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We describe a symmetric continuous-time model of trading among relatively overconfident,
oligopolistic informed traders with exponential utility. Traders agree to disagree about the precisions of their
continuous flows of Gaussian private information. The price depends on a trader’s inventory (permanent
price impact) and the derivative of a trader’s inventory (temporary price impact). More disagreement
makes the market more liquid; without enough disagreement, there is no trade. Target inventories mean-
revert at the same rate as private signals. Actual inventories smoothly adjust towards target inventories at
an endogenous rate which increases with disagreement. Faster-than-equilibrium trading generates “flash
crashes” by increasing temporary price impact. A “Keynesian beauty contest” dampens price fluctuations.
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1. INTRODUCTION

When large traders in financial markets seek to profit from perishable private information, they
face a fundamental tradeoff. On the one hand, they want to trade slowly, to reduce their own
temporary price impact costs resulting from adverse selection. On the other hand, they want to
trade quickly, before the permanent price impact of competitors trading on similar information
makes profit opportunities go away. We illustrate this tradeoff using a stationary model of
continuous trading among oligopolistic traders who agree to disagree about the precisions of
private signals. The equilibrium with smooth trading reveals important insights about dynamic
properties of inventories, prices, and liquidity.

The model combines the following assumptions: (1) There is one type of trader, a strategic
informed trader; there are no noise traders or market makers. (2) Each trader has a flow of
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private information about the fundamental value; the noise in their signals is uncorrelated.
(3) Traders are relatively overconfident in that each trader believes his private information is
more precise than other traders believe it to be. (4) Each trader applies Bayes law correctly; in
doing so, he infers from prices the economically relevant aggregation of other traders’information.
(5) Traders trade strategically, correctly taking into account how the permanent and temporary
price impact of their trades affects prices. (6) Random variables are jointly normally distributed.
(7) Traders are symmetric in that they have the same additive exponential utility functions
and symmetrically different beliefs about the information structure. (8) All state variables have
stationary distributions.

Disagreement about the precision of private signals motivates trade. This differs from the
models of Vayanos (1999) and Du and Zhu (2017), who motivate trade in a common prior setting
by shocks to inventories and to private values, respectively.

The one-period version of our model is an equilibrium in demand curves. An equilibrium with
linear trading strategies and positive trading volume exists if and only if each trader believes that
his signal is slightly more than twice as accurate as other traders’ signals. The equilibrium has a
simple closed-form solution. As disagreement falls, liquidity dries up and trade vanishes.

The continuous-time model implements a continuous auction in which traders continuously
submit demand schedules. An “almost-closed-form” steady-state equilibrium is characterized by
six endogenous parameters which solve a set of six polynomial equations. Numerical calculations
indicate that the same existence condition holds in the continuous-time model as in the one-period
model.

1.1. Inventories

Our stationary model provides a realistic description of trading by large asset managers who
exploit private information about securities. In the equilibrium, inventories follow a partial
adjustment process with coefficients implied by the model’s deep parameters. Each trader
calculates a target inventory based on how his own estimate of the long-term dividend growth
rate differs from the estimates of other traders. We prove analytically that the half-life of traders’
target inventories matches the half-life of private signals; both decay at a rate equal to the sum
of the natural mean reversion rate of dividend growth and the total precision of all information
flowing into the market.

Since the market offers no instantaneous liquidity for block trades, each trader “shreds orders”
and only partially adjusts his inventory in the direction of a target inventory, so that actual
inventories are differentiable or “smooth” functions of time.1 We obtain additional robust results
numerically. The endogenous speed with which actual inventories move towards target inventories
is faster when signals decay faster and when there is more disagreement, which makes markets
more liquid. Contrary to the common intuition that high trading volume results from a focus on
short-term quarterly earnings announcements, all trading volume is informative about long-term
value.

We show analytically that when traders’beliefs are “correct on average”, a more liquid market
tends to be associated with a lower autocorrelation of actual inventories but a higher contempo-
raneous correlation of actual inventories with target inventories. Hasbrouck and Sofianos (1993),
Madhavan and Smidt (1993), and Hendershott and Menkveld (2014) find that intermediaries’
inventories adjust rapidly towards time-varying targets and tend to have higher autocorrelations

1. The market clears in time derivatives of inventories. Our informal use of the term “smooth trading” is different
from the mathematical usage, which implies derivatives of all orders exist. Since the first derivatives of traders’inventories
follow diffusions, higher order derivatives do not exist.
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and lower mean-reversion rates in smaller and less-frequently-traded stocks, about which less
information is likely to be available. Even though our model has no separate category of
intermediaries, its implications are consistent with these findings.

1.2. Liquidity

Our model generates a clean distinction between endogenous permanent and temporary price
impact. From a trader’s perspective, the level of prices is a linear function of his level of
inventories, the derivative of his inventories, and other traders’ expectations of fundamental
value. Trading costs therefore depend on two liquidity parameters. First, a permanent price
impact parameter, denoted λ as in Kyle (1985), measures the price impact of a change in the
level of inventories. Second, a temporary price impact parameter, denoted κ , measures the price
impact of a change in the derivative of inventories. While permanent price impact is commonly
used in microstructure models, temporary price impact only appears in settings where all traders,
including noise traders, smooth out their trading. The temporary component makes trading a
given quantity over a shorter horizon more expensive than trading the same quantity over a
longer horizon; the market offers no instantaneous liquidity for block trades.

Black (1971) describes liquidity using the concepts of tightness, depth, and resiliency. In our
continuous-time model, the market has no instantaneous depth, tightness is related to temporary
price impact, and resiliency depends on the aggregate rate of information production. These
concepts of liquidity play out differently from Kyle (1985), in which the equilibrium would
break if noise traders—like the informed trader—were also allowed to smooth their trading;
when all traders smooth their trading, the nature of liquidity changes significantly.

Since the market clears both in inventories and in time derivatives of inventories, continuous
time makes the distinction between permanent and temporary price impact intuitively and
mathematically clear. In the discrete-time setup of Vayanos (1999), an analogous distinction
between permanent and temporary price impact is obtained in the limit as the interval between
rounds of trading goes to zero.

The speed with which actual inventories move towards target inventories results from a
tradeoff between temporary price impact costs and the speed with which signals decay. We show
numerically that increasing disagreement makes markets more liquid and increases the speed of
trading. The smooth trading model therefore realistically predicts that high-volume markets will
be highly liquid.

Our use of the terms “temporary” and “permanent” price impact differs from that of empirical
researchers who think of temporary impact as short-term negative autocorrelation in returns
arising from dealer spreads (‘bid-ask bounce’) and permanent impact as persistent (martingale)
price changes arising from private information being impounded into market prices. As a result
of traders’ optimizing behaviour, higher trading costs show up as more gradual changes in
inventories, not as more short-term mean reversion in prices. In principle, price impact can
be inferred from abnormally fast “out-of-equilibrium” execution of a bet, which leads to a price
spike resembling a “flash crash”.

Our price impact model, derived endogenously from equilibrium trading, is similar to empir-
ical, practitioner-oriented transaction-cost models exogenously assumed by Grinold and Kahn
(1994), Almgren and Chriss (2000), and Obizhaeva and Wang (2013). Our model provides a
theoretical explanation for robust empirical findings that faster trading increases transaction
costs by increasing temporary price changes, as documented by Holthausen et al. (1990),
Chan and Lakonishok (1995), Keim and Madhavan (1997), and Dufour and Engle (2000).
Brunnermeier and Pedersen (2005), Carlin et al. (2007), and Longstaff (2001) examine the
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economic implications of fast trading given exogenously specified price impact functions
depending on the speed of trading.

1.3. Prices

Even though traders adjust inventories slowly, prices immediately reflect all of the information
in the market, both public and private. Each trader infers the average valuation of other traders
from the price.

There is a “beauty contest”, like Keynes (1936), because traders forecast how the expectations
of other traders will evolve in the future, and their trading to take advantage of these forecasts
influences prices. We obtain numerically the interesting result that prices are dampened due to
this beauty contest. The growth-rate component of prices is a weighted average of the growth-
rate expectations of each trader; “dampening” means that the weights sum to a constant less
than one. Here is the intuition: When prices are high and a trader believes that the high prices
reflect fundamental value, he believes that other traders, who overweight their signals, will
revise their forecasts down so that it is profitable to sell ahead of such revisions in the short
run. Dampened price fluctuations lead to momentum (positive autocorrelation) in returns; see
Section 4.3 for a more detailed explanation. Dampening is more pronounced when disagreement
is larger and markets are more liquid. This explains the otherwise puzzling empirical finding
of Lee and Swaminathan (2000), Moskowitz et al. (2012), and Cremers and Pareek (2015) that
momentum is more pronounced in high-volume and liquid securities.

1.4. Alternative models

We also characterize equilibrium in an otherwise similar model of perfect competition like
Kyle and Lin (2001). With perfect competition, traders adjust holdings to target inventories
infinitely fast; markets are more liquid. Consistent with the intuition that low trading costs amplify
the economic importance of the dampening effect, perfect competition leads to more pronounced
dampening than imperfect competition.

We also examine an otherwise similar model with privately observed shocks to private values
and a common prior. Analytical tractability requires assuming that shocks to private values mean
revert at the same rate as private signals. This model has properties analogous to our preferred
model of overconfidence in all respects except that price dampening goes away. Prices are equal
to an average of traders’ private valuations, adjusted for private values. Price dampening does
not occur in the model of Du and Zhu (2017), which has non-stationary private values; the
model of Vayanos (1999), which has endowment shocks; the model of Banerjee and Kremer
(2010), which has myopic traders; or rational expectations models such as Wang (1993), Wang
(1994), and He and Wang (1995), in which noise affects the weights on signals but the weights
on valuations sum to one. We infer that price dampening in the Keynesian beauty contest results
from a combination of overconfidence and substantial market liquidity, not from noise trading or
private values with a common prior.

Harsanyi (1976) conjectures that a model without a common prior can be mapped into
an isomorphic model with a common prior, therefore making models with different priors
unnecessary. Obtaining price dampening with a common prior would likely require complicated
ad hoc assumptions with externalities related to auto- and cross-correlations of private values.
Disagreement generates both trading volume and price dampening while satisfying Ockham’s
razor.

This article is structured as follows. Section 2 presents a one-period model. Section 3 presents
the continuous-time model. Section 4 examines properties of the smooth-trading equilibrium.
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Section 5 concludes. Proofs are in Appendix A. Appendix B presents a similar model of
competitive trading. Supplementary Appendix C presents a similar model in which private values
and a common prior replace overconfidence.

2. ONE-PERIOD MODEL

The one-period model has a simple closed-form solution illustrating the interaction between
overconfidence and market power.

A risky asset with random liquidation value v∼N(0,1/τv) is traded for a safe numeraire
asset. It is common knowledge that the asset is in zero net supply. Trader n is endowed with a
privately observed inventory Sn with

∑N
n=1Sn =0. While initial inventories play no significant

role in this one-period model, they help map results into the continuous-time model. Traders
observe signals about the normalized liquidation value τ 1/2

v v∼N(0,1). All traders observe a
public signal i0:=τ 1/2

0 (τ 1/2
v v)+e0 with e0 ∼N(0,1). Each trader n observes a private signal

in:=τ 1/2
n (τ 1/2

v v)+en with en ∼N(0,1). The asset payoff v, the public signal error e0, and N
private signal errors e1,...,eN are independently distributed.

Traders agree about the precision of the public signal τ0 and agree to disagree about the
precisions of private signals τn. Each trader is relatively overconfident, believing his own signal
to have a high precision τn =τH and other traders’ signals to have low precisions τm =τL for
m �=n, with τH>τL ≥0. Each trader believes other traders are like noise traders who overtrade
on their information. There are no explicit noise traders or market makers. The model is like
Treynor (1995), who discusses “transactors acting on information which they believe has not yet
been fully discounted in the market price but which in fact has”. Similarly, Black (1986) defines
noise trading as “trading on noise as if it were information”.

Each trader submits a demand schedule Xn(p):=Xn(i0,in,Sn,p) to a single-price auction. An
auctioneer clears the market at price p:=p[X1,...,XN ]. Trader n’s terminal wealth is

Wn:=v (Sn +Xn(p))−pXn(p). (1)

Each trader n maximizes the same expected exponential utility function of wealth E
n[−e−AWn ]

using his own beliefs to calculate the expectation.
An equilibrium is a set of trading strategies X1,...,XN such that each trader’s strategy

maximizes his expected utility, taking as given the trading strategies of other traders. Except
for the assumption that traders do not share a common prior, this is equivalent to a Bayesian Nash
equilibrium. As imperfect competitors, traders take into account how the price p depends on the
quantities they trade.

2.1. Linear strategies and Bayesian updating

Let i−n:= 1
N−1

∑N
m=1,m �=n im denote the average of other traders’ signals. When trader n

conjectures that other traders submit symmetric linear demand schedules

Xm(i0,im,Sm,p)=α i0 +β im −γ p−δSm, m=1,...,N, m �=n, (2)

he infers from the market-clearing condition

xn +
N∑

m=1
m �=n

(α i0 +β im −γ p−δSm)=0 (3)
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that his residual supply schedule P(xn) is a function of his quantity xn given by

P(xn)= α

γ
i0 + β

γ
i−n + δ

(N −1)γ
Sn + 1

(N −1)γ
xn. (4)

Since trader n observes the public signal i0, his own inventory Sn, and the quantity he trades
himself xn, he can infer the average of other traders’ signals i−n from observing the intercept of
his residual supply schedule.

Let E
n[...] and Varn[...] denote trader n’s expectation and variance operators conditional on

all signals i0,i1,...,iN . Define “total precision” τ by

τ :=(Varn[v])−1 =τv (1+τ0 +τH +(N −1)τL). (5)

The projection theorem for jointly normally distributed random variables implies

E
n[v]= τ

1/2
v

τ

(
τ

1/2
0 i0 +τ 1/2

H in +(N −1)τ 1/2
L i−n

)
. (6)

2.2. Utility maximization with market power

Conditional on all information, trader n’s terminal wealth Wn is a normally distributed random
variable with mean and variance given by

E
n[Wn]=E

n[v](Sn +xn)−P(xn)xn, Varn[Wn]= (Sn +xn)2
Varn[v]. (7)

Normal distributions imply that expected utility is given by

E
n[−e−AWn ]=−exp

(
−AE

n[Wn]+ 1
2 A2

Varn[Wn]
)
. (8)

Maximizing this function is equivalent to maximizing E
n[Wn]− 1

2 AVarn[Wn]. Plugging
equations (5), (6), and (7) into equation (8), trader n solves the maximization problem

max
xn

[
τ

1/2
v

τ

(
τ

1/2
0 i0 +τ 1/2

H in +(N −1)τ 1/2
L i−n

)
(Sn +xn)−P(xn)xn − A

2τ
(Sn +xn)2

]
. (9)

Oligopolistic trader n exercises market power by taking into account how his quantity xn affects
the price P(xn) on his residual supply schedule (4).

2.3. Equilibrium with linear demand schedules

There always exists a no-trade equilibrium in which each trader submits a no-trade schedule
Xn(.)≡0 and the auctioneer cannot establish a meaningful price.

An equilibrium with trade may also exist. Appendix A.1 proves the following theorem using
the “no-regret” approach: Each trader observes his residual linear supply schedule, infers the
average of other traders’ signals from its intercept, picks the optimal quantity xn, and implements
this choice with a demand schedule xn =Xn(i0,in,Sn,p), without observing the residual supply
schedule itself.

Let τH/τL measure “disagreement”. Define the exogenous quantity 	H by

	H :=τ
1/2
H

τ
1/2
L

−2− 2

(N −2)
. (10)
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Theorem 1. (Characterization of Equilibrium in the One-Period Model with Overconfi-
dence and Imperfect Competition). There exists a unique symmetric equilibrium with linear
trading strategies and nonzero trade if and only if the second-order condition	H>0 holds. The
equilibrium satisfies the following:

(1) Trader n trades the quantity x∗
n given by

x∗
n = (N −2)τ 1/2

L 	H

AN
τ

1/2
v (in −i−n)−δSn, (11)

where the inventory adjustment factor δ is

0<δ= (N −2)τ 1/2
H −2(N −1)τ 1/2

L

(N −1)(τ 1/2
H −τ 1/2

L )
<1. (12)

(2) The price p∗ is the average of traders’ valuations:

p∗ = 1

N

N∑
n=1

E
n[v]= τ

1/2
v

τ

(
τ

1/2
0 i0 + τ

1/2
H +(N −1)τ 1/2

L

N

N∑
n=1

in

)
. (13)

(3) The parametersα>0,β>0, and γ >0, defining the linear trading strategies in equation (2),
have unique closed-form solutions defined in (A6).

For an equilibrium with positive trading volume to exist, there must be enough disagreement
so that	H>0. This requires N ≥3 and requires τ 1/2

H to be sufficiently more than twice as large as

τ
1/2
L . Each trader trades in the direction of his private signal in, trades against the average of other

traders’ signals i−n, and hedges a fraction δ of his initial inventory. Trading volume increases in
disagreement and decreases in risk aversion. Equation (13) implies that the equilibrium price is
a weighted average of traders’ valuations with weights summing to one. As shown in Section 3,
the weights sum to less than one in a continuous-time model.

2.4. Equilibrium properties

As in Kyle (1989) and Rostek and Weretka (2012), each trader exercises market power by shading
the quantity traded relative to the quantity a perfect competitor would trade. Define a trader’s
“target inventory” STI

n as the inventory such that he would not want to trade (x∗
n =0). From

equation (11), it is equal to

STI
n = 1

A

(
1− 1

N

)
τ

1/2
v (τ 1/2

H −τ 1/2
L )(in −i−n). (14)

Then trader n’s optimal quantity traded can be written

x∗
n =δ (STI

n −Sn). (15)

The parameter δ, defined in equation (12), is the fraction by which traders adjust positions towards
target levels. As a function of disagreement τH/τL , δ increases monotonically from a lower bound
of zero when the existence condition τ 1/2

H /τ
1/2
L −2−2/(N −2)>0 is barely satisfied towards an
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upper bound of (N −2)/(N −1) as τ 1/2
H /τ

1/2
L →∞. If there is not enough disagreement to sustain

an equilibrium with trade, each trader would want to shade his bid more than the others, and this
breaks the equilibrium.

Consider an otherwise equivalent one-period model with perfect competition. Appendix B.1
proves the following result.

Theorem 2. (Characterization of Equilibrium in the One-Period Model with Overcon-
fidence and Perfect Competition). Assume τH>τL. Then there exists a unique symmetric
equilibrium with linear trading strategies and nonzero trade, which has the following properties:

(1) Trader n chooses the quantity x∗
n =STI

n −Sn (equation (15) with δ=1).
(2) The price p∗ is the same as with imperfect competition (equation (13)).

The existence condition for the competitive equilibrium (τH>τL) is less restrictive than with
imperfect competition (	H>0), even in the limit N →∞, because an imperfectly competitive
trader remains a monopolist over his private signal.

From the perspective of trader n, equation (4) implies that with imperfect competition, price
impact can be written as a function of both xn and Sn,

P(xn,Sn):=p0,n +λSn +κ xn, (16)

where p0,n is a linear combination of random variables i0 and i−n, and equations (A5) and (A6)
imply that constants λ and κ are given by

λ:= δ

(N −1)γ
= A

τ

τ
1/2
H +(N −1)τ 1/2

L

(N −1)(τ 1/2
H −τ 1/2

L )
, (17)

κ:=λ
δ

= 1

(N −1)γ
= A

τ

τ
1/2
H +(N −1)τ 1/2

L

(N −2)τ 1/2
L 	H

. (18)

The price impact parameters λ and κ increase in risk aversion A and decrease in disagreement
τH/τL; these results are consistent with the continuous-time model. In the continuous-time
model, the first component λSn measures permanent price impact as in Kyle (1985). The second
component κ xn measures temporary price impact determined by the speed of trading, with xn
replaced by the derivative of the trader’s inventory dSn/dt. We next discuss the continuous-time
model.

3. CONTINUOUS-TIME MODEL

There are N risk-averse oligopolistic traders who trade at price P(t) a risky asset in zero net supply
against a risk-free asset which earns constant risk-free rate r>0.

The risky asset pays out dividends at continuous rate D(t). Dividends follow a stochastic
process with mean-reverting stochastic growth rate G∗(t), constant instantaneous volatility σD>

0, and constant rate of mean reversion αD>0:

dD(t):=−αD D(t)dt+G∗(t)dt+σD dBD(t). (19)

The dividend D(t) is publicly observable, but the growth rate G∗(t) is not observed by any trader.
The growth rate G∗(t) follows an AR-1 process with mean reversion αG and volatility σG:

dG∗(t):=−αG G∗(t)dt+σG dBG(t). (20)
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Each trader n observes a continuous stream of private information In(t) defined by the
stochastic process

dIn(t):=τ 1/2
n

G∗(t)

σG�1/2
dt+dBn(t), n=1,...,N . (21)

Since its drift is proportional to G∗(t), each increment dIn(t) in the process In(t) is a noisy
observation of G∗(t). The denominator σG�

1/2 scales G∗(t) so that its conditional variance is one;
this simplifies the intuitive interpretation of the model. The precision parameter τn measures the
informativeness of the signal dIn(t) as a signal-to-noise ratio describing how fast new information
flows into the market. The parameter � measures the steady-state error variance of the trader’s
estimate of G∗(t) in units of time; it is defined algebraically below (see equation (25)).2

As in the one-period model, each trader is certain that his own private information In(t) has
high precision τn =τH and the other traders’ private information has low precision τm =τL for
m �=n, with τH>τL ≥0. Traders do not update their dogmatic beliefs about τH and τL over time;
for plausible parameter values, it would take a long time for a trader to learn that his beliefs are
incorrect. Since relatively overconfident traders agree to disagree about the precisions of their
private information, they do not share a common prior even though their beliefs are common
knowledge.3 Agreement to disagree is a simple assumption with realistic implications: it can
naturally break no-trade results and generate trading volume.

Each trader’s information set at time t, denoted Fn(t), consists of the histories of (1) the
dividend process D(s), (2) the trader’s own private information In(s), and (3) the market price
P(s), s∈ (−∞,t]. All traders process information rationally; they apply Bayes law correctly given
their possibly incorrect beliefs.

Let Sn(t) denote the inventory of trader n at time t. Zero net supply implies
∑N

n=1Sn(t)=0.
We only consider “smooth trading” equilibria in which inventories Sn(t) are differentiable

functions of time. Trading strategies and market clearing are specified using rates of trading,
not shares traded. Trader n’s trading strategy Xn is a mapping from his information set Fn(t) at
time t into a flow-demand schedule which defines the derivative of his inventory xn(t):=dSn(t)/dt
(‘trading intensity’) as a function of the market-clearing price P(t) with xn(t)=Xn(t,P(t);Fn(t)).
An auctioneer continuously calculates the market-clearing price P(t):=P[X1,...,XN ](t) such that
the market-clearing condition

∑N
n=1xn(t)=0 is satisfied. Each trader explicitly takes into account

the effect of his trading intensity on market prices.
Each trader has the same time preference parameter ρ and the same time-additively-separable

exponential utility function U(cn(s)):=−e−Acn(s) with constant-absolute-risk-aversion parameter
A. Trader n’s consumption strategy Cn defines a consumption rate cn(t):=Cn(t;Fn(t)) for all
t>−∞. Let E

n
t [...] denote the conditional expectations operator E[...|Fn(t)] based on trader n’s

beliefs.
Define an equilibrium as a set of trading strategies X∗

1 ,...,X
∗
N and consumption strategies

C∗
1 ,...,C

∗
N such that, for n=1,...,N , trader n’s optimal consumption and trading strategies Xn =

X∗
n and Cn =C∗

n solve his maximization problem taking as given the optimal strategies of the other

2. Since the innovation variance of dIn(t) can be estimated arbitrarily precisely by observing past information
continuously, it is common knowledge that the innovation variance is one. Scaling the innovation variance of In(t) in
equation (21) to make it equal to one is therefore a normalization without loss of generality. See footnote 11 for further
discussion.

3. We call this belief structure “relative overconfidence” to distinguish it from a belief structure with “absolute
overconfidence” in which traders believe the precisions of their information is greater than empirically true precisions.
Empirically true precisions do not affect the equilibrium strategies but do affect empirical predictions about asset returns
(see Section 4.5).

Downloaded from https://academic.oup.com/restud/article-abstract/85/1/611/3108822
by University of Maryland user
on 15 February 2018



[13:39 7/12/2017 rdx017.tex] RESTUD: The Review of Economic Studies Page: 620 611–662

620 REVIEW OF ECONOMIC STUDIES

traders. For all dates t>−∞, the optimal strategies X∗
n and C∗

n solve trader n’s maximization
problem

max[Cn,Xn]
E

n
t

[∫ ∞

s=t
e−ρ(s−t) U(cn(s))ds

]
, (22)

where inventories satisfy dSn(t)=xn(t)dt and money holdings Mn(t) satisfy

dMn(t)=(r Mn(t)+Sn(t)D(t)−cn(t)−P(t)xn(t))dt. (23)

When solving the maximization problem, trader n takes as given the trading strategies Xm,
m �=n, for the other N −1 traders; he exercises market power by taking into account how his own
strategy affects equilibrium prices P(t) and future trading opportunities. Except for the assumption
that traders do not share a common prior (since τH �=τL), the equilibrium is a perfect Bayesian
equilibrium.

We show that with enough disagreement—if τH is sufficiently larger than τL—there will be
trade based on private information. The degree of disagreement τH/τL affects the equilibrium
prices and quantities traded. Without overconfidence—in a model of rational expectations with
a common prior—there would be no trade.

It is important to distinguish between the common prior assumption (which we do not make)
and the traditional economists’assumption of rationality as consistently applying Bayes law when
maximizing expected utility with respect to some probability distribution (which we do make).
Morris (1995) eloquently discusses why “dropping the common prior assumption from otherwise
rational behavior” is an important research agenda.

The equilibrium has smooth trading and temporary price impact. Indeed, infinitely fast
portfolio updating towards target inventories cannot be an equilibrium, and temporary price
impact is intuitively necessary to prevent this possibility. If there were no temporary price
impact—and the price were only an increasing function of the level of a trader’s inventory
as in most models—then a trader would reduce price impact costs by moving continuously but
very quickly along his residual demand schedule. This could not be a symmetric equilibrium,
however, because the counterparties would require compensation, in the form of temporary price
impact costs, to compensate for losses from being “picked off” by the discriminating monopolist.
To reduce transaction costs, each trader would try to slow his trading relative to others, and
the equilibrium would break. With temporary price impact, infinitely fast trading is infinitely
expensive because the price is an unboundedly increasing function of the derivative of a trader’s
inventory.

The continuous equilibrium of Kyle (1985) is conceptually different. While the informed
trader optimally smooths out his trading so that his inventory is a continuous function of time,
the noise traders are assumed to trade suboptimally. In response to a shock to desired inventories
	U, the noise traders immediately trade the quantity	U all at once, incurring price impact cost
λ	U. If the noise traders were instead to trade smoothly and move quickly but continuously
along their residual demand schedule at rate	U/	t over some small time interval	t, then they
would incur approximately only one-half the price impact cost, 1

2λ	U. 4 Such optimized smooth
trading by noise traders would break the equilibrium of Kyle (1985), because the market makers
on the other side of this smooth trading would suffer losses, significantly changing the nature of
liquidity.

4. In models with “impatient” noise traders—such as Chau and Vayanos (2008), Foster and Viswanathan (1994),
Caldentey and Stacchetti (2010), and Holden and Subrahmanyam (1992)—a discrete-time setting is needed to prevent
optimizing traders from trading infinitely fast. Back et al. (2000) are able to implement the discrete-time model of
Foster and Viswanathan (1996) in continuous time, because declining permanent price impact over time deters infinitely
aggressive trading immediately after trading begins.
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3.1. Bayesian updating by traders in the model

Traders use the history of private information and the history of the dividend process D(t) to
forecast unobserved dividend growth rate G∗(t). To simplify Kalman filtering formulas, the
information content of the dividend D(t) can be expressed in a form analogous to the notation
for private information in equation (21). Define dI0(t):=(αD D(t)dt+dD(t))/σD and dB0:=dBD.
Then the public information I0(t) in the divided stream (19) can be written

dI0(t):=τ 1/2
0

G∗(t)

σG�1/2
dt+dB0(t), where τ0 :=�σ 2

G

σ 2
D

. (24)

The process I0(t) is informationally equivalent to the dividend process D(t). The quantity τ0
measures the precision of the dividend process.

Consider next how traders update their estimates of the unobserved growth rate. In a
symmetric equilibrium, each trader infers from prices a sufficient statistic for other traders’private
information. Thus, all traders update estimates of the unobserved growth rate G∗(t) as if fully
informed about all information I0(s)≡D(s), I1(s),...,IN (s), s∈ (−∞,t], including the private
information of other traders. Let Gn(t):=E

n
t [G∗(t)] denote trader n’s estimate of the growth rate

conditional on all information. The superscript n indicates that conditional distributions of growth
rates are calculated by trader n, who believes that his own information has high precision τH and
other traders’information has low precision τL . The subscript t denotes conditioning on the history
of all information at date t. Similarly, let Varn

t [G∗(t)] denote trader n’s conditional variance at
date t.

Appendix A.2 presents Stratonovich–Kalman–Bucy filtering formulas for calculating
estimates of G∗(t) from information of arbitrary precision τ0,τ1,...,τN .

Equations (A8) and (A9) imply that, for the beliefs of any trader n, total precision τ and
non-time-varying scaled error variance � are given by

τ :=τ0 +τH +(N −1)τL, �−1 :=
(

Varn
t [G∗(t)]
σ 2

G

)−1

=2αG +τ. (25)

Although traders agree to disagree about whose information has high precision, it is common
knowledge that they use the same values of τ and �.

From the history of each raw information process In(s), s∈ (−∞,t], define a “signal” Hn(t),
n=0,...,N , by plugging τ and � into equation (A13). The resulting exponentially weighted
average of past innovations, given by

Hn(t):=
∫ t

u=−∞
e−(αG+τ)(t−u) dIn(u), n=0,1,...,N, (26)

is a sufficient statistic for the information in the history of In(s). Equation (26) implies that
more distant information dIn(t) receive exponentially lower weight since (1) past signals contain
information about the past growth rate which mean-reverts to zero at rate αG and (2) new
information is generated at a rate τ . Let H−n(t) denote the average of the other traders’ signals:

H−n(t):= 1
N−1

N∑
m=1
m �=n

Hm(t). (27)
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For trader n’s beliefs τH and τL , equation (A15) implies that his estimate of the growth rate Gn(t)
is a linear combination of H0(t), Hn(t), and H−n(t) given by

Gn(t):=σG�
1/2
(
τ

1/2
0 H0(t)+τ 1/2

H Hn(t)+τ 1/2
L (N −1)H−n(t)

)
. (28)

This equation has a simple intuition. All traders place the same weight τ 1/2
0 on the dividend-

information signal H0(t). Each trader assigns a larger weight τ 1/2
H to his own signal and a lower

weight τ1/2
L to each of the other N −1 traders’ signals. Since equation (28) describes a steady

state in which traders agree about the constant value of�, the weights on the H-variables do not
vary over time or across traders.

As discussed next, trader n’s optimal trading strategy depends on both the average of other
traders’ estimates of G∗(t), defined as G−n(t):= 1

N−1
∑N

m=1,m �=nGm(t), and his own beliefs about
the dynamic statistical relationship between G∗(t) and the sufficient statistics H0(t), Hn(t), and
H−n(t).

3.2. Linear conjectured strategies

We seek a symmetric equilibrium in which traders use simple Markovian linear strategies. To
reduce the number of state variables, it is convenient to replace the three state variables H0(t),
Hn(t), H−n(t) with two composite state variables Ĥn and Ĥ−n defined using a constant â by

Ĥn(t):=Hn(t)+ âH0(t), Ĥ−n(t):=H−n(t)+ âH0(t), â:= τ
1/2
0

τ
1/2
H +(N −1)τ 1/2

L

. (29)

Trader n conjectures that four constant “γ -parameters”—γD, γH , γS , and γP—define
symmetric linear demand schedules for other traders m, m �=n, given by

xm(t)= dSm(t)

dt
=γD D(t)+γH Ĥm(t)−γS Sm(t)−γP P(t). (30)

Market clearing implies that trader n’s flow-demand xn(t)=dSn(t)/dt satisfies

xn(t)+
N∑

m=1
m �=n

(
γD D(t)+γH Ĥm(t)−γS Sm(t)−γP P(t)

)
=0. (31)

Using zero net supply
∑N

m=1Sm(t)=0, this equation can be solved for P(t) as a function of xn(t)
to obtain trader n’s conjectured price impact function

P(xn(t))= γD

γP
D(t)+ γH

γP
Ĥ−n(t)+ γS

(N −1)γP
Sn(t)+ 1

(N −1)γP
xn(t). (32)

Equation (32) is analogous to equation (4) from the one-period model, with the quantity traded
xn(t) interpreted as the time derivative of inventories (or trading intensity). The intercept of the
residual supply schedule depends on dividends D(t) and the signals of other traders Ĥ−n(t).
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We call the term linear in Sn(t) “permanent impact” and the term linear in xn(t) “temporary
impact”. Analogous to the one-period model (equations (17) and (18)), equation (32) defines
coefficients of permanent impact λ and temporary impact κ:

λ:= γS

(N −1)γp
, κ:= 1

(N −1)γp
. (33)

We refer to the inverse of temporary price impact 1/κ as “market liquidity”.
Imperfect competition requires trader n to take into account both his permanent and temporary

price impact in choosing how fast to change his inventory. Trader n exercises monopoly power
in choosing how fast to demand liquidity from other traders to profit from information. He also
exercises monopoly power in choosing how fast to provide liquidity to the other N −1 traders
who, according to trader n’s beliefs, trade with overconfidence and therefore make supplying
liquidity to them profitable. Intuitively, the symmetry of equilibrium trading strategies requires
traders to believe they are being adequately compensated for both supplying and demanding
liquidity in a manner consistent with market clearing.

3.3. Equilibrium with linear trading strategies

Define a steady-state equilibrium with symmetric, linear flow-strategies as a Bayesian perfect
equilibrium in which (1) traders maximize expected utility by choosing symmetric flow-strategies
of the form (30) with constant γ -parameters as functions of time and (2) inventories have non-
stochastic, finite variances which do not vary over time. The Bayesian perfect equilibrium concept
requires strategies to be dynamically consistent. In our model, prices, inventories, and expected
returns have stationary distributions; in Vayanos (1999) and Du and Zhu (2017) in contrast, these
variables are non-stationary.

Appendix A.3 characterizes equilibrium using the “no-regret” approach in the same way as
the proof of Theorem 1 for the one-period model. Trader n solves for his optimal consumption
and trading strategy by plugging the price impact function (32) into his dynamic optimization
problem. He infers the value of H−n(t) by observing his residual flow-supply schedule, picks
the optimal point on this schedule, and implements it with a linear demand schedule. Linear
conjectured strategies for other traders m �=n make the optimization problem quadratic in xn(t);
thus, the optimal flow-demand x∗

n(t) is the solution to a linear equation. This linear solution
generates higher profits than any non-linear demand schedule.

The proof in Appendix A.3 conjectures an exponential value function whose exponent
is a specific quadratic function of the state variables Mn(t), D(t), Ĥn(t), Ĥ−n(t), and Sn(t),
defined in terms of nine “ψ-parameters”; obtains first-order necessary conditions from the
Hamilton–Jacobi–Bellman equation; equates coefficients in the conjectured linear solution; and
then combines the resulting nine ψ-equations with four γ -equations, imposing symmetry on
the solution. The proof shows that these thirteen equations can be reduced to six polynomial
equations (A57)–(A62) in six unknowns. A solution determines the nine ψ-parameters defining
the value function in equation (A37) and the four γ -parameters defining trading strategies in
equation (30). The thirteen endogenous parameters are functions of the ten exogenous parameters
r, ρ, A, αD, σD, αG, σG, N , τH , and τL (in terms of which the quasi-exogenous parameters τ0, τ ,
�, and â are also defined).

There always exists a no-trade equilibrium Xn ≡0, with no well-defined price.

Theorem 3. (Characterization of Equilibrium in the Continuous-Time Model with
Overconfidence and Imperfect Competition). There exists a steady-state, Bayesian-perfect
equilibrium with symmetric, linear flow-strategies and positive trading volume if and only if
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the six polynomial equations (A57)–(A62) have a solution satisfying the second-order condition
γP>0 and the stationarity condition γS>0. Such an equilibrium has the following properties:

(1) There is an endogenously determined constant CL>0, defined in equation (A49), such that
trader n’s optimal flow-strategy x∗

n(t) makes time-differentiable inventories Sn(t) change
at rate

x∗
n(t)= dS∗

n (t)

dt
=γS

(
CL

(
Ĥn(t)−Ĥ−n(t)

)
−S∗

n (t)
)
. (34)

(2) There is an endogenously determined constant CG>0, defined in equation (A49), such
that the equilibrium price is

P∗(t)= D(t)

r+αD
+CG

Ḡ(t)

(r+αD)(r+αG)
, (35)

where Ḡ(t):= 1
N

∑N
n=1Gn(t) denotes the average expected growth rate.

Equations (34) and (35) are similar to equations (11) and (13) in the one-period model. Use
equation (34) to define trader n’s “target inventory” STI

n (t) as the inventory level such that trader n
does not trade (xn(t)=0):

STI
n (t)=CL

(
Ĥn(t)−Ĥ−n(t)

)
. (36)

Trader n targets a long position if his own signal Ĥn(t) is greater than the average signal of other
traders Ĥ−n(t) and a short position if it is less. The proportionality constant CL measures the
sensitivity of target inventories to the difference. Trader n’s optimal flow-strategy x∗

n(t) can be
written

x∗
n(t)= dSn(t)

dt
=γS

(
STI

n (t)−Sn(t)
)
. (37)

Equation (37) defines a partial adjustment strategy similar to the one in the partial equilibrium
models of Garleanu and Pedersen (2013, 2016). The parameter γS measures the “speed of trade”
as the rate at which inventories adjust towards target levels. Trading volume is finite. Section 4.1
provides a more detailed analysis.

The price in equation (35) immediately reveals the average of all signals, responding
instantaneously to innovations in each trader’s private information. This occurs even though each
trader intentionally slows down trading to reduce price impact resulting from adverse selection.
If CG were equal to one, the price in equation (35) would equal the average of traders’ risk-neutral
buy-and-hold valuations, consistent with Gordon’s growth formula and the one-period model. As
discussed in Section 4.3, a Keynesian beauty contest makes the multiplier CG less than one.

It is an analytical result that risk aversion affects quantities, not prices:

Theorem 4. (Comparative Statics for Risk Aversion). If risk aversion A is scaled by a factor
of F to A/F, then CL changes to CL F, λ changes to λ/F, κ changes to κ/F, STI

n (t) changes to
STI

n (t)F, but γS and CG remain the same.

When risk tolerance 1/A scales up by factor F>1, Theorem 4 says that traders scale up target
inventories proportionally in response to proportional reductions in temporary and permanent
price impact λ and κ . The speed of trade γS remains the same. With infinite risk aversion, each
trader’s target inventory STI

n (t) drops to zero.
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3.4. An existence condition

Obtaining an analytical solution for the equilibrium in Theorem 3 requires solving the six
polynomial equations (A57)–(A62). While these equations have no obvious analytical solution,
they can be solved numerically. Extensive numerical calculations lead us to conjecture that the
existence condition for the continuous-time model is exactly the same as the existence condition
for the one-period model:

Conjecture 1. (Existence Condition). A steady-state, Bayesian-perfect equilibrium with
symmetric, linear flow-strategies exists if and only if

	H :=τ
1/2
H

τ
1/2
L

−2− 2

N −2
>0. (38)

We have examined numerical solutions to the six equations (A57)–(A62) for many exogenous
parameter values. When existence condition (38) is satisfied, the numerical algorithm always
finds precisely one solution satisfying the second-order condition γP>0, and this solution also
satisfies the stationarity condition γS>0. When existence condition (38) is reversed, the numerical
algorithm sometimes finds solutions satisfying the second-order condition γP>0, but these
solutions do not satisfy the stationarity condition γS>0. The closed-form solution derived in
Section 4.4 for vanishing liquidity (	H →0) is consistent with conjecture (38).

Similar to the one-period model, we expect equilibrium with trade to exist only if there is
enough disagreement. Here is some intuition. Suppose the market price of an asset would be $90
if trader n does not trade. Suppose further that trader n values additional units of the asset at
$100. To optimally exploit his market power, trader n has an incentive to buy at a rate such that
short-term price impact moves the price about half-way between these two values, to $95. To
be willing to take the other side of such smooth trades of their competitors, traders must believe
that their competitors’ signals are only about half as precise as their competitors believe them
to be. This intuition is consistent with the existence condition 	H>0, which is equivalent to
τ

1/2
H /2>τ 1/2

L (1+1/(N −2)). In this context, “half as precise” means τ 1/2
H /2≈τ 1/2

L ; the term
1/(N −2) is due to market power.

3.5. A competitive model as benchmark

To understand how imperfect competition affects the equilibrium, Appendix B.2 characterizes
the equilibrium of an otherwise equivalent model in which the assumption of perfect competition
replaces imperfect competition.

Conceptually, the model with perfect competition differs from the model with imperfect
competition in two ways. First, when traders construct their strategies (cn(t),Sn(t)), they do not
take into account the effect of their trades on prices, and this simplifies their wealth dynamics
(B8). Second, since it is not necessary for a trader to consider separately money holdings Mn and
a stock holdings Sn in the case of perfect competition, the value function conjectured in (B12)
is a quadratic exponential function of only three state variables, wealth Wn and two information
variables Ĥn and Ĥ−n; this reduces the number of parameters in the value function. The results
are summarized in the following theorem.

Theorem 5. (Characterization of Equilibrium in the Continuous-Time Model with Over-
confidence and Perfect Competition). Assume τH>τL. There exists a steady-state, Bayesian-
perfect equilibrium with symmetric, linear strategies with positive trading volume if and only if the
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three polynomial equations (B26)–(B28) have a solution. Such an equilibrium has the following
properties:

(1) There is an endogenously determined constant CL>0, defined in equation (B19), such
that trader n’s optimal inventories S∗

n (t) are

S∗
n (t)=CL

(
Ĥn(t)−Ĥ−n(t)

)
. (39)

(2) There is an endogenously determined constant CG>0, defined in equation (B17), such
that the equilibrium price is

P∗(t)= D(t)

r+αD
+CG

Ḡ(t)

(r+αD)(r+αG)
, (40)

where Ḡ(t):= 1
N

∑N
n=1Gn(t) denotes the average expected growth rate.

The existence condition for the equilibrium with imperfect competition (	H>0) is more
restrictive than the existence condition for the competitive equilibrium (τH>τL), even when N
goes to infinity, because perfectly competitive traders do not exercise monopoly power over their
private signals and trade more aggressively.

Equations (39) and (40) are similar to corresponding equations (34) and (35) in Theorem 3,
but the values of CL and CG are different. As discussed in Section 4.3, competition enhances price
dampening, making the value of CG smaller than with imperfect competition. Most importantly,
price-taking competitors do not smooth their trading. Each trader immediately adjusts actual
inventories to target levels (as if γS →∞); since target inventories are diffusions, trading volume
is infinite.

3.6. An analogous model with private values

Instead of motivating trade using a model based on agreement to disagree with no common prior,
trade can be motivated by private values with a common prior. Consider an alternative model of
imperfect competition identical to our disagreement model except for two important differences:
(1) Instead of agreeing to disagree, all private signals have the same precision τI . (2) In addition to
the common cash dividend D(t), each trader receives an orthogonal private value or convenience
yield πJ HJ

n (t) which follows an AR-1 process. This structure is common knowledge; traders
share a common prior. To keep the number of state variables the same, assume that the exogenous
mean-reversion rate of the convenience yield is the same as the endogenous mean-reversion rate
of private signals. Supplementary Appendix C examines such a model in detail.

All of the equations describing the disagreement model (Section 3 andAppendixA) map nicely
into corresponding equations describing the private-values model (Supplementary Appendix C).
Noise from private values lowers the precision of the estimate of other traders’ signals inferred
from prices. To make the models as similar as possible, the parameter τI can be chosen to equal
the parameter τH , and the level of innovation variance in shocks to private values can be chosen
so that the endogenous lower precision inferred from prices is equal to τL .

A comparison of the two models highlights a subtle dynamic structure of beliefs in the
model with disagreement. In the model with private values, traders agree that they have different
valuations in the present, and they furthermore agree that these different valuations will mean
revert towards the same unconditional common mean consistent with a common prior. In the
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model with disagreement, traders also agree that they have different valuations in the present,
but—in contrast to the model with private values—they furthermore agree to disagree about the
stochastic process their different current valuations will follow in the future. Specifically, each
trader believes that the other traders’ valuations will converge on average to his own valuation
in the long run but deviate in the short run; because they have different beliefs about valuation
dynamics as a result of not sharing a common prior, they disagree in the present about how
their expectations will differ in the future. Algebraically, this effect shows up in equations (C33)
and (C34) in Supplementary Appendix C; the discussion following these equations clarifies the
intuition further.

As discussed in detail in Section 4.3, this disagreement about valuation dynamics leads to a
Keynesian beauty contest with dampening of prices (0<CG<1). With private values, it can be
shown analytically that no such dampening occurs (CG =1). The private-values model is simpler
than the model with disagreement because traders disagree about the present only; they do not
disagree about the future. Similarly, both Vayanos (1999) and Du and Zhu (2017) obtain no price
dampening in models where inventories or private values follow random walks.

To generate a Keynesian beauty contest from an isomorphic model of private values with
a common prior, it would be necessary to make complicated, unnatural assumptions about
exogenous cross-sectional and time series correlations of private values and private information
to mimic artificially the natural dynamics of Bayes law with agreement to disagree. Ockham’s
razor supports modelling a Keynesian beauty contest using disagreement, not a common prior.

4. IMPLICATIONS OF THE CONTINUOUS-TIME MODEL

This section presents implications of the continuous-time model for (1) trading strategies, (2)
market liquidity, and (3) prices. For notational simplicity, the superscript “∗” on equilibrium
prices and strategies is suppressed.

4.1. Trading strategies: a partial adjustment process

Traders trade smoothly. Trader n follows a partial adjustment strategy (equation (37)), and his
inventory Sn(t) gradually converges towards its target level STI

n (t) at rate γS (equation (36)).
Sample paths for target inventories STI

n (t) and trading intensity xn(t) are diffusions (of order dt1/2).
Sample paths for actual inventories Sn(t) are not diffusions but rather differentiable functions of
time (of order dt).

The integral representation of the inventory dynamics in equations (36) and (37),

Sn(t+s)=e−γS s
(

Sn(t)+
∫ t+s

u=t
e−γS (t−u)γS CL (Ĥn(u)−Ĥ−n(u))du

)
, (41)

shows that traders add to existing inventories based on current differences in signals Ĥn(t)−
Ĥ−n(t) and liquidate their existing inventories, accumulated based on past signal differences, at
rate γS . Even if signals Ĥn(t) and Ĥ−n(t) were to remain constant over some period of time and the
price did not change, trader n would continue to trade based on the level of his past disagreement
with the market.

Although prices adjust instantaneously, quantities adjust slowly. As soon as trader n adjusts
his trading intensity xn(t) after getting new information, the price instantaneously moves to a new
equilibrium level, even though he has not yet traded a single share.

The smooth trading model captures in a realistic manner the inventory behaviour of asset
managers who use public and private information to forecast stock returns. When information
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Figure 1

Values of γS and E[|STI
n (t)|] as functions of τH/τL for τ=7.4 and τ=8.9.

changes, an asset manager updates signals, obtains a new estimate of the asset’s value, recalculates
his target inventory, and adjusts trading to move inventories in the direction of the new target.
Since moving large blocks over short periods of time is expensive, an asset manager builds
positions gradually, trading off price impact against the speed with which signals decay.

Trader n believes that the information variables Ĥn(t) and Ĥ−n(t) in equation (36) follow
a bivariate vector auto-regression process. Traders disagree about drift rates. Trader n believes
that Ĥn(t)−Ĥ−n(t) mean-reverts at rate αG +τ but also drifts in a direction proportional to
(τ1/2

H −τ 1/2
L )Gn(t) (see equation (A36)).

Intuition suggests that more disagreement will make markets more liquid, and this additional
liquidity will be associated with more rapid adjustment of actual inventories towards target levels.
Our numerical results support this intuition.

Figure 1 shows how the speed of trading and level of inventories change when disagreement
τH/τL changes.5 Intuitively, as disagreement increases, it becomes less costly for a trader to
trade towards the target inventory more rapidly because other trades are more willing to provide
liquidity. Therefore, the expected size of target inventories E[|STI

n (t)|] increases (right panel)
and the speed of inventory adjustment γS also increases (left panel). The speed of inventory
convergence to target levels also increases when the decay rate of signals αG +τ increases.
Intuitively, when a signal decays faster, a trader trades faster.6

Figure 2 shows how the speed of trading and level of inventories change when the number of
traders N changes. The speed of inventory adjustment γS increases steadily with N (left panel)
since more competition makes trading less costly. Expected target inventories E[|STI

n (t)|] increase
towards a constant level when N is large (right panel) since risk aversion limits the maximum
size of inventories when more competition makes trading costs fall.7

Figure 3 presents three simulated paths for target inventories (dashed lines) and actual
inventories (solid lines).8 When disagreement τH/τL is larger—and the market is more liquid
as discussed in Section 4.2—actual inventories closely track target inventories, as in Figure 3a.

5. Throughout this article, to conduct comparative statics analysis for changing the degree of disagreement, we
change τH/τL by changing τH and τL in opposite directions so that the value of total precision τ remains constant. When
we change the signal decay rate αG +τ , we change the total precision τ by increasing τH and τL proportionally while
holding αG constant. When we change the number of traders, we set τL =0 and therefore fix total precision at τH .

6. Numerical calculations in Figure 1, Figure 4, and Figure 8a are based on exogenous parameter values τ=7.4
(or τ=8.9), r =0.01, A=1, αD =0.1, αG =0.02, σD =0.5, σG =0.1, τ0 =�σ 2

G/σ
2
D =0.0054, and N =100.

7. Numerical calculations in Figure 2, Figure 5, and panel (b) of Figure 8 are based on the exogenous parameter
values τL =0, τ=1.4, r =0.01, A=1, αD =0.1, αG =0.02, σD =0.5, σG =0.1, and τ0 =�σ 2

G/σ
2
D =0.0279.

8. The paths are generated using equations (36), (37), (41), (A34), and (A35), which describe the dynamics of
Hn(t),H−n(t),Sn(t), and STI

n (t). Numerical calculations in Figure 3 are based on the exogenous parameter values αD =0.1,
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Figure 2

Values of γS and E[|STI
n (t)|] as functions of ln(N) for τ=1.4 and τL =0.

(a) (b)

(c)

Figure 3

Simulated paths of STI
n (t) (Dashed) and Sn(t) (Solid). (a) with high disagreement; (b) with low disagreement; (c) with

low decay rate and high disagreement.

When disagreement τH/τL is smaller—and the market is less liquid—actual inventories deviate
significantly from target inventories since traders restrict their speed of trading, as in Figure 3b.
To illustrate that the speed at which traders’ inventories converge to target levels also depends on
the decay rate of their signals, Figure 3c plots actual and target inventories using the same level
of disagreement as in Figure 3a but a lower decay rate αG +τ (by varying τ ); actual inventories

αG =0.02, σD =0.5, σG =0.1, and N =100, with τ=8.9 and τ0 =�σ 2
G/σ

2
D =0.0045 in both Figure 3a and b; τH =4.46

and τL =0.045 in Figure 3a; τH =0.5 and τL =0.085 in Figure 3b; and τ=3.15, τH =1.56, τL =0.016, and τ0 =0.0126
in Figure 3c.
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track target inventories less closely than in panel (a), in line with Figure 1. Note that target and
actual inventories would coincide in the competitive model.

Our model explains how asset managers try to outperform benchmarks by trading securities
they perceive to be undervalued or overvalued. Stationary, mean-reverting target inventories
and perceived expected returns are endogenous consequences of the simultaneous solutions to
optimization problems based on public and private information flow, total precision of information
in the market, disagreement among traders, and traders’ risk-bearing capacity. If actively traded
stocks have faster information flow (larger αG +τ ), then our model predicts more rapidly mean-
reverting target inventories in more active markets. Our model also predicts that the speed of
inventory adjustment γS tends to increase with faster signal decay (increasing αG +τ ) or more
disagreement (increasing τH/τL); markets with high trading volume are therefore more liquid.

Empirical evidence on long- and short-term trading is consistent with partial adjustment
towards fluctuating target inventories. One of our main contributions is the empirical hypothesis
that long-term trading results from slow information flow and high trading costs in low-
volume markets while short-term trading results from fast information flow and low trading
costs in high-volume markets. Using granular proprietary databases, Puckett and Yan (2011) and
Chakrabarty et al. (2013) find that institutional investors indeed engage in intensive short-term
trading, while institutional holdings reported to the SEC on Form 13F suggest long-term strategies
with complicated patterns.

4.2. Temporary and permanent price impact

The concepts of temporary and permanent price impact are important for the practical management
of transaction costs. Our model links endogenous temporary and permanent impact to deep
structural parameters such as the precision of information flow and the magnitude of disagreement.

We use the terms “temporary” and “permanent” price impact differently from the empirical
market microstructure literature, which usually describes time series properties of market prices.
Temporary price impact is often associated with negative first-order autocorrelation in price
changes (bid-ask bounce), and permanent price impact is associated with persistent correlations
between price changes and order flow. Instead, like sophisticated traders in the asset management
industry, we think of temporary and permanent price impacts as components of transaction costs
over which traders explicitly optimize when constructing trading strategies. Traders correctly
understand that faster execution leads to larger temporary price impact but has no additional
effect on permanent price impact.

Combining equations (32) and (33), we can write the price as

P(Sn(t),xn(t)):=p0,n(t)+λSn(t)+κ xn(t). (42)

The intercept p0,n(t)= γD
γP

D(t)+ γH
γP

Ĥ−n(t) defines what the price would be, as a weighted average
of other traders’signals, if trader n had no inventories and did not trade. Permanent impact is linear
in the trader’s own inventory level Sn(t). Temporary impact is linear in the time derivative of his
inventory xn(t) (trading intensity). The permanent price impact parameter λ and the temporary
price impact parameter κ are defined in equation (33). A trader correctly believes that the price
changes when either the level of his inventory or the intensity of his trading changes. If trader n
suddenly stops trading, then the price immediately reverses by κ xn(t) as his temporary price
impact disappears with his permanent price impact λSn(t) remaining intact.

Figures 4 and 5 show that both permanent depth 1/λ and temporary depth 1/κ increase as
disagreement τH/τL increases, as total precision increases, or as the number of traders N increases.
These numerical results are consistent with the intuition that more disagreement, a faster signal
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Figure 4

Values of 1/λ and 1/κ as functions of τH/τL for τ=7.4 and τ=8.9.

Figure 5

Values of 1/λ and 1/κ as functions of ln(N) for τ=1.4 and τL =0.

decay rate, or a greater number of traders decreases transaction costs by making traders more
willing to provide liquidity to one another.

Our price impact model differs sharply from models with linear permanent price impact,
but no temporary price impact. As an illustration, consider the continuous-time model of Kyle
(1985), in which the informed trader correctly conjectures that the price is given by P(t)=
P(0)+λ(σU BU (t)+Sn(t)), where σU BU (t) is the inventory of noise traders (Brownian motion)
and Sn(t) is the inventory of the informed trader. This formula is similar to equation (42), except
there is no temporary price impact term κ . The informed trader optimizes the permanent impact of
his trades; there is no temporary impact as long as his inventory is a continuous function of time.
For example, to buy Q shares over a fixed period of time T , he walks up the demand schedule,
gradually pushing the price up by λQ. He expects to incur a price impact cost 1

2λQ per share
regardless of the speed of his trading.

In our model, in contrast, temporary price impact makes trading costs depend on the speed
of trading. Suppose a trader buys Q shares at a constant rate over time interval T . For simplicity,
assume P(t)= Ĥn(t)= Ĥ−n(t)=0. The average execution price is ( 1

2λ+κ/T )Q, obtained by

integrating over equation (42). The first term 1
2λQ is the permanent price impact cost and the

second term (κ/T )Q is the additional temporary price impact cost proportional to the execution
speed Q/T . When the trader initiates order execution, the price immediately jumps from zero to
κQ/T , then gradually rises to (λ+κ/T )Q, and finally drops back to λQ at time T when he stops
buying. By varying the speed of his trading over time, the trader affects the temporary-impact
component of transaction costs.
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There are few other equilibrium models in which temporary price impact results from
all traders optimizing price impact over time. Vayanos (1999) and Du and Zhu (2017) derive
endogenous transaction costs from models in which trade is motivated by inventory shocks or
shocks to private values, respectively. In these two models, permanent and temporary components
are difficult to isolate because these papers are set in discrete time.9

Asset management practitioners recognize the importance of managing both permanent and
temporary price impact costs. The practitioner-oriented model of Almgren and Chriss (2000) is
essentially a non-linear generalization of our equation (42); one difference is that our intercept
p0,n(t) changes over time in a manner trader n believes he can predict, whereas the intercept in
the Almgren–Chriss model is an exogenous random walk. Using an alternative model of price
resilience in which temporary price impact is exogenously assumed to decay gradually at an
exponential rate, Obizhaeva and Wang (2013) derive an optimal way to manage temporary price
impact costs.

Since our model is symmetric across traders, market clearing implies that quantities traded are
uncorrelated with the price process. The equilibrium price process resembles a Brownian motion.
It is therefore impossible to infer price impact from correlations between prices and equilibrium
quantities (at any lag). As Black (1982) points out, we can hope to learn about price impact by
studying mistakes that traders make or from performing experiments.

To illustrate how suboptimal execution relates to permanent and temporary price impact,
consider the following off-equilibrium scenario. Suppose trader n silently decides to deviate
from his equilibrium strategy by trading towards his target inventory at some rate γ̄S , which is
arbitrarily faster or slower than the equilibrium rate γS . To fix ideas, suppose he thinks about
implementing the strategy

x̄n(t)= γ̄S

(
STI

n (t)− S̄n(t)
)

(43)

at each point t>0. When γ̄S =γS , this equation coincides with the equilibrium strategy in
equation (37); when γ̄S>γS , the trader moves to his target inventory STI

n (t) more aggressively;
and when γ̄S<γS , the trader is more patient. After date t =0, the off-equilibrium inventory level
S̄n(t) is given by

S̄n(t)=e−γ̄S t
(

Sn(0)+
∫ t

u=0
eγ̄S u γ̄S CL (Ĥn(u)−Ĥ−n(u))du

)
. (44)

For simplicity, suppose D(0)=0 and trader n holds a positive target inventory at t =0, with
other traders’ signals at their long-term mean Ĥ−n(0)=0, implying

Sn(0)=STI
n (0)=CL Ĥn(0)>0. (45)

Then, from equation (32) and (33), we get

P(0)= γS

(N −1)γP
Sn(0)>0. (46)

9. Distinguishing temporary from permanent price impact is more complicated in discrete-time models. If time
intervals between rounds of trading were to become infinitely short, then price impact would equal the product of an
infinitely large price impact coefficient and an infinitely small quantity traded. Since the market clears in both the time
derivative of inventories and the level of inventories, our continuous-time model gracefully deals with this “infinity-times-
zero” problem and crystalizes how the speed of trading affects the equilibrium by making a clean distinction between
temporary and permanent price impact. One component, which we call permanent price impact, is linear in the level
of inventories (stocks). The other component, which we call temporary price impact, is linear in the time derivative of
inventories (flows).
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(a) (b)

Figure 6

The dynamics of expected prices and inventories. (a) The dynamics of expected prices; (b) The dynamics of

inventories.

Next, assume that at time t =0+, trader n’s sufficient statistic Ĥn(0) suddenly drops to zero,
reducing both his target inventory and the price to zero. Since Ĥn(0+)= Ĥ−n(0+)=0, the price is
E

n
0[P(t)]=0. Then, equations (44) and (42) imply that trader n’s expectation of future inventories

and prices—the impulse-response functions from the perspective of trader n—are given by

E
n
0[S̄n(t)]=e−γ̄S t Sn(0), (47)

E
n
0[P̄(t)]=− γ̄S −γS

(N −1)γP
e−γ̄St Sn(0). (48)

In Figure 6a shows expected paths of future prices based on equation (48), and Figure 6b
shows paths of future inventories based on equation (47). As shown by the solid red lines, if
trader n liquidates his inventory at an equilibrium rate γ̄S =γS , then the price immediately drops
to zero, but the trader continues to trade out of his inventories over time. Since his equilibrium
trading is “expected”, it has no additional effect on prices after time 0+; the initial temporary
price impact gradually turns into permanent impact at a pace that keeps price changes relatively
unpredictable.

Figure 6 also illustrates two off-equilibrium cases.10 When trader n sells at a rate five times
slower than the equilibrium rate, γ̄S =γS/5, the immediate price drop is only 1/5 as large as in
equilibrium. The slow rate is not optimal because the higher profits on the early trades at initially
better prices are more than offset by lower profits on later trades, when information is being
incorporated into prices through the trading of others.

When trader n sells at a rate five times faster than the equilibrium rate, γ̄S =5γS , the price is
expected to drop sharply initially, by five times as much as in equilibrium. Speeding up execution
exacerbates temporary price impact initially and elevates transaction costs overall. As the price
comes back, the price path exhibits a distinct V-shaped pattern.

The Flash Crash. The price response from trading too fast matches the price patterns observed
during the flash crash of 6 May 2010. On that day, the E-mini S&P 500 futures price plunged by
5% over a 13-minute period, triggered a 5-second trading halt, and then rose by 6% over the next

10. We assume Sn(0)=1,000 shares, τ=9.95 with τ0 =0.004, τL =0.05, and τH =5.00, implying equilibrium price
P(0)=2.896 and equilibrium γS =35.8. The other exogenous parameter assumptions are r =0.01,A=1,αD =0.1,αG =
0.02,σD =0.5,σG =0.1, N =100, and D(0+)=0.
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23 minutes. The Staffs of the CFTC and SEC (2010a,b) report that the flash crash was triggered
by an automated execution algorithm that sold S&P 500 E-mini futures worth approximately
$4 billion. Kyle and Obizhaeva (2016) note that market microstructure invariance would imply
a price impact of less than 1% and attribute the difference between predicted and realized price
dynamics to unusually fast execution of the sales. Indeed, the entire $4 billion quantity was
executed over a 36-minute period, even though orders of similar magnitude would normally
be executed over several hours. Our model does not explain why a trader chose to trade large
quantities so quickly, but it does predict how market prices would respond to a gigantic order,
executed much faster than the market expects orders of such size to be executed.

Our explanation for flash crashes is different from explanations based on models with
permanent linear price impact but no temporary price impact. For example, sharp price changes
may occur in the continuous-time model of Kyle (1985) in response to large trades by noise
traders. The size of price declines depends only on quantities sold, not on the speed of selling.
Unlike the rapid price recovery after the flash crash, such price declines are corrected only slowly
as the informed trader pushes the price back to fundamental value.

Dugast and Foucault (2014) suggest that V-shaped price patterns may occur in response
to false signals. The flash crash pattern in Figure 6 occurs because the market falsely infers
from unexpectedly rapid selling that other traders receive negative signals. Duffie (2010)
suggests that flash crashes may occur because capital moves slowly. Our model shows
why traders endogenously choose to move their capital slowly due to adverse selection.
Menkveld and Yueshen (2016) conclude that the flash crash could not have been caused by one
large sell order because most of the selling took place after the market had crashed and while
prices were recovering. This pattern is reasonably consistent with our model, which predicts
that the selling itself occurs after prices crash and while the market recovers. It is not necessary
for this selling to trigger additional selling by others. Of course, flash crashes do not happen in
equilibrium in our model.Arare event, perhaps unintended, the flash crash was like an experiment
from which something about price impact can be learned.

4.3. Prices: a Keynesian beauty contest

Define trader n’s estimate of the fundamental value of the risky asset Fn(t) as the expected
present value of all future dividends based on all information, discounted at the risk-free rate
r and calculated using the beliefs of trader n. Gordon’s growth formula implies that Fn(t) is a
function of trader n’s expected growth rate Gn(t):

Fn(t):= D(t)

r+αD
+ Gn(t)

(r+αD)(r+αG)
. (49)

Since the risky asset is in zero net supply, intuition suggests that the price is the average estimate
1
N

∑
nFn(t) obtained by replacing Gn(t) with the average Ḡ(t) in equation (49). This intuition is

consistent with the one-period model. Surprisingly, in the continuous-time model, this intuition
turns out to be wrong!

A comparison of equations (35) and (49) reveals that the price equals the average estimate of
fundamental value 1

N

∑
nFn(t) if and only if CG =1 in equation (35). Since we always find CG<1

in numerical calculations, we conjecture that 0<CG<1 in any equilibrium with trade. Even if
all N traders unanimously agree on the same expected growth rate Gn(t)= Ḡ(t), the equilibrium
price reflects a dampened implied growth rate CG Ḡ(t), not Ḡ(t) itself.

Why does price dampening occur? Since our one-period model implies CG =1 and our
continuous-time model implies CG →1 in the limit as liquidity vanishes (see Section 4.4), price
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(a) (b)

Figure 7

Present value of liquidating at date t using a trader’s own valuation (PVn(0,t)), other traders’ valuation (PV−n(0,t)), and

the market price (PVp(0,t)). (a) with high disagreement; (b) with low disagreement.

dampening must involve multiple rounds of trading.11 It is not based on imperfect competition
because similar dampening occurs in our competitive model. It does not occur when disagreement
is replaced by private values with a common prior, as in our private-values model. It also
does not occur in noisy rational expectations models, such as Wang (1993), Wang (1994), and
He and Wang (1995). To summarize, price dampening may result from combining different beliefs
with dynamic trading in a liquid market—but not from imperfect competition, illiquidity, or
asymmetric information with a common prior.

Figure 7 illustrates the intuition behind the dampening effect.12 To simplify exposition, assume
that the valuations Fn(0)>0 of all N traders coincide at t =0, implying Gn(0)=G−n(0)= Ḡ(0)>0
for all n. For negative values, the figure would be symmetric.

Each panel of Figure 7 depicts graphs of three different expected present value calculations as
functions of a liquidation date t; these calculations are conditioned on information at time 0. Each
function represents the present value to trader n resulting from collecting dividends on one share
of stock between dates 0 and t, depositing the dividends into a money market account, selling the
asset based on an assumed valuation at date t, and then discounting the resulting cash flows back
to date 0 at the risk-free rate. The three graphs correspond to a different valuation assumptions
at date t. All calculations are based on trader n’s beliefs by assumption, and they are identical
for all traders by symmetry. Derivations and analytical proofs are provided in Appendix A.7 in
equations (A81)–(A91).

First, the horizontal light solid line, denoted PVn(0,t), is based on the assumption that trader n
liquidates the asset at date t at his own estimate of its fundamental value Fn(t). Since trader n
applies Bayes law correctly given his beliefs, the martingale property of his valuation (law of
iterated expectations) makes the present value PVn(0,t) a constant function for t ≥0; its graph is
a horizontal line.

11. Consider rescaling the private information (21) as a scaled growth rate plus noise τ−1/2
n dBn(t), as in (A95),

so that trader n observes τ−1/2
n dIn(t) rather than dIn(t). This changes the equilibrium because traders disagree about

whether to use τH or τL to convert one scaling into the other. We solved the equilibrium under this alternative setup.
While most results remain qualitatively the same, the dampening effect disappears (CG =1). The revised dynamics of
Ĥn(t) and Ĥ−n(t) are presented in (A96) and (A97) in Appendix A.8. Since a trader can estimate the diffusion variance
with high accuracy by observing dIn(t) over short intervals in continuous time, it violates minimal rationality for one
trader to assume that another trader observes the diffusion variance of his information incorrectly.

12. Numerical calculations are based on the parameter values r =0.01, A=1, αD =0.1, αG =0.02, σD =0.5, σG =
0.01, N =10, Gn(0)=0.08, and D(0)=0.7, with τH =0.524, τL =0.0009, and τ0 =0.0007 in Panel (a), and τH =0.054,
τL =0.0098, and τ0 =0.0022 in Panel (b).
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Second, the light dashed curve, denoted PV−n(0,t), is based on the assumption that trader n
liquidates the asset at date t at his estimate of the average valuation of the other N −1 traders,

1
N−1

∑N
m=1,m �=nFm(t). The graph first falls below the horizontal line in the short run and then

rises asymptotically back towards it in the long run. Even though all traders have the same
estimates of fundamental value at date 0, disagreement about signal precision makes trader n
believe that the other N −1 traders’ estimates of the growth rate will mean revert to zero at rate
αG +(τ 1/2

H −τ 1/2
L )2, which is faster than the mean reversion rate αG he assumes for his own

forecast. As a result of the higher mean-reversion rate, trader n expects that PV−n(0,t) will fall in
the short run. Since trader n also believes that his own initial present value calculation is correct,
he expects that PV−n(0,t) will rise back to his own estimate of the fundamental value in the long
run.

Third, the dark solid curve, denoted PVp(0,t), is based on the assumption that trader n
liquidates the asset at date t at the equilibrium price P(t). Consistent with the equilibrium result
0<CG<1, the initial price P(0) is lower than the consensus estimate of fundamental value Fn(0),
even though all traders agree about this value and agree about how it will evolve in the future.
The dampening effect nevertheless arises due to interactions among expectations of traders. If
prices were equal to the consensus fundamental valuation Fn(0), then all traders would want
to hold short positions because all of them would expect prices to fall below their estimates of
fundamental value in the short run as the others temporarily became more bearish. This explains
why the price P(0) is dampened relative to the average valuation of fundamentals, and yet this is
consistent with each trader having a target inventory of zero at t =0.

As Figure 7 illustrates and Appendix A.7 proves, only two patterns are possible for PVp(0,t).

If CG is less than some threshold ĈG:=(1+(1−1/N)
(
τ

1/2
H −τ 1/2

L

)2
/(r+αG))−1, then trader n

expects PVp(0,t) to increase monotonically over time, as in Figure 7a. If CG is greater than the
threshold ĈG, then he expects PVp(0,t) first to decrease over a time interval t̂, defined in equation
(A93), before monotonically increasing over time, as in Figure 7b. The complicated dynamics of
price-based present value PVp(0,t) can be attributed to two factors. First, it tracks the average
of PVn(0,t) and PV−n(0,t), where PVn(0,t) remains constant and PV−n(0,t) falls in the short
run and then rises back in the long run, as discussed above. Second, there is an additional effect
related to the magnitude of CG. To summarize, each trader in the smooth-trading model believes
that equilibrium prices deviate from average estimates of fundamental values and do not have a
martingale property.

The above discussion shows that our model captures precisely the intuition of the beauty
contest of Keynes (1936):13

‘For most of these persons are, in fact, largely concerned, not with making superior long-
term forecasts of the probable yield on an investment over its whole life, but with foreseeing
changes in the conventional basis of valuation a short time ahead of the general public.

13. “… Professional investment may be likened to those newspaper competitions in which the competitors have
to pick out the six prettiest faces from a hundred photographs, the prize being awarded to the competitor whose choice
most nearly corresponds to the average preferences of the competitors as a whole; so that each competitor has to pick, not
those faces which he himself finds prettiest, but those which he thinks likeliest to catch the fancy of the other competitors,
all of whom are looking at the problem from the same point of view. It is not a case of choosing those which, to the
best of one’s judgment, are really the prettiest, nor even those which average opinion genuinely thinks the prettiest. We
have reached the third degree where we devote our intelligences to anticipating what average opinion expects the average
opinion to be. And there are some, I believe, who practise the fourth, fifth and higher degrees.” Our model implicitly
assumes that all traders anticipate the expectations of other traders for arbitrarily higher degrees. Han and Kyle (2017)
examine a one-period model in which, instead of agreeing to disagree, traders disagree about higher order beliefs.
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Figure 8

The parameter CG as a function of disagreement (a) (τH/τL) and (b) ln(N).

They are concerned not with what an investment is really worth to a man who buys it “for
keeps,” but with what the market will value it at, under the influence of mass psychology,
three months or a year hence.’

As in Keynes (1936), traders in our model use trading strategies which respond to short-term
price dynamics. As Keynes puts it, “it is not sensible to pay 25 for an investment of which you
believe the prospective yield to justify value of 30, if you also believe that the market will value
it at 20 three months hence”.

As a result of his belief that financial markets are dominated by short-term speculation rather
than long-term enterprize, Keynes thought that financial markets are not too different from a casino
and exhibit excessive volatility. In contrast to Keynes’ intuition, short-term trading dynamics
dampens price volatility in our model relative to the volatility of fundamentals. Furthermore,
prices in our model are not “noisy”; the levels of current prices and dividends are sufficient
statistics for inferring the average “true” valuations of traders.

The Keynesian beauty contest requires liquidity. Consider the intuition of two special cases
studied in detail in Section 4.4. When the market is very illiquid (with the degree of disagreement
τH/τL close to the existence boundary 	H =0), it is costly for traders to implement short-
term strategies due to high temporary price impact costs, the profit opportunities based on the
beauty contest are therefore too costly to exploit, the dampening effect goes away, and thus
CG →1. When the market is very liquid (due to large disagreement τH/τL), short-term strategies
are cheap, traders trade aggressively against one another’s perceived mistakes, the dampening
effect is substantial, and CG decreases with the degree of disagreement. For example, the price
reduction relative to fundamentals is greater in the left panel than the right panel of Figure 7
because the degree of disagreement is larger and therefore the market is more liquid. Figure 8
shows that CG declines as disagreement (τH/τL) increases and the number of traders (ln(N))
increases.

The above analysis suggests the empirical hypothesis that there is more price dampening
and therefore more time series momentum in more liquid markets (see Section 4.5). Indeed,
Lee and Swaminathan (2000) document that price momentum is more pronounced among high-
volume stocks. Moskowitz et al. (2012) find significant time series momentum in equity index,
currency, commodity, and bond futures markets; they show, in line with our predictions, that
more liquid contracts tend to exhibit greater momentum profits. Cremers and Pareek (2015)
report that momentum profits increase with decreasing stock duration, a measure of how
quickly institutions turn over their positions. Our results may help to explain recent growth
in assets of managed futures funds which implement trend-following strategies in liquid
markets.
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4.4. Special cases

There are two special cases with closed-form solutions.

Case 1. Vanishing Liquidity. A closed-form solution exists for the limiting case when market
liquidity vanishes (when 	H →0 implies κ→∞ and γP →0).

Corollary 1. Assume γP =0. Then the six equations characterizing equilibrium (A57)–(A62)
have a solution if and only if 	H =0. This solution has a closed form, presented in
equations (A70)–(A71), which implies γS =γH =γD =0 and CG =1.

When disagreement decreases, traders offer steeper flow-supply schedules, which make each
trader trade smaller quantities based on his own private information. The variable γP becomes
zero at exactly the point where there is not enough disagreement to support trade (	H =0 in
conjecture 1).

Our numerical results suggest that the converse is also true: when the existence condition
	H>0 fails to be satisfied, market liquidity falls to zero. Since the solution to the six
equations (A57)–(A62) is continuous in the exogenous parameters, this suggests that when 	H
is a small positive number, there will be an equilibrium with low liquidity and modest trade.
As the values of the exogenous parameters τH , τL , and N change so that 	H :=τ 1/2

H /τ
1/2
L −

2−2/(N −2)→0, then liquidity will vanish, the value of trading on private information will
vanish, trading volume will fall to zero, and price dampening will disappear. Trading volume
and price dampening disappear when τH =τL in the model with perfect competition, as shown in
Appendix B.2.

Case 2. Many Noise Traders. A closed-form solution exists when traders believe other traders
have no information (τL =0) and the number of traders N is large. In the spirit of Black (1986)
and Treynor (1995), the limit τL →0 implies each trader believes that all other traders trade on
noise as if it were information. An equilibrium exists because disagreement is large (	H →∞).
For tractability, we assume that τ0 is close to zero. Increasing the number of traders N increases
competition. In the limit as N →∞, Appendix A.6 shows that equations (A57)–(A62) have a
closed form solution, presented in equations (A73)–(A77), in which the parameters γP and γS are
proportional to N . Markets become infinitely liquid. Permanent impact satisfies λ→0, temporary
impact satisfies κ→0, the speed of inventory adjustment satisfies γS →∞, and price dampening
is substantial, with CG satisfying limN→∞CG = (r+αG)/(r+αG +τ )<1.

These two closed-form solutions further support the conclusion that increasing disagreement
makes markets more liquid and price dampening more pronounced.

4.5. Empirically correct beliefs

Our results on trading strategies, price impact, and price levels depend on traders’ different
subjective priors about signal precision, not on the objective, true, or “empirically correct” priors.
As long as each trader believes that his own private information has high precision τH and the other
traders’ private information has low precision τL with τH>τL ≥0, our results do not depend on
whether each trader assumes the empirically correct precision for his signal but underestimates
the precision of others’ signals or each trader overestimates the empirically correct precision
for his own signal but assumes the empirically correct precision of others’ signals. In contrast,
understanding the empirically correct dynamic properties of prices and quantities, measured by
a non-trader such as an economist or econometrician, requires knowing the true values of the
parameters.
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Consider three symmetric alternative specifications for empirically correct probabilities. In
the first specification, the empirically correct precision of all traders’ signals is τH ; each trader
assumes the correct precision for his own signal but underestimates the precision of others’signals.
In the second specification, the empirically correct precision of all traders’ signals is τL; each
trader assumes the correct precision of others’ signals but overestimates the precision for his own
signal. In the third specification, the empirically correct precisions are such that traders are “correct
on average” in the sense that each trader’s precision is τI = 1

N (τH +(N −1)τL). Eyster et al.
(2015) refer to the first case as “dismissiveness” and to the second case as “overconfidence”. For
simplicity, assume traders’ beliefs about the parameters N , αG, σG, αD, and σD are correct.
Quantities. The following theorem holds for all three cases.

Theorem 6. (Empirical Implications for Inventories). When the empirically correct precision
of all signals has the same value, target inventories STI

n (t) and actual inventories Sn(t) follow a
linear bivariate process (defined in equation (A99) in Appendix A.9). The autocorrelation function
for actual inventories and the correlation between actual inventories and target inventories are

Corr[Sn(t),Sn(t+	t)]= (αG +τ )e−γS	t −γS e−(αG+τ )	t

αG +τ−γS
, (50)

Corr[Sn(t),STI
n (t)]=

( γS

αG +τ+γS

)1/2
. (51)

The bivariate inventory process is fully characterized by the three parameters αG +τ , γS , and
CL . Target inventories STI

n (t) follow a univariate AR-1 process. Symmetry implies that both Sn(t)
and STI

n (t) are distributed independently from prices and have correlation −1/(N −1) across
traders. Since the model is Gaussian, the auto-correlation function completely describes the
statistical properties of inventories. Equation (51) implies that the correlation between the actual
inventory and target inventory increases when markets become more liquid (γS increases).

Consistent with the empirical evidence discussed in the introduction, the auto-correlation
of actual inventories tends to be smaller in more liquid markets: Equation (50) implies that
Corr[Sn(t),Sn(t+	t)] decreases in γS if αG +τ <γS or if αG +τ >γS and	t>1/(αG +τ−γS).
In more liquid markets, actual inventories are further away from past actual inventories and closer
to target inventories.

We have emphasized that our model provides a link between the half-life of information
in prices and the half-life of traders’ target inventories related to αG +τ and γS , respectively.
The auto-correlation function (50) has the following interesting symmetry: The auto-correlation
function does not change if the values of αG +τ and γS are interchanged. The symmetry property
of γS and αG +τ implies that the inventory process in a model with rapidly mean-reverting target
inventories and slow convergence of actual inventories to target inventories (large αG +τ and
small γS) is observationally equivalent to the inventory process in a different model with slowly
mean-reverting target inventories and fast convergence of actual inventories to target inventories
(small αG +τ and large γS). In both cases, actual inventories will change slowly and appear to
be almost non-stationary. Empirically, actual inventories Sn(t) are more likely to be observable
than target inventories STI

n (t). If it is known whether αG +τ is greater or less than γS , then the
values of both αG +τ and γS can be inferred from the autocorrelation of actual inventories Sn(t)
in equation (50).

Prices. While the price in equation (40) does not depend on empirically correct precisions,
expected returns depend on both traders’ precisions and empirically correct precisions. In the
first specification with “dismissiveness”, the true total precision is bigger than the total precision
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assumed by traders, so the econometrician will assign lower weights than traders to the distant
information when constructing his own signals. In the second specification with “overconfidence”,
the true total precision is lower than the total precision assumed by traders, so the econometrician
will assign bigger weights to the distant information. These two cases are complicated to analyse
because it is necessary to track the econometrician’s signals separately since they are different
from signals constructed by traders. In the third specification where traders are correct on average,
the total precision attributed to information by traders coincides with the true precision, and the
econometrician will agree with traders on how to construct signals. In Appendix A.10, we show
numerically then that the auto-covariance of returns is positive for a large range of parameter
values and prove analytically that it is positive for the limiting case with τL =0 discussed in
Section 4.4. This implies time series momentum in the sense that higher returns in the past
tend to be followed by higher returns in the future. We also show numerically that the auto-
correlation tends to increase with disagreement, implying that the momentum is more pronounced
in more liquid markets. Kyle et al. (2016) provide a detailed analysis of return predictability in
a competitive setting with a general specification for empirically correct beliefs.

5. CONCLUSION: IMPLICATIONS FOR PRACTICE

We have described a steady-state model of continuous trading in which relatively overconfident
traders have market power. This model provides a framework for thinking about how the
dynamics of trading affect market liquidity, transaction costs, and market prices. It helps to
analyse temporary and permanent price impact. The model provides a realistic framework for
understanding how inventory and price dynamics are affected by permanent and temporary price
impact when large traders optimize their trading to beat the market.

In their influential book for quantitative asset managers, Grinold and Kahn (1994) describe a
partial-equilibrium trading model with decaying private information, risk aversion, and temporary
price impact. They pose as an important open research question (p. 580) how to set up a
proper trading model with a finite half-life for signals, risk aversion, and transaction costs
with components of tightness, depth, and resiliency. Our equilibrium model not only solves
an appropriate optimization problem for all asset managers simultaneously but also derives
endogenously a realistic transaction cost model with stationary dynamics for inventories, prices,
and expected returns.

Our model of smooth order flow implements ideas about market liquidity described informally
by Black (1995). Black envisioned a future frictionless market for exchanges as “an equilibrium in
which traders use indexed limit orders at different levels of urgency but do not use market orders
or conventional limit orders”. In that equilibrium, there is no conventional liquidity available for
market orders and conventional limit orders. Orders are executed gradually and move the price by
an amount increasing in the level of urgency. Order-shredding algorithms have been incorporating
the idea of urgency for years. In popular algorithms based on VWAP (Volume Weighted Average
Price), a trader chooses a target number of shares to trade, a time frame (say one day), and a
participation rate (say 5% of volume); the higher the participation rate, the greater the trader’s
impatience.

The idea that securities markets offer a flow equilibrium rather than a stock equilibrium may
seem far-fetched at first glance. Yet, recent trends in the way liquidity is supplied and demanded
in electronic markets are consistent with optimal trading strategies in our model. The reduction
in tick size to one cent in 2001 reduced size available at the best bid and offer. Our model predicts
vanishingly small market depth to be available at a given point in time; instead, market depth
is made available only over time. A positive tick size probably increases instantaneous depth
relative to the predictions of our model.
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In the future, centralized exchanges may change order matching rules to implement limit
orders conforming to the intuition of our model. For example, exchanges might consolidate order
flow into frequent batch auctions, say once per second, consistent with Budish et al. (2015).
Alternatively, a time parameter could be added to limit orders, allowing smooth trading strategies
to be implemented using simple message types without heavy message traffic. For example, a
trader who might in today’s market place a limit order to buy 10,000 shares at a price of $40 per
share might instead enter an order to purchase one share per second at a price of $40 or better for
the next 10,000 seconds. Such new order types would allow traders to implement smooth trading
strategies without generating the heavy message traffic associated with submitting and canceling
thousands of conventional limit orders.

APPENDIX

A. PROOFS

A.1. Proof of Theorem 1

Under the tentative assumption that trader n knows the value of i−n, plug equation (4) into equation (9) and use the
first-order condition to find his optimal demand:

xn =
τ

1/2
v
τ

(
τ

1/2
0 i0 +τ 1/2

H in +(N −1)τ 1/2
L i−n

)
−
(
α
γ

i0 + β
γ

i−n

)
−
(

δ
(N−1)γ + A

τ

)
Sn

2
(N−1)γ + A

τ

. (A1)

In the numerator of this equation, the first term is trader n’s expectation of the liquidation value, the second term is the
market-clearing price when trader n trades a quantity of zero and has no inventory, and the last term is the adjustment for
existing inventory. In the denominator, the first and second terms reflect how trader n restricts the quantity traded due to
market power and risk aversion, respectively.

As in Kyle (1989), even though trader n does not observe i−n explicitly, he is still able to implement this optimal
strategy with a demand schedule which implicitly infers i−n from the market-clearing price.

Define the constant

C:= 1

(N −1)γ
+ A

τ
+ τ

1/2
L τ

1/2
v

τ β
. (A2)

Solving for i−n instead of p in the market-clearing condition (3), substituting this solution into equation (A1) above, and
then solving for xn, yields a demand schedule Xn(i0,in,Sn,p) for trader n as a function of price p:

Xn(i0,in,Sn,p)= 1

C

(
τ

1/2
v

τ

(
τ

1/2
0 −(N −1)τ 1/2

L
α

β

)
i0 + τ

1/2
H

τ
τ 1/2

v in

+
(

(N −1)τ 1/2
L γ τ

1/2
v

τ β
−1

)
p−

(
δτ

1/2
L τ

1/2
v

τ β
+ A

τ

)
Sn

)
.

(A3)

In a symmetric linear equilibrium, the strategy chosen by trader n must be the same as the linear strategy (2)
conjectured for the other traders. Equating the corresponding coefficients of the variables i0, in, p, and Sn yields a system
of four equations in terms of the four unknowns α, β, γ , and δ:

α= τ
1/2
v

C

(
τ

1/2
0

τ
− (N −1)τ 1/2

L

τ

α

β

)
, β= τ

1/2
v

C

τ
1/2
H

τ
, (A4)

γ =− 1

C

(
(N −1)τ 1/2

L

τ

γ

β
τ 1/2

v −1

)
, δ= 1

C

(
τ

1/2
L

τ

δ

β
τ 1/2

v + A

τ

)
. (A5)

The unique solution is

β= (N −2)τ 1/2
H −2(N −1)τ 1/2

L

A(N −1)
τ 1/2

v , (A6)

α= τ
1/2
0

τ
1/2
H +(N −1)τ 1/2

L

β, γ = τ

τ
1/2
H +(N −1)τ 1/2

L

β

τ
1/2
v

, δ= A

τ
1/2
H −τ 1/2

L

β

τ
1/2
v

.

Substituting (A6) into (A1) yields trader n’s optimal demand (11). Substituting (11) into (4) yields the equilibrium
price (13).
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The second-order condition has the correct sign if and only if 2
(N−1)γ + A

τ
>0. Given the definition	H :=τ 1/2

H /τ
1/2
L −

2−2/(N −2), this is equivalent to

A

τ

N

N −2

τ
1/2
H

τ
1/2
L

1

	H
>0. (A7)

Therefore, assuming N>2, the second-order condition holds if and only if 	H >0.14

A.2. Bayesian updating with signals of arbitrary precision

This section derives signal processing formulas for arbitrary “generic” beliefs τ̄0,τ̄1,...,τ̄N about signal precisions.
Define G(t)=Et[G∗(t)], where the subscript t denotes conditioning on the history of the signals I0(s),...,IN (s) for

s∈ (−∞,t]. Without loss of generality, let �̄ denote the error variance �̄:=Var[(G∗(t)−G(t))/σG]. Assume a steady state
in which �̄ is a constant which does not depend on time. Like a squared Sharpe ratio, �̄ measures the error variance in
units of time. For example, if time is measured in years, �̄=4 means that the estimate of G∗(t) is “behind” the true value
of G∗(t) by an amount equivalent to four years of volatility unfolding at rate σG. There are simple and intuitive formulas
for information processing:

Lemma 1. Given generic beliefs τ̄1,...,τ̄N , let τ̄ denote the sum of precisions

τ̄ :=τ̄0 +
N∑

n=1

τ̄n. (A8)

Then �̄ and dG(t) satisfy

�̄−1:=Var−1
[

G∗(t)−G(t)

σG

]
=2αG + τ̄ , (A9)

dG(t)=−(αG + τ̄ )G(t)dt+σG �̄
1/2

N∑
n=0

τ̄ 1/2
n dIn. (A10)

Proof. Apply the Stratonovich–Kalman–Bucy filter to the filtering problem summarized by equation (20) for signals and
by equations (21) and (24) for observations. This yields the filtering estimate defined by the Itô differential equation

dG(t)=−αG G(t)dt+
N∑

n=0

σ 2
G �̄

τ̄
1/2
n

σG �̄1/2

(
dIn(t)−G(t)

τ̄
1/2
n

σG �̄1/2
dt
)
. (A11)

Rearranging terms yields equation (A10). The mean-square filtering error of the estimate G(t), denoted σ 2
G �̄(t), is defined

by the Riccati differential equation

σ 2
G

d�̄(t)

dt
=−2αGσ

2
G �̄(t)+σ 2

G −σ 4
G �̄(t)2

N∑
n=0

( τ̄
1/2
n

σG �̄(t)1/2

)2
. (A12)

Let �̄ denote the steady state of the function of time �̄(t). Using the steady-state assumption d�̄(t)/dt =0, solve the
second equation for the steady state value �̄=�̄(t) to obtain equation (A9). ‖

14. When there is not enough disagreement to sustain an equilibrium with trade using pure strategies, one might
imagine that it is possible to have an equilibrium with trade using mixed strategies. For mixed strategies to generate an
equilibrium with trade, the trader must be indifferent across the various randomized choices of quantities he trades. For
example, if we add normally distributed noise to quantities traded, symmetrically across all traders, a mixed strategy
equilibrium requires the second-order condition to be exactly zero. This means that the quadratic objective function
reduces to a linear function, so that the denominator of equation (A1) is zero. Since the trader has to be indifferent
across various randomizations, this further implies that the linear function must be a constant, distributed independently
from the quantity traded. This assumption cannot hold, because a trader with a positive value of in would always want
to buy unlimited quantities, and a trader with a negative in would always want to sell unlimited quantities. Thus, an
equilibrium with symmetric normally distributed noise cannot generate trade. When noise is not normally distributed or
the equilibrium is not symmetric, the objective function is not quadratic any more, but it will still be difficult to find a
mixed strategy equilibrium with trade, given that the sensitivity of utility to a trader’s own private information must be
well-defined.
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The error variance �̄ corresponds to a steady state that balances an increase in error variance due to innovations
dBG(t) in the true growth rate with a reduction in error variance due to (1) mean reversion of the true growth rate at rate
αG and (2) arrival of new information with total precision τ̄ .

Note that �̄ is not a free parameter but is instead determined as an endogenous function of the other parameters.
Equation (A9) implies that �̄ turns out to be the solution to the quadratic equation �̄−1 =2αG +�̄σ 2

G/σ
2
D +∑N

n=1 τ̄n. In
equations (21) and (24), we scaled the units with which precision is measured by the endogenous parameter � because
this leads to simpler filtering expressions which more clearly bring out intuition about signal processing.

From equation (A10), the estimate G(t) can be conveniently written as the weighted sum of N +1 sufficient statistics
Hn(t) corresponding to N +1 information flows dIn. Define the sufficient statistics or “signals” Hn(t) by

Hn(t):=
∫ t

u=−∞
e−(αG+τ̄ )(t−u) dIn(u), n=0,1,...,N, (A13)

which implies
dHn(t)=−(αG + τ̄ )Hn(t)dt+dIn(t), n=0,1,...,N . (A14)

Then G(t) becomes a linear combination of sufficient statistics Hn(t) with weights proportional to the square roots of the
precisions τ̄ 1/2

n :

G(t)=σG �̄
1/2

N∑
n=0

τ̄ 1/2
n Hn(t). (A15)

The importance of each bit of information dIn about the growth rate G(t) decays exponentially at a rate αG + τ̄ , which is
the same for all of the signals. The half-life of a signal ln2/(αG + τ̄ ) decreases as “aggregate precision” τ̄ increases. Even
though the true unobserved growth rate may have a long half-life (small αG), signals predicting this growth rate decay
rapidly if aggregate precision τ̄ is large.

Equations (21), (24), and (A10) imply that the estimate G(t) mean-reverts to zero at a rate αG while moving towards
the true value G∗(t) at rate τ̄ :

dG(t)=−αG G(t)dt+ τ̄ (G∗(t)−G(t)
)

dt+σG �̄
1/2

N∑
n=0

τ̄ 1/2
n dBn(t). (A16)

A.3. Proof of Theorem 3

Let E
n
t [...] denote the conditional expectations operator E[...|Fn(t)] based on trader n’s beliefs. Let

Jn(Fn(t);Xn,Cn;Xm,m �=n) denote the expected utility trader n receives as a function of his own consumption and
trading strategies (Cn,Xn) and the N −1 other traders’ trading strategies (Xm), conditional on his information set Fn(t).
In this particular model, exponential utility functions with fixed interest rates make it unnecessary for Jn(...) to depend
on other traders’ consumption strategies. Define an equilibrium as a set of trading strategies X∗

1 ,...,X
∗
N and consumption

strategies C∗
1 ,...,C

∗
N such that, for n=1,...,N , trader n’s optimal consumption and trading strategies Xn =X∗

n and Cn =C∗
n

solve the maximization problem

Jn (Fn(t);X∗
n ,C

∗
n ;X∗

m,m �=n
)= max[Cn,Xn] E

n
t

[∫ ∞

s=t
e−ρ(s−t) U(cn(s))ds

]
, (A17)

subject to inventories following
dSn(t)=xn(t)dt (A18)

and money holdings following

dMn(t)=(r Mn(t)+Sn(t)D(t)−cn(t)−P(t)xn(t))dt. (A19)

Conditional on any information set Fn(t), trader n’s money and asset holdings must, with probability one, satisfy the
budget constraint

liminf
T→∞ E

n
t

[
e−r(T−t) Mn(T )+

∫ ∞

u=T
e−r(u−t) D(u)Sn(T )du

]
≥0. (A20)

In equations (A18) and (A19), the price P(t), quantity xn(t), and consumption cn(t) are the abbreviations

P(t):=P[X1,...,XN ](t), xn(t) := dSn(t)

dt
=Xn(t,P(t);Fn(t)), cn(t) :=Cn(t;Fn(t)). (A21)

This implies that trader n takes as given the strategies of the other traders when he chooses his optimal strategy. It also
implies that when he chooses his optimal strategy, he takes into account how his strategy choice affects the price at which
he trades and his trading opportunities in the future.
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The budget constraint (A20) says that if the trader calculates the fundamental value of his wealth using information
at time t, then he does not engage in Ponzi finance. Also note that the optimal strategy will satisfy the transversality
condition E

n
t [e−ρ(T−t) Jn(Fn(T ),X∗

n ,C
∗
n ;...)]→0 as T →∞.

Instead of calculating the solution Jn(...) directly, we use the no regret approach, which assumes that trader n observes
his residual supply schedule at each point in time, then picks an optimal point on the residual supply schedule. We then
show that the solution to this less constrained problem also implements the optimal solution to the more constrained
problem which defines Jn(...).

For the less constrained problem, we conjecture a steady-state value function of the form V (Mn,Sn,D,H0,Hn,H−n),
where Mn denotes trader n’s cash holdings (measured in dollars) and Sn denotes trader n’s holdings of the traded asset
(measured in shares).

In a competitive model, a trader’s value function depends on his wealth but does not depend on the decomposition
of his wealth into his various security holdings. With imperfect competition, the decomposition of a trader’s wealth into
various security holdings does affect his value function because the trader cannot costlessly convert one security holding
into cash or another security holding by trading at market prices. Wealth does not appear in the value function because
wealth is not well-defined. Trader n is always influencing the mark-to-market value of his risky inventory by choosing
his rate of trading. It is therefore necessary to keep track of the two components of wealth—cash Mn and inventories
Sn—separately.

Also, we expect the asset price to be a linear combination of two components: (1) a dividend level component linear
in dividend flow D(t) and (2) a dividend-growth component linear in the variables H0(t), Hn(t), and H−n(t). Given the
symmetric linear conjectured form of the residual supply function, observing the average of other traders’ signals H−n(t)
is informationally equivalent to observing the intercept of the residual supply schedule (when Sn(t)=S′

n(t)=0). Therefore
we include H−n(t) as a state variable in the value function and omit the price P(t).

The values of all ten exogenous parameters αD, σD, αG, σG, τH , τL , N , r, A, and ρ are common knowledge. It is
also common knowledge that each trader believes that dBD(t), dBG(t), dB1(t),...,dBN (t) are independently distributed
Brownian motions, given traders’ beliefs. Note that since traders disagree about whether a signal has precision τH or
τL , they also disagree about how to construct the Brownian motions dBn(t) from the information dIn(t). Symmetry of
parameter values prevents the number of state variables from exploding, avoiding the forecasting-the-forecasts-of-others
problem described by Townsend (1983).

In the derivations below, mathematical notation is simplified if the three state variables H0(t), Hn(t), and H−n(t) are
replaced with two composite signals, denoted Ĥn(t) and Ĥ−n(t). Repeating equations (29), define the weighting constant
â by

â:= τ
1/2
0

τ
1/2
H +(N −1)τ 1/2

L

, (A22)

and define the two composite signals Ĥn(t) and Ĥ−n(t) by

Ĥn(t):=Hn(t)+ âH0(t), (A23)

Ĥ−n(t):=H−n(t)+ âH0(t). (A24)

Trader n’s estimate of the dividend growth rate can now be expressed as a function of the two composite signals Ĥn(t)
and Ĥ−n(t) as

Gn(t)=σG�
1/2
(
τ

1/2
H Ĥn(t)+(N −1)τ 1/2

L Ĥ−n(t)
)
. (A25)

Define the N +1 processes dBn
0, dBn

n, and dBn
m, m=1,...,N , m �=n, by

dBn
0(t)=τ 1/2

0
G∗(t)−Gn(t)

σG�1/2
dt+dBD(t), (A26)

dBn
n(t)=τ 1/2

H
G∗(t)−Gn(t)

σG�1/2
dt+dBn(t), (A27)

and

dBn
m(t)=τ 1/2

L
G∗(t)−Gn(t)

σG�1/2
dt+dBm(t). (A28)

The superscript n indicates conditioning on beliefs of trader n. Since trader n’s forecast of the error G∗(t)−Gn(t) is zero
given his information set, these N +1 processes are independently distributed Brownian motions from the perspective of
trader n. In terms of these Brownian motions, trader n believes that signals change as follows:

dH0(t)=−(αG +τ )H0(t)dt+τ 1/2
0

Gn(t)

σG�1/2
dt+dBn

0(t), (A29)
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dHn(t)=−(αG +τ )Hn(t)dt+τ 1/2
H

Gn(t)

σG�1/2
dt+dBn

n(t), (A30)

dH−n(t)=−(αG +τ )H−n(t)dt+τ 1/2
L

Gn(t)

σG�1/2
dt+ 1

N −1

N∑
m=1
m �=n

dBn
m(t). (A31)

Note that each signal drifts towards zero at rate αG +τ and drifts towards the optimal forecast Gn(t) at a rate proportional
to the square root of the signal’s precision τ 1/2

0 , τ 1/2
H , or τ 1/2

L , respectively.
In terms of the composite variables Ĥn and Ĥ−n, we conjecture (and verify below) a steady-state value function of

the form V (Mn,Sn,D,Ĥn,Ĥ−n). Letting (cn(t),xn(t)) denote consumption and investment choices, write

V
(

Mn,Sn,D,Ĥn,Ĥ−n

)
:= max

[cn(t),xn(t)]
E

n
t

[∫ ∞

s=t
−e−ρ(s−t)−Acn(s) ds

]
, (A32)

where P(xn(t)) is a linear function of xn(t) given by equation (32), dividends follow equation (19), inventories follow
dSn(t)=xn(t)dt, the change in cash holdings dMn(t) is a quadratic function of xn(t) following

dMn(t)=(r Mn(t)+Sn(t)D(t)−cn(t)−P(xn(t))xn(t))dt, (A33)

and signals Ĥn and Ĥ−n follow a bivariate vector auto-regression given by

dĤn(t)=−(αG +τ )Ĥn(t)dt

+(τ 1/2
H + âτ 1/2

0 )
(
τ

1/2
H Ĥn(t)+(N −1)τ 1/2

L Ĥ−n(t)
)

dt

+ âdBn
0(t)+dBn

n(t),

(A34)

dĤ−n(t)=−(αG +τ )Ĥ−n(t)dt

+(τ 1/2
L + âτ 1/2

0 )
(
τ

1/2
H Ĥn(t)+(N −1)τ 1/2

L Ĥ−n(t)
)

dt

+ âdBn
0(t)+ 1

N −1

N∑
m=1
m �=n

dBn
m(t).

(A35)

The dynamics of Ĥn and Ĥ−n in equations (A34) and (A35) can be derived from equations (A29), (A30), and (A31).
Note that the coefficient τ 1/2

H + âτ 1/2
0 in the second line of equation (A34) is different from the coefficient τ 1/2

L + âτ 1/2
0

in the second line of equation (A35). This difference is the key driving force behind the price-dampening effect resulting
from the Keynesian beauty contest. It captures the fact that—in addition to disagreeing about the value of the asset in the
present—traders also disagree about the dynamics of their future valuations. As shown in equations (C33) and (C34) in
Supplementary Appendix C.3, these two different coefficients are the same in an otherwise similar private-values model.
As a result, prices are not dampened in the private-values model.

Using the definition of Gn(t) in equation (28) and the definition of â in equation (29), it can be shown that trader n
believes the stochastic process Ĥn −Ĥ−n satisfies

d
(

Ĥn −Ĥ−n

)
=−(αG +τ )

(
Ĥn −Ĥ−n

)
dt+ τ

1/2
H −τ 1/2

L

σG�1/2
Gn(t)dt

+dBn
n(t)− 1

N −1

N∑
m=1
m �=n

dBn
m(t).

(A36)

In equation (A36), the term with Gn(t)dt implies that each trader believes that Ĥn −Ĥ−n does not follow an AR-1 process.
Because traders have different expectations Gn(t), they agree in the present about how they will disagree in the future. If
traders only disagreed about the value of Gn(t) in the present but agreed about the evolution of Ĥn −Ĥ−n in the future,
then the coefficient of the Gn(t)dt term would be zero, Ĥn −Ĥ−n would follow an AR-1 (Ornstein–Ühlenbeck) process,
and traders would not disagree about the dynamics of process Ĥn −Ĥ−n. In the otherwise similar model with private
values, the term involving Gn(t)dt becomes zero.
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We conjecture and verify that the value function V (Mn,Sn,D,Ĥn,Ĥ−n) has the specific quadratic exponential
form

V
(

Mn,Sn,D,Ĥn,Ĥ−n

)
=−exp

(
ψ0 +ψM Mn + 1

2ψSSS2
n +ψSDSnD

+ψSn SnĤn +ψSx SnĤ−n + 1
2ψnn Ĥ2

n + 1
2ψxx Ĥ2−n +ψnx ĤnĤ−n

)
.

(A37)

The nine constantsψ0,ψM ,ψSS ,ψSD,ψSn,ψSx ,ψnn,ψxx , andψnx have values consistent with a steady-state equilibrium.
The term ψM measures the utility value of cash. The terms ψSS , ψSD, ψSn, and ψSx measure the utility value of
risky asset holdings. The terms ψnn, ψxx , and ψnx capture the value of future trading opportunities based on current
public and private information. The value of trading on innovations to future information is built into the constant
term ψ0.

The Hamilton–Jacobi–Bellman (HJB) equation corresponding to the conjectured value function
V (Mn,Sn,D,Ĥn,Ĥ−n) in equation (A32) is

0=max
cn,xn

[
U(cn)−ρV + ∂V

∂Mn
(rMn +SnD−cn −P(xn)xn)+ ∂V

∂Sn
xn

]

+ ∂V

∂D

(
−αDD+σG�

1/2τ
1/2
H Ĥn +σG�

1/2(N −1)τ 1/2
L Ĥ−n

)

+ ∂V

∂Ĥn

(
−(αG +τ )Ĥn(t)+(τ 1/2

H + âτ 1/2
0 )(τ 1/2

H Ĥn +(N −1)τ 1/2
L Ĥ−n)

)

+ ∂V

∂Ĥ−n

(
−(αG +τ )Ĥ−n(t)+(τ 1/2

L + âτ 1/2
0 )(τ 1/2

H Ĥn +(N −1)τ 1/2
L Ĥ−n)

)
+ 1

2

∂2V

∂D2
σ 2

D

+ 1
2

∂2V

∂Ĥ2
n

(
1+ â2

)
+ 1

2

∂2V

∂Ĥ2−n

(
1

N −1
+ â2

)
+
(

∂2V

∂D∂Ĥn
+ ∂2V

∂D∂Ĥ−n

)
âσD + ∂2V

∂Ĥn∂Ĥ−n
â2.

(A38)

For the specific quadratic specification of the value function in equation (A37), the HJB equation becomes

0=min
cn,xn

[
− e−Acn

V
−ρ+ψM (rMn +Sn D−cn −P(xn)xn)

+ (ψSSSn +ψSDD+ψSnĤn +ψSxĤ−n)xn

]
+ψSDSn(−αDD+σG�

1/2τ
1/2
H Ĥn +σG�

1/2(N −1)τ 1/2
L Ĥ−n)

+
(
ψSnSn +ψnnĤn +ψnxĤ−n

)(
−(αG +τ )Ĥn(t)+(τ 1/2

H + âτ 1/2
0 )(τ 1/2

H Ĥn +(N −1)τ 1/2
L Ĥ−n)

)

+
(
ψSxSn +ψxxĤ−n +ψnxĤn

)(
−(αG +τ )Ĥ−n(t)+(τ 1/2

L + âτ 1/2
0 )(τ 1/2

H Ĥn +(N −1)τ 1/2
L Ĥ−n)

)

+ 1
2ψ

2
SDS2

nσ
2
D + 1

2

(
(ψSnSn +ψnnĤn +ψnxĤ−n)2 +ψnn

)(
1+ â2

)

+ 1
2

(
(ψSxSn +ψxxĤ−n +ψnxĤn)2 +ψxx

)( 1

N −1
+ â2

)

+
(

(ψSn +ψSx)Sn +(ψnn +ψnx)Ĥn +(ψxx +ψnx)Ĥ−n

)
ψSDSnâσD

+
(

(ψSnSn +ψnnĤn +ψnxĤ−n)(ψSxSn +ψxxĤ−n +ψnxĤn)+ψnx

)
â2.

(A39)

The solution for optimal consumption is

c∗
n(t)=− 1

A
log
(ψM V (t)

A

)
. (A40)

In the HJB equation (A39), the price P(xn) is linear in xn based on equation (32). Plugging P(xn) from equation (32)
into the HJB equation (A39) yields a quadratic function of xn which captures the effect of trader n’s trading rate xn on
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prices. The optimal trading strategy is a linear function of the state variables given by

x∗
n (t)= (N −1)γP

2ψM

((
ψSD − ψMγD

γP

)
D(t)+

(
ψSS − ψMγS

(N −1)γP

)
Sn(t)

+ψSn Ĥn(t)+
(
ψSx − ψMγH

γP

)
Ĥ−n(t)

)
.

(A41)

Because the exponent of the conjectured value function is a quadratic function of the state variables, the best linear
strategy will dominate any non-linear strategy or a mixed strategy.

The derivation of this optimal trading strategy assumes that trader n observes the values of D(t), Sn(t), Ĥn(t), and
Ĥ−n(t). Although trader n does not actually observe Ĥ−n(t), he can implement the optimal quantity x∗

n by submitting an
appropriate linear demand schedule. We can think of this demand schedule as a linear function of P(t) whose intercept is
a linear function of D(t), Sn(t), and Ĥn(t). Trader n can infer from the market-clearing condition (31) that Ĥ−n is given
by

Ĥ−n(t)= γP

γH

(
P(t)−D(t)

γD

γP

)
− 1

(N −1)γH
x∗

n (t)− γS

(N −1)γH
Sn(t). (A42)

Plugging equation (A42) into equation (A41) and solving for x∗
n (t) implements the optimal trading strategy x∗

n (t) as a
linear demand schedule which depends on the price P(t) and state variables Ĥn, Sn(t), and D(t), which the trader directly
observes. This schedule is given by

x∗
n (t)= (N −1)γP

ψM

(
1+ ψSx

ψM

γP

γH

)−1

·
((

ψSD −ψSx
γD

γH

)
D(t)+

(
ψSS −ψSx

γS

(N −1)γH

)
Sn(t)

+ψSn Ĥn(t)+
(
ψSx

γP

γH
−ψM

)
P(t)

)
.

(A43)

Symmetry requires that this demand schedule be the same as the demand schedule conjectured for the N −1 other
traders. Equating the coefficients of D(t), Ĥn(t), Sn(t), and P(t) in equation (A43) to the conjectured coefficients γD, γH ,
−γS , and −γP results in the following four restrictions that the values of the γ -parameters andψ-parameters must satisfy
in a symmetric equilibrium with linear trading strategies:

(N −1)γP

ψM

(
1+ ψSx

ψM

γP

γH

)−1(
ψSD −ψSx

γD

γH

)
=γD, (A44)

(N −1)γP

ψM

(
1+ ψSx

ψM

γP

γH

)−1

ψSn =γH , (A45)

(N −1)γP

ψM

(
1+ ψSx

ψM

γP

γH

)−1(
ψSS −ψSx

γS

(N −1)γH

)
=−γS, (A46)

(N −1)γP

ψM

(
1+ ψSx

ψM

γP

γH

)−1(
ψSx

γP

γH
−ψM

)
=−γP. (A47)

Note that it is not possible to solve this system for the four γ -parameters γH , γS , γD, and γP because this system
of four equations can be written so that the four γ -parameters enter only as the three ratios γH/γP , γS/γP , and γD/γP .
Therefore, we solve the system instead for the four unknowns ψSx , γH , γS , and γD. The solution is

ψSx = N −2

2
ψSn, γH = NγP

2ψM
ψSn, γS =− (N −1)γP

ψM
ψSS, γD = γP

ψM
ψSD. (A48)

Define the constants CL and CG by

CL :=− ψSn

2ψSS
, CG:= ψSn

2ψM

N(r+αD)(r+αG)

σG�1/2 (τ 1/2
H +(N −1)τ 1/2

L )
. (A49)

When γD in equation (A48) is plugged into equation (A41), the coefficient on D(t) zeros out; this implies that traders
will not trade on public information. It is intuitively obvious that traders cannot trade on the basis of the public information
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D(t) because all traders would want to trade in the same direction and this would be inconsistent with market clearing.
Substituting equation (A48) into equation (A41) yields the solution for optimal strategy.

x∗
n (t)=γS

(
CL (Hn(t)−H−n(t))−Sn(t)

)
. (A50)

Define the average of traders’ expected growth rates Ḡ(t) by

Ḡ(t):= 1

N

N∑
n=1

Gn(t), (A51)

Then, the equilibrium price is

P∗(t)= D(t)

r+αD
+ CG Ḡ(t)

(r+αD)(r+αG)
. (A52)

One might expect that the solution of the maximization problem would yield solutions for the nine ψ-parameters
as functions of the four γ -parameters. One might also expect that imposing symmetry by equating the four optimal
γ -parameters (implied by trader n’s optimal trading strategy) to the four conjectured γ -parameters would yield solutions
for the four γ -parameters as functions of the nine ψ-parameters. In principle, one could then expect a solution to the
thirteen equations in thirteen unknowns to describe a steady-state equilibrium, if one exists.

Although this is the intuition for the solution methodology, the solution does not work in this straightforward manner.
As mentioned above, the four equations for the γ -parameters do not determine γP as a function of the nineψ-parameters.
Instead, the solution to the four γ -equations (A48) implies a restriction on theψ-parameters (the first of equations (A48)),
which must hold in a steady-state equilibrium. This restriction insures that the incentives to demand and supply liquidity
are balanced, but it does not define a level of liquidity γP .

Plugging (A40) and (A41) back into the Bellman equation and setting the constant term and the coefficients of Mn,
Sn D, S2

n , Sn Ĥn, Sn Ĥ−n, Ĥ2
n , Ĥ2−n, and Ĥn Ĥ−n to be zero, we obtain nine equations. Using the first equation (A48) to

substitute ψSn for ψSx , there are in total nine equations in nine unknowns γP , ψ0,ψM ,ψSD,ψSS,ψSn,ψnn,ψxx, and ψnx .
By setting the constant term, coefficient of M, and coefficient of SD to be zero, we obtain

ψM =−rA, (A53)

ψSD =− rA

r+αD
, (A54)

ψ0 =1−log(r)+ 1

r

(
−ρ+ 1

2 (1+ â2)ψnn + 1
2

(
1

N −1
+ â2

)
ψxx + â2ψnx

)
. (A55)

In addition, by setting the coefficients of S2
n ,Sn Ĥn,Sn Ĥ−n,Ĥ2

n ,Ĥ
2−n and Ĥn Ĥ−n to be zero, we obtain six polynomial

equations in the six unknowns γP,ψSS,ψSn,ψnn,ψxx , and ψnx . Defining the constants a1, a2, a3, and a4 by

a1:=−αG −τ+τ 1/2
H (τ 1/2

H + âτ 1/2
0 ),

a2:=−αG −τ+(N −1)τ 1/2
L (τ 1/2

L + âτ 1/2
0 ),

a3:=(τ 1/2
H + âτ 1/2

0 )(N −1)τ 1/2
L ,

a4:=(τ 1/2
L + âτ 1/2

0 )τ 1/2
H ,

(A56)

these six equations in six unknowns can be written

0=− 1
2 rψSS − γP(N −1)

rA
ψ2

SS + r2A2σ 2
D

2(r+αD)2
+ 1

2 (1+ â2)ψ2
Sn

+ 1
2

(
1

N −1
+ â2

)
(N −2)2

4
ψ2

Sn − rA

r+αD
âσD

N

2
ψSn + â2 N −2

2
ψ2

Sn,

(A57)

0=−rψSn − γP(N −1)

rA
ψSSψSn − rA

r+αD
σG�

1/2τ
1/2
H +a1ψSn

+ N −2

2
a4ψSn +(1+ â2)ψnnψSn + N −2

2

(
1

N −1
+ â2

)
ψnxψSn

− rA

r+αD
âσD (ψnn +ψnx)+ â2ψnxψSn + N −2

2
â2ψnnψSn,

(A58)
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0=−r
N −2

2
ψSn + γP(N −1)

rA
ψSSψSn − rA

r+αD
σG�

1/2(N −1)τ 1/2
L

+
(

a3 + N −2

2
a2

)
ψSn +(1+ â2)ψSnψnx + N −2

2

(
1

N −1
+ â2

)
ψxxψSn

− rA

r+αD
âσD (ψxx +ψnx)+ â2ψxxψSn + N −2

2
â2ψnxψSn,

(A59)

0=− r

2
ψnn − γP(N −1)

4rA
ψ2

Sn +a1ψnn +a4ψnx + 1
2 (1+ â2)ψ2

nn

+ 1
2

(
1

N −1
+ â2

)
ψ2

nx + â2ψnnψnx,

(A60)

0=− r

2
ψxx − γP(N −1)

4rA
ψ2

Sn +a2ψxx +a3ψnx + 1+ â2

2
ψ2

nx

+ 1
2

(
1

N −1
+ â2

)
ψ2

xx + â2ψxxψnx,

(A61)

0=−rψnx + γP(N −1)

2rA
ψ2

Sn +a3ψnn +a4ψxx +(a1 +a2)ψnx

+(1+ â2)ψnnψnx +
(

1

N −1
+ â2

)
ψxxψnx + â2

(
ψnnψxx +ψ2

nx

)
.

(A62)

We have not discovered a simple closed-form solution for equations (A57)–(A62); instead, we attempt to solve these
equations numerically.

Equations (A57)–(A62) are necessary but not sufficient conditions for steady-state equilibrium with symmetric,
linear flow-strategies. For a solution to the six polynomial equations to define a stationary equilibrium, it is sufficient
for the solution to satisfy (1) a second-order condition implying γP>0, (2) a stationarity condition implying γS>0,
(3) a transversality condition requiring r>0, and (4) a budget constraint ruling out Ponzi schemes (implied by r>0 and
stationarity of inventories).

(1) The second-order condition requires γP>0. For the minimum in the optimization problem (A39) to exist, the
second-order condition requires the 2 × 2 matrix (

− A2

V 0
0 2r A

(N−1)γP

)
(A63)

to be positive definite. Since the value function V is negative, this condition holds if and only if γP>0. This is equivalent
to requiring downward-sloping flow-demand schedules; it is also equivalent to requiring temporary price impact to be
positive.

(2) If γP>0 but γS<0, then permanent price impact slopes the wrong way. Each trader’s inventories grow
exponentially over time, violating the requirement that inventories have a stationary distribution.

(3) The transversality condition for the value function V (...) is

lim
T→+∞E

n
t

[
e−ρ(T−t) V

(
Mn(T ),Sn(T ),D(T ),Ĥn(T ),Ĥ−n(T )

)]
=0. (A64)

From the HJB equation and equations (A57)–(A62), we have

E
n
t

[
dV
(

Mn(t),Sn(t),D(t),Ĥn(t),Ĥ−n(t)
)]

=

−(r−ρ)V
(

Mn(t),Sn(t),D(t),Ĥn(t),Ĥ−n(t)
)

dt.
(A65)

This yields

E
n
t

[
e−ρ(T−t)V

(
Mn(T ),Sn(T ),D(T ),Ĥn(T ),Ĥ−n(T )

)]
=

e−r(T−t) V
(

Mn(t),Sn(t),D(t),Ĥn(t),Ĥ−n(t)
)
,

(A66)

which implies that the transversality condition (A64) is satisfied if r>0.
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(4) The budget constraint ruling out Ponzi schemes (A20) is automatically satisfied if r>0 and the state variables
are stationary.

Since the model assumes r>0, the inequalities γP>0 and γS>0 are necessary and sufficient conditions for a solution
to the six equations to characterize the desired equilibrium.

Under the assumptions γP>0 and γS>0, analytical results imply γD>0, ψM <0, and ψSD<0, consistent with the
intuition that traders prefer more to less; we also obtain ψSS>0, consistent with the intuition that traders are averse
to inventory risk. Our numerical results indicate that all endogenous parameters have the intuitively correct signs. For
example, numerical results indicate that γH >0, ψSn<0, ψSx<0, ψnn<0, and ψxx<0, consistent with the intuition that
traders buy when they have bullish information, value greater expected dividends, and make greater profits (whether long
or short) from more extreme signals. The sign of ψnx is intuitively and numerically ambiguous.

A.4. Proof of Theorem 4

Let a vector (γ ∗
P , ψ

∗
SS, ψ

∗
Sn, ψ

∗
nn, ψ

∗
nx, ψ

∗
xx) be a solution to the system (A57)–(A62) for exogenous parameters A, σD,

σG, r, αG, αD, τ0, τL , and τH . If risk aversion is rescaled by factor F from A to A/F and other exogenous parameters are
kept unchanged, then it is straightforward to show that a vector (γ ∗

P F, ψ∗
SS/F

2, ψ∗
Sn/F, ψ

∗
nn, ψ

∗
nx, ψ

∗
xx) is the solution

to the system (A57)–(A62). From equations (A48), (A49), and (33), it then follows that CL changes to CL F, λ changes
to λ/F, κ changes to κ/F, but γS and CG remain the same.

A.5. Proof of Corollary 1

With γP =0, it is clear that ψnn =ψnx =ψxx =0 solves the last three equations (A60)–(A62) of the six equations (A57)–
(A62), consistent with the intuition that information has no value if there is no market liquidity. With γP =ψnn =ψxx =
ψnx =0, then the first three equations (A57)–(A59) become

0=− 1
2 rψSS + r2A2σ 2

D

2(r+αD)2
+ 1

2

(
1

N −1
+ â2

)
(N −2)2

4
ψ2

Sn

+ 1
2 (1+ â2)ψ2

Sn − rA

r+αD
âσD

N

2
ψSn + â2 N −2

2
ψ2

Sn,

(A67)

0=−rψSn − rA

r+αD
σG�

1/2τ
1/2
H +a1ψSn + N −2

2
a4ψSn, (A68)

0=−r
N −2

2
ψSn − rA

r+αD
σG�

1/2(N −1)τ 1/2
L +

(
a3 + N −2

2
a2

)
ψSn. (A69)

Equations (A68) and (A69) are both linear equations in ψSn. They have the same solution if and only if the existence
condition is satisfied as an equality, 	H =0, in which case the unique solution for ψSn is

ψSn =− rAσG�
1/2τ

1/2
H

(r+αD)(r+αG)
. (A70)

Substituting (A70) into (A67) yields

ψSS = rA2

(r+αD)2

⎛
⎝(σD + σG�

1/2τ
1/2
0

r+αG

)2

+ (τ−τ0)σ 2
G�

(r+αG)2

⎞
⎠. (A71)

This implies CG =1:

CG =−ψSn

2rA

N(r+αD)(r+αG)

σG�1/2
(
τ

1/2
H +(N −1)τ 1/2

L

)

= Nτ 1/2
H

2
(
τ

1/2
H +(N −1)τ 1/2

L

) =1.

(A72)

A.6. Limiting case with N →∞, τL =0, and â→0

Set τL =0, and then evaluate the solution in the limit as N →∞ and â→0. We conjecture and verify that γP =N γ̄P ,
ψSn =N−1 ψ̄Sn,ψSS =N−1 ψ̄SS ,ψnn = ψ̄nn,ψnx = ψ̄nx , andψxx = ψ̄xx , where γ̄P , ψ̄Sn, ψ̄SS , ψ̄nn, ψ̄nx , and ψ̄xx are constants
that do not depend on N .
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Solving the system of equations (A57)–(A62) yields

ψ̄Sn =− 2Ar�1/2σGτ
1/2
H

(r+αD)(r+αG +τ )
, ψ̄SS = A2r2σ 2

D

(r+αD)2(r+αG +τ )
, (A73)

γ̄P = (r+αD)2(r+αG +τ )2

2Arσ 2
D

, (A74)

ψ̄nn = 1
2

⎛
⎝r+2(αG +τ−τH )−

(
(r+2(αG +τ−τH ))2 + 4�σ 2

GτH

σ 2
D

)1/2
⎞
⎠, (A75)

ψ̄nx = �σ 2
GτH/σ

2
D

r+2(αG +τ )−τH −ψ̄nn
, (A76)

ψ̄xx = 1

r+2αG +2τ

(
ψ̄2

nx −�σ 2
GτH

σ 2
D

)
. (A77)

This implies

CG → r+αG

r+αG +τ <1, λ→0, κ→0, (A78)

CL = �1/2σGτ
1/2
H (r+αD)

Arσ 2
D

, (A79)

γS = (N −1)γ̄P

rA
ψ̄SS = (N −1)(r+αG +τ )

2
→∞. (A80)

A.7. Dampening effect: the present value of expected cumulative dividends and cash flow

From (A25), (A29), (A30), and (A31), we can derive the stochastic process for Gn(t) and G−n(t):= 1
N−1

∑N
m=1
m �=n

Gm(t) as

follows:

dGn(t)=−αG Gn(t)dt+σG�
1/2
(
τ

1/2
0 dBn

0(t)+τ 1/2
H dBn

n(t)+τ 1/2
L

N∑
m=1
m �=n

dBn
m(t)

)
, (A81)

dG−n(t)=−(αG +τ )G−n(t)dt+
(
τ0 +τ 1/2

L

(
2τ 1/2

H +(N −2)τ 1/2
L

))
Gn(t)dt (A82)

+σG�
1/2
(
τ

1/2
0 dBn

0(t)+τ 1/2
L dBn

n(t)+ τ
1/2
H +(N −2)τ 1/2

L

N −1

N∑
m=1
m �=n

dBn
m(t)

)
.

From (A82), when Gm(t)=Gn(t), trader n believes that other traders’ estimates of expected growth rates Gm(t) will
mean-revert to zero at a rate αG +(τ 1/2

H −τ 1/2
L )2>αG. From (A81), trader n believes that his own estimate of expected

growth rate Gn(t) will mean-revert to zero at a rate αG.
From (A81), (A82), and (19), the expected dynamics of Gn(t), G−n(t), and D(t) are given by

E
n
0[Gn(t)]=e−αGtGn(0), (A83)

E
n
0[G−n(t)]=

τ0 +τ 1/2
L

(
2τ 1/2

H +(N −2)τ 1/2
L

)
τ

(
e−αGt −e−(αG+τ )t

)
Gn(0)+e−(αG+τ )tG−n(0), (A84)

E
n
0[D(t)]= 1

αD −αG

(
e−αGt −e−αDt)Gn(0)+e−αDtD(0). (A85)

The present value of expected cumulative dividends and cash flow from liquidating one share of the stock at date t
using trader n’s valuation is

PVn(0,t):=E
n
0

[∫ t

0
e−ruD(u)du+e−rt

(
D(t)

r+αD
+ Gn(t)

(r+αD)(r+αG)

)]
. (A86)

Substituting (A83) and (A85) into (A86), it can be shown that (A86) is equal to

Fn(0)= D(0)

r+αD
+ Gn(0)

(r+αD)(r+αG)
. (A87)
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The present value of expected cumulative dividends and cash flow from liquidating one share of the stock at date t
using others’ valuations

∑N
m=1,m �=n Fm(t)/(N −1) is

PV−n(0,t):=E
n
0

[∫ t

0
e−ruD(u)du+e−rt

(
D(t)

r+αD
+ G−n(t)

(r+αD)(r+αG)

)]
. (A88)

Assuming Gm(0)=Gn(0)= Ḡ(0) and substituting (A83)–(A85) into (A88), it can be shown that equation (A88) is equal
to

PV−n(0,t)=Fn(0)+ (τ 1/2
H −τ 1/2

L )2

τ (r+αG)(r+αD)

(
e−(r+αG+τ )t −e−(r+αG)t

)
Gn(0). (A89)

Similarly, the present value of expected cumulative dividends and cash flow from liquidating one share of the stock
at date t at the equilibrium price P(t) is

PVp(0,t):=E
n
0

[∫ t

0
e−ruD(u)du+e−rt

(
D(t)

r+αD
+ CG Ḡ(t)

(r+αD)(r+αG)

)]
. (A90)

Substituting (A83)–(A85) into (A90), it can be shown that (A90) is equivalent to

PVp(0,t)=Fn(0)+
CG

(
N −(τ 1/2

H −τ 1/2
L )2τ−1(N −1)

)
−N

N (r+αG)(r+αD)
e−(r+αG)t Gn(0)

+ CG (τ 1/2
H −τ 1/2

L )2τ−1(N −1)

N (r+αG)(r+αD)
e−(r+αG+τ )t Gn(0).

(A91)

From (A91), it follows that

dPVp(0,t)

dt
= Gn(0)e−(r+αG)t

N (r+αG)(r+αD)

((
N −CG

(
N −(τ 1/2

H −τ 1/2
L )2τ−1(N −1)

))
(r+αG)

−CG(τ 1/2
H −τ 1/2

L )2τ−1(N −1)(r+αG +τ )e−τ t
)
.

(A92)

Clearly, (A92) implies
dPVp(0,t)

dt →0 when t →∞. Define

t̂:=− 1

τ
ln

((
1+ (1−CG)Nτ

CG(τ 1/2
H −τ 1/2

L )2(N −1)

)
r+αG

r+αG +τ

)
. (A93)

Equation (A92) implies
dPVp(0,t)

dt >0 if and only if t> t̂. It can be shown that t̂>0 if and only if CG>

ĈG:=
(

1+(1−1/N)(τ 1/2
H −τ 1/2

L )2 (r+αG)−1
)−1

. This yields the following results:

• If CG ≤ ĈG, then
dPVp(0,t)

dt >0 for all t>0.

• If CG> ĈG, then
dPVp(0,t)

dt =0 for t = t̂,
dPVp(0,t)

dt >0 for t> t̂, and
dPVp(0,t)

dt <0 for t< t̂.

From (A88), if follows that

dPV−n(0,t)

dt
= (τ 1/2

H −τ 1/2
L )2 Gn(0)e−(r+αG)t

τ (r+αG)(r+αD)

(
(r+αG)−(r+αG +τ )e−τ t

)
. (A94)

(A94) implies that dPV−n(0,t)
dt <0 if and only if t< 1

τ
ln
(

1+ τ
r+αG

)
.

A.8. The dynamics of Ĥn(t) and Ĥ−n(t) under an alternative information structure

The dampening effect is related to an important conceptual point about how to model information. If we modeled the
private information (21) and public information (24) as

dIn(t):= G∗(t)

σG�1/2
dt+τ−1/2

n dBn(t), n=0,1,...,N, (A95)

then our model would not generate a dampening effect. The dynamics of Ĥn(t) and Ĥ−n(t) in equations (A34) and (A35)
become

dĤn(t)=−(αG +τ )Ĥn(t)dt+(1+ â)
(
τH Ĥn(t)+(N −1)τL Ĥ−n(t)

)
dt

+ âτ−1/2
0 dBn

0(t)+τ−1/2
H dBn

n(t),

(A96)
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dĤ−n(t)=−(αG +τ )Ĥ−n(t)dt+(1+ â)
(
τH Ĥn(t)+(N −1)τL Ĥ−n(t)

)
dt

+ âτ−1/2
0 dBn

0(t)+ τ
−1/2
L

N −1

N∑
m=1
m �=n

dBn
m(t),

(A97)

where â:=τ0/(τH +(N −1)τL). The dynamics of Ĥn and Ĥ−n then imply that traders only disagree about the value of
the asset in the present but not about the dynamics of their future valuations. We have solved the equilibrium under this
alternative setup. Most results remain qualitatively the same, except that there is no price dampening (CG =1).

This alternative setup is not consistent with minimal rationality. In a continuous-time model, a trader can infer the
diffusion variance with high accuracy by observing the information process over short periods of time. Therefore, it
does not make economic sense for one trader to assume that another trader observes the diffusion variance of his signal
incorrectly.

A.9. Proof of Theorem 6

If the empirically correct precision of all traders is the same—such as τH or τL or (τH +(N −1)τL)/N—it can be shown
that

dĤn(t)−dĤ−n(t)=−(αG +τ )(Ĥn(t)−Ĥ−n(t))dt+dBn(t)− 1
N−1

N∑
n=1
m �=n

dBm(t). (A98)

This follows directly from the definitions of In(t), Ĥn(t), and Ĥ−n(t). In the dynamics of dĤn(t)=−(αG +τ )Ĥn(t)dt+
dIn(t), we plug in the empirically correct beliefs about the dynamics of the information dIn(t), where the precision is the
same for all information processes.

Equations (36) and (37) imply the target inventories and actual inventories follow the bivariate vector autoregression

(
dSTI

n (t)
dSn(t)

)
=
(−(αG +τ ) 0

γS −γS

)(
STI

n (t)
Sn(t)

)
dt+

(
CL

0

)(
dBn(t)− 1

N−1

N∑
m=1
m �=n

dBm(t)

)
. (A99)

Simple calculations yield

STI
n (t)=CL

∫ t

−∞
e−(αG+τ )(t−s)

(
dBn(s)− 1

N −1

N∑
m=1
m �=n

dBm(s)

)
, (A100)

Sn(t)=CLγS

∫ t

−∞
e−(αG+τ )(t−s) −e−γS (t−s)

γS −αG −τ
(

dBn(s)− 1

N −1

N∑
m=1
m �=n

dBm(s)

)
. (A101)

From (A100) and (A101), simple calculations yield

Corr[Sn(t),Sn(t+	t)]= (αG +τ )e−γS	t −γS e−(αG+τ )	t

αG +τ−γS
, (A102)

Corr[Sn(t),STI
n (t)]=

( γS

γS +αG +τ
)1/2

. (A103)

A.10. Auto-covariance of the Holding-Period return

Consider the case when traders are correct on average, so that the econometrician assigns precisions τ̌I = (τH +(N −
1)τL)/N to each signal. Then the econometrician agrees with the traders about the total precision of the signals (τ̌=
τ̌0 +N τ̌I =τ ). The error variance �̌ satisfies �̌−1 =2αG + τ̌ with τ̌0 =�̌σ 2

G/σ
2
D. The signal Ȟn(t) for n=0,1,...,N is

obtained by replacing τ0, τ , �, and τn with τ̌0, τ̌ , �̌, and τ̌I in (21), (24), and (26). Since τ̌0 =τ0 and �̌=� hold in this
case, the traders’ statistics and econometrician’s statistics coincide, yielding Ȟn(t)=Hn(t).

The information flow and the econometrician’s estimate of the growth rate Ǧ(t) are given as

dIn(t):=τ̌ 1/2
I

G∗(t)

σG�1/2
dt+dB̌n(t), n=1,...,N, (A104)
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dB̌n(t)=dBn(t)+
(

τ
1/2
n

σG�1/2
− τ̌

1/2
I

σG�1/2

)
G∗(t)dt, (A105)

Ǧ(t):=Ě[G∗(t)]=σG�
1/2

(
τ

1/2
0 H0(t)+

N∑
n=1

τ̌
1/2
I Hn(t)

)
. (A106)

Using equations (35) and (28), we can write an equation for dP(t), plug in dHn(t) using equation (A13), and plug in
the econometrician’s beliefs about the dynamics of dIn(t) from equation (A104) and the econometrician’s estimate Ǧ(t)
from equation (A106). The instantaneous return can be written in terms of H0(t) and Hn(t) as

dP(t)+D(t)dt =r P(t)dt+c0 H0(t)dt+cH

N∑
n=1

Hn(t)dt+dB̌r (t). (A107)

The coefficients of H0(t) and
∑N

n=1 Hn(t) are given as

c0 = σG�
1/2

r+αD

(
(1−CG)τ 1/2

0 − CGN τ̌ 1/2
I τ

1/2
0

r+αG

(
τ̌

1/2
I −τ 1/2

I

))
, (A108)

cH = σG�
1/2

r+αD

(
(1−CG)τ 1/2

I + r+αG +CGτ0

r+αG

(
τ̌

1/2
I −τ 1/2

I

))
, (A109)

where τ 1/2
I := 1

N

(
τ

1/2
H +(N −1)τ 1/2

L

)
. It can be shown that the coefficient on

∑N
n=1 Hn(t) in this expression is always

positive. Indeed, its first term with 1−CG>0 results from the price-dampening effect of the Keynesian beauty contest,
and its second term with τ̌ 1/2

I −τ 1/2
I >0 results from Jensen’s inequality. Thus, there will be momentum in price dynamics

even when traders and the economist agree on the total precision of the information flow.
The uncertainty term dB̌r (t) in equation (A107) is defined as

dB̌r (t):= σG CG�
1/2

(r+αD)(r+αG)

(
τ

1/2
0 dB∗

0(t)+τ 1/2
I N dB̄∗(t)

)
+ σD

(r+αD)
dB∗

0(t). (A110)

The processes dB̄∗(t) and dB∗
0(t), defined as

dB̄∗(t):=τ̌ 1/2
I (σG�

1/2)−1 (G∗(t)−Ǧ(t))dt+ 1

N

N∑
n=1

dB̌n(t), (A111)

dB∗
0(t):=τ 1/2

0 (σG�
1/2)−1 (G∗(t)−Ǧ(t))dt+dB0(t), (A112)

are Brownian motions under the empirically correct beliefs. Note that the variance of dB∗
0(t) is equal to one, but the

variance of dB̄∗(t) is equal to 1/N per unit of time.
Let R(t,t+	t) denote the cumulative undiscounted holding-period mark-to-market cash flow per share on a fully

levered investment in the risky asset from time t to time t+	t:

R(t,t+	t)=
∫ t+	t

u=t

(
dP(u)+D(u)du−r P(u)du

)
. (A113)

We compute the holding-period return R(t,t+	t) as

R(t,t+	t)=β0(	t)H0(t)+βH (	t)
N∑

n=1

Hn(t)+B̄(t,t+	t), (A114)

where the coefficient of H0(t) and the coefficient of
∑N

n=1 Hn(t) are given as

β0(	t)=σG�
1/2τ

1/2
0

r+αD
CG

(
τ0 +N τ̌ 1/2

I τ
1/2
I

ταG
e−αG	t +

(
1

τ
+ 1

r+αG

)
N τ̌ 1/2

I (τ̌ 1/2
I −τ 1/2

I )
e−(αG+τ )	t

αG +τ

)

+ σG�
1/2τ

1/2
0

r+αD

(1−CG)αG(r+αG +τ )+r
(
τ−CG

(
τ0 +N τ̌ 1/2

I τ
1/2
I

))
(r+αG)(αG +τ )αG

,

(A115)

βH (	t)=σG�
1/2

r+αD
(1−CG)τ 1/2

I
1−e−αG	t

αG
+ σG�

1/2

(r+αD)αG(r+αG)

(
τ̌

1/2
I −τ 1/2

I

)

·
((

1−e−αG	t)(r+αG − CGrτ0

αG +τ
)

+ CG(αG +r+τ )αGτ0

(αG +τ )τ

(
e−αG	t −e−(αG+τ )	t

))
,

(A116)
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Figure 9

Auto-correlation of holding-period return.

B̄(t,t+	t):=
∫ t+	t

s=t

∫ t+	t

u=s
[c0,cH ]eK(u−s) dudZ(s)+

∫ t+	t

s=t
dB̌r (s), (A117)

where dZ(s)=[dB∗
0(s),NdB̄∗(s)]′ and

K =
(

−αG −N τ̌I τ
1/2
0 τ̌

1/2
I

Nτ 1/2
0 τ̌

1/2
I −αG −τ0

)
. (A118)

It can be shown that

Cov[R(t−	t,t),R(t,t+	t)]=E[R(t−	t,t)R(t,t+	t)]

= σ 2
G�

(r+αD)2

(1−e−αG	t)2

α2
G

τ−CG(τ0 +N τ̌ 1/2
I τ

1/2
I )

τ

(
1+ τ

2αG
+ CG(αG −r)(τ0 +N τ̌ 1/2

I τ
1/2
I )

2αG(r+αG)

)

−σ
2
G�N(τ̌ 1/2

I −τ 1/2
I )CG

(r+αD)2

(1−e−(αG+τ )	t)2

(αG +τ )2

r+αG +τ
(r+αG)τ

(
CGτ0(τ̌ 1/2

I −τ 1/2
I )

2(r+αG)

αG +τ−r

αG +τ + τ̌ 1/2
I

)
.

(A119)

The dampening effect (CG<1) leads to momentum (positive autocorrelation) in returns. For the limiting case studied
in section 4.4 with τL =0, τ0 →0, and N →∞, the dampening effect is substantial; it can be shown that

Cov[R(t−	t,t),R(t,t+	t)]= (1−e−αG	t)2

α2
G

(
1+ τ

2αG

)
− (1−e−(αG+τ )	t)2

(αG +τ )2
>0. (A120)

For general cases, from (A119), the auto-covariance of holding-period return tends to be positive when τ is large relative
to τ0 and αG. Our extensive numerical analysis of equation (A119) shows that the auto-covariance is positive for a large
range of parameter values. In addition, as illustrated in Figure 9, the auto-correlation of holding-period return tends to be
larger with more disagreement. This implies that momentum is more pronounced in more liquid markets.15

B. A COMPETITIVE MODEL OF TRADING

In this section, we consider a model that is similar to the smooth trading model with the only difference that traders are
perfectly competitive. The competitive equilibrium is different from the equilibrium with imperfect competition. Traders
adjust their inventories immediately; they do not smooth out their trading over time. The one-period model is discussed
next, followed by the continuous-time model of perfect competition.

15. Numerical calculations in Figure 9 are based on the exogenous parameter values αD =0.1, αG =0.02, σD =0.5,
σG =0.1, and N =100, with τ=8.9 and τ0 =�σ 2

G/σ
2
D =0.0045 in both cases; τH =4.46 and τL =0.045 for the case with

higher disagreement level; τH =0.5 and τL =0.085 for the case with lower disagreement level.
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B.1. One-period model

The setting is almost identical to the setting of our model of imperfect competition. For clarity, we repeat analogous
assumptions here.

A risky asset with random liquidation value v∼N(0,1/τv) is traded for a safe numeraire asset. Each of N traders
n=1,...,N is endowed with Sn shares of a zero-net-supply risky asset, implying

∑N
n=1 Sn =0. Traders observe signals

about the normalized liquidation value τ 1/2
v v. All traders observe a public signal i0:=τ 1/2

0 (τ 1/2
v v)+e0 with e0 ∼N(0,1).

Each trader n observes a private signal in:=τ 1/2
n (τ 1/2

v v)+en with en ∼N(0,1). The asset payoff v, the public signal error
e0, and N private signal errors e1,...,eN are independently distributed.

Traders agree about the precision of the public signal τ0 and agree to disagree about the precisions of private signals
τn. Each trader is “relatively overconfident”, believing his own signal has a high precision τn =τH and other traders’
signals have low precision τm =τL for m �=n, with τH >τL ≥0.

Each trader submits a demand schedule Xn(p):=Xn(i0,in,Sn,p) to a single-price auction. An auctioneer calculates the
market-clearing price p:=p[X1,...,XN ].

Trader n’s terminal wealth is
Wn:=v(Sn +Xn(p))−pXn(p). (B1)

The difference from equation (1) is that each trader n assumes that the price p does not depend on the quantities he trades.
Each trader maximizes the same expected exponential utility function of wealth E

n[−e−AWn ] using his own beliefs about
τH and τL to calculate the expectation.

Trader n maximizes his expected utility, or equivalently he maximizes E
n[Wn]− 1

2 AVarn[Wn]. He chooses the
quantity to trade xn that solves the maximization problem

max
xn

[
τ

1/2
v

τ

(
τ

1/2
0 i0 +τ 1/2

H in +(N −1)τ 1/2
L i−n

)
(Sn +xn)−pxn − A

2τ
(Sn +xn)2

]
. (B2)

The first-order condition with respect to xn yields

x∗
n = 1

A

(
τ 1/2

v

(
τ

1/2
0 i0 +τ 1/2

H in +(N −1)τ 1/2
L i−n

)
−pτ

)
−Sn. (B3)

The market-clearing condition
∑N

n=1 x∗
n =0 implies

p∗ = 1
N

N∑
n=1

E
n[v]= τ

1/2
v

τ

(
τ

1/2
0 i0 + τ

1/2
H +(N−1)τ1/2

L
N

N∑
n=1

in

)
. (B4)

As in equation (13) for the case of imperfect competition, the equilibrium price p∗ is equal to the average of traders’
valuations. Substituting (B4) into (B3) yields

x∗
n = 1

A

(
1− 1

N

)
τ 1/2

v (τ 1/2
H −τ 1/2

L )(in −i−n)−Sn. (B5)

Thus, each trader trades on the difference between his signal in and the average of all N signals and also trades out of his
current inventory Sn.

Define the target inventory as

STI
n = 1

A

(
1− 1

N

)
τ 1/2

v (τ 1/2
H −τ 1/2

L )(in −i−n). (B6)

Equation (B5) is similar to equation (11), except for the endogenous constant δ=1, implying each trader trades to his
“target inventory” STI

n immediately in the competitive model. Note that target inventories are identical to target inventories
(14) in the model with imperfect competition.

To summarize, in the model of perfect competition, both the target inventories and equilibrium price are the same as
in our smooth trading model with imperfect competition. The key difference is that in the model of perfect competition,
traders trade to their target inventories fully (δ=1) instead of partially (0<δ<1).

B.2. A continuous-time model of perfect competition

For the competitive equilibrium, we use the same notation and information structure as in our smooth trading model of
imperfect competition. The only difference from our smooth trading model is that traders do not take into account price
impact when solving for their optimal demand. For all dates t>−∞, the optimal strategies S∗

n and C∗
n solve trader n’s
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maximization problem

max[Cn,Sn] E
n
t

[∫ ∞

s=t
e−ρ(s−t) U(cn(s))ds

]
, (B7)

where wealth Wn(t) follows the process

dWn(t)=r Wn(t)dt+Sn(t) (dP(t)+D(t)dt−r P(t)dt)−cn(t)dt. (B8)

These two equations are similar to equations (22) and (23), but there are several differences. First, traders take prices in
equation (B8) as given. Second, in the model with perfect competition traders can costlessly transfer funds from their
money account to stock account. It is therefore sufficient to keep track only of aggregate wealth dynamics, rather than to
keep track of a money account and a stock account separately.

Traders use the history of the dividend process, the history of their own private signals, and the average of all signals,
as inferred from prices, to obtain their estimates of the growth rate. The inference problem is identical to the one in the
smooth trading model.

To solve the equilibrium, we conjecture that price is a linear function of D(t) and Ḡ(t), specifically,

P(t)= D(t)

r+αD
+CG

Ḡ(t)

(r+αD)(r+αG)
. (B9)

It can be shown that

dP(t)=− 1

r+αD

(
αDD(t)−σG�

1/2
(
τ

1/2
H Ĥn(t)+(N −1)τ 1/2

L Ĥ−n(t)
))

dt

+ CGσG�
1/2(τ 1/2

H +(N −1)τ 1/2
L )

N(r+αD)(r+αG)
((a1 +(N −1)a4)Ĥn(t)+(a3 +(N −1)a2)Ĥ−n(t))dt

+ 1

r+αD

(
(G∗(t)−Gn(t))dt+σDdBD

)

+ CGσG�
1/2(τ 1/2

H +(N −1)τ 1/2
L )

N(r+αD)(r+αG)

(
Nâ dBn

0(t)+dBn
n(t)+

N∑
m=1
m �=n

dBn
m(t)

)
,

(B10)

where the constants a1, a2, a3, and a4 are defined as

a1:=−αG −τ+τ 1/2
H (τ 1/2

H + âτ 1/2
0 ),

a2:=−αG −τ+(N −1)τ 1/2
L (τ 1/2

L + âτ 1/2
0 ),

a3:=(τ 1/2
H + âτ 1/2

0 )(N −1)τ 1/2
L ,

a4:=(τ 1/2
L + âτ 1/2

0 )τ 1/2
H .

(B11)

We conjecture and verify that the value function V (Wn,Ĥn,Ĥ−n) has the specific quadratic exponential form

V
(

Wn,Ĥn,Ĥ−n

)
=−exp

(
ψ0 +ψW Wn + 1

2ψnnĤ2
n + 1

2ψxxĤ2−n +ψnxĤnĤ−n

)
. (B12)

As in our smooth trading model, the five constants ψ0, ψW , ψnn, ψxx , and ψnx have values consistent with a steady-state
equilibrium. The terms ψnn, ψxx , and ψnx capture the value of future trading opportunities based on current public and
private information. The value of trading on innovations to future information is built into the constant termψ0. Equation
(B12) is similar to equation (A37), except that it has a simpler form because the five terms Mn, S2

n , SnD, SnĤn, and SnĤ−n

are effectively replaced by one term, Wn.
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The Hamilton–Jacobi–Bellman (HJB) equation corresponding to the conjectured value function V (Wn,Ĥn,Ĥ−n) in
equation (B12) is

0=min
cn,sn

− e−Acn

V
−ρ+ψW

(
rWn +SnD(t)−cn −rP(t)Sn(t)− αD

r+αD
D(t)Sn

+ σG�
1/2

r+αD

(
τ

1/2
H Ĥn(t)+(N −1)τ 1/2

L Ĥ−n(t)
)

Sn

+ CGσG�
1/2(τ 1/2

H +(N −1)τ 1/2
L )

N(r+αD)(r+αG)

(
(a1 +(N −1)a4)Ĥn(t)+(a3 +(N −1)a2)Ĥ−n(t)

)
Sn

)

+
(
ψnnĤn(t)+ψnxĤ−n(t)

)(
−(αG +τ )Ĥn +(τ 1/2

H + âτ 1/2
0 )(τ 1/2

H Ĥn +(N −1)τ 1/2
L Ĥ−n)

)

+
(
ψxxĤ−n(t)+ψnxĤn(t)

)(
−(αG +τ )Ĥ−n +(τ 1/2

L + âτ 1/2
0 )(τ 1/2

H Ĥn +(N −1)τ 1/2
L Ĥ−n)

)

+ 1
2ψ

2
W S2

n

(
C2

Gσ
2
G�(Nâ2 +1)(τ 1/2

H +(N −1)τ 1/2
L )2

N(r+αD)2(r+αG)2
+ σ 2

D

(r+αD)2
+ 2CGσGσD�

1/2τ
1/2
0

(r+αD)2(r+αG)

)

+ 1
2

(
(ψnnĤn(t)+ψnxĤ−n(t))2 +ψnn

)(
1+ â2

)

+ 1
2

(
(ψxxĤ−n(t)+ψnxĤn(t))2 +ψxx

)( 1

N −1
+ â2

)

+ψW Sn

(
(ψnn +ψnx)Ĥn(t)+(ψxx +ψnx)Ĥ−n(t)

)

·
(

CGσG�
1/2

N(r+αD)(r+αG)
(τ 1/2

H +(N −1)τ 1/2
L )(Nâ2 +1)+ σDâ

r+αD

)

+
(

(ψnnĤn(t)+ψnxĤ−n(t))(ψxxĤ−n(t)+ψnxĤn(t))+ψnx

)
â2.

(B13)

As in the smooth trading model, the solution for optimal consumption is

c∗
n(t)=− 1

A
log
(ψW V (t)

A

)
. (B14)

Plugging optimal consumption and P(t) from equation (B9) into the HJB equation yields a quadratic function of Sn. The
second-order condition is always satisfied because the coefficient on the S2

n -term is positive. It can be shown that the
optimal trading strategy is a linear function of the state variables Ĥn(t) and Ĥ−n(t),

S∗
n (t)=C

(
CGσG�

1/2
(
τ

1/2
H +(N −1)τ 1/2

L

)(
(r−a1 −(N −1)a4)Ĥn(t)

+ ((N −1)(r−a2)−a3)Ĥ−n(t)
)

− σG�
1/2(r+αG)N

(
τ

1/2
H Ĥn(t)+(N −1)τ 1/2

L Ĥ−n(t)
)

−
(

(ψnn +ψnx)Ĥn(t)+(ψxx +ψnx)Ĥ−n(t)
)

·
(

CGσG�
1/2(τ 1/2

H +(N −1)τ 1/2
L )(Nâ2 +1)+σDâN(r+αG)

))
,

(B15)

where

C:= (r+αD)(r+αG)/ψW

C2
Gσ

2
G�(τ 1/2

H +(N −1)τ 1/2
L )2(Nâ2 +1)+Nσ 2

D(r+αG)2 +2N(r+αG)σDCGσG�1/2τ
1/2
0

. (B16)

Market clearing,
∑N

n=1 S∗
n (t)=0, implies

CG =
N(r+αG)

(
σG�

1/2 +σDâ(ψnn +ψxx +2ψnx)
(
τ

1/2
H +(N −1)τ 1/2

L

)−1
)

σG�1/2
(

N(r+αG)+(N −1)(τ 1/2
H −τ 1/2

L )2 −(1+Nâ2)(ψnn +ψxx +2ψnx)
) . (B17)

Combining equations (B15) and (B17) yields

S∗
n (t)=CL (Ĥn −Ĥ−n), (B18)
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where the constant CL is defined as

CL :=C
(
σG�

1/2
(

CG(τ 1/2
H +(N −1)τ 1/2

L )(r−a1 −(N −1)a4)−Nτ 1/2
H (r+αG)

)

− (ψnn +ψnx)
(

CGσG�
1/2(τ 1/2

H +(N −1)τ 1/2
L )(1+Nâ2)+σDâN(r+αG)

))
.

(B19)

Plugging (B14) and (B18) back into the Bellman equation and setting the constant term and the coefficients of Wn, Ĥ2
n ,

Ĥ2−n, and Ĥn Ĥ−n to be zero yields five equations, which can be solved for the five unknown parameters ψ0, ψW , ψnn,
ψnx , and ψxx .

Equating the constant term and the coefficient of Wn to zero yields

ψW =−rA, (B20)

ψ0 =1−log(r)+ 1

r

(
−ρ+ 1

2 (1+ â2)ψnn + 1
2

(
1

N −1
+ â2

)
ψxx + â2ψnx

)
. (B21)

Equating the coefficients of Ĥ2
n , Ĥ2−n, and Ĥn Ĥ−n to zero results in three polynomial equations in the three unknowns

ψnn, ψxx , and ψnx . Defining c1, c2, c3, and c4 by

c1:= C2
Gσ

2
G�(Nâ2 +1)(τ 1/2

H +(N −1)τ 1/2
L )2

N(r+αD)2(r+αG)2
+ σ 2

D

(r+αD)2
+ 2CGσGσD�

1/2τ
1/2
0

(r+αD)2(r+αG)
, (B22)

c2:= CGσG�
1/2

N(r+αD)(r+αG)
(τ 1/2

H +(N −1)τ 1/2
L )(Nâ2 +1)+ σDâ

r+αD
, (B23)

c3:= rAσG�
1/2CL

r+αD

(
CG(τ 1/2

H +(N −1)τ 1/2
L )(r−a1 −(N −1)a4)

N(r+αG)
−τ 1/2

H

)
, (B24)

c4:= rAσG�
1/2CL

r+αD

(
CG(τ 1/2

H +(N −1)τ 1/2
L )(r−a2 − a3

N−1 )

N(r+αG)
−τ 1/2

L

)
, (B25)

these three equations in three unknowns can be written as follows:

0=− r

2
ψnn +a1ψnn +a4ψnx −rACLc2(ψnn +ψnx)+ 1

2 (1+ â2)ψ2
nn

+ 1
2

(
1

N −1
+ â2

)
ψ2

nx + â2ψnnψnx +c3 + 1
2 r2A2c1C2

L,

(B26)

0=− r

2
ψxx +a2ψxx +a3ψnx +rACLc2(ψxx +ψnx)+ 1+ â2

2
ψ2

nx

+ 1
2

(
1

N −1
+ â2

)
ψ2

xx + â2ψxxψnx −(N −1)c4 + 1
2 r2A2c1C2

L,

(B27)

0=−rψnx +(a1 +a2)ψnx +a3ψnn +a4ψxx +rACLc2(ψnn −ψxx)

+(1+ â2)ψnnψnx +
(

1

N −1
+ â2

)
ψxxψnx + â2

(
ψnnψxx +ψ2

nx

)

+(N −1)c4 −c3 −r2A2c1C2
L .

(B28)

To summarize, optimal consumption is defined in (B14), the optimal trading strategy is defined in (B18), and the
endogenous coefficient CL is defined in (B19). The equilibrium price is defined in (B9), and the endogenous coefficient
CG is defined in (B17). The parameters ψW and ψ0 are presented in (B20) and (B21). The parameters ψnn, ψnx , and
ψxx are obtained from numerical solution of the system of the three equations (B26)–(B28). These results are stated in
Theorem 5.

Information has no value if there is no trading, so that ψnn =ψnx =ψxx =0 solves the three equations (B26)–(B28)
when there is no liquidity. This implies

c3 + 1
2 r2A2c1C2

L =0, −(N −1)c4 + 1
2 r2A2c1C2

L =0, (N −1)c4 −c3 −r2A2c1C2
L =0. (B29)

These equations imply that liquidity vanishes when τH =τL and CG =1. This is different from our smooth trading model
of disagreement with imperfect competition, in which market liquidity vanishes when τ 1/2

H /τ
1/2
L =2+2/(N −2) and

CG =1.
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Figure 10

Coefficients CG and E[|Sn(t)|] against τH/τL while fixing τ=7.4.

Figure 11

Coefficients CG and E[|Sn(t)|] against ln(N) while fixing τ=1.4 and τL =0.

Figure 10 shows the effect of changes in the degree of overconfidence τH/τL on the endogenous parameters CG and
E[|Sn(t)|] . To compare the results with our smooth trading model, we use the same exogenous parameter values as in
Figure 1 and panel (a) of Figure 8. The horizontal axis shows the ratio τH/τL . As this ratio increases, τH is increasing and
τL is decreasing so that the total precision τ is fixed (and other exogenous parameters are also fixed). Higher values of
the ratio τH/τL correspond to higher degrees of overconfidence. As disagreement τH/τL increases, the left panel shows
that the parameter CG declines monotonically, while the right panel shows that the expected size of inventories E[|Sn(t)|]
increases monotonically.

For finite N , Figure 11 shows the effect of changes in the number of traders N on CG and E[|Sn(t)|], using the
same exogenous parameter values as in Figure 2 and Figure 8b. As N increases, the left panel shows that CG decreases
monotonically towards a constant asymptote, and the right panel shows that E[|Sn(t)|] increases monotonically towards a
constant asymptote. When N is large, our numerical results show that our smooth trading model of imperfect competition
converges to the equilibrium of the competitive model.

As in the smooth trading model, we find a closed-form solution when we set τL =0, and then we evaluate the solution
in the limit as N →∞ and â→0. We conjecture and verify that ψnn = ψ̄nn, ψnx = ψ̄nx , and ψxx = ψ̄xx , where ψ̄nn, ψ̄nx ,
and ψ̄xx are constants that do not depend on N .

Solving the system of equations (B26)–(B28) yields

ψ̄nn = 1
2

⎛
⎝r+2(αG +τ−τH )−

(
(r+2(αG +τ−τH ))2 + 4�σ 2

GτH

σ 2
D

)1/2
⎞
⎠, (B30)

ψ̄nx = �σ 2
GτH/σ

2
D

r+2(αG +τ )−τH −ψ̄nn
, (B31)

ψ̄xx = 1

r+2αG +2τ

(
ψ̄2

nx −�σ 2
GτH

σ 2
D

)
. (B32)
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Equations (B17) and (B19) imply

CG → r+αG

r+αG +τ <1, CL = �1/2σGτ
1/2
H (r+αD)

Arσ 2
D

. (B33)

These results are exactly the same as the limiting case when N →∞ and â→0 in the smooth trading model. This confirms
that our smooth trading model of imperfect competition converges to the competitive model when N →∞.
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Appendix C A Continuous-Time Model of Smooth Trading

with Private Values

In this section, we consider an alternative smooth trading model in which private val-

ues with a common prior replace disagreement (with different priors) as the modeling

device which makes trade possible in equilibrium. We show that optimal trading strate-

gies balance the tradeoff between the temporary price impact costs of a trader’s own

trades and the decay of his private information resulting from the permanent price im-

pact of other traders trading on similar information. When investors put enough weight

on their private values, an equilibrium exists, prices immediately reveal a weighted av-

erage of all traders’ signals and private values, and traders continue to trade gradually

toward their target inventories.

The model has the following key features: (1) There is only one type of trader, a strate-

gic informed trader; there are no noise traders or market makers. (2) Each trader has

private information about the same underlying fundamental value; the “noise” in their

signals is uncorrelated. (3) All information processes have the same precision; the struc-

ture of the model is common knowledge; traders share a common prior and apply Bayes

law correctly and consistently. (4) Each trader gains private value from investing in the

asset; the private value is uncorrelated with the fundamental value. (5) Traders trade

strategically, correctly taking into account how the permanent and temporary price im-

pact of their trades affects the trading of other traders. (6) Random variables are jointly

normally distributed and traders have additive exponential utility functions. (7) Traders

are “symmetric” in the sense that they have the same utility functions and symmetri-

cally different beliefs about the information structure in the economy. (8) All model

state variables are stationary.
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We describe an “almost-closed-form” steady-state equilibrium with “smooth trad-

ing” characterized precisely by endogenous parameters solving a set of five polynomial

equations in five unknowns. We show that an equilibrium exists when traders put large

enough weight on their private values. Although it is necessary to solve numerically

for an endogenous factor by which noisy private values lower the precision of signals

inferred from prices, other endogenous parameters are obtained as closed-form func-

tions of this endogenous factor.

The equilibrium in the model with private values is similar to the model with over-

confidence. There is, however, one important difference: In the model with private val-

ues, there is no price dampening associated with the “Keynesian beauty contest.”

In the model with private values—unlike the model based on disagreement—even

though traders have different valuations of the asset at present, they do not disagree

about the dynamics of how those valuations will change in the future; this makes prices

equal to a noisy weighted average of traders’ buy-and-hold valuations, with the weights

summing exactly to one, not to a dampened value less than one.

In the model with disagreement, traders not only trade because they disagree with

the average of other traders’ valuations in the present, but they also trade based on dis-

agreement concerning their predictions about how the average of other traders’ valua-

tions will change in the future. This makes prices equal to a weighted average of traders’

buy-and-hold valuations, with the weights summing to a constant less than one.

Appendix C.1 Model Set-Up

There are N risk averse oligopolistic traders who trade a risky zero-net-supply asset

against a risk-free asset which earns constant risk-free rate r > 0.

The risky asset is traded at price P (t ) and pays out dividends at continuous rate D (t ).

Dividends follow a stochastic process with mean-reverting stochastic growth rate G ∗(t ),

constant instantaneous volatility σD > 0, and constant rate of mean reversion αD > 0,

dD (t ) ≔ −αD D (t ) dt +G ∗(t ) dt + σD dBD (t ). (C1)

The growth rate G ∗(t ) follows an AR-1 process with mean reversion αG and volatility σG :

dG ∗(t ) ≔ −αG G ∗(t ) dt + σG dBG (t ). (C2)

The dividend is publicly observable, but the growth rate G ∗(t ) is not observed by any

trader. This structure of payoffs is similar to equations (19) and (20) in the model of
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disagreement.

The information structure is slightly different from the model with disagreement.

Each trader n observes a continuous stream of private information In (t ) about a com-

mon value G ∗(t ),

dIn (t ) ≔ τ
1/2
I

G ∗(t )

σG Ω1/2
dt + dBI n (t ), n = 1, . . . , N . (C3)

Since the drift τ1/2
I G ∗(t )/(σG Ω

1/2) is proportional to G ∗(t ), each increment dIn (t ) in the

process In (t ) is a noisy observation of the unobserved growth rate G ∗(t ). The denom-

inator σG Ω1/2 scales G ∗(t ) so that the conditional scaled error variance is one. This

simplifies intuitive interpretation of the model. The parameter Ω measures the steady-

state error variance in units of time, as discussed below. The precision parameter τI

measures the informativeness of the information dIn (t ) as a signal-to-noise ratio de-

scribing how fast the information flow generates a signal of a given level of statistical

significance. Since traders agree on how much information τI each information pro-

cess contains, the traders share a common prior. In the similar equation (21) for the

model with disagreement, each trader assigns a higher precision τH to his own informa-

tion and lower precision τL to the information of others; therefore, traders do not share

a common prior.

Using the scaling parameter Ω, the information content of the publicly observable

dividend D (t ) can be expressed in a form consistent with the notation for private in-

formation In (t ) in equation (C3). Define dI0(t ) ≔ [αD D (t ) dt + dD (t )] /σD and τ0 ≔

Ω σ2
G
/σ2

D with dB0 ≔ dBD . Then the public information I0(t ) in the divided stream (C1)

can equivalently be written

dI0(t ) ≔ τ
1/2
0

G ∗(t )

σG Ω1/2
dt + dB0(t ), where τ0 :=

Ω σ2
G

σ2
D

. (C4)

Observing the process I0(t ) is informationally equivalent to observing the dividend pro-

cess D (t ). The quantity τ0 measures the precision of the dividend process in units anal-

ogous to the units of precision for private information. We assume that dBD (t ), dBG (t ),

dBI 1(t ), . . . , dBI N (t ), dB J 1(t ), . . . , dB J N (t ) are independently distributed, standardized Brow-

nian motions. This notation simplifies the filtering formulas we are about to derive.

Unlike in the model with disagreement, the risky asset generates privately observed

private benefits for traders owning it; this assumption helps to generate trade. Specif-

ically, assume that the risky asset generates a cash flow D (t ) + πJ H J
n (t ), where the first

component is a publicly observed, common-value cash dividend—as in the model with
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disagreement—and the additional second component is a privately observed cash-equivalent

of the private benefit trader n receives from holding the risky asset. Assume that the

trader n’s private benefit H J
n (t ) follows an AR-1 process with the mean reversion rate δ J ,

dH J
n (t ) = −δ J H J

n (t )dt + dB J n (t ), n = 1, . . . , N . (C5)

where πJ and δ J are constants. In order to keep the number of state variables the same

as the number of state variables in the model of disagreement, it is necessary to set the

mean reversion rate δ J to equal a specific value. As shown below, this specific value

equates the mean-reversion rate of private values δ J to the mean reversion rate of pri-

vate signals. Since there are no a priori reasons to believe that private value and infor-

mation flow share similar dynamics, this assumption is a key limitation of the smooth-

trading model with private values.

Each trader’s information set at time t , denoted Fn (t ), consists of the histories of the

publicly observed dividend process D (s ), the trader’s own private information In (s ), the

trader’s private observation of his own private value H J
n (s ), and the market price P (s ),

s ∈ (−∞, t ]. All traders process information rationally.

Let Sn (t ) denote the inventory of trader n at time t . Assume the risky asset is in zero

net supply, implying
∑N

n=1 Sn (t ) = 0. Each trader’s trading strategy Xn is assumed to

be a mapping from his information set Fn (t ) at time t into a “flow-demand schedule”

which defines the derivative of his inventory xn (t ) ≔ Xn (t , P (t );Fn (t )) (“trading inten-

sity”) as a function of the market-clearing price P (t ). An auctioneer continuously cal-

culates the market-clearing price P (t ) ≔ P [X1, . . . , XN ](t ) such that the market-clearing

condition
∑N

n=1 xn (t ) = 0 is satisfied. Let En
t {. . .} denote the conditional expectations op-

erator E{. . . |Fn (t )} based on trader n’s beliefs.

Each trader has time-additively-separable exponential utility function U (cn (s )) ≔

−e−A cn (s ) with constant-absolute-risk-aversion parameter A and the time preference pa-

rameter ρ. Trader n’s consumption strategy Cn defines a consumption rate cn (t ) ≔

Cn (t ;Fn (t )).

We define an equilibrium as a set of trading strategies X ∗1, . . . , X ∗N and consumption

strategies C ∗1, . . . , C ∗N such that, for n = 1, . . . , N , trader n’s optimal consumption and

trading strategies Xn = X ∗n and Cn = C ∗n solve his maximization problem taking as given

the optimal strategies of the other traders. Trader n’s maximization problem is

J n (

Fn (t ); X ∗n, C ∗n ; X ∗m, m , n
)

= max
{Cn,Xn }

En
t

{∫ ∞

s=t

e−ρ(s−t ) U (cn (s )) ds

}

, (C6)
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where inventories follow the process dSn (t ) = xn (t ) dt and money holdings Mn (t ) follow

the process

dMn (t ) =
(

r Mn (t ) + Sn (t )
(

D (t ) + πJ H J
n (t )

)

− cn (t ) − P (t ) xn (t )
)

dt . (C7)

Equation (C7) is similar to equation (23) for the model with disagreement, except for the

term πJ H J
n (t ), which measures the cash-equivalent of the private benefit of owning the

asset as a “convenience yield.”

Note that the price P (t ), quantity xn (t ), and consumption cn (t ) are the abbreviations

P (t ) ≔ P [X1, . . . , XN ](t ), xn (t ) :=
dSn (t )

dt
= Xn (t , P (t );Fn (t )), cn (t ) := Cn (t ;Fn (t )).

(C8)

When solving the maximization problem, trader n takes as given the trading strate-

gies Xm , m , n, for the other N − 1 traders; in doing so, he exercises market power by

taking into account how his own trading strategy affects equilibrium prices P (t ) and

future trading opportunities. The optimal strategy must satisfy the transversality condi-

tion En
t {e
−ρ(T −t ) J n (Fn (T ), X ∗n, C ∗n ; . . .)} → 0 as T →∞.

Innovations in private values show up as noise in prices, as a result of which traders

infer from prices only a noisy version of the average of other traders’ signals. We will

show next that each trader can infer from the equilibrium prices only the average of a

linear combination 1
N−1

∑N
m=1,m,n

(

Im (t ) + k B J m (t )
)

of other traders’ private information

Im (t ) and private values B J m (t ). The value of the weight k on private values is deter-

mined endogenously in equilibrium.

Appendix C.2 Bayesian Updating

Let Gn (t ) ≔ En
t {G

∗(t )} denote trader n’s estimate of the unobserved growth rate G ∗(t )

conditional on his information set at time t . This information set consists of dividend

information I0(s ), the trader’s private information In (s ), the trader’s private value H J
n (s ),

and the noisy average of other traders’ signals inferred from prices 1
N−1

∑N
m=1,m,n

(

Im (s ) + k B J m (s )
)

,

s ∈ (−∞, t ].

Define Ω as the error variance Ω ≔ Varn {(G ∗(t )−Gn (t ))/σG }. We assume a symmetric

steady state in which Ω is a constant which does not depend on time t or trader n. There

are simple and intuitive formulas for information processing:
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Lemma 2. Let τ denote the sum of precisions

τ ≔ τ0 + τI + (N − 1)
1

1 + k 2
τI . (C9)

Then Ω and dGn (t ) satisfy

Ω−1
≔

(

Varn

{

G ∗(t ) −Gn (t )
σG

}

)−1
= 2 αG + τ, (C10)

dGn (t ) = − (αG + τ) Gn (t ) dt +σG Ω
1/2

(

τ
1/2
0 dI0(t )+ τ1/2

I dIn (t )+
τ

1/2
I

1 + k 2

N
∑

m=1
m,n

(

dIm (t ) + k dB J m (t )
)

)

.

(C11)

The proof is in Appendix C.9. This lemma is similar to Lemma 1 in Appendix A.2,

except trader n attributes a precision τI to his own information dIn (t ) and a lower preci-

sion τI /(1 + k 2)2 to other traders’ information dIm (t ) + k dB J m (t ), since this information

is contaminated by trading due to private values. The total precision of information

τ is not quasi-exogenous, as in the model of disagreement, but rather depends on the

endogenous factor k , whose value will be derived below.

Note that Ω is not a free parameter; instead, it is determined as an endogenous

function of the other parameters. Equation (C10) implies that Ω is the solution to the

quadratic equation Ω−1
= 2 αG + Ω σ2

G/σ
2
D + τ. In equations (C3) and (C4), we scale the

units with which precision is measured by the endogenous parameter Ω because this

leads to simpler Kalman filtering expressions which more clearly bring out the intuition

of signal processing.

Similar to equations (26) and (A30), define statistics H I
n (t ) corresponding to informa-

tion flow dIn as

H I
n (t ) ≔

∫ t

u=−∞

e−(αG+τ) (t−u ) dIn (u ), n = 0, 1, ...N, (C12)

which implies

dH I
n (t ) = −(αG + τ) H I

n (t ) dt + dIn (t ), n = 0, 1, ...N . (C13)

A trader also infers a noisy average of other traders’ signals H I
m (t ) + k H J

m (t ) from

equilibrium prices. To prevent intractability resulting from an exploding number of

state variables and to keep the number of state variables in both models the same, it

is necessary to make the restrictive assumption that the private signals H I
n (t ) and the
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private values H J
n (t ) mean-revert to zero at the same rate; this requires the assumption

δ J ≔ αG + τ.

Define signals Hn (t ) and H−n (t ), adjusted to reflect private values, by

Hn (t ) ≔ H I
n (t ) + k H J

n (t ), H−n (t ) :=
1

N − 1

N
∑

m=1
m,n

(

H I
m (t ) + k H J

m (t )
)

. (C14)

Equation (C11) implies that the estimate Gn (t ) can be conveniently written as a linear

combination of sufficient statistics H I
0 (t ), H I

n (t ), and H−n (t ):

Gn (t ) = σG Ω1/2 *,τ
1/2
0 H I

0 (t ) + τ1/2
I H I

n (t ) + (N − 1)
τ

1/2
I

1 + k 2
H−n (t )+- . (C15)

This equation is similar to equation (28) in the model with disagreement.

As we show below, trader n’s optimal trading strategy depends on several variables.

First, it depends on trader n’s estimates of the unobserved growth rate G ∗(t ). Second,

it depends on the dynamic statistical relationship between this growth rate and the sig-

nals H I
0 (t ) and H I

n (t ), which reflect his public and private information about fundamen-

tal value. Third, it depends on H J
n (t ), which reflects his own private value. Finally, it

depends on H−n (t ), which reflects the noisy private information of other traders that

trader n extracts from prices with contamination from “noise” associated with their pri-

vate values.

We next examine the dynamics of some of these variables.

Define the N + 1 processes dBn
0 , dBn

I n , and dBn
m , m = 1, . . .N , m , n, by

dBn
0 (t ) = τ1/2

0

G ∗(t ) −Gn (t )

σG Ω1/2
dt + dBD (t ), (C16)

dBn
I n (t ) = τ1/2

I

G ∗(t ) −Gn (t )

σG Ω1/2
dt + dBI n (t ), (C17)

and

dBn
m (t ) = τ1/2

I

G ∗(t ) −Gn (t )

σG Ω1/2
dt + dBI m (t ) + k dB J m (t ). (C18)

The superscript n indicates conditioning on the information set of trader n. Since trader n’s

forecast of the error G ∗(t ) −Gn (t ) is zero given his information set, these N +1 processes

are independently distributed Brownian motions from the perspective of trader n. In
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terms of these Brownian motions, trader n believes that signals change as follows:

dH I
0 (t ) = −(αG + τ) H I

0 (t ) dt + τ
1/2
0

Gn (t )

σG Ω1/2
dt + dBn

0 (t ), (C19)

dH I
n (t ) = −(αG + τ) H I

n (t ) dt + τ
1/2
I

Gn (t )

σG Ω1/2
dt + dBn

I n (t ), (C20)

dH−n (t ) = −(αG + τ) H−n (t ) dt + τ
1/2
I

Gn (t )

σG Ω1/2
dt +

1

N − 1

N
∑

m=1
m,n

dBn
m (t ). (C21)

Note that each signal drifts toward zero at rate αG + τ and drifts toward the optimal

forecast Gn (t ) at a rate proportional to the square root of the signal’s precisions τ1/2
0 or

τ
1/2
I , respectively.

Appendix C.3 Utility Maximization with Market Power

We use the no regret approach to calculate the value function J n (. . .). We assume that

trader n observes his residual supply schedule P (.) ≔ Pn (., t ) at each point in time and

picks an optimal point on the residual supply schedule. We then show that the solu-

tion to this less constrained problem implements the optimal solution to the more con-

strained problem which defines J n (. . .).

For the less constrained problem, we conjecture a steady-state value function of

the form V (Mn, Sn, D, H I
0, H I

n, H J
n , H−n ), where Mn denotes trader n’s cash holdings (mea-

sured in dollars) and Sn denotes trader n’s holdings of the traded asset (measured in

shares).

We expect the asset price to be a linear combination of two components: (1) a div-

idend level component linear in dividends D (t ) and (2) a dividend-growth component

linear in the variables H I
0 (t ), H I

n (t ), H J
n (t ), and H−n (t ). The symmetric linear conjectured

form of the residual supply function implies that observation of the average of other

traders’ signals H−n (t ) is informationally equivalent to observation of the intercept of

the trader’s residual supply schedule. We therefore include H−n (t ) as a state variable in

the value function and omit the price P (t ).

In deriving the equilibrium, the problem is simplified if the three state variables

H I
0 (t ), H I

n (t ), and H−n (t ) are replaced with two composite signals, which we denote Ĥ I
n (t )

and Ĥ−n (t ). Define the weighting constant â by

â ≔
τ

1/2
0

τ
1/2
I

(

1 + (N − 1) (1 + k 2)−1
)

. (C22)
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Define the two composite signals Ĥ I
n (t ) and Ĥ−n (t ) by

Ĥ I
n (t ) ≔ H I

n (t ) + â H I
0 (t ), (C23)

Ĥ−n (t ) ≔ H−n (t ) + â H I
0 (t ). (C24)

These composite signals incorporate public information contained in the dividend stream.

Define

Ĥn (t ) ≔ Ĥ I
n (t ) + k H J

n (t ). (C25)

Trader n’s estimate of dividend growth rate can be expressed as a function of the two

composite signals Ĥ I
n (t ) and Ĥ−n (t ),

Gn (t ) = σG Ω1/2

(

τ
1/2
I Ĥ I

n (t ) + (N − 1)
1

1 + k 2
τ

1/2
I Ĥ−n (t )

)

. (C26)

Note that this estimate does not depend on trader n’s private value H J
n (t ), since the term

H J
n (t ) captures the private benefit of owning the risky asset, not information about its

common fundamental value.

We conjecture (and verify below) a steady-state value function of the formV (Mn, Sn, D, Ĥn, Ĥ−n ).

Letting (cn (t ), xn (t )) denote the optimal consumption and investment policy, we have

V (Mn, Sn, D, Ĥn, Ĥ−n ) ≔ max
{cn (t ),xn (t )}

En
t

{∫ ∞

s=t

−e−ρ(s−t )−A cn (s ) ds

}

. (C27)

The six state variables satisfy six stochastic differential equations

dMn (t ) =
(

r Mn (t ) + Sn (t ) (D (t ) + πJ H J
n (t )) − cn (t ) − P (xn (t )) xn (t )

)

dt , (C28)

dSn (t ) = xn (t ) dt , (C29)

dD (t ) = −αD D (t ) dt +Gn (t ) dt + σD dBn
0 (t ), (C30)

dH J
n (t ) = −(αG + τ) H J

n (t )dt + dB J n (t ), (C31)

dĤ I
n (t ) = − (αG + τ) Ĥ I

n (t ) dt (C32)

+ (τ1/2
I + âτ

1/2
0 ) τ1/2

I

(

Ĥ I
n (t ) +

N − 1

1 + k 2
Ĥ−n (t )

)

dt

+ â dBn
0 (t ) + dBn

I n (t ),
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dĤ−n (t ) = − (αG + τ) Ĥ−n (t ) dt (C33)

+ (τ1/2
I + âτ

1/2
0 ) τ1/2

I

(

Ĥ I
n (t ) +

N − 1

1 + k 2
Ĥ−n (t )

)

dt

+ â dBn
0 (t ) +

1

N − 1

N
∑

m=1
m,n

dBn
m (t ).

The dynamics of Ĥ I
n (t ) and Ĥ−n (t ) in equations (C32) and (C33) can be derived from

equations (C19), (C20), and (C21). It can be shown that the value function conveniently

depends on state variables Ĥ I
n (t ) and H J

n (t ) only through Ĥn (t ), and

dĤn (t ) = − (αG + τ) Ĥn (t ) dt (C34)

+ (τ1/2
I + âτ

1/2
0 ) τ1/2

I

(

Ĥ I
n (t ) +

N − 1

1 + k 2
Ĥ−n (t )

)

dt

+ â dBn
0 (t ) + dBn

I n (t ) + k dB J n (t ).

This system of equations is similar to the system of equations (A32)–(A35).

Equation (C28), describing the dynamics of cash M (t ), differs from equation (A33)

by including an additional term related to private benefits πJ H J
n (t ).

Furthermore, in the second lines of equations (C33) and (C34), the factors τ1/2
I +âτ

1/2
0

are the same in both equations. In the otherwise similar model based on disagreement,

these two factors are different; the factor is equal to τ
1/2
H + âτ

1/2
0 in equation (A34) and

τ
1/2
L + âτ

1/2
0 in equation (A35). The equality of these two factors in the model based on

private values ultimately leads to an important difference between the disagreement

model and the private-values model with common prior. The model with private values

does not generate “price dampening,” which is associated with the logic of a Keynesian

beauty contest in the model based on disagreement.

More specifically, in the model with disagreement, each trader believes that his own

signal drifts toward the fundamental value at a rate reflecting his own high precision

τH , while the average of other traders’ signals drifts toward the fundamental value at

a rate reflecting a lower precision τL (equations (A34) and (A35)). In the model with

private values, by contrast, each trader believes that both his own signal and the noisy

signal of other traders, inferred from prices, drift toward the fundamental value at a rate

reflecting the higher precision τI , not the lower precision affected by noise added by

private values (equations (C33) and (C34)). Thus, this noise affects the precision of the

signal inferred from prices as an estimate of fundamental value in the present, (Gn (t )
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in equation (C15)), but it does not affect the drift of this estimate. In the model with

disagreement, equation (A36) shows that trader n believes that Hn − H−n decays at rate

αG + τ but also drifts in a direction proportional to Gn (t ). In the model with private

values, each trader believes that the quantity equivalent to Hn − H−n follows an AR-1

process and the drift term proportional to Gn (t ) becomes zero.

The value function V ( ) satisfies the transversality condition

lim
T→+∞

En
t {e
−ρ(T −t ) V (Mn (T ), Sn (T ), D (T ), Ĥn (T ), Ĥ−n (T ))} = 0. (C35)

Appendix C.4 Linear Conjectured Strategies

Based on his information set, each trader submits a flow-demand schedule for the rate

at which he will buy the asset at time t as a function of the market-clearing price. Trader n

conjectures that the other N − 1 traders, m = 1, . . .N , m , n, submit symmetric linear

demand schedules of the form

Xm (t ) =
dSm (t )

dt
= γD D (t ) + γH Ĥm (t ) − γS Sm (t ) − γP P (t ), (C36)

where Ĥm (t ) ≔ Ĥ I
m +k H J

m sums together both private information about the fundamen-

tal value and the privately observed private value. The demand schedules are defined

by the four constants γD , γH , γS , and γP .

Let xn (t ) = Xn (t , P (t )) = dSn (t )/dt denote the “flow-quantity” traded by trader n.

From the market-clearing condition and the linear conjecture for demand schedules of

other traders, it follows that

xn (t ) +
N
∑

m=1
m,n

(

γD D (t ) + γH Ĥm (t ) − γS Sm (t ) − γP P (t )
)

= 0. (C37)

Using zero net supply
∑N

m=1 Sm (t ) = 0, this can be solved for trader n’s conjectured price

impact function (written P (.) instead of P (., t ))

P (xn (t )) =
γD

γP

D (t ) +
γH

γP

Ĥ−n (t ) +
γS

γP

1

N − 1
Sn (t ) +

1

(N − 1)γP

xn (t ). (C38)

Plugging the price impact function (C38) into the optimization problem (C27), trader n

solves for his optimal consumption and demand schedule.
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Appendix C.5 Conjectured Value Function

We conjecture and verify that the value function V (Mn, Sn, D, Ĥn, Ĥ−n ) has the specific

quadratic exponential form

V
(

Mn, Sn, D, Ĥn, Ĥ−n

)

= − exp
(

ψ0 + ψM Mn +
1
2ψSS S2

n + ψSD SnD

+ ψSn SnĤn + ψSx SnĤ−n +
1
2ψnn (Ĥn − Ĥ−n )2

)

.
(C39)

The seven constants ψ0, ψM , ψSS , ψSD , ψSn , ψSx , and ψnn have values consistent with a

steady-state equilibrium.

The term ψM measures the utility value of cash. The terms ψSS , ψSD , ψSn , and ψSx

measure the utility value of risky asset holdings. The term ψnn captures the value of

future trading opportunities based on current public and private information, as well

as private values. The value of trading on innovations to future information is built into

the constant term ψ0.

The value function (C39) for the model with private values has a simpler form than

the value function (A37) for the model with disagreement. In the model with private val-

ues, the value of future profit opportunities can be conveniently written as 1
2ψnn (Ĥn −

Ĥ−n )2. In the model of disagreement, the value of future trading opportunities takes

the more complicated form of a linear combination of separate terms Ĥ 2
n , Ĥ 2

−n , and

ĤnĤ−n , with three different coefficients 1
2ψnn,

1
2ψxx , and ψnx . The intuition is that the

price-dampening effect due to the Keynesian beauty contest makes calculations of fu-

ture profit opportunities more complicated in the model with disagreement.

Appendix C.6 Characterization of Steady-State Symmetric Equilibrium

with Linear Trading Strategies and Quadratic Value Func-

tions

To solve for a steady-state equilibrium, it is necessary to determine simultaneously val-

ues for the four γ-parameters defining the optimal demand schedule in equation (C36),

the seven ψ-parameters defining the value function in equation (C39), and the parame-

ter k quantifying the weight on private signals in equation (C9).

The solution to these equations is discussed in Appendix C.10. We obtain the follow-

ing theorem.

Theorem 7. Characterization of Equilibrium. There exists a steady-state, Bayesian-

perfect equilibrium with symmetric, linear flow-strategies with positive trading volume
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if and only if the five polynomial equations (C65)–(C69) have a solution satisfying γP > 0

and γS > 0. Such an equilibrium has the following properties:

1. There is an endogenously determined constant CL ≔ −
ψSn

2ψSS
> 0, such that trader n’s

flow-strategy x∗n (t ) makes time-differentiable inventories Sn (t ) change at rate

x∗n (t ) =
dSn (t )

dt
= γS

(

CL (Ĥn (t ) − Ĥ−n (t )) − Sn (t )
)

. (C40)

2. The equilibrium price is

P ∗(t ) =
D (t )

r + αD

+

Ḡ (t ) + σG Ω
1/2kτ

1/2
I

1
N

∑N
n=1 H J

n (t )

(r + αD )(r + αG )
, (C41)

where Ḡ (t ) denotes the average of traders’ expected growth rates:

Ḡ (t )+σG Ω
1/2kτ

1/2
I

1
N

N
∑

n=1

H J
n (t ) ≔ σG Ω

1/2 1
N

N
∑

n=1

(

τ
1/2
I Ĥn (t ) + (N − 1)

1

1 + k 2
τ

1/2
I Ĥ−n (t )

)

.

(C42)

Note there is always a trivial no-trade equilibrium. If each trader submits a no-trade

demand schedule Xn (t , .) ≡ 0, then such a no-trade demand schedule is optimal for all

traders. This is not a symmetric linear equilibrium in which an auctioneer can establish

a meaningful market price.

Equations (C40) and (C41) imply that the equilibrium with trade has a surprisingly

simple structure in which quantities adjust to new information slowly, while prices ad-

just instantaneously. Equation (C40) is similar to equation (34) in the model with dis-

agreement. It implies that each trader has a target inventory proportional to the differ-

ence between his own private signal Ĥn (t ) and the average of other traders’ private sig-

nals Ĥ−n (t ) inferred from prices; note that these private signals are sums of fundamental-

information components and private-values components. Each trader continuously

moves his inventory toward his target inventory so that the difference decays at rate

γS .

The equation (C41) is similar to the equation (35) in the model with disagreement. It

implies that the price is a linear function of the weighted average of all traders’ expected

growth rates, adjusted by adding terms representing their private values. The equilib-

rium price can also be written as the precision-weighted average of the N composite
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signals Ĥn (t ),

P ∗(t ) =
D (t )

r + αD

+

σG Ω1/2

(r + αD )(r + αG )

τ
1/2
I

(

1 + (N − 1) (1 + k 2)−1
)

N

N
∑

n=1

Ĥn (t ). (C43)

The price responds instantaneously to innovations in each trader’s private information

and private value reflected in variables Ĥn (t ) ≔ Ĥ I
n (t ) + k H J

n (t ), so that the average of

all signals is immediately revealed. This occurs despite the fact that, to reduce trading

costs resulting from adverse selection, each trader intentionally slows down his trading

to reduce other traders’ estimates of the magnitude of his private signal. Note also that

equation (C41) does not have a price-dampening multiplier CG < 1, unlike the model

with disagreement.

Another difference from the model with disagreement is that the total precision τ in

the information flow depends on the factor k , which is endogenously derived in equa-

tion (C71).

Mathematical intuition and numerical calculations (as discussed below) suggest that

the existence condition for the continuous-time model is the following.

Conjecture 2. Existence Condition. An equilibrium with trade exists if and only if

k 2 >
N

N − 2
, (C44)

Equation (C44) implies that the existence condition is 1 + k 2 > 2 + 2
N−2 , which is

equivalent to the existence condition τ
1/2
H /τ

1/2
L > 2 + 2

N−2 in (38) in our smooth trading

model with disagreement. It is worth emphasizing that the weight k on private benefits

in signals inferred from prices is endogenously determined in the model with private

values, whereas τ1/2
H /τ

1/2
L is the ratio of exogenously specified parameters in the model

with disagreement. It can be shown that k is approximately proportional to the coeffi-

cient on private benefits πJ , when πJ is large, as illustrated numerically in Figure C–1.

When the private benefit of holding the risky asset is larger, all traders trade on it more

intensely, this reduces the precision of other traders’ information inferred from prices,

and the total information revealed in prices (C9) becomes smaller (because k increases).

The existence condition can be expressed in terms of exogenous parameters. Re-

placing k with the exogenous parameter πJ , it follows that an equilibrium with trade

exists if and only if

πJ >
N 1/2 σG Ω1/2 τ

1/2
I

(N − 2)1/2 (r + αD )

(

1 +
τ

r + αG

)

, (C45)
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where

Ω =
σ2

D

2σ2
G

*.,−
(

2αG +
N

2
τI

)

+
*,
(

2αG +
N

2
τI

)2

+

4σ2
G

σ2
D

+-
1/2+/- . (C46)

Although we have not been able to prove analytically the conditions under which

equilibrium exists, extensive numerical analysis supports the following intuitive argu-

ment. We expect equilibrium with trade to exist only if traders put enough weight on

their private values. If πJ is very large (and thus k is very large), an equilibrium should

exist. As πJ falls toward some critical value, the parameter γP —which measures the liq-

uidity of the market—should fall to a value close to zero, the equilibrium should involve

very little trade, and the value function should resemble a no-trade equilibrium. The

value of k such that γP = 0 defines a critical value k ∗ such that equilibrium exists if and

only if k > k ∗.

This intuitive argument leads to a mathematically precise existence condition de-

rived from the five equations in five unknowns (C65)–(C69) in Appendix C.10. This

equilibrium is derived by plugging γP = 0, representing the case with no market liq-

uidity, into these equations. With γP = 0, it is clear that ψnn = 0 solves the last equa-

tion (C69), consistent with the intuition that private information has no value if there

is no market liquidity. It is also straightforward to show that a solution to the first four

equations (C65)–(C68) requires the critical value k ∗ to satisfy 1+ (k ∗)2
= 2+2/(N −2). We

therefore conjecture that an equilibrium with trade, consistent with Theorem 7, exists if

and only if condition (C44) holds.

Our extensive examination of numerical solutions to the five equations (C65)–(C69)

supports this conjecture. We have found that precisely one solution with downward-

sloping demand schedules (γP > 0) is discovered when the existence condition (C44) is

satisfied. Although k requires a numerical solution of (C71), as shown in Appendix C.10,
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we can solve for ψs n , ψSS , ψnn , and γP as closed-form functions of k . For the limiting case

πJ → ∞, we can also obtain a closed-form solution for all the endogenous parameters.

Appendix C.7 Comparative Statics Results.

Similarly to the smooth trading model with disagreement, temporary and permanent

price impacts can be defined as

λ =
γS

(N − 1) γp

, κ ≔
1

(N − 1) γp

. (C47)

In this section, we analyze numerically how the number of traders and the weight

on private values affect the speed of trading γS , the expected size of target inventories

E{|ST I
n (t ) |}, and temporary and permanent price impact.
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Figure C–2: The values of γS , E{|ST I
n (t ) |}, 1/λ and 1/κ as functions of ln(N ).

Figure C–2 shows that the speed of inventory adjustment γS increases with the num-

ber of traders N . Intuitively, each trader believes that the risk-bearing capacity of the

market in aggregate increases, so that it becomes less costly for traders to trade aggres-

sively toward their target inventories. The expected size of target inventories E{|ST I
n (t ) |}
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increases with N . Both temporary and permanent price impact λ and κ decrease as the

number of traders N increases.16
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Figure C–3: The values of γS , E{|ST I
n (t ) |}, 1/λS and 1/κ as functions of (1 + k 2)2.

Figure C–3 shows that both the speed of inventory adjustment γS and the expected

size of target inventories E{|ST I
n (t ) |} increase with (1+k 2)2. Intuitively, it is less costly for

traders to trade aggressively towards their target inventories when traders trade more on

their private values. Note that the weight k on private benefits in signals inferred from

prices is endogenously determined and (1 + k 2)2 corresponds to τH /τL in our smooth

trading model with disagreement.17 These comparative statics results are similar to

those in our smooth trading model with disagreement.

Similarly to Theorem 4 for the smooth trading model with disagreement, we also

show analytically that the following comparative statics results about risk aversion hold

for the model with private values. If risk aversion A is scaled by a factor of F to A/F , then

CL changes to CL F , λ changes to λ/F , κ changes to κ/F , ST I
n (t ) changes to ST I

n (t ) F , but γS

16Numerical calculations in Figure C–2 are based on exogenous parameter values τI = 0.1, r = 0.01,
A = 1, αD = 0.1, αG = 0.02, σD = 0.5, σG = 0.1, N = 100, and π J = 100.

17We fix total precision τ while varying k by increasing exogenous parameter π J . Other parameter values
used in Figure C–3 are τ = 2, r = 0.01, A = 1, αD = 0.1, αG = 0.02, σD = 0.5, σG = 0.1, and N = 100.
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remains the same.

Appendix C.8 Conclusion

We describe a symmetric continuous-time model of trading among oligopolistic in-

formed traders with asymmetric information and private values. This framework is

tractable, and we obtain an “almost-closed-form” solution. We show that, with enough

weight on the private value, an equilibrium exists in which prices immediately reveal

the average of all traders’ private signals (defined as the sum of fundamental signals and

private values multiplied by an endogenous factor k ), but traders continue to trade grad-

ually toward target inventories. In contrast to the model with overconfidence, prices do

not reflect a “Keynesian beauty contest.”

Appendix C.9 Proof of Lemma 2

Applying the Stratonovich–Kalman–Bucy filter to the filtering problem summarized by

equation (C2) for signals and by equations (C3) and (C4) for observations, we find that

the filtering estimate is defined by the Itô differential equation

dG (t ) = −αG G (t ) dt + σG Ω
1/2

{
τ

1/2
0

(

dI0(t ) −G (t )
τ

1/2
0

σG Ω1/2
dt

)

(C48)

+τ
1/2
I

(

dIn (t ) −G (t )
τ

1/2
I

σG Ω1/2
dt

)

+

τ
1/2
I

1 + k 2

N
∑

m=1
m,n

(

dIm (t ) −G (t )
τ

1/2
I

σG Ω1/2
dt + k dB J m

)}
.

The mean-square filtering error of the estimate G (t ), denoted σ2
G
Ω(t ), is defined by the

Riccati differential equation

σ2
G

dΩ(t )
dt

= −2αG σ2
G Ω(t ) + σ2

G − σ
2
G Ω(t )

(

τ0 + τI +
τI

1 + k 2

)

. (C49)

Rearranging terms in the first equation yields equation (C11). Using the steady-state

assumption that dΩ/dt = 0 and solving the second equation for the steady state value

Ω = Ω(t ) yields equation (C10).
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Appendix C.10 Proof of Theorem 7

Suppressing a subscript n for notational simplicity, the HJB equation corresponding to

the conjectured value function V (Mn, Sn, D, Ĥn, Ĥ−n ) in equation (C27) is

(C50)

0 = max
cn,xn

{

U (cn ) − ρV +
∂V

∂Mn

(r Mn + Sn (D + πJ H J
n ) − cn − P (xn ) xn ) +

∂V

∂Sn

xn

}

+

∂V

∂D

(

−αDD + σG Ω
1/2τ

1/2
I

(

Ĥ I
n + (N − 1)/(1 + k 2) Ĥ−n

))

+

∂V

∂Ĥn

(

−(αG + τ)Ĥn (t ) + (τ1/2
I + âτ

1/2
0 ) τ1/2

I (Ĥ I
n + (N − 1)/(1 + k 2) Ĥ−n )

)

+

∂V

∂Ĥ−n

(

−(αG + τ)Ĥ−n (t ) + (τ1/2
I + âτ

1/2
0 ) τ1/2

I (Ĥ I
n + (N − 1)/(1 + k 2) Ĥ−n )

)

+
1
2

∂2V

∂D2
σ2

D +
1
2

∂2V

∂Ĥ 2
n

(

1 + â2
+ k 2

)

+
1
2

∂2V

∂Ĥ 2
−n

(

1

N − 1
(1 + k 2) + â2

)

+

(

∂2V

∂D∂Ĥn

+

∂2V

∂D∂Ĥ−n

)

â σD +
∂2V

∂Ĥn∂Ĥ−n

â2.

For the specific quadratic specification of the value function in equation (C39), the

HJB equation becomes

(C51)

0 = min
cn,xn

{

−
e−Acn

V
− ρ + ψM (r Mn + Sn (D + πJ H J

n ) − cn − P (xn ) xn )

+ (ψSS Sn + ψSD D + ψSnĤn + ψSx Ĥ−n ) xn

}
+ψSD Sn

(

−αDD + σG Ω
1/2τ

1/2
I

(

Ĥ I
n + (N − 1)/(1 + k 2) Ĥ−n

))

+

(

ψSnSn + ψnn (Ĥn − Ĥ−n )
)

·
(

−(αG + τ)Ĥn (t ) + (τ1/2
I + âτ

1/2
0 ) τ1/2

I (Ĥ I
n + (N − 1)/(1 + k 2) Ĥ−n )

)

+

(

ψSx Sn + ψnn (Ĥ−n − Ĥn )
)

·
(

−(αG + τ)Ĥ−n (t ) + (τ1/2
I + âτ

1/2
0 ) τ1/2

I (Ĥ I
n + (N − 1)/(1 + k 2) Ĥ−n )

)

+
1
2ψ

2
SD S2

nσ
2
D +

1
2

(

(ψSn Sn + ψnn (Ĥn − Ĥ−n ))2
+ ψnn

) (

1 + â2
+ k 2

)

+
1
2

(

(ψSx Sn + ψnn (Ĥ−n − Ĥn ))2
+ ψnn

)

(

1

N − 1
(1 + k 2) + â2

)

+(ψSn + ψSx ) Sn ψSD Sn â σD

+

((

ψSnSn + ψnn (Ĥn − Ĥ−n )
) (

ψSx Sn + ψnn (Ĥ−n − Ĥn )
)

− ψnn

)

â2.
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The solution for optimal consumption is

c ∗n (t ) = −
1

A
log

(ψM V (t )
A

)

. (C52)

In the HJB equation (C51), the price P (xn ) is linear in xn based on equation (C38).

Plugging P (xn ) from equation (C38) into the HJB equation (C51) yields a quadratic func-

tion of xn , which captures the effect of trader n’s trading rate xn on prices. Because the

exponent of the conjectured value function is a quadratic function of the state variables,

the optimal trading strategy is a linear function of the state variables given by

x∗n (t ) = (N−1)γP

2ψM

[(
ψSD −

ψM γD

γP

)

D (t ) +
(

ψSS −
ψM γS

(N−1)γP

)

Sn (t ) (C53)

+ ψSn Ĥn (t ) +
(

ψSx −
ψM γH

γP

)

Ĥ−n (t )
]
.

The derivation of this optimal trading strategy assumes that trader n observes the

values of D (t ), Sn (t ), Ĥn (t ), and Ĥ−n (t ). Although trader n does not actually observe

Ĥ−n (t ), he can implement the optimal quantity x∗n (t ) by submitting an appropriate linear

demand schedule. We can think of this demand schedule as a linear function of P (t )

whose intercept is a linear function of D (t ), Sn (t ), and Ĥn (t ). Trader n can infer from the

market-clearing condition (C37) that Ĥ−n is given by

Ĥ−n (t ) =
γP

γH

(

P (t ) −D (t )
γD

γP

)

−
1

(N − 1)γH

x∗n (t ) −
γS

(N − 1)γH

Sn (t ). (C54)

Plugging equation (C54) into equation (C53) and solving for x∗n (t ) implements the opti-

mal trading strategy x∗n (t ) as a linear demand schedule which depends on the price P (t )

and state variables Ĥn , Sn (t ), and D (t ), which the trader directly observes. This schedule

is given by

x∗n (t ) =
(N − 1)γP

ψM

(

1 +
ψSx

ψM

γP

γH

)−1

(C55)

·

[(
ψSD − ψSx

γD

γH

)

D (t ) +

(

ψSS − ψSx

γS

(N − 1)γH

)

Sn (t )

+ ψSn Ĥn (t ) +

(

ψSx

γP

γH

− ψM

)

P (t )

]
.

Symmetry requires that this demand schedule be the same as the demand schedule

conjectured for the N − 1 other traders. Equating the coefficients of D (t ), Ĥn (t ), Sn (t ),

and P (t ) in equation (C55) to the conjectured coefficients γD , γH , −γS , and −γP results
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in the following four restrictions that the values of the γ-parameters and ψ-parameters

must satisfy in a symmetric equilibrium with linear trading strategies:

(N − 1)γP

ψM

(

1 +
ψSx

ψM

γP

γH

)−1 (

ψSD − ψSx

γD

γH

)

= γD, (C56)

(N − 1)γP

ψM

(

1 +
ψSx

ψM

γP

γH

)−1

ψSn = γH , (C57)

(N − 1)γP

ψM

(

1 +
ψSx

ψM

γP

γH

)−1 (

ψSS − ψSx

γS

(N − 1)γH

)

= −γS, (C58)

(N − 1)γP

ψM

(

1 +
ψSx

ψM

γP

γH

)−1 (

ψSx

γP

γH

− ψM

)

= −γP . (C59)

Solving this system, we obtain four equations in terms of the four unknowns ψSx , γH ,

γS , and γD . The solution is

ψSx =
N − 2

2
ψSn, γH =

N γP

2ψM

ψSn, γS = −
(N − 1)γP

ψM

ψSS, γD =
γP

ψM

ψSD . (C60)

Plugging the last equation into equation (C53) implies that traders will not trade on pub-

lic information. It is intuitively obvious that traders cannot trade on the basis of the

public information D (t ) because all traders would want to trade in the same direction.

Substituting equation (C60) into equation (C53) yields the solution for optimal strategy.

x∗n (t ) = γS

(

CL (Ĥn (t ) − Ĥ−n (t )) − Sn (t )
)

. (C61)

The four equations for the γ-parameters do not determine γP as a function of the

nine ψ-parameters. Instead, the solution to the four γ-equations implies a restriction

on the ψ-parameters which must hold in a steady-state equilibrium.

Plug (C52) and (C53) back into the Bellman equation and set the constant term and

the coefficients of Mn , Sn D, S2
n , Sn Ĥn , Sn Ĥ−n , and (Ĥn − Ĥ−n )2 to zero. In addition, set

the coefficient of Sn H J
n equal to the coefficient of Sn Ĥ I

n (which multiplies k ) so that the

value function only depends on Ĥ I
n and H J

n through state variable Ĥn . There are in total

eight equations in eight unknowns γP , ψ0, ψM , ψSD , ψSS , ψSn , ψnn , and k .

Setting the constant term, coefficient of M , and coefficient of SD to be zero yields

ψM = −r A, (C62)

ψSD = −
r A

r + αD

, (C63)
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ψ0 = 1 − log(r ) +
1

r

(

−ρ + 1
2

N

N − 1
(1 + k 2) ψnn

)

. (C64)

In addition, combining Sn Ĥ I
n with Sn H J

n and setting the coefficients of S2
n , Sn Ĥn ,

Sn Ĥ−n , and (Ĥn − Ĥ−n )2 to zero yields five polynomial equations in the five unknowns

γP , ψSS , ψSn , ψnn , and k . These five equations in five unknowns can be written

S2
n : (C65)

0 = −1
2rψSS −

γP (N − 1)
r A

ψ2
SS +

r 2A2σ2
D

2(r + αD )2
+

1
2 (1 + â2

+ k 2)ψ2
Sn

+
1
2

(

1 + k 2

N − 1
+ â2

)

(N − 2)2

4
ψ2

Sn −
r A

r + αD

âσD

N

2
ψSn + â2 N − 2

2
ψ2

Sn,

SnH I
n, SnH J

n : (C66)

0 = −(r + αG + τ)ψSn −
γP (N − 1)

r A
ψSSψSn −

r AπJ

k
+

N (1 + k 2)
2(N − 1)

ψnnψSn,

SnĤn : (C67)

0 = −(r + αG + τ)ψSn −
γP (N − 1)

r A
ψSSψSn −

r A

r + αD

σG Ω
1/2τ

1/2
I

+

N

2
(τ1/2

I + âτ
1/2
0 )τ1/2

I ψSn + (1 + k 2)
N

2(N − 1)
ψnnψSn,

SnĤ−n : (C68)

0 = −(r + αG + τ)
N − 2

2
ψSn +

γP (N − 1)
r A

ψSSψSn −
N (1 + k 2)
2(N − 1)

ψSnψnn

−
r A

r + αD

σG Ω
1/2(N − 1)

τ
1/2
I

(1 + k 2)
+

N

2
(τ1/2

I + âτ
1/2
0 )τ1/2

I

N − 1

1 + k 2
ψSn,

(Ĥn − Ĥ−n )2 : (C69)

0 = −(
r

2
+ αG + τ)ψnn −

γP (N − 1)
4r A

ψ2
Sn +

1 + k 2

2

N

N − 1
ψ2

nn .

We describe next how to solve the system (C65) and (C69). Equations (C67) and (C68)
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imply

ψSn = −
2r A σG Ω1/2 τ

1/2
I (1 + (N − 1) (1 + k 2)−1)

N (r + αD ) (r + αG )
. (C70)

Equations (C66) and (C67) imply that the constant k is given by

k =
(r + αD ) πJ

σG Ω1/2 τ
1/2
I

(

1 + τ
r+αG

) . (C71)

Since Ω is a function of τ from equation (C10), in which τ0 ≔ Ωσ2
G
/σ2

D itself is a function

of equation(C4)), and τ is a function of k 2 from equation (C9), equation (C71) can be

expressed as an equation in k 2 and exogenous parameters only. Defining

f (k 2) ≔
(

4
(

k 2
+ 1

)2
σ2

D

(

α2
Gσ

2
D + σ

2
G

)

+ 4αG

(

k 2
+ 1

)

σ4
DτI

(

k 2
+ N

)

+ σ4
Dτ

2
I

(

k 2
+ N

)2
)1/2

,

(C72)

then equation (C71) becomes

2π2
J (αD + r )2(αG + r )2

(

k 2
+ 1

)

σ2
D

(

f (k 2) + σ2
D

(

2αG

(

k 2
+ 1

)

+ τI

(

k 2
+ N

)))

−k 2σ2
G τI

(

f (k 2) + σ2
D

(

τI

(

k 2
+ N

)

+ 2
(

k 2
+ 1

)

r
))2
= 0.

(C73)

This equation can be reduced to an eighth-degree polynomial in k 2, which can be solved

numerically for k 2.

From (C66), solve for ψSS as a function of γP and ψnn to obtain

ψSS =
r A

γP (N − 1)

(

N (1 + k 2) ψnn

2(N − 1)
− (r + αG + τ)

(

1 −
N (1 + k 2)

2(N + k 2)

))

. (C74)

From (C69), solve for γP as a function of ψnn to obtain

γP =
N 2 (r + αD )2 (r + αG )2

(N − 1) r A σ2
G
Ω τI (1 + N−1

1+k 2 )2

(

N

N − 1

1 + k 2

2
ψ2

nn − ( 1
2r + αG + τ) ψnn

)

. (C75)

Then substitute both γP and ψnn into (C65) to obtain a quadratic equation for ψnn . This

equation has two real roots. Take the negative root, which implies private signals have

positive value, to obtain

ψnn =
−b − (b2 − 4ac )1/2

2a
, (C76)
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where

a ≔
*.,

1
2σ

2
D +

â σD σG Ω1/2 τ
1/2
I (1 + N−1

1+k 2 )

r + αG

+/-
N 3(r + αG )2(1 + k 2)

2(N − 1) σ2
G
Ω τI (1 + N−1

1+k 2 )2

+

N 2 (1 + k 2) (1 + k 2
+ N â2)

4 (N − 1)
,

(C77)

b ≔
*.,

1
2σ

2
D +

â σD σG Ω1/2 τ
1/2
I (1 + N−1

1+k 2 )

r + αG

+/-
N 2 (r + αG )2 ( 1

2r + αG + τ)

σ2
G
Ω τI (1 + N−1

1+k 2 )2

−
N 2 (1 + k 2

+ (N − 1) â2)
2 (N − 1)

( 1
2r + αG + τ) −

r N (1 + k 2)
4 (N − 1)

+

N (1 + k 2) (r + αG + τ)
N − 1

N + (2 − N ) k 2

2 (N + k 2)
,

(C78)

c ≔ 1
2r (r + αG + τ)

N + (2 − N ) k 2

2 (N + k 2)
− (r + αG + τ)2 (N + (2 − N ) k 2)2

4 (N + k 2)2
. (C79)

Substituting ψnn into (C74) and (C75) yields solutions for γP and ψSS .

To summarize, even though k is determined numerically from equation (C71), since

the total precision τ itself in that equation depends on k , other unknowns can be writ-

ten as explicit functions of k . When πJ and thus k are very large, k is approximately

proportional to πJ , with

k ≈
r + αD

σG Ω1/2τ
1/2
I (1 + τ0+τI

r+αG
)
πJ ; (C80)

this gives a closed-form solution when πJ → ∞.

The transversality condition is equivalent to r > 0: The HJB equation and equa-

tions (C65)–(C69) imply

En
t

{
dV

(

Mn (t ), Sn (t ), D (t ), Ĥn (t ), Ĥ−n (t )
)}
= (C81)

−(r − ρ) V
(

Mn (t ), Sn (t ), D (t ), Ĥn (t ), Ĥ−n (t )
)

dt .

This yields

En
t

{
e−ρ(T −t )V

(

Mn (T ), Sn (T ), D (T ), Ĥn (T ), Ĥ−n (T )
)}
= (C82)

e−r (T −t ) V
(

Mn (t ), Sn (t ), D (t ), Ĥn (t ), Ĥ−n (t )
)

,

which implies that the transversality condition (C35) is indeed satisfied if r > 0.
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