

benchmark stocks P∗ · 𝜎∗ equal to 40 · 0.02. The value of Ni is the average number of prints per day. The scaling constant W∗ = (40)(106)(0.02)
corresponds to the measure of trading activity for the benchmark stock with a price of $40 per share, trading volume of 1 million shares per day, and daily

volatility of 2%. Unrestricted regressions are run without any restriction on coefficients while restricted regressions introduce the restriction of

b2 = b3 = − 0.5 × b1. Newey–West standard errors are calculated with three lags relative to a linear time trend estimated by OLS regressions from the

estimated coefficients 𝜇n,T and â𝜎,T for each month: 𝜇n,T = 𝜇n,0 + 𝜇n,t · (T − T)∕12 + 𝜖T and â𝜎,T = a𝜎,0 + a𝜎,t · (T − T)∕12 + 𝜖T , where T is the number of

months from the beginning of the sample and T is the mean month. “Avg Adj-R2” denotes the adjusted R2 averaged over monthly regressions.

All stocks NYSE/AMEX NASDAQ

Unrestricted Unrestricted Unrestricted

1993–2000 2001–2014 1993–2000 1993–2000 1993–2000 1993–2000

𝜇n,0 6.242

0.015

8.350

0.036

6.131

0.012

8.214

0.036

6.323

0.022

8.513

0.041

𝜇n,t 0.114

0.007

0.133

0.011

0.070

0.006

0.161

0.010

0.166

0.009

0.101

0.013

b1,0 0.122

0.001

0.259

0.005

0.069

0.002

0.216

0.006

0.148

0.001

0.294

0.005

b1,t 0.010

0.001

0.012

0.001

0.006

0.001

0.014

0.002

0.017

0.001

0.007

0.001

b2,0 −0.370

0.003

−0.281

0.006

−0.351

0.003

−0.230

0.008

−0.363

0.004

−0.300

0.005

b2,t 0.005

0.001

−0.004

0.002

0.010

0.001

−0.011

0.002

−0.002

0.001

−0.003

0.002

b3,0 −0.514

0.006

−0.492

0.009

−0.524

0.004

−0.493

0.024

−0.482

0.004

−0.556

0.006

b3,t 0.049

0.002

−0.017

0.001

0.019

0.002

−0.005

0.003

0.024

0.001

−0.013

0.002

Avg Adj-R2 0.928 0.970 0.940 0.974 0.923 0.975

Avg # of Obs 6621 4452 2189 1759 4432 2694

b2,0 = b3,0 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001

b2,0 = −2 × b1,0 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001

b3,0 = −2 × b1,0 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001

b2,0 = b3,0 = −2 × b1,0 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001

trades. Note that for the pooled sample, the R2 increases from 0.873 to 0.928 for the 1993–2000 subperiod and from 0.899

to 0.970 for the 2001–2014 subperiod. The R2 of 0.928 and 0.970 are only slightly larger than the R2 of 0.918 and 0.955 in

regression equation (18), respectively. Although statistically significant, the addition of two extra degrees of freedom beyond

the effective price volatility improves the R2 by only a small amount.

4. Conclusion

The distributions of TAQ print sizes (adjusted for trading activity as suggested by invariance hypotheses) resemble a log-

normal, with truncation below the 100-share odd-lot boundary. The resemblance was stronger during the earlier 1993–2001

subperiod than during the later 2001–2014 subperiod, and it shows up more clearly in volume-weighted distributions than in

trade-weighted distributions.

The invariance hypothesis explains about 88% of variation across stocks in the number of prints. The unexplained 10% can

be most likely attributed to other microstructure effects such as order splitting, intermediation activity, and various market

frictions like lot size and tick size. For example, subtle effects of effective price volatility explain an additional 4.5% and 5.5%

of variations during the 1993–2000 and 2001–2014 periods, respectively. An interesting topic for future research would be to

analyze these effects at a deeper level by designing more refined econometric tests.
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Appendix B. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.finmar.2019.100513.

Appendix A. Robustness results

This appendix presents robustness results for our data aggregation, variable construction, and model estimations.7

Aggregating data into bins. We calculate the percentiles of trade size distributions from the raw TAQ data without aggregating

data into bins. We run our print size regressions with these percentiles. Given the large volume of the raw transactions data,

we produce our results for three months: April 1993, April 2001, and April 2014 and compare them with the results from our

bin-aggregated dataset. Table A.7 reports for the percentiles from the aggregated data and Table A.8 reports the results for the

percentiles from the raw data. In addition, we calculate dollar volume from the bins using the midpoint of the bins. Table A.17

shows the dollar volume computed from the bins and the actual dollar volume. The distribution of these two dollar volume

measures are very comparable. Table A.18 shows estimates from the regression of the actual dollar volume on the dollar volume

from the bins. The coefficient on the dollar volume from bins is about 0.97 in both subsample periods.

Volatility estimation. We estimate the daily stock volatility in two different ways: 1) using an ARCH (5) model to predict one-

day ahead volatility; 2) computing the daily volatility by using the standard deviation of 5-day log return cumulative from the

previous 50 trading days. In both cases, average daily volume is also recalculated over the same window with the volatility for

consistency.

Eliminating 10-share stocks. We assess how our results are affected by 10-share stocks by aiming to remove them from our

sample. For each month and stock, we calculate the ratio of trades that are below 100 shares. For each month, across stocks, we

determine the 95th percentile of the ratio of trades that are below 100 shares. For each month, we remove the stocks that have

higher ratio of trades that are below 100 shares than the 95th percentile of the ratio of trades that are below 100 shares.

Annual aggregation. Rather than monthly frequency, we aggregate the data to the annual frequency and rerun our regressions.

Tables A.9, A.10, A.11, and A.12 report the robustness results for volatility estimations, elimination of 10-share stocks, and

annual data aggregation.

Effective volatility results without restriction on ln(W). We rerun our estimation for Table 5 without a restriction on ln(W).
Table A.13 reports the regression results with and without this restriction.

Weighting coefficients with their standard errors. We weight the monthly regression coefficients with the inverse of their

standard errors. Tables A.14 and A.15 report the results for weighted coefficients with their standard errors.

Stock and month fixed effects. Instead of month-by-month regressions, we run our number prints estimation with month and

stock fixed effects. Table A.16 reports the results of these regressions. In Figure A.12, we plot the stock fixed effect from the first

panel of Table A.16 against the stock level average value of ln(EPV). Stock fixed-effects and ln(EPV). display a negative correlation,

especially when stock fixed-effects are computed after controlling for month fixed-effects. When the effective price volatility is

large (the effective tick size is low and the effective lot size is large), the number of prints is low; this suggests the importance

of lot size constraint in the U.S. stock market.

Adjusting volatility for tick size. Following Harris (1990), we adjust our volatility estimate for tick-size discreteness. Decimal-

ization of the tick size happened in several stages and these stages can be different for different stocks. However, for simplicity

purposes, we take the tick size as 1∕8 from January 1993 to May 1997, 1∕16 from May 1997 to June 2001, and 0.01 after June

2001. With the tick-size adjustment, we compute the W and rerun our number of prints regression (without time trends).

Table A.19 reports the results of this regression. The coefficients on ln(w) are very similar to the ones reported in Table 2. In

addition, Figure A.13 plots our estimated coefficients for ln(w) with the ones from Table 2; the difference between the two

series is very small.

7 For simplicity, we report monthly OLS regression results without the second-stage time-trend regressions.

https://doi.org/10.1016/j.finmar.2019.100513
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Table A.7

Data aggregation: Bins.

Trade-weighted Volume-weighted

Mean 20th 50th 80th Mean 20th 50th 80th

Panel A: April 1993

Intercept −7.003

0.021

−8.383

0.025

−7.081

0.024

−5.883

0.023

−4.158

0.026

−5.930

0.023

−4.282

0.027

−2.803

0.031

ln(W/W∗) −0.735

0.004

−0.795

0.005

−0.747

0.004

−0.698

0.004

−0.507

0.005

−0.625

0.004

−0.519

0.005

−0.426

0.006

Avg Adj-R2 0.864 0.844 0.837 0.828 0.668 0.786 0.648 0.500

Avg # of Obs 5623 5623 5623 5623 5623 5623 5623 5623

Panel B: April 2001

Intercept −7.743

0.012

−8.963

0.015

−7.926

0.012

−6.763

0.012

−5.289

0.018

−6.984

0.013

−5.549

0.019

−3.894

0.022

ln(W/W∗) −0.720

0.002

−0.733

0.003

−0.738

0.002

−0.712

0.002

−0.581

0.004

−0.674

0.003

−0.611

0.004

−0.513

0.004

Avg Adj-R2 0.942 0.913 0.936 0.941 0.820 0.914 0.816 0.691

Avg # of Obs 6005 6005 6005 6005 6005 6005 6005 6005

Panel C: April 2014

Intercept −9.424

0.015

−9.393

0.019

−9.392

0.019

−9.285

0.016

−7.939

0.034

−9.358

0.017

−9.094

0.018

−7.468

0.025

ln(W/W∗) −0.741

0.004

−0.712

0.005

−0.715

0.005

−0.786

0.004

−0.797

0.009

−0.751

0.005

−0.870

0.005

−0.858

0.007

Avg Adj-R2 0.892 0.832 0.837 0.897 0.657 0.873 0.892 0.805

Avg # of Obs 3675 3675 3675 3675 3675 3675 3675 3675

Table A.8

Data aggregation: No bins.

Trade-weighted Volume-weighted

Mean 20th 50th 80th Mean 20th 50th 80th

Panel A: April 1993

Intercept −7.005

0.021

−8.389

0.025

−7.106

0.024

−5.894

0.023

−4.333

0.024

−5.936

0.025

−4.273

0.028

−2.738

0.031

ln(W/W∗) −0.733

0.004

−0.797

0.005

−0.750

0.004

−0.697

0.004

−0.506

0.004

−0.625

0.005

−0.513

0.005

−0.404

0.006

Avg Adj-R2 0.860 0.840 0.834 0.823 0.698 0.769 0.626 0.471

Avg # of Obs 5623 5623 5623 5623 5623 5623 5623 5623

Panel B: April 2001

Intercept −7.756

0.012

−8.965

0.015

−7.948

0.013

−6.790

0.012

−5.449

0.017

−7.004

0.015

−5.526

0.020

−3.825

0.023

ln(W/W∗) −0.719

0.002

−0.736

0.003

−0.738

0.003

−0.711

0.002

−0.577

0.003

−0.673

0.003

−0.601

0.004

−0.487

0.005

Avg Adj-R2 0.939 0.911 0.931 0.936 0.835 0.898 0.794 0.657

Avg # of Obs 6005 6005 6005 6005 6005 6005 6005 6005

Panel C: April 2014

Intercept −9.768

0.013

−10.095

0.017

−9.404

0.018

−9.290

0.016

−8.198

0.016

−9.360

0.017

−9.047

0.019

−7.008

0.028

ln(W/W∗) −0.748

0.004

−0.703

0.005

−0.709

0.005

−0.786

0.004

−0.778

0.004

−0.755

0.005

−0.877

0.005

−0.824

0.008

Avg Adj-R2 0.920 0.864 0.849 0.898 0.896 0.870 0.885 0.758

Avg # of Obs 3675 3675 3675 3675 3675 3675 3675 3675
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Table A.9

Number of prints: Robustness results.

Panel A

Volatility Estimation #1 Volatility Estimation #2

1993–2000 2000–2014 1993–2000 2000–2014

Intercept 5.929

0.030

8.207

0.047

5.958

0.032

8.364

0.051

Ln(W/W∗) 0.681

0.001

0.815

0.003

0.652

0.002

0.791

0.003

Adj-R2 0.879 0.932 0.827 0.904

# of Obs 6653 4457 6605 4446

Panel B

Eliminating 10-share stocks Annual Aggregation

1993–2000 2000–2014 1993–2000 2000–2014

Intercept 6.147

0.024

8.506

0.051

6.232

0.101

8.542

0.144

Ln(W/W∗) 0.667

0.001

0.780

0.003

0.709

0.004

0.829

0.009

Adj-R2 0.873 0.921 0.889 0.933

# of Obs 6618 4331 6281 4253

Table A.10

1993–2000 print sizes: Robustness results.

Trade-weighted Volume-weighted

Mean 20th 50th 80th Mean 20th 50th 80th

Panel A: Volatility Estimation #1

Intercept −6.997

0.023

−8.319

0.020

−7.119

0.022

−6.091

0.019

−4.567

0.035

−6.216

0.027

−4.764

0.039

−3.235

0.039

ln(W/W∗) −0.758

0.002

−0.803

0.003

−0.771

0.002

−0.743

0.002

−0.574

0.003

−0.678

0.001

−0.594

0.003

−0.492

0.004

Avg Adj-R2 0.902 0.887 0.897 0.893 0.684 0.836 0.678 0.519

Avg # of Obs 6653 6653 6653 6653 6653 6653 6653 6653

Panel B: Volatility Estimation #1

Intercept −7.009

0.027

−8.440

0.018

−7.239

0.020

−6.225

0.016

−4.723

0.031

−6.363

0.023

−4.928

0.035

−3.397

0.036

ln(W/W∗) −0.721

0.003

−0.763

0.003

−0.732

0.002

−0.709

0.002

−0.554

0.003

−0.650

0.002

−0.575

0.003

−0.479

0.004

Avg Adj-R2 0.837 0.870 0.879 0.876 0.647 0.812 0.645 0.482

Avg # of Obs 6605 6605 6605 6605 6605 6605 6605 6605

Panel C: Eliminating 10-share Stocks

Intercept −7.239

0.016

−8.496

0.018

−7.290

0.020

−6.261

0.018

−7.239

0.016

−6.365

0.026

−4.888

0.039

−3.327

0.039

ln(W/W∗) −0.741

0.002

−0.781

0.003

−0.750

0.002

−0.725

0.002

−0.741

0.002

−0.661

0.001

−0.579

0.003

−0.481

0.003

Avg Adj-R2 0.896 0.867 0.878 0.880 0.896 0.831 0.679 0.524

Avg # of Obs 6618 6618 6618 6618 6618 6618 6618 6618

Panel D: Annual aggregation

Intercept −7.346

0.081

−8.606

0.076

−7.420

0.102

−6.362

0.086

−4.795

0.123

−6.485

0.110

−4.992

0.143

−3.488

0.125

ln(W/W∗) −0.778

0.009

−0.814

0.015

−0.792

0.009

−0.762

0.007

−0.628

0.008

−0.700

0.004

−0.622

0.009

−0.572

0.011

Avg Adj-R2 0.909 0.884 0.895 0.895 0.716 0.854 0.719 0.557

Avg # of Obs 6281 6281 6281 6281 6281 6281 6281 6281
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Table A.11

2001–2014 print sizes: Robustness results.

Trade-weighted Volume-weighted

Mean 20th 50th 80th Mean 20th 50th 80th

Panel A: Volatility Estimation #1

Intercept −8.729

0.031

−9.270

0.011

−9.015

0.031

−8.361

0.055

−7.158

0.064

−8.738

0.053

−7.834

0.080

−6.038

0.080

ln(W/W∗) −0.803

0.002

−0.782

0.003

−0.795

0.002

−0.836

0.003

−0.800

0.007

−0.821

0.004

−0.868

0.008

−0.802

0.010

Avg Adj-R2 0.917 0.881 0.900 0.926 0.781 0.903 0.869 0.763

Avg # of Obs 4457 4457 4457 4457 4457 4457 4457 4457

Panel B: Volatility Estimation #1

Intercept −8.871

0.035

−9.445

0.014

−9.197

0.035

−8.557

0.059

−7.372

0.067

−8.942

0.056

−8.065

0.084

−6.268

0.082

ln(W/W∗) −0.777

0.002

−0.751

0.002

−0.764

0.002

−0.806

0.003

−0.779

0.007

−0.795

0.004

−0.846

0.008

−0.784

0.010

Avg Adj-R2 0.881 0.872 0.891 0.918 0.770 0.894 0.860 0.753

Avg # of Obs 4446 4446 4446 4446 4446 4446 4446 4446

Panel C: Eliminating 10-share Stocks

Intercept −9.020

0.034

−9.509

0.014

−9.259

0.033

−8.623

0.057

−7.426

0.068

−8.999

0.056

−8.120

0.084

−6.307

0.083

ln(W/W∗) −0.766

0.002

−0.743

0.003

−0.756

0.002

−0.798

0.002

−0.768

0.006

−0.785

0.003

−0.835

0.007

−0.778

0.010

Avg Adj-R2 0.905 0.862 0.881 0.912 0.862 0.891 0.860 0.753

Avg # of Obs 4331 4331 4331 4331 4331 4331 4331 4331

Panel D: Annual Aggregation

Intercept −9.048

0.089

−9.500

0.037

−9.298

0.080

−8.674

0.168

−7.457

0.195

−9.068

0.152

−8.186

0.250

−6.375

0.250

ln(W/W∗) −0.801

0.005

−0.771

0.009

−0.785

0.007

−0.842

0.008

−0.845

0.021

−0.832

0.011

−0.899

0.025

−0.873

0.034

Avg Adj-R2 0.911 0.861 0.885 0.923 0.799 0.905 0.895 0.800

Avg # of Obs 4253 4253 4253 4253 4253 4253 4253 4253
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Table A.12

Robustness results: Number of prints with effective price volatility.

This table presents Fama–MacBeth estimates 𝜇n and a𝜎 from monthly regressions

ln
(

Nit

)
= 𝜇nt +

2

3
· ln

(
Wit

W∗

)
+ a𝜎t · ln

(
Pit · 𝜎it

P∗ · 𝜎∗
·
(

Wit

W∗

)−1∕3
)

+ 𝜖i.

One observation corresponds to each month and each stock i with trading activity Wi , defined as the product of the average daily dollar volume Vi · Pi

and the percentage standard deviation 𝜎i of daily returns. Effective price volatility is defined as Pi · 𝜎i ·
(

Wi

W∗

)−1∕3

, with the effective price volatility of the

benchmark stocks P∗ ·𝜎∗ equal to 40 · 0.02. The value of Ni is the average number of prints per day. The scaling constant W∗ = (40)(106)(0.02)
corresponds to the measure of trading activity for the benchmark stock with a price of $40 per share, trading volume of 1 million shares per day, and

daily volatility of 2%. “Adj-R2” denotes the adjusted R2 averaged over monthly regressions. The table also reports the average R2 from the restricted

regressions with a𝜎 = 0 as well as the average R2 from unconstrained regressions

ln
(

Nit

)
= 𝜇nt +

2

3
ln
(

Wit

W∗

)
+ b1 · ln

(
Vit

(106 )

)
+ b2 · ln

(
Pit

(40)

)
+ b3 · ln

(
𝜎it

(0.02)

)
+ 𝜖it.

“# of Obs” is the number of stocks averaged over monthly regressions. The estimates are reported for 1993–2000 and 2001–2014 subperiods.

Panel A

Volatility estimation #1 Volatility estimation #2

1993–2000 1993–2000 2000–2014 2000–2014 1993–2000 1993–2000 2000–2014 2000–2014

Intercept 6.083

0.029

6.114

0.025

7.805

0.039

8.234

0.039

6.130

0.030

6.148

0.034

7.848

0.039

8.273

0.044

ln(EPV/EPV∗) −0.438

0.004

−0.600

0.008

−0.492

0.006

−0.594

0.007

ln(V/V∗) 0.120

0.002

0.260

0.004

0.134

0.003

0.266

0.004

ln(P/P∗) −0.359

0.004

−0.265

0.005

−0.380

0.005

−0.275

0.005

ln(𝜎/𝜎∗) −0.460

0.020

−0.441

0.014

−0.557

0.011

−0.535

0.009

Avg Adj-R2 0.915 0.922 0.952 0.966 0.870 0.881 0.929 0.946

Avg # of Obs 6653 6653 4457 4457 6605 6605 4446 4446

Panel B

Eliminating 10-share stocks Annual aggregation

1993–2000 1993–2000 2000–2014 2000–2014 1993–2000 1993–2000 2000–2014 2000–2014

Intercept 6.271

0.022

6.242

0.028

7.972

0.039

8.350

0.046

6.197

0.095

6.292

0.103

7.939

0.126

8.419

0.138

ln(EPV/EPV∗) −0.473

0.003

−0.590

0.007

−0.488

0.007

−0.589

0.029

ln(V/V∗) 0.122

0.002

0.256

0.004

0.151

0.008

0.276

0.014

ln(P/P∗) −0.372

0.002

−0.281

0.003

−0.350

0.016

−0.228

0.016

ln(𝜎/𝜎∗) −0.516

0.012

−0.494

0.008

−0.451

0.063

−0.410

0.040

Avg Adj-R2 0.918 0.928 0.953 0.969 0.932 0.939 0.950 0.970

Avg # of Obs 6618 6618 4331 4331 4253 4253 4253 4253
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Table A.13

Number of prints with effective price volatility: Restriction.

Restricted Model Unrestricted Model

1993–2000 2000–2014 1993–2000 2000–2014

Panel A: All Stocks

Intercept 6.270

0.022

7.952

0.038

6.114

0.029

8.216

0.045

Ln(W/W_bar) 0.667 0.667 0.631

0.002

0.746

0.003

Ln(EPV/EPV_bar) −0.471

0.003

−0.608

0.008

−0.497

0.002

−0.546

0.007

Adj-R2 0.918 0.955 0.920 0.965

# of Obs 6621 4452 6621 4452

Panel B: NYSE/AMEX

Intercept 6.316

0.008

7.998

0.049

6.049

0.014

8.167

0.053

Ln(W/W_bar) 0.667 0.667 0.597

0.001

0.741

0.003

Ln(EPV/EPV_bar) −0.338

0.004

−0.475

0.010

−0.417

0.003

−0.443

0.010

Adj-R2 0.924 0.955 0.935 0.965

# of Obs 2189 1759 2189 1759

Panel C: NASDAQ

Intercept 6.247

0.031

7.942

0.032

6.146

0.041

8.293

0.038

Ln(W/W_bar) 0.667 0.667 0.646

0.002

0.754

0.002

Ln(EPV/EPV_bar) −0.497

0.006

−0.676

0.007

−0.510

0.005

−0.604

0.006

Adj-R2 0.917 0.959 0.918 0.969

# of Obs 4432 2694 4432 2694

Table A.14

Number of prints: Standard-error weighted results.

Panel A

All stocks NYSE/AMEX NASDAQ

1993–2000 2001–2014 1993–2000 2001–2014 1993–2000 2001–2014

Intercept 6.192

0.165

8.476

0.053

6.125

0.131

8.348

0.051

6.212

0.182

8.586

0.057

ln(W/W∗) 0.666

0.011

0.785

0.007

0.626

0.009

0.753

0.010

0.680

0.012

0.811

0.009

Avg Adj-R2 0.873 0.923 0.912 0.933 0.858 0.913

Avg # of Obs 6621 4452 2189 1759 4432 2694

Panel B

All stocks NYSE/AMEX NASDAQ

1993–2000 2000–2014 1993–2000 2000–2014 1993–2000 2000–2014

Intercept 6.290

0.097

7.899

0.065

6.322

0.077

7.948

0.108

6.279

0.110

7.891

0.067

ln(W/W∗) 0.667 0.667 0.667 0.667 0.667 0.667

ln(EPV/EPV∗) −0.473

0.007

−0.604

0.007

−0.340

0.007

−0.483

0.014

−0.502

0.010

−0.669

0.005

Avg Adj-R2 0.918 0.955 0.924 0.955 0.917 0.959

Avg # of Obs 6621 4452 2189 1759 4432 2694
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Table A.15

Print sizes: Standard error weighted results.

Trade-weighted Volume-weighted

Mean 20th 50th 80th Mean 20th 50th 80th

Panel A: January 1993 to December 2001

Intercept −7.263

0.201

−8.516

0.226

−7.320

0.227

−6.296

0.186

−4.731

0.111

−6.415

0.180

−4.944

0.125

−3.370

0.085

ln(W/W∗) −0.738

0.013

−0.776

0.013

−0.746

0.016

−0.722

0.014

−0.562

0.008

−0.661

0.012

−0.581

0.009

−0.483

0.007

Avg Adj-R2 0.896 0.866 0.878 0.880 0.686 0.830 0.679 0.524

Avg # of Obs 6621 6621 6621 6621 6621 6621 6621 6621

Panel B: January 2001 to December 2014

Intercept −8.983

0.056

−9.508

0.063

−9.221

0.063

−8.566

0.053

−7.267

0.134

−8.962

0.055

−8.123

0.107

−6.271

0.096

ln(W/W∗) −0.778

0.012

−0.760

0.012

−0.771

0.013

−0.805

0.010

−0.756

0.016

−0.791

0.008

−0.834

0.007

−0.764

0.009

Avg Adj-R2 0.907 0.866 0.884 0.913 0.778 0.892 0.862 0.760

Avg # of Obs 4452 4452 4452 4452 4452 4452 4452 4452

Table A.16

Number-of-prints regressions with stock and month fixed effects.

This table presents the results from the panel regression:

ln
(

Nit

)
= 𝜇nt + 𝛼 · ln

(
Wit

W∗

)
+ 𝜖it.

The panel regressions are run with and without stock and month fixed effects. The White standard errors are reported below the coefficient

estimates.

Panel A: All stocks: February 1993 to December 2014

Intercept 7.828

0.002

6.295

0.008

7.479

0.003

5.543

0.007

ln(W/W∗) 0.837

0.000

0.741

0.000

0.746

0.001

0.595

0.000

Stock Fixed Effects No No Yes Yes

Month Fixed Effects No Yes No Yes

Avg Adj-R2 0.78 0.94 0.87 0.97

Avg # of Obs 1,383,857 1,383,857 1,383,857 1,383,857

ln(W/W∗) = 2/3 p < 0.001 p < 0.001 p < 0.001 p < 0.001

Panel B: All stocks: February 1993 to December 2000

Intercept 6.221

0.002

6.146

0.002

5.714

0.003

5.173

0.006

ln(W/W∗) 0.683

0.000

0.666

0.002

0.567

0.001

0.517

0.001

Stock Fixed Effects No No Yes Yes

Month Fixed Effects No Yes No Yes

Avg Adj-R2 0.87 0.89 0.93 0.95

Avg # of Obs 634,322 634,322 634,322 634,322

ln(W/W∗) = 2/3 p < 0.001 p = 0.0242 p < 0.001 p < 0.001

Panel C: All stocks: January 2001 to December 2014

Intercept 8.551

0.002

8.439

0.001

8.050

0.003

6.226

0.007

ln(W/W∗) 0.818

0.000

0.785

0.000

0.669

0.001

0.587

0.001

Stock Fixed Effects No No Yes Yes

Month Fixed Effects No Yes No Yes

Avg Adj-R2 0.88 0.93 0.92 0.97

Avg # of Obs 749,535 749,535 749,535 749,535

ln(W/W∗) = 2/3 p < 0.001 p < 0.001 p = 0.0052 p < 0.001
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Table A.17

Volume comparison statistics.

5th 25th 50th 75th 95th Mean Std Dev

Panel A: 1993–2000

Dollar Volume ($ 1000) 9.01 55.35 275.40 1749.73 21,001.95 6186.11 47,661.55

Dollar Volume from Bins ($ 1000) 8.95 55.68 278.68 1781.85 21,571.51 6368.07 49,229.03

Panel B: 2001–2014

Dollar Volume ($ 1000) 11.96 123.96 1365.52 10,692.92 108,488.27 24,407.87 122,187.42

Dollar Volume from Bins ($ 1000) 12.11 125.85 1389.41 10,902.08 110,867.82 24,914.80 124,924.79

Table A.18

Volume comparison regression.

Dollar Volume

1993–2000 2001–2014

Intercept 68,111

55,022

220,509

162,649

Dollar Volume From Bins 0.9682

0.0099

0.9715

0.0071

# of obs. 634,322 749,535

Adj-R2 0.9795 0.9867

Table A.19

Regression after tick-size adjustment.

1993–2000 2001–2014

Intercept 6.1390

0.0244

8.5132

0.0513

ln(W_Tick_Adj∕W∗) 0.6619

0.0010

0.7900

0.0033

# of Stocks 6502 4448

Adj-R2 0.867 0.923

Fig. A.12 Stock fixed effects.
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Fig. A.13 Number-of-prints regression coefficients with tick-size adjustment.
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