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Even though market microstructure variables—such as volume, volatility, bet size, number

of bets, liquidity measures, and pricing accuracy—vary significantly across assets and across

time, they satisfy particular invariance relationships proposed by Kyle and Obizhaeva (2016).

We derive these invariance relationships theoretically using a simple one-period equilibrium

model of trading among symmetric oligopolistic firms. Our model also generates specific quan-

titative predictions about some industrial organization aspects of financial firms such as the

number of financial firms, the number of traders employed at each firm, and assets under man-

agement.

Our model is based on a one-period model of Kyle, Obizhaeva and Wang (2017). There are

informed firms and noise firms who trade a risky asset against a risk-free numeraire. Informed

firms trade based on informative private signals. Noise firms trade based on uninformative

signals, as if it were information; similar motivation for noise trading can be found in Treynor

(1995) and Black (1986). Both informed and noise firms believe that they trades on informative

signal, while some of the other firms trade on uninformative signals; however, trades of both

types of firms are indistinguishable. Firms optimize their strategies taking into account its mar-

ket power. In the symmetric equilibrium, prices are equal to the average of firms’ risk-neutral

buy-and-hold valuations, and each firm trades proportionally to the difference between its own

valuation and the average valuation of other market participants that it infers from prices.

To generate invariance relationships, we make three additional adjustments to the baseline

model. We model the endogenous choice by firms to acquire private information and impose

two appropriate restrictions on the two easily observable variables such as volume and volatil-

ity.

First, firms decide to acquire private information based on their break-even condition so

that profits of trading on information cover the cost of acquiring it. The equilibrium fraction of

informed firms turns out to be close to a half with the approximation error being proportional

to the degree of risk aversion and the cost of a private signal. If firms are risk averse and infor-

mation is costly, then firms have fewer incentives to acquire information, and this effect pushes

down the number of informed firms relative to the number of noise firms in the market.

Second, the distinctive property of invariance is the strong emphasis it puts on trading vol-

ume. Even though trading volume is one of the most important characteristics of financial mar-

kets, it has by and large slipped the attention of researchers, who instead usually tend to study

asset prices; this property has been even reflected in the name of the field of asset pricing itself.

Yet, volume is one of the few easily observable variables, and thus reasonable predictions con-

cerning trading volume must be among main indicators of how successful a proposed model of
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financial markets is. Good models must explain why people trade so much. Their predictions

must match empirically observed levels of trading volume. Our model based on the agreement

of firms to disagree about their signals has a good concept of volume. We match theoretical vol-

ume to empirically observable volume, and the volume condition allows us later to endogenize

either the number of firms or the number of traders employed by each firm.

Third, another easily observable and therefore important characteristic of the market is

price volatility. In one-period models, several theoretical measures can be potentially used

for volatility, since any one-period model has effectively two different price changes between

pre-trade price and trade price as well as between trade price and post-trade price. This makes

it difficult to use one-period models to derive realistic implications for continuously operating

dynamic financial markets. Similar concerns are relevant for any non-stationary model. We

believe it is more appropriate to think of volatility of the difference between pre-trade price and

trade price as the proxy for price volatility, while volatility of the difference between trade price

and post-trade liquidation value can be thought of as a proxy for pricing accuracy. This con-

ceptual issue is especially important for derivation of invariance relationships, because market

microstrucure invariance is ultimately a dynamic concept, which is closely related to how vol-

ume and volatility unfold over time. We match theoretical volatility to empirically observable

volatility, and it essentially allows us to endogenize the volatility of fundamentals in the model.

With all aspects of the model carefully thought out, we derive invariance relationships as

equilibrium properties of the model. These relationships also coincide with invariance rela-

tionships derived in Kyle and Obizhaeva (2016) as implications of empirical conjectures and

derived in Kyle and Obizhaeva (2017a) based on the concepts of dimensional analysis and lever-

age neutrality. Kyle and Obizhaeva (2017b) shows how to derive invariance relationships in the

context of a much more complicated dynamic equilibrium model, and we discuss how results

of our model can be mapped into their results.

It is remarkable that even a simple stylized model is able to generate quantitative invariance

predictions that match so well the empirical evidence. For example, Kyle and Obizhaeva (2016)

document invariance relationships for the size distributions of portfolio transition orders. Kyle,

Obizhaeva and Tuzun (2016) find similar relationship between the size distribution of transac-

tions and trading activity in the Trade and Quote data set (TAQ). Andersen et al. (2016) report

invariance relationships for number of transactions and average size of transactions in the data

for S&P500 E-mini futures. Similarly, Kyle et al. (2014) study invariance relations for the number

of news articles using Thomson-Reuters data. Bae et al. (2014) discuss an invariance relation-

ship for the number of buy-sell switching points in the South Korean market.
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The proof of invariance relationships relies on the approximation, which holds only if the

number of firms is relatively large and the precision of private signals of each firm or their risk

aversion are sufficiently small. This potentially identifies natural boundaries of invariance. For

example, invariance relationships are less likely to be found in the market for financial securities

in which only a few firms are active.

Our model also generates new results. Some order flow tends to be internalized in internal

crossing systems of financial firms. Banks often internalize order flow of institutional investors.

Brokers often internalize order flow of retail investors who trade using their systems. We show

how to get invariance relationships by adjusting trading volume and trading activity for inter-

nalized order flow. This discussion highlights why it is empirically difficult to identify bets, or

independent trading decisions, in the order flow. We show that the number of bets has to be

calculated not only as the number of firms or trades, but rather as its product with the precision

of private signals. The number of bets is therefore equal to the total number of units of pre-

cision of private information incorporated by the market. Another difficulty, discussed in Kyle

and Obizhaeva (2016) and left for the future research, arises due to a common practice to shred

bets—often correlated across several market participants—over time to minimize transaction

costs.

Our model generates specific quantitative predictions about relationships between the num-

ber of financial firms, the number of traders employed at each firm (proxied by the precision of

firm’s private information), and assets under management (proxied by degree of risk aversion).

Those results may be further developed to provide valuable theoretical guidance to the liter-

ature on industrial organization of financial sector, which studies the allocation of talent and

capital across firms, career choice of finance professionals, and their wages. Murphy, Shleifer

and Vishny (1991), Schwarzkopf and Farmer (2010), and Philippon and Reshef (2012) are exam-

ples of related research.

The remainder of the paper proceeds as follows. In Section 1 we present the model and

solve the equilibrium with information acquisition and trading volume restriction. We derive

invariance relationships for the two cases with endogenous number of firms and endogenous

precision of signals produced by each firm in Section 2. We conclude in Section 3.

1 Trading Game

There are N financial firms that trade a risky asset with liquidation value ṽ ∼N(0,τ−1
v ) against a

safe numeraire asset with a liquidation value of one. Each firm n where n = 1, . . . , N is endowed
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with a zero inventory of the risky asset. The risky asset is in zero net supply.

Each firm observes a public signal ĩ0 with precision τ0 about a liquidation value,

ĩ0 ∶= τ1/2
0 ⋅(τ

1/2
v ⋅ ṽ)+ ẽ0, (1)

where ẽ0 ∼N(0,1). Each firm n also observes a private signal ĩn with precision τn ,

ĩn ∶= τ1/2
n ⋅(τ

1/2
v ⋅ ṽ)+ ẽn , (2)

where ẽn ∼ N(0,1). The cost of observing a public signal is zero, and the cost of generating a

private signal in is equal to cI dollars. Given the symmetry of the equilibrium, each firm n also

infers from the market price the average of signals of the other firms

ĩ−n ∶=
1

N −1
∑

m≠n
ĩm . (3)

The asset payoff ṽ , the public signal error ẽ0, and N private signal errors ẽ1, . . . , ẽN are all inde-

pendently distributed.

A particular choice of information structure is important for derivation of invariance re-

lationships. We assume that each firm n spends some resources to generate a private signal.

Firm’s employers run multiple predictive regressions of past realizations of normalized variable

of interest τ
1/2
v ⋅ ṽ on various combinations of factors they choose to test in constructing their

strategy. Upon extensive analysis, they select a particular combination of factors ĩn that forecast

the fundamental value the best. It can be shown that, when τn is small, it is approximately equal

to the R-square of a regression in which the scaled variable τ
1/2
v ⋅ ṽ is regressed on the scaled sig-

nal ĩn . Therefore the bigger is the precision τn of firm n’s signal, the higher is the R-square of the

predictive model and the bigger is its potential to generate profits. In other words, the precision

τn can be viewed as a proxy for the number of traders employed by firm n who participate in

generating firm n’s signal.

When implementing the regression analysis, traders scale the dependent variable ṽ by its

standard deviation of τ
−1/2
v , which is assumed to be a common knowledge in the model. This

scaling is consistent with a practice of standardizing variables in the financial industry. Indeed,

variables are often measured in different units; for example, share volume and number of trans-

actions may be used to forecast dollar bid-ask spread. Scaling ensures that precision of infor-

mation becomes unitless and does not depend on the units in which variables are measured.

The fact that τn does not depend on specific units in which ṽ is measured will be important for
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our results.

Firms agree about the precision of the public signal τ0 and agree to disagree about the pre-

cisions of private signals τn . Each firm n thinks its private signal has a precision of τn = τH , and

it pays cI dollars to acquire it.

Each firm believes that N−1 other firms can be of the two types. There are NI −1 “informed”

firms like firm n itself, and there are NU “noise” firms. Informed firms generate private signals

of precision τH at a cost cI . Noise firms waste the same resources to generate private signals,

but in reality their signals have no information, either because firm lack expertise or they are

prone to making mistakes in their analysis; nevertheless noise firms trade on noise as it were

information. Denote the fraction of informed firms in the market as

θ ∶= NI −1

NU +NI −1
. (4)

No firm knows which of the firms are noise and which of them are informed; it is sure only about

its own type.

Firms submit their demand schedules X̃n(p) ∶= Xn(ĩ0, ĩn , p) to an auctioneer of a single-

price auction. An auctioneer then calculates a market clearing price p̃ ∶= p̃[X1, . . . , XN ]. Firm n’s

terminal wealth is

w̃n ∶= (ṽ − p̃) ⋅ X̃n(p̃). (5)

Each firm n chooses Xn to maximize the expected exponential utility of its terminal wealth

max En [−e−A⋅w̃n] (6)

with a risk tolerance parameter 1/A, using its own beliefs about precision of signals to calculate

the expectation. The exponential utility function is a realistic assumption for modelling finan-

cial markets where asset owners—such as pension plans, endowments, and foundations—hire

financial firms to manage their assets. A risk tolerance parameter 1/A can be thought of as a

measure of how much capital asset owners delegate to firms to manage, i.e. how much risk

firms are allowed to take at a discretion of an asset owner. Even when their portfolios gain or

lose value, the capital delegated to firms may remain somewhat constant.

Firms are modelled as imperfect competitors. They explicitly take into account the effect

of their trading on prices. In practice, the importance of imperfect competition is reflected in

significant amount of resources devoted by the industry to developing good transaction costs

models and designing cost efficient execution algorithms.

We define an equilibrium as a set of trading strategies X1, . . . , XN such that each trader’s strat-
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egy maximizes his expected utility, taking as given the trading strategies of the other traders.

This is equivalent to a Bayesian Nash equilibrium in trading strategies X1, . . . , XN , except for the

assumption that traders do not share a common prior. Traders are imperfect competitors who

explicitly take into account that the price p̃ is a function of the quantity xn they trade.

1.1 Conjectured Linear Strategies and Bayesian Updating

We seek to characterize equilibria with symmetric linear trading strategies. To do so, we use

the “no-regret” approach, as in Kyle (1989), which assumes that each firm observes its resid-

ual linear supply schedule, infers the average of other firms’ signals from the intercept of this

schedule, picks the quantity xn on this residual supply schedule which maximizes its expected

utility. It can be shown then that the firm can implements this optimal choice xn even in the

more complicated original problem of choosing a demand schedule xn = Xn(i0, in , p) based on

prices, without first observing the residual supply schedule.

Firm n conjectures that the other N −1 firms submit symmetric linear demand schedules of

the form

Xm(i0, im , p) =α ⋅ i0+β ⋅ im −γ ⋅p, m = 1, . . . , N , m ≠n. (7)

Then, it infers from the market clearing condition

xn + ∑
m≠n
(α ⋅ i0+β ⋅ im −γ ⋅p) = 0 (8)

that its residual supply schedule P(⋅) is a function of its quantity xn given by

P(xn) =
α

γ
⋅ ĩ0+

β

γ
⋅ ĩ−n +

1

(N −1)γ
⋅xn . (9)

Since firm n observes the public signal ĩ0, its own inventory Sn , and the quantity it trades xn , it

can infer the average of other firms’ signals ĩ−n from observing the intercept α/γ ⋅ ĩ0+β/γ ⋅ ĩ−n of

its residual supply schedule.

Equation (9) yields the price impact of trading one share of a risky asset,

λ ∶= 1

(N −1) ⋅γ
. (10)

The price impact is small, when the number of firms N and the price sensitivity parameter γ

are large, i.e., firms tend to provide a lot of liquidity to each other.

Let En [. . .] and Varn [. . .] denote firm n’s expectation and variance operators conditional
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on observing signals i0, in , and i−n . Using standard formulas for conditional means and vari-

ances of jointly normally distributed random variables, we calculate the total precision in the

economy as

τ ∶= (Varn [ṽ])−1 = τv ⋅(1+τ0+τH +(N −1) ⋅θ2 ⋅τH) , (11)

and obtain

En [ṽ] = τ
1/2
v

τ
⋅(τ1/2

0 ⋅ ĩ0+τ1/2
H ⋅ ĩn +(N −1) ⋅θ ⋅τ1/2

H ⋅ ĩ−n) . (12)

Firm n assigns the precision τ0 to a public signal, τH to its own signal and θ2τH to each of other

N − 1 signals. Each firm knows that, in addition to itself, there are θ ⋅ (N − 1) informed firms,

but it does not know who gets informed signals and who gets noise signals; in formulas above,

this reduces the effective precision of information revealed by private signals of the others from

θ ⋅τH to θ2 ⋅τH . If each firms knew precisely which of the other firms were informed and which

of them were noise, then total precision would have θ ⋅τH .

Keeping the total number of firms N fixed, the smaller is the fraction of informed traders

θ, the smaller is the weight assigned to signals of other traders. In the model with noise firms,

each firm is overconfident about its own signal, and the overconfidence generates trading.

1.2 Utility Maximization with Market Power

Conditional on firm n’s information, its terminal wealth w̃n is a normally distributed random

variable with mean and variance given by

En [w̃n] = En [ṽ] ⋅xn −P(xn) ⋅xn , (13)

Varn [w̃n] = x2
n ⋅ Varn [ṽ] . (14)

Normal distributions imply that expected utility is given by

En [−e−A⋅w̃n] =−exp(− A ⋅ En [w̃n]+ 1
2 A2 ⋅ Varn [w̃n]). (15)

Maximizing this function is equivalent to maximizing the simpler function En [w̃n]−1
2 A⋅Varn [w̃n].

Oligopolistic firm n exercises its market power by taking into account how its quantity traded

xn affects the price P̃(xn) on its residual supply schedule (9). After plugging equations (11),

(12), (13) and (14) into equation (15), firm n chooses the quantity to trade xn that maximizes
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the following quadratic expression

τ
1/2
v

τ
⋅(τ1/2

0 ⋅ ĩ0+τ1/2
H ⋅ ĩn +(N −1) ⋅θ ⋅τ1/2

H ⋅ ĩ−n) ⋅xn −P(xn) ⋅xn −
A

2τ
⋅x2

n . (16)

Solution. Under the tentative assumption that firm n knows the value of i−n , we plug equation

(9) into equation (16) and use the first order condition to find its optimal demand,

xn =
τ

1/2
v
τ ⋅(τ

1/2
0 ⋅ i0+τ1/2

H ⋅ in +(N −1) ⋅θ ⋅τ1/2
H ⋅ i−n)−(αγ ⋅ i0+ β

γ ⋅ i−n)
2

(N−1)γ +
A
τ

. (17)

In the numerator of this equation, the first term is firm n’s expectation of the liquidation value

and the second term is the market clearing price when firm n trades a quantity of zero. In the

denominator, the first and second terms reflect how firm n restricts the quantity it trades due

to its market power and risk aversion, respectively.

As in Kyle (1989), even though firm n does not observe i−n explicitly, it is still able to imple-

ment this optimal point by a linear demand schedule, because the necessary sufficient statistics

can be inferred from the market price. The strategy is ex post optimal. We next show how to im-

plement this strategy by using limit orders, i.e., conditioning trade sizes on market price.

Define the constant

C ∶= 1

(N −1) ⋅γ
+ A

τ
+
θ ⋅τ1/2

H ⋅τ
1/2
v

τ ⋅β
. (18)

We solve for i−n instead of p in the market clearing condition (8), substitute this solution into

equation (17) above, and then solve for xn to derive a demand schedule Xn(i0, in , p) for firm n

as a function of price p,

Xn(i0, in , p) = 1

C
⋅
⎡⎢⎢⎢⎢⎣

τ
1/2
v

τ
(τ1/2

0 −(N −1) ⋅θ ⋅τ1/2
H ⋅

α

β
) ⋅ i0+

τ
1/2
H

τ
⋅τ1/2

v ⋅ in

+
⎛
⎝
(N −1) ⋅θ ⋅τ1/2

H

τ
⋅ γ
β
⋅τ1/2

v −1
⎞
⎠
⋅p
⎤⎥⎥⎥⎥⎦

. (19)

In a symmetric linear equilibrium, the strategy chosen by firm n must be the same as the

linear strategy (7) it conjectures for the other firms. Equating corresponding coefficients of vari-

ables i0, in , and p yields the system of three equations in terms of three unknowns α,β, and γ:

α = τ
1/2
v

C
⋅
⎛
⎝
τ

1/2
0

τ
−
(N −1) ⋅θ ⋅τ1/2

H

τ
⋅ α
β

⎞
⎠

, β = τ
1/2
v

C
⋅
τ

1/2
H

τ
, (20)
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γ =− 1

C

⎛
⎝
(N −1) ⋅θ ⋅τ1/2

H

τ
⋅ γ
β
⋅τ1/2

v −1
⎞
⎠

, δ = 1

C

⎛
⎝
θ ⋅τ1/2

H

τ
⋅ δ
β
⋅τ1/2

v +
A

τ

⎞
⎠

. (21)

The unique solution for α, β, and γ is

β = (N −2)−2(N −1) ⋅θ
A ⋅(N −1)

⋅τ1/2
H ⋅τ

1/2
v , (22)

α =
τ

1/2
0

(1+(N −1)θ) ⋅τ1/2
H

⋅β, γ = τ

(1+(N −1)θ) ⋅τ1/2
H

⋅ β

τ
1/2
v

, δ = A

(1−θ) ⋅τ1/2
H

⋅ β

τ
1/2
v

. (23)

Plugging these constants into equation (7), we derive the equilibrium strategy. The equilibrium

price can be then derived from the market clearing condition.

Equilibrium Price and Quantities. There is always a trivial no-trade equilibrium. If each

trader submits a no-trade demand schedule Xn(.) ≡ 0, then such a no-trade demand sched-

ule is optimal for all traders. In this no-trade equilibrium, an auctioneer cannot establish a

meaningful market price.

We next present the equilibrium with trade. Define the exogenous parameter θ∗ by

θ∗ ∶= 1

2
− 1

2(N −1)
. (24)

The constant θ∗ can be also written as θ∗ = N−2
2(N−1) . The fraction one-half reflects monopoly

power over firm’s own information. Monopolist restricts his trading when trading against a

residual supply curve with a positive slope and prices never reveal more than a half of his pre-

cision. The fraction (N − 2)/(N − 1) arises from the Cournot-like competition among N − 1

traders competing to provide him liquidity. Both monopoly and “Cournot” effect get combined

together in equilibrium calculation as a product. When N goes to infinity, θ∗ converges to the

monopolistic fraction 1/2. Similar constant can be found in Kyle (1989) and other industrial

organization papers.

Define the exogenous measure of “disagreement” ∆ by

∆ ∶= 1

θ
− 1

θ∗
. (25)

When θ is small, then the measure of disagreement is large, because there are very few firms

with informative signals.
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Theorem 1. (The Equilibrium Trading Quantity and Price). There exists a unique symmet-

ric equilibrium with linear trading strategies and nonzero trade if and only if ∆ > 0 holds. The

equilibrium satisfies the following:

1. The equilibrium trading strategy is linear in the disagreement between each firm and the

rest of the market. The equilibrium quantity traded by trader n is

xn =
2τ

1/2
H ⋅(N −1)

τ
−1/2
v A ⋅N

⋅(θ∗−θ) ⋅(ĩn − ĩ−n) ; (26)

2. The equilibrium price is fully revealing and equal to the average of firms’ risk-neutral buy-

and-hold valuations,

P = τ
1/2
v

τ
⋅(τ1/2

0 ⋅ ĩ0+
τ

1/2
H +(N −1) ⋅θτ1/2

H

N
⋅

N

∑
n=1

ĩn). (27)

The proof is in Appendix.

The symmetric equilibrium with the positive volume can be sustained only if ∆ > 0 or equiv-

alently θ < θ∗, i.e., firms are sufficiently more than twice overconfident about the square root of

the precision of their own signal comparing to the rest of the market. Indeed, each firm assigns

the precision τH to its private signal, whereas the rest of the market effectively assigns to it the

precision of θ2τH .

Note that the effective precision assigned to signals in the price equation (27) is equal to

θ2τH rather than “average” precision θτH . Since θ < 1/2, it implies that too little private infor-

mation is incorporated into equilibrium price. This effect is somewhat similar to the paradox

of the impossibility of informationally efficient markets of Grossman and Stiglitz (1980). It also

complements the observation of Allen, Morris and Shin (2006) that the market tends to overre-

act to public information and underreact to private information.

Firms’ Decision to Acquire Private Information. Next, we consider the decision of firm n to

spend an exogenously specified cost cI on generating a private signal and derive the “entry

condition.”

Suppose that firm n starts with a capital of w0,n in cash. Before trading begins, it has to

decide on whether to buy a private signal and participate in trading. A default option is to do

nothing and just keep cash in a bank account. The second option is to pay out cI dollars for a

private signal of precision τH , trade on it, and make w0,n −cI +(ṽ −p) ⋅ x̃n .
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Let En
0 [. . .] denote unconditional expectation of firm n prior to observing a signal. In the

equilibrium, the two options have to be equivalent in utility terms,

−e−A⋅(w0,n) = En
0 [−e−A⋅(w0,n−cI+(ṽ−p)⋅x̃n)] . (28)

This equation further yields,

e−A⋅cI = En
0 [e−A⋅En[ṽ−p]⋅x̃n+A2⋅x̃2

n ⋅Varn[ṽ−p]/2] . (29)

Given the equilibrium price in equation (27), it can be shown that

En [ṽ −p] = (1−θ) ⋅τ1/2
H ⋅

τ
1/2
v

τ
⋅ N −1

N
⋅(in − i−n), (30)

Varn [ṽ −p] = τ−1. (31)

Substituting the optimal trading strategy (26) and the two equations above into the break-even

condition (29) yields

e−A⋅cI = En
0 [e−

τv τH
τ ⋅

(N−1)
N ⋅(θ∗−θ)⋅(in−i−n)2

] . (32)

Since in − i−n is a normal random variable with a zero mean, we can apply the formula for

the moment-generating function of χ2 random variable.1 This further yields

e−A⋅cI = (1+ 2τvτH

τ
⋅ (N −1)

N
⋅(θ∗−θ) ⋅ Varn

0 [in − i−n])
−1/2

. (33)

In the equation above, the total precision τ is defined in (11), and the variance of a normal

random variable in − i−n is given by

Varn
0 [in − i−n] = 1+τH ⋅(1−θ)2+(N −1)−1. (34)

Varn
0 [in − i−n] =

N

N −1
+τH ⋅(1−θ)2. (35)

1If ũ is a normal random variable with a zero mean and a variance σ2
u , then Eea⋅u2

= (1−2 ⋅a ⋅σ2
u)−1/2 for any

constant a ≤ 1
2σ2

u
.

11



We can therefore further simplify the break-even condition:

cI =
1

2 ⋅ A
⋅ ln(1+2τH ⋅

(N −1)
N

⋅ 1+τH ⋅(1−θ)2+(N −1)−1

1+τ0+τH +(N −1) ⋅θ2 ⋅τH
⋅(θ∗−θ)). (36)

Since τH is very small, i.e., a small amount of information arrives in each time period like in

continuous-time approximation, the first order approximation for the entry condition is

A ⋅cI ≈ τH ⋅
(N −1)

N
⋅ 1+τH ⋅(1−θ)2+(N −1)−1

1+τ0+τH +(N −1) ⋅θ2 ⋅τH
⋅(θ∗−θ). (37)

This equation yields solution for θ, which determines the ratio of the number of informed firms

NI and the number of noise firms NU in the market. However, this is a complicated non-linear

equation in terms of θ.

As the firms move closer to risk neutrality (i.e., risk tolerance 1/A →∞), firms believe in

increasingly better profit opportunities in the market, and more of them choose to spend re-

sources on acquiring private signals, thus reducing the amount of relative overconfidence in

the market 1/θ. In the limit, the parameter θ converges to a critical value of θ∗ (with large N ,

θ→ θ∗ = 1
2 ) and the measure of disagreement ∆ = 1/θ−1/θ∗ converges to zero; the equilibrium

converges to a no-trade equilibrium.

Volume Equation. One of the key concepts in financial markets is the concept of trading vol-

ume. Since it is essential for the derivation of invariance relationships, we next derive the vol-

ume equation for our model. It is straightforward to show an auxiliary result.

Lemma 1. Given beliefs of firm n, the variance of a normal random variable ĩm − ĩ−m is equal to

Varn
0 [ĩm − ĩ−m] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1+(N −1)−1+τH ⋅(1−θ)2, if m =n,

1+(N −1)−1+τH ⋅(1−θ)2 ⋅(N −1)−2, if m ≠n.
(38)

Let V denote an expected trading volume in shares. Due to symmetry, all firms will agree on

expected trading volume.
N

∑
m=1

En
0 [∣xm ∣] = 2 ⋅V. (39)

Since each transaction corresponds to a buy order matching a sell order, a scalar 2 ensures that

we double count observable trading volume to uncover bet volume.2

2Kyle and Obizhaeva (2016) distinguish the concepts of bet volume V̄ and trading volume V . The relation be-
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Taking into account the optimal trading strategies (26), we get the volume equation:

√
2/π ⋅

2τ
1/2
H ⋅(N −1)

τ
−1/2
v A ⋅N

⋅(θ∗−θ) ⋅
N

∑
m=1
(Varn

0 [im − i−m])
1/2
= 2 ⋅V. (40)

A scalar
√

2/π converts the expectation of the absolute value of a normal random variables into

its standard deviation.3 Equation (38) further allows us to express the multiplier∑N
m=1(Varn

0 [im − i−m])1/2

in terms of θ,τH , and N . Given τH and θ, we can use the volume equation to infer the number

of firms N .

Trading Activity Equation. One of the important variables in market microstructure invari-

ance is the trading activity of the risky security. As in Kyle and Obizhaeva (2016), the trading

activity, denoted W , is defined as the product of share volume and dollar price volatility.

W ∶= 2 ⋅V ⋅σp , (41)

where σp denote the price volatility.4 Regardless of their beliefs, all firms will agree on expected

trading activity. Intuitively, financial markets are about transferring risks. The measure of trad-

ing activity captures the aggregate amount of dollar risk transferred per game among traders.

The bigger are trading volume and volatility, the more active is the market. For example, the

markets of E-mini S&P500 index future, oil futures, or currency futures on USD and Euro pair

have large volume and large volatility, being some of the most active markets in the world. The

market of the U.S. Treasuries also have very large volume but much less risk transferred per

dollar traded, so this market has less of trading activity. Small stocks with small trading volume

have very little trading activity, even despite their somewhat high volatility relative to volatility

of index futures.

To calculate trading activity, we need to know volume, discussed already above, and dol-

lar volatility. The important conceptual question is what is a good proxy for volatility of price

changes in the context of our one-period model. This proxy has to be consistent with volatil-

ity that one would get in a similar dynamic model. Similar issue arises whenever one-period

tween these variable is V̄ = 2/ζV , where ζ is a volume or intermediation multiplier. When there are no intermedi-
aries, as in our model, then the volume multiplier ζ = 1, i.e., bet volume is twice larger than trading volume, V̄ = 2V ,
since each transaction consists of two bets, a buy bet and a sell bet. In Kyle and Obizhaeva (2017b), where each
bet of traders is intermediated by a market maker, the volume multiplier is equal to two, i.e., bet volume is equal
to trading volume, V̄ =V .

3If ũ is a normal random variable with a zero mean and a variance σ2
u , then E[∣ũ∣] =

√
2/πσu .

4Kyle and Obizhaeva (2016), the trading activity is similarly defined as the product of dollar volume V ⋅P and
returns volatility σ.
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models are used to derive prediction about dynamic markets.

In the one-period model, there are effectively two periods and three different price changes:

price changes between pre-trade price p0 = 0 and trade price p̃, price changes between trade

price p̃ and the post-trade fundamental value ṽ , and price changes between pre-trade prices

p0 = 0 and post trade fundamental values ṽ . All three price changes have very different prop-

erties and have very different standard deviations. The predictions are quite different for two

periods. For example, the first-period volatility may be lower or higher than the second-period

volatility depending on parameters. This makes it difficult to use one-period models to derive

realistic implications for continuously operating financial markets. Similar concerns are rele-

vant for any non-stationary model.

Intuitively, the correct measure of volatility in a one-period model corresponds to the volatil-

ity of price change between pre-trade price and trade price:

σp ∶= (Varn
0 [p])1/2. (42)

Moreover, let Σ denote the variance of the difference between trade price and fundamental

value,

Σ ∶= Varn
0 [ṽ −p] = τ−1. (43)

It corresponds to the expected profits on buying a risky asset at price p and liquidating position

in the far distant future at an unknown random value ṽ . Then, Σ−1/2 may be thought as a good

measure of the pricing accuracy, as defined in Kyle and Obizhaeva (2017b).

Using equation (27), it can be shown that price volatility σp is proportional to fundamental

volatility τ
−1/2
v ,

σp = τ−1/2
v ⋅ψ, (44)

where a proportionality constant ψ is defined as

ψ = (τ0+τH(1+(N −1) ⋅θ)2/N)1/2 ⋅(1+τ0+τH(1+(N −1) ⋅θ)2/N)1/2
1+τ0+τH +(N −1) ⋅θ2 ⋅τH

. (45)

Since we use a one-period model to generate intuition about dynamic markets and there is only

a little of information revealed each period, it is reasonable to assume that τ0, τH , and N ⋅θ2τH

are small relative to one. Then pricing accuracy Σ and variance σ2
p satisfy the approximations

Σ = τ−1 ≈ τ−1
v , σ2

p ≈ τ−1
V ⋅τH ⋅(1+(N −1) ⋅θ)2/N . (46)

This is consistent with the intuition. When number of traders N , precision of information τH ,
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and variance of fundamentals τ−1
v are large, then a lot of information is incorporated into price

through trading, leading to high price volatility. In dynamic steady-state models, σ2
p is essen-

tially proportional to Σ, and the question about the volatility of which price change to use does

not arise.

Note that one “problem” with this approach is the variance which goes into firms’ demand

functions. If they liquidate their position by collecting dividends, then the variance will be a

number different from 1/τ. Another problem is the fraction of their information which they will

capture when they liquidate.

Then, plug the volume equation (40) and the dollar volatility equation (44) into the equation

(41) for trading activity to get:

√
2/π ⋅

2τ
1/2
H ⋅(N −1)

A ⋅N
⋅(θ∗−θ) ⋅

N

∑
m=1
(Varn

0 [ĩm − ĩ−m])
1/2
⋅ψ =W, (47)

where ∑N
m=1(Varn

0 [ĩm − ĩ−m]) is defined in (38) and ψ is defined in (45); both are non-linear

functions of θ, N , and τH . The transformation of volume into trading activity allows us to get

rid of the unobservable parameter τv . We essentially relate unobservable fundamental volatility

to easily observable price volatility.

2 Endogenous Invariance Relationships

Market microstructure invariance is based on the idea of inferring difficult to observe variables

such as the price impact and the structure of order flow from more easily observable quan-

tities such as volatility and volume. We next derive invariance results for the two cases with

endogenous number of firms and endogenous information precision that each firm produces.

To derive these invariance results, we need to impose the following assumption.

Assumption 1. N is sufficiently large, τ0, τH , and N ⋅θ2τH are small.

2.1 Case with Endogenous Number of Firms

Suppose the precision of a private signal τH is fixed, but there is an endogenous number of

firms N . This case essentially corresponds to the situation when there can be different number

of firms trading in different risky assets, but the number of traders employed at each firms is

constant. For the derivation of invariance results, the two key equations are the entry condition

(37) and the equation for trading activity (47). These two equations make up the system of two
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non-linear equations in two unknown parameters N and θ, where A and cI are exogenously

given constants.

The system can be simplified under Assumption 1. If τ0 ≈ 0, then most of information comes

from trading. The entry condition (37) implies that (N−1)
AN ⋅(θ∗−θ)⋅τH is equal to cI . The equation

(47) for trading activity then implies that
√

2/π ⋅ cI ⋅2θ ⋅N 3/2 is approximately equal to W . This

further yields a solution for N and θ:

θ ≈ 1

2
− A ⋅cI

τH
. (48)

N ≈ ( W√
2/π ⋅cI ⋅2θ

)
2/3

. (49)

The number of traders N scales with 2/3 power of trading activity W . Using these results, it is

easy to show that several other invariance relationships must hold.

Theorem 1 (Invariance with Endogenous N ). If the number of firms N is endogenous, then

under Assumption 1,

N = ( λ ⋅2V

σp ⋅
√

2/π
)

2

= ( E0 [∣x̃∣]
2V

)
−1

=
σ2

p

θ2 ⋅Σ ⋅τH
= ( W√

2/π ⋅cI ⋅2θ
)

2/3
, (50)

and the distribution of microstructure invariant Ĩ is given by

Ĩ ∶= x̃ ⋅(Var0 [p])1/2

N 1/2 ≈ cI ⋅2θ ⋅(ĩn − ĩ−n), (51)

where ∣x̃∣ ∶= 1
N ∑

N
m=1 En

0 [∣xm ∣] is the average size of bets.

Proof. First, using equations (39) and (49), we find that the average size of bets E0 [∣x̃∣] ∶= 2V /N
in a symmetric model, as a fraction of bet volume 2V , must satisfy:

E0 [∣x̃∣]
2 ⋅V

≈ ( W√
2/π ⋅cI ⋅2θ

)
−2/3

. (52)

Second, under Assumption 1, equations (44) and (47) imply that

σp ≈
τ

1/2
H

τ
1/2
v

⋅ 1+(N −1)θ
N 1/2 , 2V ≈

√
2/π ⋅τ1/2

H ⋅(N −1) ⋅τ1/2
v ⋅(1−2θ)

A
. (53)
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From equations (10) and (53), it follows that

λ ⋅2V

σp ⋅
√

2/π
≈N 1/2. (54)

Using equation (49), we find that the price impact per one percent of bet volume 2V in volatility

units (Var0 [p])1/2 must satisfy:

λ ⋅2V

σp ⋅
√

2/π
≈ ( W√

2/π ⋅cI ⋅2θ
)

1/3
. (55)

Third, using equation (44) under Assumption 1, we have

σ2
p

θ2 ⋅Σ
≈ τH ⋅(1+(N −1)θ)2

θ2 ⋅N
≈ τH ⋅N . (56)

Using equations (56) and (49), we find that the pricing accuracyΣ in units of volatility Var1/2 [p]
must satisfy:

Σ

σ2
p
≈ 1

θ2τH
⋅( W√

2/π ⋅cI ⋅2θ
)
−2/3

. (57)

Combining equation (49), (52), (55), and (57), we get equation (50).

Fourth, the market microstructure invariant Ĩ is a random variable introduced by Kyle and

Obizhaeva (2016). It measures the dollar risk transferred by a trade x̃ and measured in business

time, which is adapted to arrival of bets, (Var0 [p]/N)1/2. Using the equations for equilibrium

trade size (26), price volatility (44), as well as equations (48) and (49), we find that this random

variable must have the following invariant distribution

Ĩ ∶= x̃ ⋅(Var0 [p])1/2

N 1/2 ≈ τH ⋅(N −1) ⋅(1−2θ) ⋅(1+(N −1)θ) ⋅(ĩn − ĩ−n) ≈ cI ⋅2θ ⋅(ĩn − ĩ−n). (58)

These equations (50) and (51) in our one-period model are very similar to the invariance

relationships presented in “Invariance Theorem” of the structural dynamic model of Kyle and

Obizhaeva (2017b). That model has a more complicated dynamic structure, but it shares many

similar modelling assumptions. The fundamental value evolves according to the geometric

Brownian motion. Informed traders and noise traders arrive in the market randomly and trade

with competitive risk-neutral market markers, who determine a break-even price. Noise traders

turn over an exogenously specified fraction of a float by trading on uninformative signals. As in
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our model, informed traders choose to acquire informative signals if they think that it will be

possible to recoup fixed and exogenously specified costs they spent on acquiring signals. In-

formed and noise traders can trade only once; even though signals differ in their information

content, their distribution is approximately indistinguishable from each other.

Since all market participants in Kyle and Obizhaeva (2017b) are risk-neutral, the equilib-

rium ratio of informed and noise traders θ in that model is equal to 1/2. In contrast in our

model, market participants are risk averse. Equation (48) shows that risk aversion leads to a

bigger degree of disagreement ∆ = 1/θ−1/θ∗ in the market in the equilibrium. When firms be-

come more risk averse, they value risky profit opportunities less, fewer of them find it optimal

to acquire private signals ex ante, and the disagreement increases. In the other limiting case

when firms are risk neutral, i.e., A→ 0, we get θ→ 1/2 (keeping N large).

When N is large and A → 0, both models generate the same invariance relationships. The

equivalence can be established by noticing the natural correspondence between the parame-

ters Var[ĩn − ĩ−n] and cI in our model to the parameters Var[ĩ], moment ratio m, and expected

dollar cost of a bet CB in the structural model of Kyle and Obizhaeva (2017b). The variance of

information is the same in both models, i.e., Var[ĩ] = Var[ĩn − ĩ−n] = 1. The cost of generating

a private signal is the same, CB = cI , and the moment ratio that converts standard deviation

into expectation of absolute value is the same, m =
√

2/π. Theorem is equivalent to Invariance

Theorem 2 in Kyle and Obizhaeva (2017b).

The next theorem summarize all invariance predictions.

Theorem 2 (Limit Case with Endogenous N ). When N is large and A→ 0, we get θ→ 1/2 and

N ∼W 2/3, λ ∼
σp

V
⋅W 1/3,

E[∣x∣]
V
∼W −2/3, Σ1/2 ∼σp ⋅W −1/3. (59)

We can interpret N as the number of bets and E[∣x∣] as their size. Then, these equations

show how hard-to-observe microscopic parameters of the model—number of bets N , bet size

E[∣x∣], price impact λ, and pricing accuracy Σ1/2 scale with easily observable macroscopic pa-

rameter of trading activity W .

2.2 Case with Endogenous Precision of Signals

Suppose next that the number of firms N is fixed, but each firm can endogenously choose pre-

cision of its private signal τH . In other words, firms can choose the number of traders to hire or

“units” of talent to employ. This case essentially corresponds to the situation when there is the

same number of firms trading in different risky assets, but the number of resources that firms
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decide to allocate to each market differs across assets. To generate invariance relationships with

respect to endogenous τH , several adjustments are necessary.

First, it is natural to assume that the cost of generating a signal in is proportional to its pre-

cision and equal to c̄I ⋅τH , where c̄I is a constant dollar cost per unit of precision. The firm n

can hire several traders and compensate them proportionally to their marginal contribution to

the design of an overall trading strategy. For example, the cost c̄I ⋅τH of generating a signal of

precision τH can be interpreted as the cost of hiring M equally skilled traders, each of whom is

paid c̄I ⋅τH/M dollars to generate a new piece of information of precision τH/M . Or, the same

cost c̄I ⋅τH can be interpreted as the cost of hiring one very skilled trader generating a signal

of precision τH/2 for c̄I ⋅τH/2 dollars and M −1 less skilled traders generating M −1 signals of

precision τH/(2(M −1)) for c̄I ⋅τn/(2(M −1)) dollars each. In the language of “Fundamental

Law of Active Management” of Grinold (1989), each trader seeks to generate an independent

factor and increase the number of independent bets made by the firm.

Second, we need to think more carefully about the relevant concept of trading volume. Since

each firm now consists of several traders who generate different investment ideas and often

suggest to trade in opposite directions, a lot of trading will be internalized within each firm. If

there are τH traders in a firm, then a market trade x̃ by each firm is the result of internalization

of within-firm bets ỹ of τH employees of this firm,

x̃ =
τH

∑
m=1

ỹm . (60)

Since x̃ and ỹm are random variable, we get

E[∣x̃∣] = τ1/2
H ⋅ E[∣ym ∣] . (61)

Thus, even though we observe N trade of size x̃, there are in reality N ⋅τH bets ỹ of size

E[∣ỹ ∣] = τ−1/2
H ⋅ E[∣x̃∣] . (62)

The true concept of volume represents not only open market volume, but also volume in-

ternalized within each firm. Let V̂ denote this aggregate volume. Since internal volume within

each firm is τH ⋅ E[∣y ∣], we get

V̂ =N ⋅τH ⋅ E[∣y ∣] =N ⋅τ1/2
H ⋅ E[∣x̃∣] = τ

1/2
H ⋅V. (63)
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One unit of expected volume V executed at the open market will correspond to τ
1/2
H units of

expected total volume. The internalization multiplier is equal to the square root of the number

of traders because some of the trades will cancel with each other in the internal pool of liquidity

.

For example, suppose there are N firms, open market volume is V , and trade size is x. If

each firm employs 100 of identically skilled traders, then size of their bets is x/10, number of

their bets is N ⋅100, total volume is V ⋅10, if one accounts for order flow internalization within

each firm.

The relevant measure of trading activity will need to be adjusted accordingly as well. Denote

the total trading activity Ŵ being the product of daily volatility and total trading volume. Then,

V̂ =V ⋅τ1/2
H and Ŵ =W ⋅τ1/2

H . (64)

With these two adjustments, the two equations—the entry condition (37) and the equation

for trading activity (47)—make up the system of two non-linear equations in two unknown pa-

rameters τH and θ, where A and c̄I are exogenously given constants. Solving for θ and τH ⋅N
yields:

θ ≈ 1

2
− A ⋅ c̄I , (65)

τH ⋅N ≈ (
√

2/π ⋅ c̄I ⋅2θ)
−2/3
⋅Ŵ 2/3. (66)

The relative disagreement 1/θ increases in aggregate market’s risk aversion A/N and the total

cost per unit of precision c̄I ⋅N . The total amount of information precision τH ⋅N scales with 2/3
power of trading activity W . Other invariance relationships can be summarized as follows.

Theorem 3 (Invariance with Endogenous τH ). If the precision of signal τH produced by firms is

endogenous, then

τH ⋅N = (
λ ⋅2V̂

σp ⋅
√

2/π
)

2

=
⎛
⎜
⎝

E[∣τ−1/2
H ⋅ x̃∣]

2V̂

⎞
⎟
⎠

−1

=
σ2

p

θ2 ⋅Σ
= ( Ŵ√

2/π ⋅ c̄I ⋅2θ
)

2/3
, (67)

and the risk transferred by a trade x̃ in business time Ĩ satisfies the following equation:

Ĩ ∶=
(τ−1/2

H ⋅ x̃) ⋅σp

(τH ⋅N)1/2
≈ c̄I ⋅2θ ⋅(ĩn − ĩ−n). (68)
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These formulas show how to think about bets when each firm employs several traders gen-

erating investment ideas and some of their trading is internalized. It is natural to think about

the number of bets as τH ⋅N and effective bet size as τ
−1/2
H ⋅ x̃. The volume and trading activity

need to be adjusted for internalization of order flow as V̂ = τ1/2
H ⋅V and Ŵ = τ1/2

H ⋅W , respectively.

A more careful thinking about internalization of bets is especially important nowadays when fi-

nancial firms tend to have multiple trading desks and implement complicated internal systems

of order flow internalization.

These predictions can be tested by studying the data on the number of financial firms trad-

ing in particular risky assets (proxy for N ), the number of professional traders those firms hire

(proxy for τH ), and the size of assets under their management (proxy for A).

Our model also allows us to analyze implications of different industrial organization struc-

tures of financial industry. It is interesting to think about how financial markets will change if

firms choose to merge with each others or, alternatively, split into several entities. As a specific

example, suppose that there are N firms with τH professional employees. If each of the two

firms merge, then there will be N/2 firms with τH ⋅ 2 professional employees each. The price

volatility σ2
p ≈ τ−1

v ⋅τH ⋅(1+(N −1) ⋅θ)2/N will remain approximately constant. The trading ac-

tivity W ≈
√

2/π ⋅ c̄I ⋅τH ⋅2θ ⋅N 3/2 will decrease by a factor of
√

2, since more trading volume will

be internalized within bigger firms. However, the trading activity adjusted for order flow inter-

nalization Ŵ =W ⋅τ1/2
H , the total number of bets τH ⋅N , and the average bet size τ

−1/2
H ⋅ x̃ will

remain the same.

The discussion above does not take into account that merges will lead not only to changes

in firms’ precision of private information but also to changes in the amount of assets under

their management. For example, merges between two firms will result in bigger firms manag-

ing double the amount of assets. In the framework with exponential utility functions, the merge

of two firms with risk aversion A will result in a firm with risk aversion A/2, i.e., firms will ef-

fectively become less risk averse. From (65), θ will increase, further implying a lower degree of

disagreement in the market. The change in risk aversion will have some effect on the aforemen-

tioned implications due to changes in θ, but those adjustments will be insignificant, when A is

sufficiently small and θ is very close to 1/2.

Theorem 4 (Limit Case with Endogenous τH ). When N is large and A→ 0, we get θ→ 1/2 and

τH ⋅N ∼ Ŵ 2/3, λ ∼
σp

V̂
⋅Ŵ 1/3,

E[∣τ−1/2
H ⋅ x̃∣]

V̂
∼ Ŵ −2/3, Σ1/2 ∼σp ⋅Ŵ −1/3. (69)

These are invariance relationships, if one takes into account internalization of bet flow within
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firms with τH employees.

3 Conclusions

This paper provides an illustration of how invariance relationships can be derived in the con-

text of a very simple one-period model. It is remarkable nevertheless how much quantitative

predictions of this stylized model are consistent with existing empirical evidence. We think

of this model as the simple illustration of how invariance relationships arise in the context of

equilibrium models.

A good model of financial markets, however, has to be inherently dynamic. It must rely on

sufficiently tractable, but yet realistic modelling of essential features of financial markets. These

features include dynamically evolving public and private information as well as strategic trad-

ing by market participants who optimally manage transaction costs by shredding their orders

over time. A fully-fledged dynamic model would generate a much richer set of implications

concerning the dynamics of prices, order flow, volume, returns volatility, and inventories, yet

we expect those predictions remain broadly consistent with market microstructure invariance

principles of Kyle and Obizhaeva (2016). We leave the task of developing such a model for the

future research.
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Kyle, Albert S. 1989. “Informed Speculation with Imperfect Competition.” Review of Economic

Studies, 56: 317–355.

Kyle, Albert S., and Anna A. Obizhaeva. 2016. “Market Microstructure Invariance: Empirical

Hypothesis.” Econometrica, 84(4): 1345–1404.

Kyle, Albert S., and Anna A. Obizhaeva. 2017a. “Dimensional Analysis and Market Microstruc-

ture Invariance.” Working Paper. Available at SSRN 2785559.

Kyle, Albert S., and Anna A. Obizhaeva. 2017b. “Market Microstructure Invariance: A Dynamic

Equilibrium Model.” Working Paper. Available at SSRN 2749531.

Kyle, Albert S., Anna A. Obizhaeva, and Tugkan Tuzun. 2016. “Microstructure Invariance in

U.S. Stock Market Trades.” FEDS Working Paper No. 2016-034. Available at SSRN 2774039.

Kyle, Albert S., Anna A. Obizhaeva, and Yajun Wang. 2017. “Smooth Trading with

Overconfidence and Market Power.” Review of Economic Studies, Posted March

8: http://www.restud.com/paper/smooth–trading–with–overconfidence–and–market–power/.

23



Kyle, Albert S., Anna A. Obizhaeva, Nitish R. Sinha, and Tugkan Tuzun. 2014. “News Articles

and the Invariance Hypothesis.” Working Paper, University of Maryland.

Murphy, Kevin M., Andrei Shleifer, and Robert W. Vishny. 1991. “The Allocation of Talent: Im-

plications for Growth.” The Quarterly Journal of Economics, 106(2): 503–530.

Philippon, Thomas, and Ariell Reshef. 2012. “Wages and Human Capital in the U.S. Finance
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Appendix

Proof of Theorem 1: Substituting equation (22) into equation (17) yields trader n’s optimal

demand (26). Substituting equation (26) into equation 9 yields the equilibrium price (27).

The second-order condition has the correct sign if and only if 2
(N−1)γ +

A
τ > 0. Given the

definition ∆ ∶= 1
θ −2−2/(N −2), this is equivalent to

A

τ
⋅ N

N −2
⋅ 1
θ
⋅ 1

∆
> 0. (A-1)

Therefore, assuming N > 2, the second-order condition holds if and only if ∆ > 0.

Proof of Lemma 1: If m =n, then from equations (2) and (3), we have

ĩn − ĩ−n = τ1/2
H ⋅(τ

1/2
v ⋅ ṽ)+ ẽn −

1

N −1
∑
j≠n

θ ⋅τ1/2
H ⋅(τ

1/2
v ṽ)− 1

N −1
∑
j≠n

ẽ j . (A-2)

This yields Varn
0 [ĩn − ĩ−n] = τH(1−θ)2+1+(N −1)−1.

If m ≠n, then

ĩm−ĩ−m = θ ⋅τ1/2
H ⋅(τ

1/2
v ⋅ṽ)+ẽm−

1

N −1

⎛
⎝
τ

1/2
H ⋅(τ

1/2
v ⋅ ṽ)+ ẽn +θ ⋅τ1/2

H ⋅(τ
1/2
v ⋅ ṽ)(N −2)+ ∑

j≠n, j≠m

ẽ j
⎞
⎠

.

(A-3)

This implies Varn
0 [ĩm − ĩ−m] = τH(1−θ)2 ⋅(N −1)−2+1+(N −1)−1.

Proof of Theorem 3: Substituting W = Ŵ ⋅ τ−1/2
H and V = V̂ ⋅ τ−1/2

H into equation (50), we get

equation (67) in Theorem 3. Equation (51) yileds

x̃ ⋅(Var0 [p])1/2

N 1/2 ≈ cI ⋅θ ⋅(ĩn − ĩ−n) = c̄I ⋅τH ⋅θ ⋅(ĩn − ĩ−n). (A-4)

Equation (A-4) implies that

Ĩ ∶=
(τ−1/2

H ⋅ x̃) ⋅σp

(τH ⋅N)1/2
≈ c̄I ⋅θ ⋅(ĩn − ĩ−n). (A-5)
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