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MARKET MICROSTRUCTURE INVARIANCE:
EMPIRICAL HYPOTHESES

BY ALBERT S. KYLE AND ANNA A. OBIZHAEVA1

Using the intuition that financial markets transfer risks in business time, “market mi-
crostructure invariance” is defined as the hypotheses that the distributions of risk trans-
fers (“bets”) and transaction costs are constant across assets when measured per unit of
business time. The invariance hypotheses imply that bet size and transaction costs have
specific, empirically testable relationships to observable dollar volume and volatility.
Portfolio transitions can be viewed as natural experiments for measuring transaction
costs, and individual orders can be treated as proxies for bets. Empirical tests based on
a data set of 400,000+ portfolio transition orders support the invariance hypotheses.
The constants calibrated from structural estimation imply specific predictions for the
arrival rate of bets (“market velocity”), the distribution of bet sizes, and transaction
costs.

KEYWORDS: Market microstructure, liquidity, bid-ask spread, market impact, trans-
action costs, order size, invariance, structural estimation.

0. INTRODUCTION

THIS PAPER PROPOSES AND TESTS TWO EMPIRICAL HYPOTHESES that we call
“market microstructure invariance.” When portfolio managers trade financial
assets, they can be modeled as playing trading games in which risks are trans-
ferred. Market microstructure invariance begins with the intuition that these
risk transfers, which we call “bets,” take place in business time. The rate at
which business time passes—“market velocity”—is the rate at which new bets
arrive into the market. For actively traded assets, business time passes quickly;
for inactively traded assets, business time passes slowly. Market microstruc-
ture characteristics—such as bet size, market impact, and bid-spreads—vary
across assets and across time. Market microstructure invariance hypothesizes

1We are grateful to Elena Asparouhova, Peter Bossaerts, Xavier Gabaix, Lawrence Glosten,
Larry Harris, Pankaj Jain, Mark Loewenstein, Natalie Popovic, Sergey N. Smirnov, Georgios
Skoulakis, Vish Viswanathan, and Wenyuan Xu for helpful comments. Obizhaeva is also grateful
to the Paul Woolley Center at the London School of Economics for its hospitality as well as
Simon Myrgren, Sébastien Page, and especially Mark Kritzman for their help. Kyle has worked
as a consultant for various companies, exchanges, and government agencies. He is a non-executive
director of a U.S.-based asset management company.
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scribed in Kyle and Obizhaeva (2016b). The previous paper was a revised version of an earlier
manuscript (June 7, 2013) which combined and superseded two earlier papers: the theoretical pa-
per “Market Microstructure Invariants: Theory and Implications of Calibration” (December 12,
2011) and the empirical paper “Market Microstructure Invariants: Empirical Evidence From
Portfolio Transitions” (December 12, 2011). These two papers superseded an older combined
manuscript “Market Microstructure Invariants” (May 8, 2011).
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that these microstructure characteristics become constants—“microstructure
invariants”—when viewed in business time.

Section 1 formulates two invariance principles as empirical hypotheses, con-
jectured to apply for all assets and across time.

• Invariance of Bets: The distribution of the dollar risk transferred by a bet
is the same when the dollar risk is measured in units of business time.

• Invariance of Transactions Costs: The expected dollar transaction cost of
executing a bet is the same function of the size of the bet when the bet’s size is
measured as the dollar risk it transfers in units of business time.
When business time is converted to calendar time, these invariance hypotheses
imply specific empirical restrictions relating market microstructure character-
istics to volume and volatility.

The implications of the first invariance hypothesis can be described using
the concept of “trading activity,” defined as the product of dollar volume and
returns volatility. Invariance implies that the number of bets per calendar day
is proportional to the two-thirds power of trading activity. Average bet size,
expressed as a fraction of trading volume, is inversely proportional to the two-
thirds power of trading activity; otherwise, the shape of the distribution of bet
size is the same across assets and time.

The implications of the second invariance hypothesis can be described using
a measure of illiquidity defined as the cube root of the ratio of returns vari-
ance to dollar volume. Invariance implies that the percentage bid-ask spread
is proportional to this measure of illiquidity. Percentage transaction costs are
proportional to the product of this asset-specific illiquidity measure and some
invariant function of bet size, scaled by volume in business time to convert bet
size into invariant dollar risk transfer. Invariance does not restrict the shape of
this function; it can be consistent with either linear or square-root models of
price impact.

Section 2 shows how invariance can be used to impose testable restrictions
on transaction-cost models described in the theoretical market microstructure.
For example, the model of Kyle (1985) implies that market depth is propor-
tional to the standard deviation of order imbalances. Order imbalances are
not directly observable in transactions data. By imposing restrictions on the
size and number of bets—which determine the composition of the order flow—
invariance shows how to infer the standard deviation of order imbalances from
volume and volatility and thereby make correct empirical predictions.

Section 3 describes the portfolio transitions data used to test invariance re-
lationships concerning bet sizes and transaction costs. The data set consists of
more than 400,000 portfolio transition orders executed over the period 2001
through 2005 by a leading vendor of portfolio transition services. In portfolio
transitions, institutional fund sponsors hire a third party to execute the orders
necessary to transfer funds from legacy portfolio managers to new managers
in order to replace fund managers, change asset allocations, or accommodate
cash inflows and outflows. Portfolio transitions provide a good natural experi-
ment for identifying bets and measuring transaction costs.
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Section 4 examines whether bet sizes are consistent with the invariance-of-
bets hypothesis under the identifying assumption that portfolio transition or-
ders are proportional to bets. When scaled as suggested by invariance, the dis-
tributions of portfolio transition orders are indeed similar across volume and
volatility groups. Regression analysis also confirms this finding.

Moreover, this distribution is well-described by a log-normal with estimated
log-variance of 2�53 (Figure 2). The bimodal distribution of signed order size
(obtained by multiplying the size of sell orders by −1) has much more kurto-
sis than the normal distribution often assumed for analytical convenience in
the theoretical literature. The fat tails of the estimated log-normal distribution
suggest that very large bets represent a significant fraction of trading volume
and an even more significant fraction of returns variance. Kyle and Obizhaeva
(2016a) investigated the idea that execution of large stock market bets may
trigger stock market crashes.

Section 5 uses implementation shortfall to examine whether transaction
costs are consistent with the invariance hypotheses. Even though our statis-
tical tests usually reject the invariance hypothesis, the results are economically
close to those implied by invariance. Consistent with invariance, transaction-
cost functions can be closely approximated by the product of an asset-specific
illiquidity measure (proportional to the cube root of the ratio of returns vari-
ance to dollar volume) and an invariant function of bet size (Figure 4). Invari-
ance itself does not impose a particular form on the transaction-cost function.
Empirically, both a linear model and a square-root model explain transaction
costs well. A square-root model explains transaction costs for orders in the
90th to 99th percentiles better than a linear model; a linear model explains
transaction costs for the largest 1% of orders slightly better than the square-
root model. Quoted bid-ask spreads are also consistent with the predictions of
invariance.

Section 6 calibrates several deep parameters and shows how to extrapolate
them to obtain estimates for the distribution of bet size, the number of bets,
and transaction-cost functions. Given values of a tiny number of proportion-
ality constants, the invariance relationships allow microscopic features of the
market for a financial asset, such as number of bets and their size, to be in-
ferred from macroscopic market characteristics, such as dollar volume and re-
turns volatility.

The potential benefits of invariance hypotheses for empirical market mi-
crostructure are enormous. In the area of transaction-cost measurement, for
example, controlled experiments are costly and natural experiments, such as
portfolio transitions, are rare; even well-specified tests of transaction-cost
models tend to have low statistical power. Market microstructure invariance
defines parsimonious structural relationships leading to precise predictions
about how various microstructure characteristics, including transaction costs,
vary across time and assets with different dollar volume and returns volatil-
ity. These predictions can be tested with structural estimates of a handful of
parameters, pooling data from many different assets.
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Due to market frictions, we do not expect the empirical invariance hypothe-
ses to hold exactly across all assets and all times. The predictions of invariance
may hold most closely when tick size is small, market makers are competitive,
and transaction fees and taxes are minimal. If not, the invariance hypotheses
provide a benchmark from which the importance of these frictions can be com-
pared across markets.

This paper focuses on market microstructure invariance as two empirical
hypotheses. Kyle and Obizhaeva (2016b) developed an equilibrium structural
model in which these hypotheses are endogenous implications of a dynamic
equilibrium model of informed trading. The model derives invariance relation-
ships under the assumption that the effort required to generate one discrete
bet does not vary across assets and time.

The idea of using invariance principles in finance and economics, at least im-
plicitly, is not new. The theory of Modigliani and Miller (1958) is an example of
an invariance principle. The idea of measuring trading in financial markets in
business time or transaction time is not new either. The time-change literature
has a long history, beginning with Mandelbrot and Taylor (1967), who linked
business time to transactions, and Clark (1973), who linked business time to
volume. Allais (1956, 1966) are other early examples of models with time de-
formation. More recent papers include Hasbrouck (1999), Ané and Geman
(2000), Dufour and Engle (2000), Plerou, Gopikrishnan, Amaral, Gabaix, and
Stanley (2000), and Derman (2002). Some of these papers are based on the
idea that returns volatility is constant in transaction time. This is different from
the invariance hypothesis that the dollar risks transferred by bets have the same
probability distribution in bet time.

1. MARKET MICROSTRUCTURE INVARIANCE AS EMPIRICAL HYPOTHESES

Market microstructure characteristics such as order size, order arrival rate,
price impact, and bid-ask spread vary across assets and across time. We de-
fine “market microstructure invariance” as the empirical hypotheses that these
variations almost disappear when these characteristics are examined at an
asset-specific “business-time” scale which measures the rate at which risk trans-
fers take place.

Although the discussion below is mostly based on cross-sectional implica-
tions of invariance for equity markets for individual stocks, we believe that in-
variance hypotheses generalize to markets for commodities, bonds, currencies,
and aggregate indices such as exchange-traded funds and stock index futures
contracts. We also believe that invariance hypotheses generalize to time series.
We will thus use subscripts j for assets and t for time periods in what follows.

For simplicity, we assume that a bet transfers only idiosyncratic risk about
a single asset, not market risk. Modeling both idiosyncratic and market risks
simultaneously takes us beyond the scope of this paper.
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Bets and Business Time

In the market for an individual asset, institutional asset managers buy and
sell shares to implement bets. Our concept of a “bet” is new. We think of a
bet as a decision to acquire a long-term position of a specific size, distributed
approximately independently from other such decisions. Intermediaries with
short-term trading strategies—market makers, high frequency traders, and
other arbitragers—clear markets by taking the other side of bets placed by
long-term traders.

Bets can be difficult for researchers to observe. Bets are neither orders nor
trades nor prints; bets are portfolio decisions which implement trading ideas;
they are similar to meta-orders. Consider an asset manager who places one bet
by purchasing 100,000 shares of IBM stock. The bet might be implemented by
placing orders over several days, and each of the orders might be shredded into
many small trades. To implement a bet, the trader might place a sequence of
orders to purchase 20,000 shares of stock per day for five days in a row. Each
of these orders might be broken into smaller pieces for execution. For exam-
ple, on day one, there may be trades of 2,000, 3,000, 5,000, and 10,000 shares
executed at different prices. Each of these smaller trades may show up in the
Trade and Quote (TAQ) database as multiple prints. Since the various individ-
ual orders, trades, and prints are positively correlated because they implement
a common bet, it would not be appropriate to think of them as independent
increments in the intended order flow; they are pieces of bets, not bets. To
recover the size of the original bet, all trades which implement the bet must
be added together. Thus, individual bets are almost impossible to reconstruct
from publicly disseminated records of time-stamped prices and quantities such
as those contained in TAQ data.

Bets result from new ideas, which can be shared. If an analyst’s recommen-
dation to buy a stock is followed by buy orders from multiple customers, all
of these orders are part of the same bet. For example, if an analyst issues a
buy recommendation to ten different customers and each of the customers
quickly places executable orders to buy 10,000 shares, it might be appro-
priate to think of the ten orders as one bet for 100,000 shares. Since the
ten purchases are all based on the same information, the ten individual or-
ders lack statistical independence. Conceptually, it is this independence prop-
erty of bets that allows us to link their arrival rate to the speed of business
time.

To fix ideas, assume that bets arrive randomly. Let γjt denote the expected
arrival rate of bets in asset j at time t; γjt is measured in bets per calendar day.
Suppose that a bet arrives at time t. Let Q̃jt denote a random variable whose
probability distribution represents the signed size of this bet; Q̃jt is measured
in shares (positive for buys, negative for sells) with E{Q̃jt} = 0. The expected
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bet arrival rate γjt measures market velocity, the rate at which business time
passes for a particular asset.2

The variables Q̃jt and γjt are usually difficult to observe. The invariance hy-
potheses help to link these variables to volume and volatility, which are easier
to observe. To set up this link, it is first useful to make two identifying assump-
tions. Strictly speaking, these assumptions are not necessary for developing the
intuition for invariance. Instead, they help to define issues for future empirical
work.

First, let Vjt denote trading volume, measured in shares per day. It consists
of bet volume reflecting the arrival of bets and intermediation volume reflect-
ing trades of intermediaries. Assume that, on average, each unit of bet volume
results in ζjt units of total volume, implying one unit of bet volume leads to
ζjt − 1 units of intermediation volume. If all trades are bets and there are no
intermediaries, then ζjt = 1, since each unit of trading volume matches a buy-
bet with a sell-bet. If a monopolistic specialist intermediates all bets without
involvement of other intermediaries, then ζjt = 2. If each bet is intermediated
by different market makers, each of whom lays off inventory by trading with
other market makers, then ζjt = 3. If positions are passed around among mul-
tiple intermediaries, then ζjt ≥ 4.

Define expected “bet volume” V̄jt as the share volume from bets, V̄jt :=
γjt · E{|Q̃jt |}. In terms of bet volume V̄jt and the volume multiplier ζjt , trad-
ing volume is equal to Vjt = ζjt/2 · V̄jt , where dividing by two implies that a
buy-bet matched to a sell-bet is counted as one unit of volume, not two units.
Bet volume V̄jt and trading volume Vjt therefore satisfy the relationship

V̄jt := γjt ·E
{|Q̃jt |

} = 2
ζjt

· Vjt�(1)

While bet volume V̄jt is not directly observed, the second equality in equa-
tion (1) shows how it can be inferred from trading volume Vjt if the volume
multiplier ζjt is known. In what follows, we make the identifying assumption,
consistent with Occam’s razor, that ζjt is constant across assets and time; thus,
for some constant ζ, we assume ζjt = ζ for all j and t.

Second, define returns volatility σjt as the percentage standard deviation of
an asset’s daily returns. Some price fluctuations result from the market impact
of bets while others result from release of information directly without trading,
such as overnight news announcements. Let ψ2

jt denote the fraction of returns
variance σ2

jt resulting from bet-related order imbalances. Define “bet volatil-
ity” σ̄jt as the standard deviation of returns resulting from the market impact

2Over long periods of time, the inventories of intermediaries are unlikely to grow in an un-
bounded manner; this requires bets to have small negative autocorrelation. Also, both the bet
arrival rate and the distribution of bet size change over longer periods of time as the level of
trading activity in an asset increases or decreases.
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of bets, not news announcements. Bet volatility σ̄jt and returns volatility σjt
satisfy

σ̄jt =ψjt · σjt�(2)

While bet volatility is not directly observed, it can be inferred from returns
volatility σjt using the volatility multiplier ψjt . Let Pjt denote the price of the
asset; then dollar bet volatility is Pjt · σ̄jt =ψjt ·Pjt ·σjt . To simplify the empirical
analysis below, we make the identifying assumption that ψjt is the same across
assets and time; thus, for some constant ψ, we assume ψjt =ψ for all j and t.

To illustrate, if ζ = 2 and ψ= 0�80, then for all assets and time periods, bets
are intermediated by a monopolist market maker, and bets generate 64 per-
cent of returns variance, whereas the remaining 36 percent of returns variance
comes from news announcements.

The assumptions that ζjt and ψjt are constants are important for testing the
predictions of market microstructure invariance empirically. These assump-
tions can be tested empirically. If ζjt and ψjt are correlated with Vjt and σjt ,
empirical estimates of parameters predicted by invariance may be biased. An
interesting alternative approach, which takes us beyond the scope of this pa-
per, is to examine these correlations empirically and then to make necessary
adjustments in tests of our invariance hypotheses.

The assumptions that ζjt and ψjt are constants are not important for under-
standing market microstructure invariance theoretically. To understand invari-
ance theoretically, it suffices to assume ζ = 2 and ψ= 1, in which case V̄jt = Vjt
and σ̄jt = σjt , so that the distinction between variables with and without bars
can be ignored.

Invariance of Bets

We call our first invariance hypothesis “invariance of bets.” Since business
time is linked to the expected arrival of bets γjt , returns volatility in one unit of
business time 1/γjt is equal to σ̄jt · γ−1/2

jt . A bet of dollar size Pjt · Q̃jt generates
a standard deviation of dollar mark-to-market gains or losses equal to Pjt ·
|Q̃jt | · σ̄jt · γ−1/2

jt in one unit of business time. The signed standard deviation
Pjt · Q̃jt · σ̄jt · γ−1/2

jt measures both the direction and the dollar size of the risk
transfer resulting from the bet.

The size of the bet can be measured as the dollar amount of risk it transfers
per unit of business time, which we denote Ĩjt and define by

Ĩjt := Pjt · Q̃jt · σ̄jt
γ1/2
jt

�(3)

Since the primary function of financial markets is to transfer risks, it is eco-
nomically more meaningful to measure the size of bets in terms of the dollar
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risks they transfer rather than the dollar value or number of shares transacted.
Indeed, transactions can be large in terms of shares traded but small in terms
of dollar amounts transacted, as in markets for low-priced stocks. Transactions
can also be large in dollar terms but small in terms of risks transferred, as in
the market for U.S. Treasury bills with low returns volatility. Furthermore, as
discussed next, we believe that empirical regularities in bet size and transaction
costs become more apparent when returns volatility is examined in business-
time units.

The variable Ĩjt in equation (3) is a good candidate for measuring the eco-
nomic content of bets because it is immune to splits and changes in leverage.
Indeed, a stock split which changes the number of shares does not change the
dollar size of a bet Pjt · Q̃jt , returns volatility σ̄jt , or the number of bets γjt in
equation (3). For example, a two-for-one stock split should theoretically dou-
ble the share volume of bets, but reduce by one-half the dollar value of each
share, without affecting dollar size of bets or returns volatility.

Also, a change in leverage does not change dollar volatility Pjt · σ̄jt , contract
size of a bet Q̃jt , or the number of bets γjt in equation (3). For example, if
a company levers up its equity by paying a debt-financed cash dividend equal
to fifty percent of the value of the equity, then the volatility of the remaining
equity, ex-dividend, should double, while the price should halve, thus keeping
dollar volatility constant. This is consistent with the intuition that each share of
leveraged stock still represents the same pro rata share of firm risk as a share
of un-leveraged stock.

HYPOTHESIS—Invariance of Bets: The distribution of the dollar risk trans-
ferred by a bet in units of business time is the same across asset j and time t, in the
sense that there exists a random variable Ĩ such that for any j and t,

Ĩjt
d= Ĩ�(4)

that is, the distribution of risk transfers Ĩjt is a market microstructure invariant.

This hypothesis implies that the distribution of bet sizes is such that for any
asset j and time t, bets in the same percentile transfer risks of the same size in
business time. It does not say that volatility in business time is constant.

Consider the following numerical example. Suppose that a 99th percentile
bet in stock A is for $10 million (e.g., 100,000 shares at $100 per share) while
a 99th percentile bet in stock B is for $1 million (e.g., 100,000 shares at $10
per share). The dollar sizes of these bets differ by a factor of 10. Since both
bets occupy the same percentile in the bet-size distribution for their respective
stocks, the invariance of bets implies that the realized value of Ĩjt is the same
in both cases. Even though stock A may be more actively traded than stock B,
its returns volatility per unit of business time must be lower by a factor of 10
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for the invariance hypothesis to hold. For example, if the stocks have the same
volatility in calendar time, say two percent per day, then the arrival rate of bets
for stock A must be 100 = 102 times greater than stock B.

We next derive the implications of this invariance hypothesis for observable
calendar-time measures of volume and volatility. By analogy with the definition
of Ĩjt , define “trading activity” Wjt as the product of expected dollar trading
volume Pjt · Vjt and calendar returns volatility σjt :

Wjt := σjt · Pjt · Vjt�(5)

Trading activity measures the aggregate dollar risk transferred by all bets dur-
ing one calendar day. Similarly, define “bet activity” W̄jt as the product of dol-
lar bet volume Pjt · V̄jt and bet volatility σ̄jt , that is, W̄jt := σ̄jt · Pjt · V̄jt .3 Given
values of the volume multiplier ζjt and the volatility multiplierψjt , more-easily-
observed trading activity Wjt can be converted into less-easily-observed bet ac-
tivity W̄jt using the relationship W̄jt =Wjt · 2ψjt/ζjt .

Bet activity W̄jt can be expressed as the product of an invariant constant and
a power of unobservable market velocity γjt :

W̄jt = σ̄jt · Pjt · γjt ·E
{|Q̃jt |

} = γ3/2
jt ·E{|Ĩjt |} = γ3/2

jt ·E{|Ĩ|}�(6)

In equation (6), the first equality follows from the definition of W̄jt and equa-
tion (1), the second equality follows from equation (3), and the third equality
follows from the invariance of bets (4). Invariance of bets therefore makes it
possible to infer market velocity γjt from the level of bet activity W̄jt , up to
some dollar proportionality constant E{|Ĩ|}, which—according the invariance
of bets—does not vary across assets j or times t.

Define ι := (E{|Ĩ|})−1/3; since Ĩ has an invariant probability distribution, ι
is a constant. Equation (6) makes it possible to express the unobservable bet
arrival rate γjt and the expected size of bets E{|Q̃jt|} in terms of the observable
variables Pjt , Vjt , and σjt (and Wjt):

γjt = W̄ 2/3
jt · ι2� E

{|Q̃jt |
} = W̄ 1/3

jt · 1
Pjt · σ̄jt · ι−2�(7)

The shape of the entire distribution of bet size Q̃jt can be obtained by plug-
ging γjt from equation (7) into equation (3). Traders often measure the size of
orders as a fraction of average daily volume. Similarly, expressing bet size Q̃jt

3In principle, we could distinguish between P̄jt and Pjt based on adjustments for transaction
fees, fee rebates, taxes, and tick size effects. To keep matters simple, we ignore these issues and
effectively assume P̄jt = Pjt .
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as a fraction of expected bet volume V̄jt yields the following prediction for the
distribution of bet sizes:

Q̃jt

V̄jt

d= W̄ −2/3
jt · Ĩ · ι�(8)

Equations (7) and (8) summarize the empirical implications of invariance for
the distribution of bet size Q̃jt and the arrival rate of bets γjt . We test these
implications in Section 4.

Equation (7) describes the implied composition of order flow. The specific
exponents 2/3 and 1/3 are very important. Equation (7) implies that if W̄jt in-
creases by one percent, then the arrival rate of bets γjt increases by 2/3 of one
percent and the distribution of bet size Q̃jt shifts upwards by 1/3 of one per-
cent. The exponents 1/3 and 2/3 have simple intuition. For example, suppose
the expected arrival rate of bets γjt speeds up by a factor of 4, but volatility
in calendar time σ̄jt does not change. Then volatility per unit of business time
σ̄ · γ−1/2

jt decreases by a factor of 2. The invariance hypothesis (4) therefore
requires bet size Q̃jt to increase by a factor of 2 to keep the distribution of Ĩjt
invariant. The resulting increase in volume by a factor of 8 = 43/2 can be de-
composed into an increase in the number of bets by a factor of 82/3 = 4 and an
increase in the size of bets by a factor of 81/3 = 2.

As bet activity increases, the number of bets increases twice as fast as their
size. This specific relationship between the number and size of bets lies at the
very heart of invariance. By suggesting a particular composition of order flow,
invariance links observable volume to unobservable order imbalances, which in
turn has further implications for transaction costs. Indeed, our next hypothesis
about transaction costs relies on the order flow having this specific composi-
tion.

Invariance of Transaction Costs

We call our second invariance hypothesis “invariance of transaction costs.”
The risk transferred per unit of business time by a bet of Q̃jt shares is measured
by Ĩjt = Pjt · Q̃jt · σ̄jt · γ−1/2

jt . Let CB�jt(Ĩjt) denote the expected dollar cost of
executing this bet.

HYPOTHESIS—Invariance of Transaction Costs: The dollar expected transac-
tion cost of executing a bet is the same function of the size of the bet when its size
is measured as the dollar risk it transfers in units of business time, in the sense that
there exists a function CB(I) such that for any j and t,

CB�jt(I)= CB(I)�(9)
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that is, the dollar transaction-cost function CB�jt(I) is a market microstructure
invariant.

This hypothesis implies that the dollar cost of executing bets of the same
percentile is the same across time and assets. Define the unconditional ex-
pected dollar cost C̄B�jt := E{CB�jt(Ĩjt)}. Invariance of transaction costs implies
C̄B�jt := E{CB(Ĩjt)}, and invariance of bets further implies C̄B�jt = C̄B for some
constant C̄B. The hypothesis says that the dollar costs, not the percentage costs,
are the same across time or across assets for orders in the same percentiles.

As in the previous example, suppose that a 99th percentile bet in stock A
is for $10 million while a 99th percentile bet in stock B is for $1 million (e.g.,
100,000 shares at $10 per share). While the dollar sizes of these bets are differ-
ent, their corresponding measures of dollar risk transfers are the same. Even
though the bet in stock A has 10 times the dollar value of the bet in stock B,
invariance of transaction costs implies that the expected cost of executing both
bets must be the same in dollars because both bets transfer the same amount
of risk per stock-specific unit of business time. Traders typically measure trans-
action costs in basis points, not dollars. Invariance of transaction costs implies
that the percentage transaction cost for stock B must be 10 times greater than
for stock A.

As discussed next, invariance of transaction costs places strong, empirical
testable restrictions on transaction-cost models.

Consider the implications for the percentage costs of executing bets. Let
Cjt(Q) denote the asset-specific expected cost of executing a bet of Q shares,
expressed as a fraction of the notional value of the bet |Pjt ·Q|:

Cjt(Q) := CB�jt(I)

|Pjt ·Q| � where I ≡ Pjt ·Q · σ̄jt
γ1/2
jt

�(10)

The notationsQ and I are two ways to refer to the same bet. The quantity I re-
scales the bet from share units into dollar units so that bets become comparable
across assets and time. Using equation (3), this percentage cost function can
be expressed as the product of two factors:

Cjt(Q)= C̄B�jt

E
{|Pjt · Q̃jt |

} · CB�jt(I)/C̄B�jt|I|/E{|Ĩjt |} �(11)

We next discuss these two factors separately in more detail.
The first factor on the right side of equation (11), denoted 1/Ljt , is the asset-

specific liquidity measure defined by

1
Ljt

:= C̄B�jt

E
{|Pjt · Q̃jt |

} �(12)
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It measures the dollar-volume-weighted expected percentage cost of execut-
ing a bet. For an asset manager who places many bets in the same asset, this
measure intuitively expresses the expected transaction cost as a fraction of the
dollar value traded. For example, if an asset manager executes $10 million at a
cost of 20 basis points, $5 million at a cost of 10 basis points, and $100 million
at a cost of 80 basis points, then the implied approximation for this measure of
illiquidity 1/Ljt is equal to 72 basis points (= (10 · 20 + 5 · 10 + 100 · 80)/115).

The second factor on the right side of equation (11), denoted f (I), is the
invariant average cost function defined as

f (I) := CB�jt(I)/C̄B�jt

|I|/E{|Ĩjt |} = CB(I)/C̄B

|I|/E{|Ĩ|} �(13)

The second equality follows directly from the invariance hypotheses. Thus, the
two invariance hypotheses imply that the function f (I), which does not require
subscripts j and t, describes the shape of transaction-cost functions in a manner
that does not vary across assets or across time.

Intuitively, the function f (I) is the ratio of CB(I) to |I| when both are ex-
pressed as multiples of the means of CB(Ĩ) and |Ĩ|, respectively. For exam-
ple, if I1 denotes a bet that is equal to an average unsigned bet of size E{|Ĩ|}
and its dollar cost is 1�20 times higher than the average dollar cost C̄B, then
f (I1) = 1�20. If I2 denotes a bet that is 5 times greater than an average un-
signed bet of size E{|Ĩ|} and its dollar cost is 10 times greater than the average
dollar cost C̄B, then f (I2)= 10/5 = 2.

To summarize, we obtain the following important decomposition of transac-
tion-cost functions:

THEOREM—Decomposition of Transaction-Cost Functions: The percentage
transaction cost Cjt(Q) of executing a bet of Q shares in asset j at time t is equal
to the product of the asset-specific illiquidity measure 1/Ljt and an invariant
transaction-cost function f (I),

Cjt(Q)= 1
Ljt

· f (I)� where I ≡ Pjt ·Q · σ̄jt
γ1/2
jt

�(14)

The decomposition (14) represents the strong restriction which invariance
hypotheses place on transaction-cost models. The percentage transaction-cost
function Cjt(Q) varies significantly across assets and time. When its argument
Q is converted into an equivalent risk-transfer I and its value is scaled with the
asset-specific illiquidity index 1/Ljt , then this function turns into an invariant
function f (I). As we discuss next, 1/Ljt is proportional to returns volatility in
business time.
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An Illiquidity Measure

It can be shown that the asset-specific illiquidity measure 1/Ljt , defined in
equation (12), is proportional to bet-induced returns volatility in business time.
Furthermore, it can be also conveniently expressed in terms of observable vol-
ume and volatility.

THEOREM—Illiquidity Index: The illiquidity index 1/Ljt for asset j and time
t satisfies

1
Ljt

= C̄B

E
{|Ĩ|} · σ̄jt

γ1/2
jt

= ι2C̄B · σ̄jt

W̄ 1/3
jt

=
(
ζψ2

2

)1/3

· ι2C̄B ·
(

σ2
jt

Pjt · Vjt
)1/3

�(15)

The first equality says that 1/Ljt is proportional to returns volatility in busi-
ness time σ̄jt ·γ−1/2

jt with invariant proportionality factor C̄B/E{|Ĩ|}. The second
equality expresses 1/Ljt in terms of bet activity W̄jt and bet volatility σ̄jt . The
third equality expresses 1/Ljt as the cube root of the asset-specific ratio of ob-
servable returns variance σ2

jt to observable dollar volume Pjt ·Vjt , multiplied by
an invariant proportionality factor.

In equation (15), the first equality follows from the definition of Ijt in equa-
tion (3). The second equality can be proved using equation (7) for γjt . The third
equality follows from the definition of W̄jt in equation (6), from equations (1)
and (2), and the identifying assumption ζjt = ζ and ψjt =ψ.

The right side of equation (15) is the asset-specific illiquidity index implied
by invariance. Since the volume multiplier ζ and the volatility multiplier ψ are
assumed not to vary across assets, the quantity Ljt ∝ [Pjt · Vjt/σ2

jt]1/3 becomes
a simple index of liquidity based on observable volume and volatility, with a
proportionality constant that does not vary with j and t.

The idea that liquidity is related to dollar volume per unit of returns variance
Pjt ·Vjt/σ2

jt is intuitive. Traders believe that transaction costs are high in markets
with low dollar volume and high volatility.

The cube root is necessary to make the illiquidity measure behave properly
when leverage changes. If a stock is levered up by a factor of 2, then Pjt halves
and σ2

jt increases by a factor of 4. Without the cube root, the ratio of returns
variance to dollar volume therefore increases by a factor of 8. If dollar risk
transfers do not change, then the dollar transaction cost should not change
either. This requires percentage transaction costs to double since the dollar
size of bets Pjt ·Qjt halves while the share size Qjt remains the same. Taking
a cube root changes the factor of 8 to 2, so that percentage transaction costs
double as required.

As discussed in the next section, the liquidity measure Ljt is an intuitive and
practical alternative to other measures of liquidity, such as Amihud (2002) and
Stambough and Pastor (2003). Its value can easily be calibrated from price and
volume data provided by the Center for Research in Security Prices (CRSP).



1358 A. S. KYLE AND A. A. OBIZHAEVA

The liquidity measure Ljt in equation (15) is also similar to the definition of
“market temperature” χ= σ̄jt ·γ1/2

jt in Derman (2002); substituting for γjt from
equation (7), we obtain χ= ι · [Pjt · V̄jt]1/3 · [σ̄jt]4/3 ∝Ljt · σ2

jt .
While 1/Ljt is defined as a measure of trading illiquidity, it may also be a

good measure of funding illiquidity as well. A reasonable measure of funding
liquidity is the reciprocal of a repo haircut that sufficiently protects a creditor
from losses if the creditor sells the collateral due to default by the borrower.
Such a haircut should be proportional to the volatility of the asset’s return
over the horizon during which defaulted collateral would be liquidated. As
suggested by invariance, this horizon should be proportional to business time
1/γjt , making volatility over the liquidation horizon proportional to σ̄jt · γ−1/2

jt ,
which as we showed earlier is itself proportional to 1/Ljt . Thus, invariance sug-
gests that both trading liquidity and funding liquidity are proportional to Ljt .

Transaction-Cost Models

When bet size is measured as a fraction of bet volume Q/V̄jt , the cost func-
tion Cjt(Q) can be also expressed conveniently in terms of bet activity W̄jt and
the invariant constants ι := (E{|Ĩ|})−1/3 and C̄B as

Cjt(Q)= σ̄jt · W̄ −1/3
jt · ι2C̄B · f

(
W̄ 2/3
jt

ι
· Q
V̄jt

)
�(16)

This can be proved using equation (14), the definition of 1/Ljt in equation (12),
the invariance of bets (7), the invariance of transaction costs (9), the defini-
tion of Ĩjt in equation (3), and the definition of γjt in equation (7). This is the
transaction-costs model implied by invariance. We test this specification empir-
ically in Section 5.

The two invariance hypotheses do not imply a specific functional form for
function f (I) in the transaction-cost model (16). In what follows, we focus
on two specific functional forms as benchmarks: linear price-impact costs and
square-root price-impact costs. Both are special cases of a more general power
function specification for f (I). The linear price-impact function is consistent
with price-impact models based on adverse selection, such as Kyle (1985). The
square-root price-impact function is consistent with empirical findings in the
econophysics literature, such as Gabaix, Gopikrishnan, Plerou, and Stanley
(2006), although these results are based on single trades rather than bets. Some
papers, including Almgren, Thum, Hauptmann, and Hong (2005), find an ex-
ponent closer to 0�60 than to the square-root exponent 0�50. For both func-
tional forms, we also include a proportional bid-ask spread cost component.

For the linear model, express f (Ĩ) as the sum of a bid-ask spread component
and a linear price-impact cost component, f (Ĩ) := (ι2C̄B)

−1 · κ0 + (ιC̄B)
−1 ·
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κI · |Ĩ|, where invariance implies that the bid-ask spread cost parameter κ0,
the market impact cost parameter κI , and the constants ι and C̄B do not vary
across assets. Since the specific coefficients ι2C̄B and ιC̄B in the specification
for f (Ĩ) are chosen to cancel out in a nice way, equation (14) implies that the
cost function Cjt(Q) has the simple form

Cjt(Q)= σ̄jt
(
κ0 · W̄ −1/3

jt + κI · W̄ 1/3
jt · |Q|

V̄jt

)
�(17)

When bet sizes are measured as a fraction of expected bet volume and transac-
tion costs are measured in basis points and further scaled in units of bet volatil-
ity σ̄jt , equation (17) says that bid-ask spread costs are proportional W̄ −1/3

jt and
market impact costs are proportional to W̄ 1/3

jt for a given fraction of bet vol-
ume.

For the square-root model, express f (Ĩ) as the sum of a bid-ask spread
component and a square-root function of |Ĩ|, obtaining f (Ĩ) := (ι2C̄B)

−1κ0 +
(ι3/2C̄B)

−1κI · |Ĩ|1/2, where invariance implies that κ0, κI , ι, and C̄B do not vary
across assets. The proportional cost function Cjt(Q) from (14) is then given by

Cjt(Q)= σ̄jt
(
κ0 · W̄ −1/3

jt + κI ·
∣∣∣∣ QV̄jt

∣∣∣∣
1/2)

�(18)

When transaction costs are measured in units of bet volatility σ̄jt , bid-ask
spread costs remain proportional to W̄ −1/3

jt , but the square-root model implies
that the bet activity coefficient W̄ 1/3

jt cancels out of the price-impact term. In-
deed, the square root is the only function for which invariance leads to the
empirical prediction that impact costs (measured in units of returns volatility)
depend only on bet size as a fraction of bet volume Q̃jt/V̄jt and not on any
other asset characteristics. If there are no bid-ask spread costs so that κ0 = 0,
then the square-root model implies the parsimonious transaction-cost function
Cjt(Q)= σ̄jt · κI · [|Q|/V̄jt]1/2.

Torre (1997) proposed a square-root model like specification (18) based on
empirical regularities observed by Loeb (1983). Practitioners sometimes refer
to it as “the Barra model.” Grinold and Kahn (1999) used an inventory risk
model to derive a square-root price-impact formula. Gabaix et al. (2006) for-
malized this approach under the assumptions that orders are executed as a
constant fraction of volume and liquidity providers have mean-variance utility
functions linear in expected wealth and its standard deviation (not variance).

To formalize our predictions about the bid-ask spread, let sjt denote the dol-
lar bid-ask spread. As shown earlier for intercepts in equation (17) or (18), the
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invariance hypotheses imply that the percentage spread sjt/Pjt is proportional
to σ̄jt · W̄ −1/3

jt :

sjt

Pjt
= κ0 · σ̄jt · W̄ −1/3

jt �(19)

For example, holding volatility constant, increasing trading activity by a factor
of 8 reduces the percentage bid-ask spread by a factor of 2. Equations (15)
and (19) above imply that the percentage bid-ask spread is proportional to
both the illiquidity measure 1/Ljt and to volatility in business time σ̄jt · γ−1/2

jt ,
with invariant constants of proportionality.

Numerical Example

The following numerical example illustrates the invariance hypotheses. Sup-
pose a stock has daily volume of $40 million and daily returns volatility of 2%.
Suppose there are approximately 100 bets per day and the mean size of a bet
is $400,000. A daily volatility of 2% implies a standard deviation of mark-to-
market dollar gains and losses equal to $8,000 per calendar day (2% times
$400,000) for the mean bet. Since business time passes at the rate bets arrive
into the market, 100 bets per day implies about 1 bet every 4 minutes; the busi-
ness clock therefore ticks once every 4 minutes. Over a 4-minute period, the
standard deviation of returns is 20 basis points (200/

√
100). Thus, the mean

bet has a standard deviation of risk transfer of $800 per unit of business time.
Invariance implies that the specific number $800 is constant across stocks

and across time. For example, if the arrival rate of bets increases by a factor
of 4, then the business clock ticks 4 times faster or once every minute, and the
standard deviation of returns per tick on that clock is reduced from 20 basis
points to 10 basis points (200/

√
400), keeping daily volatility constant. For the

standard deviation of mark-to-market dollar gains and losses on the mean bet
to remain constant at $800, invariance implies that the dollar size of the mean
bet must increase by a factor of 2 from $400,000 to $800,000. Thus, holding
volatility constant, the bet arrival rate increases by a factor of 4 and the size
of bets increases by a factor of 2. This implies that daily volume increases by a
factor of 8 from $40 million to $320 million. Holding volatility constant, the bet
arrival rate increases by a factor proportional to the 2/3 power of the factor by
which dollar volume changes, and the size of bets increases by the 1/3 power
of the factor by which dollar volume changes.

Invariance of transaction costs further says that the dollar cost of executing
a bet of a given size percentile is the same across different stocks. The dollar
costs of executing the mean bets is therefore the same constant across assets
and across time; suppose it is equal to $2,000. Then, doubling the dollar size of
the mean bet from $400,000 in the first stock to $800,000 in the second stock
decreases the cost of $2,000, measured in basis points, by a factor of 2 from 50
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basis points to 25 basis points. The percentage transaction cost of executing a
bet is therefore inversely proportional to the 1/3 power of the factor by which
dollar volume changes, holding volatility constant.

Similar arguments are valid for bets in different percentiles of the bet-size
distribution. Suppose, for example, that the standard deviation of mark-to-
market gains or losses on a 99th percentile bet is $10,000 per tick of business
time. Since the standard deviation of returns per tick of business time is equal
to 20 basis points in the first stock and 10 basis points in the second stock,
the size of such a 99th percentile bet is equal to $5 million in the first stock
and $10 million in the second stock; the 99th percentile bets differ in dollar
size by a factor of 2. Suppose the dollar costs of executing all 99th percentile
bets is equal to $50,000. This corresponds to a percentage cost of 100 basis
points in the first stock and 50 basis points in the second stock. The percentage
cost for the second stock is lower by a factor of 2; this difference is inversely
proportional to the 1/3 power of the factor by which dollar volume changes,
holding volatility constant. Similarly, the percentage bid-ask spread of the sec-
ond stock will be lower by a factor of 2 than the percentage bid-ask spread of
the first stock.

Discussion

Our invariance hypotheses have essential properties which potentially allow
them to be extended to more general settings.

First, invariance relationships are consistent with irrelevance of the units in
which time is measured. The values of I, CB�jt(I), f (I), and 1/Ljt—and there-
fore the economic content of the predictions of invariance—remain the same
regardless of whether researchers measure γjt , V̄jt , σ̄jt , and W̄jt using daily
weekly, monthly, or annual units of time. This is unlike some other models,
such as ARCH and GARCH.

Second, invariance relationships are based on the implicit assumption that
bets are executed at an endogenously determined natural speed that trades
off the benefits of faster execution against higher transaction costs. Invariance
does not rule out the possibility that unusually fast execution of a bet would
lead to execution costs higher than the costs implied by the functions CB�jt(I)
and f (I). For example, it is possible to consider more general invariant cost
functions CB�jt(I�T/γjt) and f (I�T/γjt) that depend not only on the size of
bets but also on execution horizons T converted from units of calendar time
into units of business time T/γjt .

Third, the values of invariants Ĩ andCB(I) are measured in dollars. Although
not considered in the current paper, invariance relationships can also be ap-
plied to an international context in which markets have different currencies or
different real exchange rates; they can also be applied across periods of time
when the price level is changing significantly. Invariance is consistent with the
idea that these nominal values Ĩ and CB(I) should be equal to the nominal cost
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of financial services calculated from the productivity-adjusted wages of finance
professionals in the local currency of the given market during the given time
period. Since wages are measured in dollars per day and productivity is mea-
sured in bets per day, the ratio of wages to productivity is measured in dollars
per bet, exactly the same units as Ĩ and CB(I). Like fundamental constants in
physics, dividing the invariants Ĩ andCB(I) by the ratio of wages to productivity
makes them dimensionless.

Fourth, it is possible to develop an equilibrium market microstructure model
that endogenously generates invariance hypotheses. Several modeling assump-
tions are essential. Trading volume results from bets placed by traders. Bets
induce price volatility, and long-term price impact of bets is linear in its size.
The effort required to generate one bet is the same across assets and time.
There are no barriers of entry into securities trading. Then, if for some reason
profit opportunities increase, more traders enter the market, the market be-
comes more liquid, prices become more accurate, profits per trader decrease,
and traders scale up sizes of their bets in order to break even and to continue
covering the costs of generating trading ideas. Trading volume increases due to
both an increase in the number of bets and an increase in their sizes. The order
flow has a specific “2/3 − 1/3” composition because bet sizes must be kept in-
versely proportional to returns volatility per unit of business time for the prof-
its of traders to remain constant across assets and time. Kyle and Obizhaeva
(2016b) discussed a model along these lines.

We model market microstructure using invariance in a manner similar to
the way modern physicists model turbulence. Kolmogorov (1941a) derived his
“two-thirds law” (or “five-thirds law”) for the energy distribution in a turbulent
fluid based on dimensional analysis and scaling.4 Our analysis is also similar
in spirit to inferring the size and number of molecules in a mole of gas from
measurable large-scale physical quantities.

2. MICROSTRUCTURE INVARIANCE IN THE CONTEXT OF THE MARKET
MICROSTRUCTURE LITERATURE

Market microstructure invariance builds a bridge from theoretical models
of market microstructure to empirical tests of those models. Theoretical mi-
crostructure models usually suggest measures of liquidity based on the idea
that order imbalances move prices. By scaling business time to be proportional
to the rate at which bets arrive, market microstructure invariance imposes
cross-sectional or time-series restrictions which make it easier to implement
liquidity measures based on order imbalances.

4We thank an anonymous referee and Sergey N. Smirnov for pointing out the connection to
Kolmogorov’s model of turbulence.
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Many theoretical models use game theory to model trading. These models
typically make specific assumptions about the risk aversion of traders, the con-
sistency of beliefs across traders, the flow of public and private information
which informed traders use to trade, the flow of orders from liquidity traders,
and auction mechanisms in the context of which market makers compete to
take the other sides of trades. Some models emphasize adverse selection, such
as Treynor (1995), Kyle (1985), Glosten and Milgrom (1985), and Back and
Baruch (2004); some models emphasize inventory dynamics, such Grossman
and Miller (1988) and Campbell and Kyle (1993); some models emphasize
both, such as Grossman and Stiglitz (1980) and Wang (1993).

While these theoretical models are all based on the idea that order imbal-
ances move prices (with particular parameters depending on specifics of each
model), it is difficult to infer precise empirical implications from these models.
Theoretical models usually provide neither a unified framework for mapping
the theoretical concept of an order imbalance into its empirical measurements
nor precise predictions concerning how price impact varies across different as-
sets.

Instead, researchers have taken an approach based on ad hoc empirical in-
tuition. For example, price changes can be regressed on imperfect empirical
proxies for order imbalances—for example, the difference between uptick and
downtick volume, popularized by Lee and Ready (1991)—to obtain market
impact coefficients, which can then be related to stock characteristics such
as market capitalization, trading volume, and volatility. Breen, Hodrick, and
Korajczyk (2002) is an example of this approach. A voluminous empirical lit-
erature describes how the rate at which orders arrive in calendar time, the
dollar size of orders, the market impact costs, and bid-ask spread costs vary
across different assets. For example, Brennan and Subrahmanyam (1998) es-
timated order size as a function of various stock characteristics. Hasbrouck
(2007) and Holden and Jacobsen (2014) provided surveys of this empirical lit-
erature.

In contrast to the existing literature, microstructure invariance generates
precise, empirically testable predictions about how the size of bets, arrival rate
of bets, market impact costs, and bid-ask spread costs vary across assets with
different levels of trading activity. These predictions are consistent with intu-
ition shared by many models. The unidentified parameters in theoretical mod-
els show up as invariant constants (e.g., E{|Ĩ|} and C̄B), which can be calibrated
from data.

In this sense, microstructure invariance is a modeling principle applicable
to different models, not a model itself. It complements theoretical models by
making it easier to test them empirically.
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Applying Invariance to the Model of Kyle (1985)

We use the continuous-time model of Kyle (1985) as an example to discuss
how invariance helps to map the theoretical predictions of a model of order
imbalances to data on volume and volatility.5

In this model, the market depth formula λ= σV /σU measures market depth
(in units of dollars per share-squared) as the ratio of the standard deviation
of asset price changes σV (measured in dollars per share per square root of
time) to the standard deviation in order imbalances σU (measured in shares
per square root of time). This formula asserts that price fluctuations result
from the linear impact of order imbalances. The market depth formula it-
self does not depend on specific assumptions about interactions among mar-
ket makers, informed traders, and noise traders. An empirical implementation
of the market impact formula λ = σV /σU should not be considered a test of
the specific assumptions of the model of Kyle (1985), such as the existence of
a monopolistic informed trader who trades smoothly and patiently in a con-
text where less patient liquidity traders trade more aggressively and market
makers set asset prices efficiently. Instead, empirical implementation of the
formula λ= σV /σU attempts the more general task of measuring a market im-
pact coefficient λ based on the assumption that price fluctuations result from
the linear impact of order-flow innovations, a property shared by many mod-
els.

Measuring the numerator σV is much more straightforward than measuring
the denominator σU . The value of σV is easily inferred from the asset price and
returns volatility. We have σV = σjt · Pjt .

Measuring the denominator σU is difficult because the connection between
observed trading volume and order imbalances is not straightforward. Intu-
itively, σU should be related to trading volume in some way. The continuous-
time model provides no help concerning what this relationship is; in the Brow-
nian motion model of Kyle (1985), trading volume is infinite. Without some
other approach for measuring σU , the model is not testable. We can think of
Brownian motion as an approximation to order imbalances resulting from dis-
crete, random, zero-mean decisions by traders to change asset holdings. We
call these decisions bets. Since bets are independently distributed, the standard
deviation of order imbalances is given by σU = γ1/2

jt · [E{Q̃2
jt}]1/2. This approach

is also consistent with the spirit of other models, such as Glosten and Milgrom
(1985) and Back and Baruch (2004).

5To simplify this discussion, we omit the distinction between variables with and without a bar
by assuming ζ = 2, ψ= 1, and therefore σ̄jt = σjt and V̄jt = Vjt .
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The formulas for the numerator σV and denominator σU imply that the price
impact of a bet of X shares, expressed as a fraction of the value of a share Pjt ,
is given by

λjt

P2
jt

· (X · Pjt)= σV

σU
· X
Pjt

= σjtγ−1/2
jt · X[

E
{
Q̃2
jt

}]1/2 �(20)

This formula reflects simple intuition. A one standard deviation bet X =
[E{Q̃2

jt}]1/2 has a price impact σjtγ
−1/2
jt equal to one standard deviation of re-

turns volatility σjt measured over a time interval 1/γjt equal to the expected
time interval between bet arrivals.

Empirical tests of this formula require assumptions about how Q̃jt and γjt
vary with volume and volatility so that the standard deviation of order imbal-
ances can be calculated. The invariance of bets provides the required assump-
tions. Using equations (7) and (8) to determine how γjt and moments of Q̃jt

vary with observable volume and volatility, it follows that the price-impact cost
of an order of dollar size X · Pjt , as a fraction of the value traded, is

λjt

P2
jt

· (X · Pjt)= σjt

Pjt · γ1/2
jt · (EQ̃2

jt

)1/2 · (X · Pjt)(21)

=
[
E

{|Ĩ|}]2/3

[
E

{
Ĩ2

}]1/2 · σjt

Pjt · Vjt ·W 1/3
jt · (X · Pjt)�

The percentage price impact is proportional to W 1/3
jt · σjt/(Pjt · Vjt), which it-

self is proportional to the squared illiquidity measure 1/L2
jt . Invariance of bets

makes the proportionality factor [E{Ĩ2}]−1/2 · [E{|Ĩ|}]2/3 invariant. Thus, imple-
mentation of the market impact formula (21) requires calibration of only one
proportionality constant for all assets and all time periods. By applying the
invariance-of-bets hypothesis to the model of Kyle (1985), we have obtained a
linear version of invariance of transactions costs consistent with equation (17)
with no bid-ask spread term.

Note that this constant does not depend on the units of time in which vari-
ables are measured, because Ĩ is measured in units of dollars.

As an alternative to invariance, the formula λ= σV /σU can be implemented
empirically by imposing different assumptions concerning the connection be-
tween σU and trading volume. For example, we can assume that the expected
arrival rate of bets is some unknown constant, the same for all assets and time
periods; this will further imply that σU is proportional to volume Vjt and the
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illiquidity measure in equation (20) is proportional to σjt/(Pjt · Vjt). Based on
this assumption, we obtain

λjt

P2
jt

· (X · Pjt) := σjt

Pjt · γ1/2
jt · (EQ̃2

jt

)1/2 · (X · Pjt)∝ σjt

Pjt · Vjt · (X · Pjt)�(22)

This empirical implementation of the transaction-costs formula can be, loosely
speaking, thought of as the illiquidity ratio in Amihud (2002). Indeed, Ami-
hud’s illiquidity ratio is the time-series average of the daily ratios of the ab-
solute value of percentage returns to dollar volume. To the extent that dollar
volume is relatively stable across time and returns are drawn from the same
distribution, this illiquidity ratio is effectively proportional to σjt/(Pjt ·Vjt). Al-
though this is a logically consistent way to connect theory with empirical im-
plementation, it is unrealistic to assume that the most actively traded and least
actively traded assets have the same number of bets per day; empirical intu-
ition suggests that assets with high levels of trading activity have more bets per
day than assets with low levels of trading activity. We are aware of no empirical
studies which claim that the number of orders or bets in different assets is the
same. Thus, the assumption that the standard deviation of order imbalances is
proportional to volume seems to be unrealistic.

The same issue can be addressed by thinking about time units. Unlike
our illiquidity measure 1/Ljt = ι2C̄B · [Pjt · Vjt/σ2

jt]−1/3, the Amihud ratio σjt/
(Pjt · Vjt) has time units. Indeed, σ2

jt and Pjt · Vjt in our illiquidity measure have
the same time units, but σjt and Pjt · Vjt in the Amihud ratio do not; the Ami-
hud ratio thus depends on the time horizon over which volume and volatility
are measured. Since the left side of equation (22) does not have time units,
then to keep the left side consistent with the right side, the proportionality
constant in that equation must change when time units are changed. Further-
more, if the invariance-implied market impact formula (21) is indeed correct,
then Amihud’s market impact formula (22) theoretically implies a different
proportionality constant for every stock. This problem can be “fixed”—that is,
the same proportionality coefficient can be obtained for every stock using Ami-
hud’s approach—if data for each stock are sampled at a different stock-specific
frequency appropriate to the stock’s level of trading activity. Invariance implies
that the appropriate sampling frequency should be approximately proportional
to 1/γjt , which is proportional to W −2/3

jt .
Illiquidity ratios calculated using data sampled at the same calendar time

frequencies, as implemented in many empirical studies, implicitly rely on the
unrealistic assumption that the standard deviation of order imbalances is pro-
portional to trading volume. By contrast, our illiquidity measure 1/Ljt does
not depend on time units, and therefore it does not matter over what time
horizons its components are measured. Even if different horizons are used by
researchers for different assets, its value will be the same.



MARKET MICROSTRUCTURE INVARIANCE 1367

3. DATA

Portfolio Transitions Data

We test the empirical implications of market microstructure invariance using
a proprietary data set of portfolio transitions from a leading vendor of portfo-
lio transition services.6 During the evaluation period, this portfolio transition
vendor supervised more than 30 percent of outsourced U.S. portfolio transi-
tions. The sample includes 2,552 portfolio transitions executed over the pe-
riod 2001–2005 for U.S. clients. A portfolio transition may involve orders for
hundreds of individual stocks. Each order is a stock-transition pair potentially
executed over multiple days using a combination of internal crosses, external
crosses, and open-market transactions.

The portfolio transitions data set contains fields identifying the portfolio
transition; its starting and ending dates; the stock traded; the trade date; the
number of shares traded; a buy or sell indicator; the average execution price;
the pre-transition benchmark price (closing price the day before the transition
trades began); commissions; SEC fees; and a trading venue indicator distin-
guishing among internal crossing networks, external crossing networks, open
market transactions, and in-kind transfers.

When old legacy and new target portfolios overlap, positions are transferred
from the legacy to the new portfolio as “in-kind” transfers. For example, if the
legacy portfolio holds 10,000 shares of IBM stock and the new portfolio holds
4,000 shares of IBM, then 4,000 shares are transferred in-kind and the balance
of 6,000 shares is sold. The in-kind transfers do not incur transaction costs and
have no effect on our empirical analysis. The 6,000 shares sold constitute one
portfolio transition order, even if the 6,000 shares are sold over multiple days.

We augment the portfolio transitions data with stock price, returns, and vol-
ume data from CRSP. Only common stocks (CRSP share codes of 10 and 11)
listed on the New York Stock Exchange (NYSE), the American Stock Ex-
change (Amex), and NASDAQ in the period from January 2001 through De-
cember 2005 are included in the sample. ADRs, REITs, and closed-end funds
are excluded. Also excluded are stocks with missing CRSP information neces-
sary to construct variables used for empirical tests, transition orders in high-
priced Berkshire Hathaway class A shares, and transition observations which
appeared to contain typographical errors and obvious inaccuracies. Since it is
unclear from the data whether adjustments for dividends and stock splits are
made in a consistent manner across all transitions, observations with nonzero
payouts during the first week following the starting date of portfolio transitions
were excluded from statistical tests.

6The non-disclosure agreement does not allow revealing the name of the vendor or making the
data describing individual customer trades public. Research validating the invariance hypotheses,
including research using public data sources, is described at the end of the Supplemental Material
(Kyle and Obizhaeva (2016c)).
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After exclusions, there are 439,765 observations (orders), including 201,401
buy orders and 238,364 sell orders.

CRSP Data: Prices, Volume, and Volatility

For each of the transition-stock observations (i= 1� � � � �439�765), we collect
data on the stock’s pre-transition price, expected volume, and expected volatil-
ity.

The price, denoted Pi, is the closing price for the stock the evening before
the first trade is made in any of the stocks in the portfolio transition.

A proxy for expected daily trading volume, denoted Vi (in shares), is the
average daily trading volume for the stock in the previous full pre-transition
calendar month.

The expected volatility of daily returns, denoted σi for order i, is calculated
using past daily returns in two different ways.

First, for each stock j and each calendar month m, we estimate the monthly
standard deviation of returns σj�m as the square root of the sum of squared daily
returns for the full calendar month m (without de-meaning or adjusting for
autocorrelation). We define σi = σj�m/N

1/2
m , where j corresponds to the stock

traded in order i, m is the previous full calendar month preceding order i, and
Nm is the number of CRSP trading days in month m.

Second, to reduce effects from the positive skewness of the standard de-
viation estimates, we estimate for each stock j a third-order moving aver-
age process for the changes in ln[σj�m] for all months m over the entire pe-
riod 2001–2005. Specifically, letting L denote the lag operator, we estimate
(1 − L) ln[σj�m] =Θj�0 + (1 −Θj�1L −Θj�2L

2 −Θj�3L
3)uj�m. Letting yj�m denote

the estimate of ln[σj�m] and V̂j the variance of the prediction error, we alter-
natively define the conditional forecast for the volatility of daily returns by
σi = exp(yj�m + V̂j/2)/N1/2

m , where m is the current full calendar month for or-
der i.

These volatility estimates can be thought of as instrumental variables for true
expected volatility. While below we report results using the second definition of
σi based on the log-ARIMA model, these results remain quantitatively similar
when we use the first definition of σi based on simple historical volatility during
the preceding full calendar month.

Except to the extent that the ARIMA model uses in-sample data to estimate
model parameters, we use the pre-transition variables known to the market
before portfolio transition trades are executed in order to avoid any spurious
effects from using contemporaneous variables.

Descriptive Statistics

Table I reports descriptive statistics for traded stocks in panel A and for in-
dividual transition orders in panel B. The first column reports statistics for all
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TABLE I

DESCRIPTIVE STATISTICSa

All 1 2 3 4 5 6 7 8 9 10

Panel A: Properties of Stocks
Med(V · P)× 10−6 18�72 1�13 5�10 9�92 15�93 23�87 31�41 42�12 60�25 101�60 212�85
Med(σ)× 102 1�93 2�16 2�04 1�94 1�98 1�90 1�86 1�80 1�78 1�77 1�76
Med(Sprd)× 104 12�04 40�96 18�72 13�70 12�02 10�32 9�42 8�12 7�21 5�92 4�83
Med(Turn)× 102 12�72 6�58 12�36 14�80 15�95 16�80 16�36 15�37 14�41 14�92 11�12

Panel B: Properties of Portfolio Transitions Orders
Avg(X/V )× 102 4�20 16�23 4�54 2�62 1�83 1�37 1�18 1�08 0�88 0�69 0�49
Med(X/V )× 102 0�57 3�33 1�36 0�79 0�53 0�40 0�34 0�30 0�25 0�20 0�14
Avg(X/Cap)× 104 1�72 3�55 2�68 2�04 1�59 1�26 1�06 0�91 0�72 0�56 0�37
Med(X/Cap)× 104 0�35 0�98 0�80 0�58 0�42 0�32 0�27 0�23 0�19 0�15 0�09

AvgC(X)× 104 16�79 44�95 21�46 14�53 12�62 11�70 5�58 9�27 3�99 7�37 6�16
Avg Comm×104 7�43 14�90 9�30 7�86 7�00 6�15 5�49 4�93 4�34 3�62 2�68
Avg SEC fee × 105 2�90 3�26 3�02 3�00 2�85 2�84 2�76 2�76 2�73 2�68 2�56

#Obs 439,765 71,000 68,689 41,238 49,000 28,073 29,330 29,778 34,409 40,640 47,608
#Stks 2,583 1,108 486 224 182 106 126 90 102 81 78

aTable reports the characteristics of stocks and transition orders. Panel A shows the median average daily dollar volume (in $ million), the median daily volatility (percent),
the median percentage spread (in basis points), the median monthly turnover rate (in percent). Panel B shows the average and median order size (in percent of daily volume and
in basis points of market capitalization) as well as average implementation shortfall (in basis points), the average commission (in basis points), and the average SEC fee for sell
orders (in percent per 10 basis points). The thresholds of ten volume groups correspond to 30th, 50th, 60th, 70th, 75th, 80th, 85th, 90th, and 95th percentiles of dollar volume
for common stocks listed on the NYSE. Group 1 (Group 10) contains orders in stocks with lowest (highest) dollar trading volume. The sample ranges from January 2001 to
December 2005.
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stocks in aggregate; the remaining ten columns report statistics for stocks in
ten dollar-volume groups. Instead of dividing the stocks into ten deciles with
the same number of stocks in each decile, volume break points are set at the
30th, 50th, 60th, 70th, 75th, 80th, 85th, 90th, and 95th percentiles of trad-
ing volume for the universe of stocks listed on the NYSE with CRSP share
codes of 10 and 11. Group 1 contains stocks in the bottom 30th percentile
of dollar trading volume. Group 10 approximately corresponds to the uni-
verse of S&P 100 stocks. The top five groups approximately cover the uni-
verse of S&P 500 stocks. Narrower percentile bands for the more active stocks
make it possible to focus on the stocks which are most important economically.
For each month, the thresholds are recalculated and the stocks are reshuffled
across bins.

Panel A of Table I reports descriptive statistics for traded stocks. For the
entire sample, the median daily volume is $18.72 million, ranging from $1.13
million for the lowest volume group to $212.85 million for the highest volume
group. The median volatility is 1.93 percent per day, ranging from 1.76 percent
in the highest-volume decile to 2.16 in the lowest-volume decile. Since there
is so much more cross-sectional variation in dollar volume than in volatility
across stocks, the variation in trading activity across stocks is related mostly to
variation in dollar volume. Trading activity differs by a factor of 150 between
stocks in the lowest group and stocks in the highest group, and this variation
creates statistical power helpful in determining how transaction costs and order
sizes vary with trading activity.

The median quoted bid-ask spread, obtained from the transition data set, is
12.04 basis points; its mean is 25.42 basis points. From lowest-volume group to
highest-volume group, the median spread declines monotonically from 40.96
to 4.83 basis points, by a factor of 8�48. A back-of-the-envelope calculation
based on invariance suggests that spreads should decrease approximately by a
factor of 1501/3 ≈ 5�31 from lowest- to highest-volume group. The difference
between 5�31 and 8�48 is partially explained by differences in returns volatility
across the volume groups and warrants further investigation. The monotonic
decline of almost one order of magnitude is potentially large enough to gener-
ate significant statistical power in estimates of a bid-ask spread component of
transaction costs based on implementation shortfall.

Panel B of Table I reports properties of portfolio transition order sizes. The
average order size is 4�20% of average daily volume, declining monotonically
across the ten volume groups from 16�23% in the smallest group to 0�49%
in the largest group, by a factor of 33�12. The median order is 0�57% of av-
erage daily volume, also declining monotonically from 3�33% in the smallest
group to 0�14% in the largest group, by a factor of 23�79. The invariance hy-
pothesis implies that order sizes should decline by a factor of approximately
1502/3 ≈ 28�23, a value which matches the data closely. The medians are much
smaller than the means, indicating that distributions of order sizes are skewed
to the right. We show below that the distribution of order sizes closely fits a
log-normal.
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The average trading cost (estimated based on implementation shortfall,
as explained below) is 16�79 basis points per order, ranging from 44�95 ba-
sis points in the lowest-volume group to 6�16 basis points in the highest-
volume group. Invariance suggests that these costs should fall by a factor of
1501/3 ≈ 5�31, somewhat smaller than the actual decline. The cost estimates
exclude commissions and SEC fees.7

One portfolio transition typically contains orders for dozens or hundreds
of stocks. It typically takes several days to execute all of the orders. About
60% of orders are executed during the first day of a portfolio transition. Since
transition managers often operate under a cash-in-advance constraint—using
proceeds from selling stocks in a legacy portfolio to acquire stocks in a target
portfolio—sell orders tend to be executed slightly faster than buy orders (1�72
days versus 1�85 days). In terms of dollar volume, about 41%, 23%, 15%, 7%,
and 5% of dollar volume is executed on the first day through the fifth days,
respectively. The two longest transitions in the sample were executed over 18
and 19 business days. The time frame for a portfolio transition is usually set
before its actual implementation begins.

4. EMPIRICAL TESTS BASED ON ORDER SIZES

Market microstructure invariance predicts that the distribution of W̄ 2/3
jt ·

Q̃jt/V̄jt does not vary across stocks or time (see equation (8)). We test these
predictions using data on portfolio transition orders, making the identifying
assumption that portfolio transition orders are proportional to bets.

Portfolio Transitions and Bets

Since bets are statistically independent intended orders, bets can be concep-
tually difficult for researchers to observe. Consider, for example, a trader who
makes a decision on Monday to make one bet to buy 100,000 shares of stock,
then implements the bet by purchasing 20,000 shares on Monday and 80,000
shares on Thursday. To an econometrician, this one bet for 100,000 shares may
be difficult to distinguish from two bets for 20,000 shares and 80,000 shares,
respectively. In the context of a portfolio transition, identifying a bet is eas-
ier because the size of the order for 100,000 shares is known and recorded on
Monday, even if the order is executed over several subsequent days.

Portfolio transition orders may not have a size distribution matching pre-
cisely the size distribution of typical bets. Transition orders may be smaller

7The SEC fee represents a cost of about 0�29 basis points, which does not vary much across
volume groups. The average commission is 7�43 basis points, declining monotonically by a factor
of 7�30 from 14�90 basis points for the lowest group to 2�68 basis points for the highest group.
Since commissions may be negotiated for the entire transition, the allocation of commission costs
to individual stocks is an accounting exercise with little economic meaning.



1372 A. S. KYLE AND A. A. OBIZHAEVA

than bets if transitions tend to liquidate a portion of an asset manager’s posi-
tions or larger than bets if transitions liquidate the sum of bets made by the
asset manager in the past. When both target and legacy portfolios hold long
positions in the same stock, the portfolio transition order may represent the
difference between two bets.

Let Xi denote the unsigned number of shares transacted in portfolio tran-
sition order i, i = 1� � � � �439�765. The quantity Xi sums shares traded over
multiple days, excluding in-kind transfers.

We make the identifying assumption that, for some constant δ which does
not vary across stocks with different characteristics such as volatility and trad-
ing activity, the distribution of scaled portfolio transition orders δ ·Xi is the
same as the distribution of unsigned bets in the same stock at the same time,
denoted |Q̃|. If δ = 1, the distribution of portfolio transition orders matches
the distribution of bets. If the scaling constant δ were correlated with volatility
or trading activity, parameter estimates might be biased.

The Empirical Hypotheses of Invariance and Log-Normality for the Size
Distribution of Portfolio Transition Orders

Let Wi := Vi · Pi · σi and W̄i := V̄i · Pi · σ̄i denote trading activity and bet ac-
tivity, respectively, for the stock in transition order i. Under the identifying as-
sumption that portfolio transition orders are proportional to bets, invariance
of bets implies invariance of portfolio transition orders. Specifically, replacing
Q̃jt withXi in equation (8) implies that the distribution of W̄ 2/3

i ·Xi/V̄i does not
vary with stock characteristics such as volume, volatility, stock price, or market
capitalization.

To facilitate intuitive interpretation of parameter estimates, we scale obser-
vations by a hypothetical benchmark stock with price P∗ of $40 per share, daily
volume V ∗ of one million shares, and volatility σ∗ of 2% per day, implying
W ∗ = 40 × 106 · 0�02. This benchmark stock would belong to the bottom tercile
of S&P 500 (volume group 7 in Table I).

Combining invariance of portfolio transition orders with equations (1)
and (2) to convert the bet activity variables W̄i and V̄i into trading activity vari-
ables Wi and Vi and taking logs, invariance implies the empirically testable re-
lationship

ln
[(

Wi

W ∗

)2/3

· Xi

Vi

]
= ln[q̄] + ε̃i�(23)

Under the identifying assumptions that the volume multiplier ζ, the volatility
multiplier ψ, and the deflator δ do not vary across observations, ln[q̄] is an
invariant constant ln[q̄] = E{ln[|Q̃∗|/V ∗]} − ln[δ] and ε̃i is a zero-mean error
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with the same invariant distribution as ln[|Ĩ|] −E{ln[|Ĩ|]}.8 Adjustment by W ∗

in equation (23) scales each observation on the left side so that it has the same
invariant distribution as the log of a hypothetical portfolio transition order in
the benchmark stock, expressed as a fraction of its expected daily volume.

We will also examine the stronger log-normality hypothesis—not implied by
microstructure invariance—that the distribution of unsigned order sizes ad-
justed for trading activity [Wi/W

∗]2/3 ·Xi/Vi has a log-normal distribution, that
is, ε̃i in equation (23) has a normal distribution. The log-normality hypothesis
implies that the right side of equation (23) is characterized by two invariant
constants, the mean ln[q̄] and the variance of ε̃i.

Next, we implement several tests to examine this hypothesis.

The Graphical Relationship Between Order Sizes and Trading Activity

One way to examine the invariance hypothesis is to plot the log of order size
as a fraction of average daily volume ln[Xi/Vi] against the log of scaled trading
activity ln[Wi/W

∗]. Figure 1 presents a cloud of points for all 400,000+ port-
folio transition orders. The line ln[Xi/Vi] = −5�71 − 2/3 · ln[Wi/W

∗] is also

FIGURE 1.—Order size and trading activity. The figure plots ln[Xi/Vi] on the vertical axis
against ln[Wi/W

∗] on the horizontal axis, where Xi is portfolio transition order size in shares,
Vi is average daily volume in shares, and Wi = Pi · Vi · σi is trading activity. The fitted line is
ln[Xi/Vi] = −5�705 − 2/3 · ln[Wi/W

∗], where the intercept is estimated from an OLS regression
with the slope fixed at −2/3. There are 400,000+ data points from January 2001 to Decem-
ber 2005.

8More generally, ln[q̄] :=E{ln[|Q̃∗|/V ∗]} − 1/3 · ln[ζi/ζ∗] − 2/3 · ln[ψi/ψ∗] − ln[δi].
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shown for comparison. The slope of this line is fixed at −2/3, as implied by in-
variance; the intercept, estimated from an OLS regression, is the sample mean.
On the horizontal axis, zero represents the log of trading activity in the bench-
mark stock; on the vertical axis, zero represents orders for 100% of expected
daily volume. The shape of the “super-cloud” conforms well with the invari-
ance hypothesis in that the slope of −2/3 is close to the shape of the plotted
points and there is only little evidence of heteroscedasticity.

Log-Normal Order Size Distribution for Volume and Volatility Groups

When the portfolio transition orders are sorted into different groups based
on characteristics such as dollar volume, volatility, stock price, and turnover,
the joint hypotheses of invariance and log-normality imply that the means and
variances of ln[(Wi/W

∗)2/3 ·Xi/Vi] for each group should match the mean and
variance of the pooled sample. The pooled sample mean of ln[(Wi/W

∗)2/3 ·
Xi/Vi] is −5�71; the pooled sample variance is 2�53. The pooled sample mean is
an estimate of ln[q̄]; the pooled sample variance is an estimate of the variance
of the error ε̃i.9

To examine this hypothesis visually, we plot the empirical distributions of
the left side of equation (23), ln[(Wi/W

∗)2/3 ·Xi/Vi], for selected volume and
volatility groups. As before, we define ten dollar-volume groups with thresh-
olds corresponding to the 30th, 50th, 60th, 70th, 75th, 80th, 85th, 90th, and
95th percentiles of NYSE dollar volume. We define five volatility groups with
thresholds corresponding to the 20th, 40th, 60th, and 80th percentiles of re-
turns standard deviation for NYSE stocks. On each plot, we superimpose the
bell-shaped density function N(−5�71�2�53) matching the mean and variance
of the pooled sample.

Figure 2 shows plots of the empirical distributions of ln[(Wi/W
∗)2/3 ·Xi/Vi]

for volume groups 1, 4, 7, 9, and 10 and for volatility groups 1, 3, and 5. Consis-
tent with the invariance hypothesis, these fifteen distributions of W -adjusted
order sizes are all visually strikingly similar to the superimposed normal dis-
tribution. Results for the remaining 35 subgroups also look very similar and
therefore are not presented in this paper. The visual similarity of the distri-
butions is reflected in the similarity of their first four moments. For the 15
volume-volatility groups, the means range from −6�03 to −5�41, close to the
mean of −5�71 for the pooled sample. The variances range from 2�23 to 2�90,
also close to the variance of 2�53 for the pooled sample. The skewness ranges
from −0�21 to 0�10, close to skewness of zero for the normal distribution. The
kurtosis ranges from 2�73 to 3�38, also close to the kurtosis of 3 for a nor-
mal random variable. These results suggest that it is reasonable to assume
that unsigned order sizes have a log-normal distribution. Scaling order sizes

9There is not much difference in the distributions of buy and sell orders. For buy orders, the
mean is −5�70 and the variance is 2�51; for sell orders, the mean is −5�71 and the variance is 2�55.
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FIGURE 2.—Invariant order size distribution. Figure shows distributions of ln[X̃/V ] + 2/3 · ln[Wi/W
∗] for stocks sorted into 10 volume groups

and 5 volatility groups (only volume groups 1, 4, 7, 9, 10 and volatility groups 1, 3, 5 are reported).Xi is an order size in shares, Vi is the average daily
volume in shares, and Wi is the trading activity. The thresholds of ten volume groups correspond to 30th, 50th, 60th, 70th, 75th, 80th, 85th, 90th,
and 95th percentiles of dollar volume for common stocks listed on the NYSE. Volume group 1 (group 10) contains orders in stocks with lowest
(highest) dollar volume. The thresholds of five volatility groups correspond to 20th, 40th, 60th, and 80th percentiles for common NYSE-listed
stocks. Volatility group 1 (group 5) has stocks with the lowest (highest) volatility. Each subplot also shows the number of observations (N), the
mean (m), the variance (v), the skewness (s), and the kurtosis (k) for depicted distribution. The normal distribution with the common mean of
−5�71 and variance of 2�54 is imposed on each subplot. The common mean and variance are calculated as the mean and variance of distribution
over the entire sample. The sample ranges from January 2001 to December 2005.
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by [Wi/W
∗]2/3, as implied by the invariance hypothesis, adjusts the means of

the distributions so that they visually appear to be similar.
Despite the visual similarity, a Kolmogorov–Smirnov test rejects the hypoth-

esis that all fifty empirical distributions are generated from the same normal
distribution. The standard deviation of the means across bins is larger than
implied by a common normal distribution. Microstructure invariance does not
describe the data perfectly, but it makes a good benchmark from which the
modest deviations seen in these plots can be investigated in future research.

Figure 3 further examines log-normality by focusing on the tails of the distri-
butions of portfolio transition orders. For each of the five volume groups 1, 4,
7, 9, and 10, panel A shows quantile-quantile plots of the empirical distribution
of ln[(Wi/W

∗)2/3 ·Xi/Vi] versus a normal distribution with the same mean and
variance. The more similar these empirical distributions are to a normal distri-
bution, the closer the plots should be to the 45-degree line. Panel B shows logs
of ranks based on scaled order sizes. Under the hypothesis of log-normality,
the right tail should be quadratic. A straight line in the right tail would imply
a power law. Both panels show that the empirical distributions are similar to a
normal distribution, except in the far right and left tails.

In panel A, the smallest orders in the left tails tend to be smaller than implied
by a normal distribution. These observations are economically insignificant.
Most of them represent one-share transactions in low-price stocks (perhaps
the result of coding errors in the data). There are too few such orders to have
a meaningful effect on our statistical results.

In panel A, the largest orders in the right tails are much more important
economically. On each subplot, a handful of positive outliers (out of 400,000+
observations) do not appear to fit a normal distribution. The largest orders in
low-volume stocks appear to be smaller than implied by a normal distribution,
and the largest orders in high-volume stocks appear to be larger than implied
by a normal distribution.

The finding that the largest orders in low-volume stocks are smaller than
implied by a log-normal may be explained by reporting requirements. When
an owner acquires more than 5% of the shares of a publicly traded company,
the SEC requires information to be reported on Schedule 13D. To avoid re-
porting requirements, large institutional investors may intentionally acquire
fewer shares when intended holdings would otherwise exceed the 5% report-
ing threshold. Indeed, all 400,000+ portfolio transition orders are for amounts
smaller than 4.5% of shares outstanding. A closer examination reveals that the
five largest orders for low-volume stocks account for about 2%, 3%, 4%, 4%,
and 4% of shares outstanding, respectively, just below the 5% threshold. The
largest order in high-volume stocks is for only about 1% of shares outstanding.

To summarize, we conclude that the distribution of portfolio transition or-
der sizes appears to conform closely to—but not exactly to—the invariance
hypothesis. Furthermore, the distribution of order sizes appears to be similar
to—but not exactly equal to—a log-normal.
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FIGURE 3.—Invariant order size distribution. Panel A shows quantile-quantile plots of empirical distributions of ln[Xi/Vi] + 2/3 · ln[Wi/W
∗]

and a normal distribution for stocks sorted into 10 volume groups (only volume groups 1, 4, 7, 9, 10 are reported). Panel B depicts the logarithm of
ranks based on that distribution. The ten volume groups are based on average dollar trading volume with thresholds corresponding to 30th, 50th,
60th, 70th, 75th, 80th, 85th, 90th, and 95th percentiles of the dollar volume for common NYSE-listed stocks. Volume group 1 (group 10) has stocks
with the lowest (highest) trading volume. Each subplot shows the number of observations (N), the mean (m), the variance (v), the skewness (s),
and the kurtosis (k) of a depicted distribution. There are 400,000+ data points. The sample ranges from January 2001 to December 2005.
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OLS Estimates of Order Size

The order size predictions from equation (23) can also be tested using a
simple log-linear OLS regression

ln
[
Xi

Vi

]
= ln[q̄] + α0 · ln

[
Wi

W ∗

]
+ ε̃i�(24)

Invariance of bets implies α0 = −2/3.
To adjust standard errors of OLS estimates of α0 for positive contempora-

neous correlation in transition order sizes across different stocks, the 439,765
observations are pooled by week over the 2001–2005 period into 4,389 clusters
across 17 industry categories. The double clustering by weeks and industries
conservatively adjusts standard errors for large portfolio transitions that may
involve hundreds of relatively large orders, executed during the course of a
week and potentially concentrated in particular industries.10

Table II presents estimates for the OLS coefficients in equation (24). The
first column of the table reports the results of a regression pooling all the data.
The four other columns in the table report results for four separate OLS re-
gressions in which the parameters are estimated separately for NYSE Buys,
NYSE Sells, NASDAQ Buys, and NASDAQ Sells.

For the entire sample, the estimate for α0 is α̂0 = −0�62 with standard error
of 0�009. Economically, the point estimate for α0 is close to the value −2/3 pre-
dicted by the invariance hypothesis, but the hypothesis α0 = −2/3 is strongly
rejected (F = 25�31, p< 0�0001) because the standard error is very small.

When the sample is broken down into NYSE Buys, NYSE Sells, NASDAQ
Buys, and NASDAQ Sells, it is interesting to note that the estimated coeffi-
cients for buy orders, −0�63 for NYSE and −0�71 for NASDAQ, are closer
to −2/3 than the coefficients for sell orders, −0�59 for both NYSE and NAS-
DAQ. Since portfolio transitions tend to be applied to long-only portfolios, sell
orders tend to represent liquidations of past bets. If the size distribution of sell
orders depends on past values of volume and volatility—not current values—
there is an errors-in-variables problem related to current trading activity being
used as a noisy version of past trading activity. This will bias the absolute values
of coefficient estimates downward, consistent with the absolute values of the
coefficient estimates for NYSE and NASDAQ sell orders being less than 2/3.

10A potential econometric issue with the log-linear specification in equation (24) is that taking
the log of order size as a fraction of average daily volume may create large negative outliers
from tiny, economically meaningless orders, with an inordinately large influence on coefficient
estimates. Since we have shown above that the shape of the distribution of scaled order sizes
closely matches a log-normal, these tiny orders are expected to have only a negligible distorting
effect on estimates.
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TABLE II

OLS ESTIMATES OF ORDER SIZEa

NYSE NASDAQ

All Buy Sell Buy Sell

ln[q̄] −5�67 −5�68 −5�63 −5�75 −5�65
(0�017) (0�023) (0�018) (0�035) (0�032)

α0 −0�62 −0�63 −0�59 −0�71 −0�59
(0�009) (0�011) (0�008) (0�019) (0�015)

R2 0�3167 0�2587 0�2646 0�4298 0�3542
Q∗/V ∗ · δ−1 × 104 34�62 34�14 35�98 31�80 34�78
#Obs 439,765 131,530 150,377 69,871 87,987

aTable presents the estimates ln[q̄] and α0 for the regression

ln
[
Xi
Vi

]
= ln[q̄] + α0 · ln

[
Wi
W ∗

]
+ ε̃i�

Each observation corresponds to transition order i with order size Xi , pre-transition price Pi , expected daily volume
Vi , expected daily volatility σi , trading activity Wi . The parameter q̄ is the measure of order size such that for δ= 1,
Q∗/V ∗ ·δ−1 ×104 measures the median bet size for the benchmark stock, in basis points of average daily volume. The
benchmark stock has daily volatility of 2%, share price of $40, and daily volume of one million shares. The standard
errors are clustered at weekly levels for 17 industries and shown in parentheses. The sample ranges from January 2001
to December 2005.

Quantile Estimates of Order Sizes

Table A.I in the Supplemental Material presents quantile regression results
for equation (24) based on the 1st (smallest orders), 5th, 25th, 50th, 75th, 95th,
and 99th percentiles (largest orders). The corresponding quantile estimates
for α0 are −0�65, −0�64, −0�61, −0�62, −0�61, −0�64, and −0�63, respectively.
Although the hypothesis α0 = −2/3 is rejected due to small standard errors,
all quantile estimates are economically close to the value of −2/3 predicted by
the invariance hypothesis.

Model Calibration and Its Economic Interpretation

Under the invariance-of-bets and log-normality hypotheses, we can calibrate
the distribution of bet sizes by imposing the restriction α0 = −2/3 on equa-
tion (24). Thus, only the constant term in the regression needs to be estimated.

The results of this calibration exercise are presented in Table III. The esti-
mated constant term, −5�71, is the previously reported sample mean of ln[q̄] in
equation (23). The mean squared error, 2�53, is the previously reported sample
variance of ε̃i in equation (23).

The R2 (with zero degrees of freedom) is 0�3149; the log of trading activity
ln[Wi/W

∗], with the coefficient α0 = −2/3 imposed by invariance, explains a
significance percentage of the variation of order size as a fraction of volume
Xi/Vi.
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TABLE III

OLS ESTIMATES FOR ORDER SIZE: MODEL CALIBRATIONa

NYSE NASDAQ

All Buy Sell Buy Sell

Restricted Specification: α0 = −2/3, b1 = b2 = b3 = b4 = 0

ln[q̄] −5�71 −5�70 −5�68 −5�70 −5�77
(0�019) (0�023) (0�019) (0�042) (0�039)

Q∗/V ∗ · δ−1 × 104 33�13 33�46 34�14 33�46 31�20
MSE 2�53 2�61 2�54 2�32 2�56
R2 0�3149 0�2578 0�2599 0�4278 0�3479

Unrestricted Specification With 5 Degrees of Freedom: α0 = −2/3

R2 0�3229 0�2668 0�2739 0�4318 0�3616
#Obs 439,765 131,530 150,377 69,871 87,987

aTable presents the estimates ln[q̄] and the mean squared error (MSE) for the regression

ln
[
Xi
Vi

]
= ln[q̄] + α0 · ln

[
Wi
W ∗

]
+ b1 · ln

[
σi

0�02

]
+ b2 · ln

[
Pi
40

]
+ b3 · ln

[
Vi

106

]
+ b4 · ln

[
νi

1/12

]
+ ε̃i�

with α0 restricted to be −2/3 as predicted by invariance and b1 = b2 = b3 = b4 = 0. Each observation corresponds
to transition order i with order size Xi , pre-transition price Pi , expected daily volume Vi , expected daily volatility σi ,
trading activity Wi , and monthly turnover rate νi . The parameter q̄ is the measure of order size such that for δ = 1,
Q∗/V ∗ · δ−1 × 104 measures the median bet size for the benchmark stock, in basis points of average daily volume.
The benchmark stock has daily volatility of 2%, share price of $40, and daily volume of one million shares. The R2’s
are reported for restricted specification with α0 = −2/3� b1 = b2 = b3 = b4 = 0 as well as for unrestricted specification
with coefficients ln[q̄] and b1� b2� b3� b4 allowed to vary freely. The standard errors are clustered at weekly levels for
17 industries and shown in parentheses. The sample ranges from January 2001 to December 2005.

When the parameter α0 is estimated rather than held fixed, changing α0 from
the predicted value of α0 = −2/3 to the estimated value of α̂0 = −0�62 in-
creases the R2 from 0�3149 (Table III) to 0�3167 (Table II), a modest increase
of 0�0018. Although statistically significant, the addition of one degree of free-
dom does not add much explanatory power.

We relax the specification further by allowing the coefficients on the three
components of trading activity—volatility σi, price Pi, and volume Vi—as well
as monthly turnover rate νi to vary freely:

ln
[
Xi

Vi

]
= ln[q̄] + α0 · ln

[
Wi

W ∗

]
+ b1 · ln

[
σi

0�02

]
+ b2 · ln

[
Pi

40

]
(25)

+ b3 · ln
[
Vi

106

]
+ b4 · ln

[
νi

1/12

]
+ ε̃i�

This regression imposes on ln[Wi/W
∗] the coefficient α0 = −2/3 predicted

by invariance and then allows the coefficients b1, b2, b3, b4 on the three compo-
nents of Wi and turnover rate to vary freely. The invariance hypothesis implies
b1 = b2 = b3 = b4 = 0. Table III reports that increasing the degrees of freedom
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from one to four increases the R2 of the regression from 0�3167 to 0�3229, an
increase of 0�0062. Although statistically significant, the improvement in R2 is
again modest. Invariance explains much—but not quite all—of the variation in
portfolio transition order size across stocks that can be explained by all four
variables.

The point estimates for the coefficient on volatility of b̂1 = 0�42, the coeffi-
cient on price of b̂2 = 0�24, the coefficient on share volume of b̂3 = 0�06, the
coefficient on turnover rate of b̂4 = −0�18 are all statistically significant, with
standard errors of 0�040, 0�019, 0�010, and 0�015, respectively (see Table A.II
in the Supplemental Material). The coefficients on volatility and price are sig-
nificantly positive, indicating that order size—as a fraction of average daily
volume—does not decrease with increasing volatility and price as fast as pre-
dicted by the invariance hypothesis. The statistically significant positive coef-
ficient on volume may be partially offset by a statistically significant negative
coefficient on turnover rate.

Discussion

The documented log-normality of bet size is strikingly different from the
typical assumptions of microstructure models, where innovations in order flow
from noise traders are distributed as a normal, not a log-normal or power law.
Although normal random variables are a convenient modeling device—they
allow conditional expectations to be linear functions of underlying jointly nor-
mally distributed variables—their implications are qualitatively very different.

The estimated log-mean of −5�71 implies that a median portfolio transition
order size is equal to 0�33% of expected daily volume for the benchmark stock,
since exp(−5�71) ≈ 0�0033. The estimated log-variance of 2�53 implies that a
one standard deviation increase in order size is a factor of 4�90 for all stocks,
since exp(2�531/2)≈ 4�90.

We next explain why the log-variance of 2�53 also implies that a large fraction
of trading volume and an even larger fraction of returns variance come from
large bets.

Let η(z) and N(z) denote the PDF and CDF, respectively, of a standard-
ized normal distribution. Define F(z̄�p) by F(z̄�p) := ∫ ∞

z=z̄ exp(p · √
2�53 ·

z) · η(z) · dz. It is easy to show that F(z̄�p) = exp(p2 · 2�53/2) · (1 −N(z̄ −
p ·√2�53)). This implies that the fraction of the pth moment of order size aris-
ing from bets greater than z̄ standard deviations above the log-mean is given
by F(z̄�p)/F(−∞�p)= 1 −N(z̄−p · √2�53).

Plugging p = 1, we find that bets larger than z̄ standard deviations above
the log-mean (median) generate a fraction of total trading volume given by
1 − N(z̄ − √

2�53). Bets larger than the 50th percentile generate 94�41% of
trading volume (z̄ = 0). Bets larger than

√
2�53 standard deviations above the
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log-mean (median) bet size—that is, the largest 5�39% of bets—generate 50%
of trading volume (z̄ = √

2�53).
Plugging p = 2, we find that bets larger than z̄ standard deviations above

the log-mean bet size contribute a fraction of total returns variance given by
1 − N(z̄ − 2 · √

2�53) under the assumption that the contribution of bets to
price variance is proportional to their squared size (implied by linear price im-
pact). Bets greater than the 50th percentile generate 99�93% of returns vari-
ance (z̄ = 0). Bets larger than 2 · √

2�53 = 3�18 standard deviations above the
log-mean—that is, the largest 0�07% of bets—generate 50% of returns vari-
ance (z̄ = 2 · √2�53).

Under the assumptions ζ/2 = ψ = δ = 1 (stronger than our identifying as-
sumptions), the estimates of mean and variance imply that the benchmark
stock has about 85 bets per day for each of the 252 trading days in a calen-
dar year. These estimates then imply that the 1,155 largest bets out of 21,420
bets generate approximately half of the trading volume during one year, and
the 15 largest bets generate approximately half of returns variance during one
year.

Rare large bets may not only account for a significant percentage of returns
variance but may also account for some of the stochastic time-series variation
in volatility. We conjecture that the pattern of short-term volatility associated
with execution of rare large bets may depend on the speed with which such
bets are executed. As discussed by Kyle and Obizhaeva (2016a), large market
disturbances such as the stock market crashes of 1929 and 1987, the liquidation
of Jerome Kerviel’s rogue trades by Société Générale, and the flash crash of
May 6, 2010, could have been induced by execution of gigantic bets.

Another implication of log-normality may be a greater kurtosis in the em-
pirical distribution of price changes than a normal distribution would suggest.
Given the estimated log-variance of 2�53, it can be shown that the excess kur-
tosis of one bet has the enormous value of about exp(4 · 2�53), or approxi-
mately 22,000.

Invariance implies a different way of thinking about trading data from that in
the time-change literature, which goes back to Mandelbrot and Taylor (1967)
and Clark (1973). Mandelbrot and Taylor (1967) began with the intuition that
the distribution of price changes is a stable distribution, that is, a distribution
with the property that a linear combination of two independent random vari-
ables has the same shape, up to location and scale parameters. Since it has
fatter tails than a normal distribution, it is confined to be a stable Pareto dis-
tribution. Following this line of research, the econophysics literature—such as
Gopikrishnan, Meyer, Amaral, and Stanley (2005), Plerou et al. (2000), and
Gabaix et al. (2006)—estimates different power laws for the probability dis-
tributions of different variables and searches for price-formation models con-
sistent with those distributions. Whether order size follows a power law or a
log-normal distribution is an interesting question for future research.
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Clark (1973) suggested as an alternative hypothesis that the distribution of
daily price changes is subordinated to a normal distribution with a time clock
linked to a log-normally distributed trading volume. The log-normal distribu-
tion is neither stable nor infinitely divisible; the sum of random variables with
independent log-normal distributions is not log-normal. Thus, if daily price
changes can be described by Clark’s hypothesis, neither half-day price changes
nor weekly price changes will be described by the same hypothesis.

In some sense, our approach seems to be closer to Mandelbrot and Taylor
(1967), who imagined orders of different sizes arriving in the market, with busi-
ness time linked to their arrival rates rather than to trading volume.

Empirical regularities similar to those implied by invariance can be inferred
from the previous literature. Bouchaud, Farmer, and Lillo (2009) reported, for
example, that the number of TAQ prints per day is proportional to market cap-
italization raised to powers between 0�44 to 0�86. Under the assumption that
volatility and turnover rates are stable across stocks as shown in Table I, the
midpoint 0�65 of that interval is close to the value of 2/3 implied by invariance
for the number of bets per day.

The log-normality of bet size may be related to the log-normality of assets
under management for financial firms. Schwarzkopf and Farmer (2010) studied
the size of U.S. mutual funds and found that its distribution closely conforms
to a log-normal with log-variance of about 2�50, similar to our estimates of log-
variance for portfolio transition orders. Their annual estimates of log-variance
are stable during the twelve years from 1994 to 2005, ranging from 2�43 to 2�59.
For years 1991, 1992, and 1993, the log-variance estimates of 1�51, 1�98, and
2�09 are slightly lower, probably because many observations are missing from
the CRSP U.S. mutual funds data set for those years.

As discussed by Aitchison and Brown (1957), log-normal distributions can
be found in many areas of natural science. For example, Kolmogorov (1941b)
proved mathematically that the probability distribution of the sizes of particles
under fragmentation converges over time to a log-normal.

5. EMPIRICAL TESTS BASED ON TRANSACTION COSTS

To examine statistically whether transaction costs conform to the predictions
of market microstructure invariance in equation (16), we use the concept of
implementation shortfall developed by Perold (1988). Specifically, we estimate
costs by comparing the average execution prices of portfolio transition orders
with closing prices the evening before any portfolio transition orders begin to
be executed. Our tests measure implicit transaction costs resulting from bid-
ask spreads and market impact; they exclude explicit transaction costs such as
commissions and fees.
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Portfolio Transitions and Implementation Shortfall

In portfolio transitions, quantities to be traded are known precisely before
trading begins, these quantities are recorded accurately, and all intended quan-
tities are executed. In other trading situations, quantities intended to be traded
may not be recorded accurately, and orders may be canceled or quantities may
be revised in response to price movements after trading begins. When orders
are canceled after prices move in an unfavorable direction or when order size is
increased after prices move in a favorable direction, implementation shortfall
may dramatically underestimate actual transaction costs. Portfolio transitions
data are not subject to these concerns.

Portfolio transition trades are unlikely to be based on short-lived private
information about specific stocks because decisions to undertake portfolio
transitions and their timing likely result from regularly scheduled meetings of
investment committees and boards of plan sponsors, not from fast-breaking
private information in the hands of fund managers. Transaction-cost estimates
are therefore unlikely to be biased upward as a result of short-lived private
information being incorporated into prices while orders are being executed.

These properties of portfolio transitions are not often shared by other data.
Consider a data set built up from trades by a mutual fund, a hedge fund, or
a proprietary trading desk at an investment bank. In such samples, the inten-
tions of traders may not be recorded in the data set. For example, a data set
might time-stamp a record of a trader placing an order to buy 100,000 shares
of stock but not time-stamp a record of the trader’s actual intention to buy
another 200,000 shares after the first 100,000 shares are bought. Furthermore,
trading intentions may not coincide with realized trades because the trader
changes his mind as market conditions change. Indeed, traders often condition
their trading strategies on prices by using limit orders or canceling orders, thus
hard-wiring into their strategies a selection bias problem for using such data
to estimate transaction costs. The dependence of actually traded quantities on
prices usually makes it impossible to use implementation shortfall in a mean-
ingful way to estimate market depth and bid-ask spreads from data on trades
only. Portfolio transitions data are particularly well suited for using implemen-
tation shortfall to measure transaction costs because portfolio transitions data
avoid these sources of statistical bias. These selection-bias issues are discussed
in more detail by Obizhaeva (2012).

The Empirical Hypotheses of Invariance and a Power Function Specification for
Transaction Costs

For each unsigned transition order Xi, let IBS�i denote a buy-sell indicator
variable which is equal to +1 for buy orders and −1 for sell orders. For tran-
sition order i, let Ci denote the expected transaction cost as a fraction of the
value transacted. Let Si denote the actual implementation shortfall, defined by
Si = IBS�i · (Pex�i − Pi)/Pi, where Pex�i is the average execution price of order
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i and Pi is a pre-transition benchmark price defined above. Implementation
shortfall is positive when orders are unusually costly and negative when orders
are unusually cheap.

Invariance imposes the restriction that the unobserved transaction cost Ci
has the form given in equation (16):

Ci = σ̄i · W̄ −1/3
i ·

(
ι2 · C̄B · f

(
W̄ 2/3
i

ι
· IBS�i ·Xi

V̄i

))
�(26)

Under the stronger hypothesis that the cost function has a power specification
for market impact costs, invariance implies the generalization of equations (17)
and (18)

Ci = σ̄i · W̄ −1/3
i ·

(
κ0 + κI ·

(
W̄ 2/3
i · Xi

V̄i

)z)
�(27)

where z = 1 for the linear specification and z = 1/2 for the square-root speci-
fication.

Next, we test whether the cost functions can be, in fact, represented as the
product of σ̄i · W̄ −1/3

i and an invariant function of W̄ 2/3
i · [Xi/V̄i].

The predictions invariance makes about transaction costs can be expressed
in terms of a nonlinear regression. To justify nonlinear regression estimation,
we can think of implementation shortfall as representing the sum of two com-
ponents: (1) the transaction costs incurred as a result of order execution and
(2) the effect of other random price changes between the time the benchmark
price is set and the time the trades are executed. If we make the identifying as-
sumption that the implementation shortfall from the portfolio transition data
set is an unbiased estimate of the transaction cost, we can think of modeling
the other random price changes as an error in a regression of implementation
shortfall on transaction costs.

For example, suppose that while one portfolio transition order is being exe-
cuted, there are 99 other bets being executed at the same time. The temporary
and permanent price impact of executing the portfolio transition order shows
up as a transaction cost, while the temporary and permanent price impact of
the other 99 unobserved bets being executed shows up as other random price
changes. Since the portfolio transition order is one of 100 bets being simulta-
neously executed, the R2 of the regression is likely to be about 0�01.

To further develop a nonlinear regression framework for testing invariance,
we need to make several adjustments.

First, using equation (1) and equation (2), we replace the bar variables σ̄i, V̄i,
and W̄i with observable variables σi, Vi, and Wi and with potentially unobserv-
able constants. We also incorporate the assumption that portfolio transition
orders are proportional to bets.
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Second, since we want the error in our regression of implementation short-
fall on transaction costs to be positive when the stock price is moving up and
negative when the stock price is moving down, we multiply both the implemen-
tation shortfall Si and the transaction-cost function C(Xi) by the buy-sell indi-
cator. The regression specification can be then written IBS�i · Si = IBS�i ·Ci + ε̃i.
Note that IBS�i · Si = (Pex�i − Pi)/Pi since I

2
BS�i = 1. This gives us a nonlinear

regression of the form

IBS�i · Si = IBS�i ·
[
ψ

ψ∗

]2/3[
ζ

ζ∗

]1/3[
σi

σ∗

][
Wi

W ∗

]−1/3

· f (Ii · δ−1
)
/L∗ + ε̃i�(28)

where Ii := φ−1 · (Wi/W
∗)2/3 ·Xi/Vi, with invariant constant φ obtained from

equation (8) and illiquidity measure for the benchmark stock 1/L∗ := ι2 · C̄B ·
σ̄∗ · [W̄ ∗]−1/3 obtained from equation (15).11 Note that f (I · δ−1)/L∗ denotes
the invariant cost function for the benchmark stock, expressed as a fraction of
notional value, similar to equation (14).

Third, we make another technical adjustment. Since Wi, Xi, and Vi are ob-
servable, the quantityφ ·Ii is observable. The quantity Ii itself in equation (28),
however, is not observable because the constant φ is defined in terms of po-
tentially unobservable constants ι, δ, ψ, and ζ. To estimate the nonlinear re-
gression equation (28), we substitute for f (·) a different function f ∗(·) defined
by f ∗(x) = (ψ/ψ∗)2/3 · (ζ/ζ∗)1/3 · f (φ−1δ−1x). Using x = φ · Ii, the right side
of equation (28) becomes a simpler expression in terms of observable data,
with various potentially unobserved constants incorporated into the definition
of f ∗, whose functional form is to be estimated from the data. Under the iden-
tifying assumptions ψ = ψ∗ and ζ = ζ∗, we have f ∗(φIi) = f (Ii · δ−1), where
φ · Ii := (Wi/W

∗)2/3 ·Xi/Vi is observable. The unobserved constants hidden in
φ affect the economic interpretation of the scaling of the estimated functional
form for f ∗(·), but they do not otherwise affect the estimation itself. If ζi, ψi,
and δi are not constants, but instead are correlated with variables like Wi, this
would raise problems of statistical bias in our parameter estimates.

Fourth, the variance of errors in the regression is likely to be proportional in
size to the variance of returns and the execution horizon. On average, portfo-
lio transition orders tend to be executed in about one day. To correct for het-
eroscedasticity resulting from differences in returns volatility, we divide both
the right and left sides by returns volatility σi/σ∗, where σ∗ = 0�02. Indeed,
this adjustment makes the root mean squared error of the resulting regression
approximately equal to 0�02.

Fifth, to control for the economically and statistically significant influence
that general market movements have on implementation shortfall, we add the
CRSP value-weighted market return Rmkt�i on the first day of the transition

11More specifically, φ := δ−1ιψ−2/3(ζ/2)−1/3(W ∗)−2/3.
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to the right side of the regression equation. To the extent that portfolio tran-
sition orders are sufficiently large to move the entire U.S. stock market, this
adjustment will result in understated transaction costs by measuring only the
idiosyncratic component of transaction costs. It is an interesting subject for fu-
ture research to investigate how large trades in multiple stocks affect general
market movements.

Upon making these two changes and using the definition of f ∗(·), regression
equation (28) becomes

IBS�i ·Si · (0�02)
σi

= βmkt ·Rmkt�i · (0�02)
σi

+ IBS�i ·
[
Wi

W ∗

]α
·f ∗(φIi)/L∗ + ε̃i�(29)

where invariance implies α = −1/3. One of our tests is designed to examine
this prediction.

Scaling by W ∗ makes the function f ∗(φIi)/L∗ in equation (29) measure
the transaction cost for the benchmark stock in terms of the observable value
φIi. Although invariance itself does not specify a function form for f ∗(·)/L∗,
the regression places strong cross-sectional restrictions on the shape of the
transaction-cost function. In addition to the restriction α = −1/3, it requires
that the same function f ∗(φIi)/L∗ with φIi = (Wi/W

∗)2/3 ·Xi/Vi for order i be
used for all stocks. We test this prediction as well.

We do not undertake separate estimates of transaction-cost parameters for
internal crosses, external crosses, and open market transactions. Such esti-
mates would be difficult to interpret due to selection bias resulting from tran-
sition managers optimally choosing trading venues to minimize costs.

To adjust standard errors for positive contemporaneous correlation in re-
turns, the observations are pooled by week over the 2001–2005 period into
4,389 clusters across 17 industry categories using the pooling option on Stata.

Dummy Variable Regression

In our first test, we fix α = −1/3 in transaction-costs regression equa-
tion (29), estimate function f ∗(·)/L∗ using dummy variables, and examine cali-
brated functions across ten volume groups. Invariance predicts those functions
to be similar. The test does not put restrictions on the specific functional forms
of f ∗(·).

We sort all 439,765 orders into 100 order size bins of equal size based on
the value of the invariant order size φ · Ii = [Wi/W

∗]2/3 · [Xi/Vi]. As before, we
also place each order into one of ten volume groups based on average dollar
trading volume in the underlying stock Pi · Vi, with thresholds corresponding
to the 30th, 50th, 60th, 70th, 75th, 80th, 85th, 90th, and 95th percentiles of
NYSE dollar volume. As shown in Section 4, the distribution of φIi is approx-
imately invariant across volume groups; specifically, across all volume groups
k = 1� � � � �10, each bin h has a similar number of observations and similar
magnitudes for φIi.
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In the regression equation (29), we replace the function f ∗(φIi)/L∗ with
1,000 dummy variables D∗

i (k�h), k = 1� � � � �10 and h = 1� � � � �100, where
D∗
i (k�h)= 1 if bet i belongs to volume group k based on dollar volume Pi · Vi

and to order size bin h based onφIi; otherwise,D∗
i (k�h)= 0. We then estimate

1,000 coefficients f ∗(k�h)/L∗, k = 1� � � � �10, h = 1� � � � �100 for the dummy
variables using a separate OLS regression for each of the volume groups,
k= 1� � � � �10,

IBS�i · Si · (0�02)
σi

= βmkt ·Rmkt�i · (0�02)
σi

(30)

+ IBS�i ·
[
Wi

W ∗

]−1/3

·
100∑
h=1

D∗
i (k�h) · f ∗(k�h)/L∗ + ε̃i�

For each volume group k, the 100 dummy variable coefficients f ∗(k�h)/L∗

(where h= 1� � � � �100) track the shape of function f ∗(·)/L∗, without imposing
any particular restrictions on its functional form. Invariance predicts that the
ten values of the coefficients f ∗(k�h)/L∗, k= 1� � � � �10 should be the same for
each order size bin h, h= 1� � � � �100. In other words, f ∗(k�h)/L∗ is predicted
not to depend on volume-group index k.

Figure 4 shows ten plots, one for each of the ten volume groups, with the
100 estimated coefficients for the dummy variables plotted as solid dots in each
plot. On each plot, we also superimpose the 95% confidence intervals for 100
dummy variable coefficients estimated based on the pooled sample (dotted
lines). The superimposed confidence bands help to assess the degree of sim-
ilarity between cost functions estimated separately based on observations in
each volume bin.

On each of the ten plots, the horizontal and vertical axes are scaled in the
same way to facilitate comparison. On the horizontal axis, we plot the value for
order-size bin h equal to the log of the average φIi for observations in that size
bin and corresponding volume group k.

On the right vertical axis, we plot the values of the dummy variable co-
efficients f ∗(k�h)/L∗ quantifying for the benchmark stock the cost function
as a fraction of notional value, scaled in basis points. To make deviations
of cost patterns from invariance visually obvious, we have effectively scaled
cost functions as suggested by invariance using regression (30): We multiply
orders sizes Xi/Vi by (Wi/W

∗)2/3 and divide implementation shortfalls Si by
L∗/Li = (σi/σ

∗) · (Wi/W
∗)−1/3. Here 1/L∗ := ι2 · C̄B · σ̄∗ · [W̄ ∗]−1/3 is the illiq-

uidity measure for the benchmark stock from equation (28). The invariance
hypotheses imply that the 100 points plotted for each of the 10 volume groups
will describe the same underlying cost function when the vertical axis is scaled
according to invariance.

On the left vertical axis, we plot actual average transaction cost f ∗(k�h)/Lk

as a fraction of notional value, scaled in basis points. For each volume group k,
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FIGURE 4.—Invariant transaction-cost functions. Figure shows estimates of transaction-cost functions for stock sorted into 10 volume groups. On
the horizonal axis, there are 100 equally spaced bins based on re-scaled order sizes, φI = X̃/V · (Wi/W

∗)2/3. For each volume group k= 1� � � � �10,
the subplot contains 100 estimates of dummy variables f ∗(k�h)/L∗�h= 1� � � � �100 from regression (30). On the right side vertical axis, there are
units of scaled transaction cost f ∗(·)/L∗ for a benchmark stock. On the left side vertical axis, there are units of actual transaction cost f ∗(·)/Lk for
a benchmark stock, where 1/Lk is the illiquidity measure for orders in volume group k. The 95th percent confidence interval estimates based on
the entire sample are imposed on each subplot (blue dotted lines). The common linear and square-root functions are imposed on each subplot with
the parameter estimated on the entire sample. A linear function is 2�50 × 10−4 ·φI/0�01 + 8�21 × 10−4 (black solid line). A square-root function
is 12�07 × 10−4 · √φI/0�01 + 2�08 × 10−4 (gray solid line). The thresholds of ten volume groups correspond to 30th, 50th, 60th, 70th, 75th, 80th,
85th, 90th, and 95th percentiles of dollar volume for common stocks listed on the NYSE. Group 1 (group 10) contains orders in stocks with lowest
(highest) dollar volume. Each subplot also shows the number of observations N and the number of stocks M (for the last month). The sample
ranges from January 2001 to December 2005.
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this scaling reverses invariance-based scaling by multiplying estimated coeffi-
cients f ∗(k�h)/L∗ by L∗/Lk, where 1/Lk is the illiquidity measure for orders
in volume group k given by 1/Lk := ι2 · C̄B · σ̄kmed · (W̄ k

med)
−1/3, with σ̄kmed de-

noting median bet volatility and W̄ k
med denoting median bet activity for volume

group k.
Without appropriate scaling, the data do not reveal their invariant proper-

ties. The actual costs on the left vertical axes vary significantly across volume
groups. In the low-volume group, costs range from −220 basis points to 366
basis points; in the high-volume group, costs range from −33 basis point to 55
basis points, 7 times less than in the low-volume group.

After applying invariance scaling, however, our plots appear to be visually
consistent with the invariance hypotheses. For all ten subplots in Figure 4, the
estimated dummy variable coefficients on the right vertical axes are very similar
across volume groups. They also line up along the superimposed confidence
band.

Moving from low-volume groups to high-volume groups, these estimates also
become visually more noisy. For low-volume group 1, dummy variable esti-
mates lie within the confidence band, very tightly pinning down the estimated
shape for the function f ∗(·)/L∗. For high-volume group 10, many dummy vari-
able estimates lie outside of the confidence band, with 11 observations above
the band and about 40 observations below the band. These patterns suggest
that the statistical power of our tests concerning transaction costs comes mostly
from low-volume groups.

Invariance suggests that orders might be executed over horizons inversely
proportional to the speed of business time, implying very slow executions for
large orders in stocks with low trading activity. Portfolio transitions are, how-
ever, usually implemented within a clearly defined tight calendar time frame,
which has the effect of speeding up the natural execution horizon for stocks
with low trading activity. When transition orders are executed over a fixed
number of calendar days, the execution in business time is effectively faster for
low-volume stocks and slower for high-volume stocks. When a transition order
in a low-volume stock is being executed, there are therefore probably fewer
other bets being executed at the same time; this makes the R2 of the regression
higher. Over the same period of calendar time, more bets are being executed
for the high-volume stocks, making the R2 lower than for low-volume stocks.
The more patient business-time pace of execution for high-volume stocks may
explain why the dummy variable estimates are noisier for high-volume stocks
than for low-volume stocks. This may also explain why the execution costs of
high-volume stocks appear to be slightly less expensive than low-volume stocks.

Transaction Cost Estimates in Nonlinear Regression

Next, we test the hypothesis α = −1/3 in transaction-cost regression equa-
tion (29) while simultaneously calibrating a specific functional form for the
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cost function f ∗(·)/L∗. We assume that this function has a particular paramet-
ric functional form equal to the sum of a constant bid-ask spread term and a
market impact term which is a power of φ · I, similar to equation (27). For this
particular specification, the nonlinear regression (29) can be written as

IBS�i · Si · (0�02)
σi

= βmkt ·Rmkt�i · (0�02)
σi

+ IBS�i · κ∗
0 ·

[
Wi

W ∗

]α1

(31)

+ IBS�i · κ∗
I ·

[
Wi

W ∗

]α2

·
[
φIi

0�01

]z
+ ε̃i�

where φIi/0�01 = [Wi/W
∗]2/3 · Xi/[0�01Vi]. The explanatory variables are

scaled so that, for the benchmark stock, execution of one percent of daily
volume has price-impact cost of κ∗

I and fixed bid-ask spread of κ∗
0, both mea-

sured as a fraction of the value traded. Equation (31) nests for empirical testing
both the linear model of equation (17) (z = 1) and the square-root model of
equation (18) (z = 1/2).

First, we report estimates of the six parameters (βmkt� z�α1�κ
∗
0�α2�κ

∗
I ) in

equation (31) using nonlinear regression. Second, we calibrate the three-
parameter linear impact model of equation (17) with parameters (βmkt�κ

∗
0�κ

∗
I )

by imposing the additional invariance restrictions α1 = α2 = −1/3 and the lin-
ear cost restriction z = 1. Third, we also calibrate the three-parameter square-
root model of equation (18) with parameters (βmkt�κ

∗
0�κ

∗
I ) by imposing the

alternate restriction z = 1/2. Finally, we examine a twelve-parameter gener-
alization of equation (31) which replaces powers α1 and α2 of trading activity
Wi with powers of volatility σi, price Pi, volume Vi, and monthly turnover νi.
Although statistical tests reject invariance, the results indicate that the predic-
tions of invariance are economically significant, with the square-root version
of invariance explaining transaction costs better than the linear version.

The parameter estimates for the six parameters βmkt, κ∗
0, z, α1, κ∗

I , α2 in the
nonlinear regression (31) are reported in Table IV.

For the coefficient βmkt, which multiplies the market return Rmkt�i, the esti-
mate is β̂mkt = 0�65 with standard error 0�013. The fact that β̂mkt < 1 suggests
that many transition orders are executed early on the first day.12

The point estimate of the estimated bid-ask spread exponent is α̂1 = −0�49,
with standard error 0�050, three standard errors lower than the predicted value
α1 = −1/3. In comparison with invariance, this result implies higher spread
costs for less actively traded stocks and lower spread costs for more actively
traded stocks. Note, however, that the factor involving α1 is multiplied by 2 ·κ∗

0,
and κ∗

0 is only of marginal statistical significance since it differs from zero by
about two standard errors; excluding the bid-ask spread component of prices
reduces the R2 from 0�1010 to 0�1006 (not reported in table). This result may

12The fact that β̂mkt = 0�65 is close to 2/3 is a coincidence; it is not implied by invariance.
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TABLE IV

TRANSACTION COST ESTIMATES IN NON-LINEAR REGRESSIONa

NYSE NASDAQ

All Buy Sell Buy Sell

βmkt 0�66 0�63 0�62 0�76 0�78
(0�013) (0�016) (0�016) (0�037) (0�036)

κ∗
0 × 104 1�77 −0�27 1�14 0�77 3�55

(0�837) (2�422) (1�245) (4�442) (1�415)
α1 −0�49 −0�37 −0�50 0�53 −0�44

(0�050) (1�471) (0�114) (1�926) (0�045)
κ∗
I × 104 10�69 12�08 9�56 12�33 9�34

(1�376) (2�693) (2�254) (2�356) (2�686)
z 0�57 0�54 0�56 0�44 0�63

(0�039) (0�056) (0�062) (0�051) (0�086)
α2 −0�32 −0�40 −0�33 −0�41 −0�29

(0�015) (0�037) (0�029) (0�035) (0�037)

R2 0�1010 0�1118 0�1029 0�0945 0�0919
#Obs 439,765 131,530 150,377 69,871 87,987

aTable presents the estimates for βmkt� z�α1�κ
∗
0�α2, and κ∗

I in the regression

IBS�i · Si ·
(0�02)
σi

= βmkt ·Rmkt�i ·
(0�02)
σi

+ IBS�i · κ∗
0 ·

[
Wi
W ∗

]α1 + IBS�i · κ∗
I ·

[
Wi
W ∗

]α2 ·
[
φIi
0�01

]z
+ ε̃i�

where φIi/0�01 =Xi/(0�01Vi) · (Wi/W ∗)2/3. Si is implementation shortfall. Rmkt�i is the value-weight market return
for the first day of transition. The trading activity Wi is the product of expected volatility σi , pre-transition price Pi ,
and expected volume Vi . The scaling constant W ∗ = (0�02)(40)(106) is the trading activity for the benchmark stock
with volatility of 2% per day, price $40 per share, and trading volume of one million shares per day. Xi is the number
of shares in the order i. The parameter κ∗

I × 104 is the market impact cost of executing a trade of one percent of

daily volume in the benchmark stock, and κ∗
0 × 104 is the effective spread cost; both are measured in basis points. The

standard errors are clustered at weekly levels for 17 industries and shown in parentheses. The sample ranges from
January 2001 to December 2005.

have something to do with the minimum tick size of one cent being a binding
constraint for some stocks.

The point estimate for α2 is α̂2 = −0�32 with standard error 0�015. Since
invariance implies α2 = −1/3, this result strongly supports invariance. When
the four parameters are estimated separately for NYSE Buys, NYSE Sells,
NASDAQ Buys, and NASDAQ Sells, the estimated coefficients for α2 are
−0�40, −0�33, −0�41, and −0�29, respectively.

The estimate for the market impact curvature parameter z is ẑ = 0�57 with
standard error 0�039. This suggests that a square-root specification (z = 1/2)
may describe observed transaction costs better than a linear specification
(z = 1). Note that invariance does not place any restrictions on the parame-
ter z itself.

The point estimate of the market impact coefficient κ∗
I is κ̂∗

I = 10�69 × 10−4

with standard error 1�376 × 10−4. The estimates of κ∗
I are higher for buy orders
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than for sell orders (12�08 × 10−4 versus 9�56 × 10−4 for NYSE; 12�33 × 10−4

versus 9�34 × 10−4 for NASDAQ).
Note that the point estimate of the market impact coefficient κ∗

I is different
from zero with much greater statistical significance than the bid-ask spread
coefficient κ∗

0; this is consistent with the interpretation that market impact costs
are of considerably greater economic importance than bid-ask spread costs.

Results for the five-parameter linear specification, regression equation (31)
with the parameter restriction z = 1 (linear impact), are reported in Table A.III
in the Supplemental Material. The estimate of the bid-ask spread cost κ∗

0 is
6�28 × 10−4 with standard error 0�890 × 10−4, and the estimate of the exponent
α1 is α̂1 = −0�39 with standard error 0�020. The estimate of the market impact
cost κ∗

I is 2�73 × 10−4 with standard error 0�252. The estimate of the exponent
α2 is α̂2 = −0�31 with standard error of 0�028; thus, under the restriction of
linear price impact (z = 1), the additional restriction imposed by invariance
(α2 = 1/3) is not statistically rejected.

Model Calibration

Next, we calibrate transaction-cost models under the assumption of invari-
ance and the assumption of either linear or square-root specification for the
cost function.

Table V presents estimates for the three parameters βmkt, κ∗
0, and κ∗

I in equa-
tion (31), imposing the invariance restrictions α1 = α2 = −1/3 and also impos-
ing either a linear transaction-cost model z = 1 or a square-root model z = 1/2.

In the linear specification with z = 1, the point estimate for market impact
cost κ̂∗

I is equal to 2�50 × 10−4, and the point estimate for bid-ask spread cost
κ̂∗

0 is equal to 8�21 × 10−4.
In the square-root specification with z = 1/2, the point estimate for market

impact cost κ̂∗
I is equal to 12�08 × 10−4, and the point estimate for half bid-ask

spread κ̂∗
0 is equal to 2�08 × 10−4.

For the benchmark stock, these estimates imply that the total cost of a hypo-
thetical trade of one percent of daily volume incurs a cost of about 10�71 basis
points in the linear model and 14�16 basis points in the square-root model.

The benchmark stock would belong to volume group 7, and the correspond-
ing average quoted spread in Table I for that group is 12�04 basis points. The
implied spread estimate of about 16�42 basis points for the linear model is close
to the quoted spread; the implied spread estimate of 4�16 basis points for the
square-root model may be biased downward due to collinearity between the
constant term and the square-root term in the regression in the region close to
zero.

Economic Interpretation

We examine the economic significance of our results by comparing the R2 of
different specifications for transaction-cost models.
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TABLE V

TRANSACTION COSTS: MODEL CALIBRATIONa

NYSE NASDAQ

All Buy Sell Buy Sell

Linear Model: z = 1, β1 = β2 =β3 = β4 = β5 = β6 = β7 = β8 = 0

κ∗
0 × 104 8�21 7�19 6�77 9�18 9�27

(0�578) (1�122) (0�794) (1�563) (0�781)
κ∗
I × 104 2�50 3�37 1�92 3�46 2�46

(0�190) (0�370) (0�265) (0�395) (0�327)
R2 0�0991 0�1102 0�1012 0�0926 0�0897

Square-Root Model: z = 1/2, β1 = β2 = β3 = β4 = β5 =β6 = β7 = β8 = 0

κ∗
0 × 104 2�08 −1�31 0�92 2�28 4�65

(0�704) (1�278) (0�926) (2�055) (0�824)
κ∗
I × 104 12�08 15�65 11�10 13�50 10�41

(0�742) (1�218) (1�298) (1�456) (1�207)
R2 0�1007 0�1116 0�1027 0�0941 0�0911

Unrestricted Specification With 12 Degrees of Freedom

R2 0�1016 0�1121 0�1032 0�0957 0�0944
#Obs 439,765 131,530 150,377 69,871 87,987

aTable presents the estimates κ∗
0 and κ∗

I for the regression

IBS�i · Si ·
(0�02)
σi

= βmkt ·Rmkt�i ·
(0�02)
σi

IBS�i · κ∗
0 ·

[
Wi
W ∗

]−1/3
· σ

β1
i · Pβ2

i · V β3
i · νβ4

i

(0�02)(40)
(
106)

(1/12)

+ IBS�i · κ∗
I ·

[
φIi
0�01

]z
·
[
Wi
W ∗

]−1/3
· σ

β5
i · Pβ6

i · V β7
i · νβ8

i

(0�02)(40)
(
106)

(1/12)
+ ε̃i�

where invariant φIi/0�01 =Xi/(0�01Vi) · (Wi/W ∗)2/3. Si is implementation shortfall. Rmkt�i is the value-weight mar-
ket return for the first day of transition. The trading activity Wi is the product of expected volatility σi , pre-transition
price Pi , and expected volume Vi . The scaling constant W ∗ = (0�02)(40)(106) is the trading activity for the benchmark
stock with volatility of 2% per day, price $40 per share, and trading volume of one million shares per day. Xi is the
number of shares in the order i. The parameter κ∗

I × 104 is the market impact cost of executing a trade of one percent

of daily volume in the benchmark stock, and κ∗
0 × 104 is the effective spread cost; both are measured in basis points.

The R2’s are reported for restricted specification as well as for unrestricted specification with twelve coefficients βmkt,
z, κ∗

I �κ
∗
0�β1�β2�β3�β4�β5�β6�β7�β8 allowed to vary freely. The standard errors are clustered at weekly levels for

17 industries and shown in parentheses. The sample ranges from January 2001 to December 2005.

The R2 is equal to 0�0847 in the transaction-cost regressions with market
return only (not reported). This implies that a substantial part of realized
transaction costs is explained by overall market dynamics. The transaction-cost
models improve the R2’s by only one or two percent.

A comparison of the R2’s in Table IV and Table V provides strong support
for the invariance hypothesis. When the coefficient on Wi/W

∗ is fixed at the
invariance-implied value of −1/3 and only two transaction-cost parameters κ∗

I

and κ∗
0 are estimated (Table V), the R2 is 0�0991 for a linear specification and
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0�1007 for a square-root specification. The square-root specification performs
better than the linear specification. Compared with the square-root specifica-
tion, adding the three additional parameters α1, α2, and z modestly increases
the R2 from 0�1007 to 0�1010 (Table V). The modest increase strongly supports
the economic importance of invariance.

We also consider a more general specification with eleven estimated coeffi-
cients. The exponents on the three components of trading activityWi (volatility
σi, price Pi, volume Vi) as well as the exponent on the monthly turnover νi are
allowed to vary freely. The estimated regression equation is

IBS�i · Si · (0�02)
σi

(32)

= βmkt ·Rmkt�i · (0�02)
σi

IBS�i · κ∗
0 ·

[
Wi

W ∗

]−1/3

· σ
β1
i · Pβ2

i · V β3
i · νβ4

i

(0�02)(40)
(
106

)
(1/12)

+ IBS�i · κ∗
I ·

[
φIi

0�01

]z
·
[
Wi

W ∗

]−1/3

· σ
β5
i · Pβ6

i · V β7
i · νβ8

i

(0�02)(40)
(
106

)
(1/12)

+ ε̃i�

Because the exponents on the W -terms are set to be −1/3, the invariance hy-
potheses predict β1 = β2 = β3 = β4 = β5 = β6 = β7 = β8 = 0.

Table V shows that despite increasing the number of estimated parameters
from four to eleven, the R2 in the aggregate regression increases from 0�1010
to only 0�1016. The estimates of β1, β2, β3, β4, β5, β6, β7, and β8 are shown in
Table A.IV in the Supplemental Material. The estimates of β1, β2, β3, β4 are
often statistically significant, but these explanatory variables are multiplied by
statistically insignificant coefficient κ∗

0. Almost all estimates of β5, β6, β7, and
β8 are statistically insignificant, both for the pooled sample as well as the four
subsamples.

In all three specifications, separate regressions for NYSE Buys, NYSE Sells,
NASDAQ Buys, and NASDAQ Sells suggest that price-impact costs are higher
for buy orders than for sell orders. This is consistent with the hypothesis, dis-
cussed by Obizhaeva (2009), that the market believes that buy orders—in par-
ticular, buy orders in portfolio transitions—contain more information than sell
orders.

OLS Estimates for Quoted Spread

Finally, we present results of statistical tests based on the data on quoted
bid-ask spread for portfolio transition orders.

Since invariance implies that bid-ask spread costs are proportional to σ̄i ·
W̄ −1/3
i , intuition suggests that quoted spreads may also have this invariant prop-

erty. As a supplement to our empirical results on transaction costs, we test this
prediction using data on quoted spreads, supplied in the portfolio transition
data as pre-trade information for each transition order.
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Let si denote the dollar quoted spread for order i. Using equations (1)
and (2), we can write equation (19) as the log-linear OLS regression

ln
[

si

Pi · σi
]

= ln s̄+ α3 · ln
[
Wi

W ∗

]
+ ε̃i�(33)

where invariance implies α3 = −1/3. The constant term ln[s̄] := ln[s∗/
(40 · 0�02)] + 2/3 · ln[ψ/ψ∗] − 1/3 · ln[ζ∗/ζ] quantifies the dollar spread s∗
for the benchmark stock as a fraction of dollar volatility P∗ · σ∗, under the
identifying assumptions ζ = ζ∗ and ψ=ψ∗.

Table VI presents the regression results. The point estimate α̂3 = −0�35 has
standard error 0�003. For subsamples of NYSE Buys, NYSE Sells, NASDAQ
Buys, and NASDAQ Sells, the estimates are −0�31, −0�32, −0�40, and −0�39,
respectively. Although the hypothesis α3 = −1/3 is usually rejected statistically,
the estimates are economically close to the value of −1/3 predicted by invari-
ance. The point estimate of ln[s̄] is equal to −3�07, implying a quoted spread of
exp(−3�07) · 0�02 ≈ 9 × 10−4 for the benchmark stock. This number is similar
to the median spread of 8�12 basis points for volume group 7 in Table I.

It can be shown that an implicit spread proportional to σ̄i · W̄ −1/3
i , as implied

by invariance, provides a better proxy for the actually incurred spread costs
than the quoted spread itself. When regression equation (31) is estimated with

TABLE VI

OLS ESTIMATES OF LOG OF QUOTED SPREADa

NYSE NASDAQ

All Buy Sell Buy Sell

ln[s̄] −3�07 −3�09 −3�08 −3�04 −3�04
(0�008) (0�008) (0�008) (0�013) (0�012)

α3 −0�35 −0�31 −0�32 −0�40 −0�39
(0�003) (0�003) (0�003) (0�004) (0�004)

R2 0�4744 0�3545 0�3964 0�5516 0�5721
eln[s̄] · 0�02 × 104 9�28 9�10 9�19 9�57 9�57
#Obs 434,920 130,700 149,197 68,833 86,190

aTable presents the estimates ln[s̄] and α3 for the regression

ln
[

si
Pi · σi

]
= ln[s̄] + α3 · ln

[
Wi
W ∗

]
+ ε̃i�

Each observation corresponds to order i. The left side variable is the logarithm of the quoted bid-ask spread si/Pi
as a fraction of expected returns volatility σi . The trading activity Wi is the product of expected daily volatility σi ,
pre-transition price Pi , and expected daily volume Vi , measured as the last month’s average daily volume. The scaling
constant W ∗ = (0�02)(40)(106) corresponds to the trading activity for the benchmark stock with volatility of 2% per
day, price $40 per share, and trading volume of one million shares per day. The quantity exp(ln[s̄]) ·0�02×104 measures
the median percentage spread for the benchmark stock in basis points. The standard errors are clustered at weekly
levels for 17 industries and shown in parentheses. The sample ranges from January 2001 to December 2005.
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linear impact z = 1, using only the 436,649 observations for which quoted bid-
ask spread data are supplied, we find the R2 is equal to 0�0992. Now replace
the invariance-implied spread cost proportional to σ̄i · W̄ −1/3

i with the quoted
half spread 1/2 · si/Pi in equation (17). The estimated equation is

IBS�i · Si · (0�02)
σi

= βmkt ·Rmkt�i · (0�02)
σi

+ IBS�i ·βS · 1
2

· si
Pi

· (0�02)
σi

(34)

+ IBS�i · κI ·
[
φIi

0�01

]
·
[
Wi

W ∗

]α2

+ ε̃i�

We find that the R2 drops from 0�0992 to 0�0976 (Table A.V in the Supplemen-
tal Material). The point estimate of the coefficient on the quoted half-spread
coefficient is β̂S = 0�71. The estimates are equal to 0�61, 0�74, 0�61, and 0�75,
when estimated for NYSE Buys, NYSE Sells, NASDAQ Buys, and NASDAQ
Sells, respectively.

One interpretation of the estimate of 0�71 is that transition managers incur
as a transaction cost only 71% of the quoted half-spread. The values are con-
sistent with the intuition in Goettler, Parlour, and Rajan (2005) that endoge-
nously optimizing traders capture a fraction of the bid-ask spread by mixing
between market orders and limit orders. Another interpretation is that noise
in the quoted spread biases the coefficient towards zero and reduces the ex-
planatory power of the regression.

Bouchaud, Farmer, and Lillo (2009) and Dufour and Engle (2000) reported
that the quoted bid-ask spread is proportional to the standard deviation of per-
centage returns between trades; this result is implied by microstructure invari-
ance under the assumption that the rate at which trades occur is proportional
to the rate at which bets arrive. Stoll (1978a) proposed a theory that the per-
centage dealer bid-ask spread in NASDAQ stocks is proportional to variables
including the dealer holding period and the returns variance of the stock; this
captures the spirit of invariance if the dealer holding period is proportional to
the rate at which bets arrive. Stoll (1978b) also tested this theory using data on
dealer spreads for NASDAQ stocks, and his estimates are consistent with our
findings as well.13

13Stoll (1978b) reported an R2 of approximately 0�82 in an OLS regression of percentage bid-
ask spread on the logs of various variables including dollar volume, stock price, returns variance,
turnover, and number of dealers. Using the standard deviations and correlation matrix for the
variables (p. 1165), it can be shown that imposing coefficients of −1/3 on dollar volume and
+1/3 on returns variance (to mimic the definition of 1/Li), while imposing coefficients of zero
on all other explanatory variables except a constant term, results in an R2 equal to 0�66. This
result is similar to our results in Table VI.
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Discussion

Figure 5 plots the estimated coefficients for the 100 dummy variables, along
with their 95% confidence intervals, estimated from the dummy variable re-
gression equation (30) by pooling the data across all 10 volume groups. The
linear and square-root cost functions with parameters calibrated in Table V are
superimposed. The linear specification is 2�50 × 10−4 · φI/0�01 + 8�21 × 10−4

(solid black line), and the square-root specification is 12�07×10−4 ·√φI/0�01+
2�08 × 10−4 (solid gray line). Both specifications result in estimates economi-
cally close to each other.

Consistent with the higher reported R2 for the square-root model than the
linear model in Table V, the square-root specification fits the data slightly bet-
ter than the linear specification, particularly for large orders in the order size
bins from 90th to 99th percentiles. Consistent with our results, most studies
find that total price impact is best described by a concave function.14 For ex-

FIGURE 5.—Transaction-cost functions. Figure shows estimates of transaction-cost func-
tions based on entire sample. On the horizonal axis, there are 100 equally spaced bins
based on re-scaled order sizes, φI = X̃/V · (Wi/W

∗)2/3. The plot contains 100 estimates
f ∗(k�h)/L∗�h= 1� � � � �100 from the regression

IBS�i · Si · (0�02)
σi

= βmkt ·Rmkt�i · (0�02)
σi

+ IBS�i ·
[
Wi

W ∗

]−1/3

·
100∑
h=1

D∗
i (k�h) · f ∗(k�h)/L∗ + ε̃i�

Xi is an order size in shares, Vi is the average daily volume in shares, and Wi is the mea-
sure of trading activity. The vertical axis presents estimated transaction-cost invariant f ∗(·)/Li
in basis points. The 95th percent confidence intervals are superimposed (dotted lines). A lin-
ear function is 2�50 × 10−4 · φI/0�01 + 8�21 × 10−4 (black solid line). A square-root function is
12�07 × 10−4 · √φI/0�01 + 2�08 × 10−4 (gray solid line). The sample ranges from January 2001 to
December 2005.

14Since we plot the log of order size on the horizontal axis but do not take the log of the trans-
action cost on the vertical axis (to make standard errors have similar magnitudes for different
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ample, Almgren et al. (2005) obtained an estimate ẑ = 0�60 for their sam-
ple of almost 30,000 U.S. stock orders executed by Citigroup between 2001
and 2003; this is comparable to our estimate of ẑ = 0�56 when the constraint
α1 = α2 = −1/3 is imposed in regression equation (31). To differentiate tempo-
rary impact from permanent impact of earlier executed trades, Almgren et al.
(2005) assumed a particular execution algorithm with a constant rate of trad-
ing. We do not quantify these cost components separately but rather focus on
total costs.

Intuition might suggest that for gigantic orders, the square-root model would
predict dramatically lower transaction costs than the linear model, making it
easy to distinguish the predictions of one model from the other. As the super-
imposed estimated linear and square-root cost functions for the ten plots in
Figure 4 make clear, both specifications estimate similar transaction costs for
the bin representing the largest 1% of orders (because the graphs of the lin-
ear and square-root functions in Figure 5 cross near the bin representing the
largest 1% of orders). Furthermore, the transaction-cost dummy variable for
the largest 1% of orders fits both the linear and square-root models well. For
the largest 1% of orders in the highest-volume group in Figure 4, the estimated
dummy variable fits the higher cost estimates of the linear model better than
the square-root model.

We have developed notation which allows the possibility that the parameters
ζjt , ψjt , and δjt vary across stocks j and time t. Although our parameter esti-
mates are economically close to the ones predicted by invariance, it is possible
that ζjt , ψjt , and δjt do vary across j and t enough to statistically reject the
invariance hypotheses in some cases. The notation we have developed can be
used to investigate this possibility in future research.

6. IMPLICATIONS

The invariance relationships (7), (8), and (16) are like a structural model
which describes the implications of market microstructure for bet sizes and
transaction costs. The model is fully specified by constants describing the mo-
ments of Ĩ and the shape of the un-modeled function CB(·), which determines
the constant C̄B. These constants can be inferred from the estimates in Sec-
tion 4 and Section 5, but their economic interpretation depends on assump-
tions about the volume multiplier ζ, the volatility multiplier ψ, and the defla-
tor δ.

Our empirical tests provide not only evidence in favor of the invariance hy-
potheses but also inputs for calibration. Our empirical results can be summa-
rized as follows. The distribution of portfolio transition orders |X̃|—expressed

observations), both the linear model and the concave square-root model show up as exponential
functions; the graph of the linear model is more convex than the graph of the square-root model.



1400 A. S. KYLE AND A. A. OBIZHAEVA

as a fraction of volume—is approximately a log-normal. It is therefore fully de-
scribed by two parameters, the log-mean for the benchmark stock estimated to
be −5�71 and the log-variance estimated to be 2�53 (Table III). The following
formula shows how these estimates can be extrapolated to stocks with other
levels of trading activity Wjt = σjt · Pjt · Vjt and volume Vjt :

ln
[ |X̃jt |
Vjt

]
≈ −5�71 − 2

3
· ln

[
Wjt

(0�02)(40)
(
106

)
]

+ √
2�53 · Z̃�(35)

Z̃ ∼N(0�1)�

γjt = 85 ·
[

Wjt

(0�02)(40)
(
106

)
]2/3

�(36)

The last equation for the number of bets γjt follows directly from equation (35)
under the assumption that the volume multiplier ζ = 2 and the portfolio tran-
sition size multiplier δ= 1. These two equations fully describe the order-flow
process.

Our empirical results also suggest that transaction-cost functions can be de-
scribed by either a linear model or a square-root model. Since both models
also have a constant bid-ask spread term, each model is described by two pa-
rameters. For an order of 1% of average daily volume in the benchmark stock,
the estimates imply market impact costs of κI = 2�50 × 10−4 and spread costs
of κ0 = 8�21 × 10−4 for the linear model as well as market impact costs of
κI = 12�08 × 10−4 and spread costs of κ0 = 2�08 × 10−4 for the square-root
model (Table V). The following formulas show how these estimates can be ex-
trapolated to execution costs of an order of X shares for stocks with other
levels of trading activity Wjt , volume Vjt , and volatility σjt :

Cjt(X)= σjt

0�02

(
8�21
104 ·

[
Wjt

(0�02)(40)
(
106

)
]−1/3

(37)

+ 2�50
104 ·

[
Wjt

(0�02)(40)
(
106

)
]1/3

X

(0�01)Vjt

)
�

Cjt(X)= σjt

0�02

(
2�08
104 ·

[
Wjt

(0�02)(40)
(
106

)
]−1/3

(38)

+ 12�08
104 ·

[
X

(0�01)Vjt

]1/2)
�

These two equations fully describe the transaction-cost models.
To summarize, formulas (35), (36), (37), and (38) provide a simple way to

calculate the number of bets, different percentiles of bet sizes, and transaction
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costs. The only stock-specific inputs required are expected dollar volume and
volatility.15

Our results can also be used to calibrate the distribution of Ĩ and the invari-
ant cost functionCB(·), which further implies specific quantitative relationships
concerning various market microstructure variables such as the number of bets
per day, bet sizes, bid-ask spread, and market impact as functions of easily ob-
servable trading activity and its components. These implications ultimately de-
pend on values assigned to the volatility multiplier ψ, the volume multiplier ζ,
and the deflator δ.

In a more complicated exercise left for future research, this handful of pa-
rameters would make it possible to triangulate the value of parameters mea-
suring the fraction of trading volume due to long-term investors rather than
intermediaries 1/ζ, the fraction of returns volatility generated by bets ψ, and
the ratio of the size of bets to the size of portfolio transition orders δ. In the
future, careful thinking about calibration of the invariants and estimation of
multipliers will be necessary to sharpen predictions based on invariance hy-
potheses.

7. CONCLUSION

We have shown that the predictions based on market microstructure invari-
ance are economically consistent with estimates from portfolio transitions data
for U.S. equities. We conjecture that predictions based on invariance may hold
in other data as well, such as quotes and trades in the TAQ data set, insti-
tutional holdings recorded in 13-F filings, institutional trades reported in the
Ancerno data set, and other data sets. For example, we conjecture that data on
news articles can help to show that information flows take place in the same
business time as trading.

We conjecture that predictions of market microstructure invariance may
generalize to other markets such as bond markets, currency markets, and fu-
tures markets, as well as to other countries. Whether market microstructure
invariance applies to other markets poses an interesting set of issues for future
research.

We do not expect invariance to hold perfectly across different markets and
different time periods. Differences in trading institutions across markets might
make the volume multiplier and the volatility multiplier vary across markets.
We expect transaction costs, particularly bid-ask spread costs (but perhaps not

15If one attempts to apply these formulas to assets or time periods where the values for the vol-
ume multiplier ζ and the volatility multiplier ψ may be different from the ones relevant for our
sample of portfolio transitions, then a simple adjustment to the formulas must be implemented.
First, one needs to deflate trading volume and trading volatility in those formulas by appropriate
multipliers in order to write those formulas in terms of bet volume and bet volatility for obser-
vations in portfolio transitions data. Second, one needs to plug into the modified formulas bet
volume and bet volatility appropriate for the market for which calculations are made.
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market impact costs), to be influenced by numerous institutional features, such
as government regulation (e.g., short sale restrictions, customer order handling
rules), transaction taxes, competitiveness of market making institutions, effi-
ciency of trading platforms, market fragmentation, technological change, and
tick size. For example, if minimum tick size rules affect bid-ask spread costs,
we believe that market microstructure invariance can be used as a benchmark
against which the effect of tick size on bid-ask spread costs can be evaluated.

To conclude, market microstructure invariance implies simple scaling laws
which lead to sharp statistical hypotheses about bet size and transaction costs.
Its implications explain an economically significant portion of the variation in
portfolio transition order size and transaction costs when the scaling laws are
imposed on the data. The scaling laws enable us to derive simple operational
formulas describing order-size distributions and transaction costs; thus, they
provide simple benchmarks from which past research can be evaluated and
open up new lines of research in market microstructure.
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CURRENT RESEARCH ON INVARIANCE HYPOTHESES

THE INVARIANCE HYPOTHESES CAN BE EXAMINED using many different data
sets. Here is a summary of our current research using data sets available to
academic researchers:

• The Ancerno data set includes more orders than the data set of portfolio
transitions used in this paper. The data set groups trades into “meta-orders”
which approximate our concept of a bet. Preliminary research by Albert S.
Kyle and Kingsley Fong found that proxies for bets in Ancerno data have size
patterns consistent with the invariance hypotheses. The Ancerno data are also
designed to facilitate measurement of transactions costs. This data set is there-
fore appropriate for validating our empirical results for both bet size and trans-
action costs.

• Andersen, Bondarenko, Kyle, and Obizhaeva (2015) examined the varia-
tion in trade frequency, contract volume, and volatility in the S&P 500 E-mini
futures contract across minutes of the 24-hour day. The results conform to pre-
dicted invariance relationships.

TABLE A.I

QUANTILE ESTIMATES OF ORDER SIZEa

p1 p5 p25 p50 p75 p95 p99

ln[q̄] −9�37 −8�31 −6�73 −5�66 −4�59 −3�05 −2�05
(0�008) (0�006) (0�004) (0�003) (0�004) (0�006) (0�009)

α0 −0�65 −0�64 −0�61 −0�62 −0�61 −0�64 −0�63
(0�005) (0�003) (0�002) (0�002) (0�002) (0�003) (0�005)

Pseudo R2 0�1621 0�1534 0�1650 0�1727 0�1795 0�1949 0�2232
Q∗/V ∗ · δ× 104 0�85 2�46 11�95 34�83 101�53 473�59 1287�35
#Obs 439,765 439,765 439,765 439,765 439,765 439,765 439,765

aTable presents the estimates ln[q̄] and α0 for the quantile regression

ln
[
Xi
Vi

]
= ln[q̄] + α0 · ln

[
Wi
W ∗

]
+ ε̃i�

Each observation corresponds to transition order i with order size Xi , pre-transition price Pi , expected daily vol-
ume Vi , expected daily volatility σi , trading activity Wi . The parameter q̄ is the measure of order size such that for
δ = 1, Q∗/V ∗ · δ−1 × 104 measures the median bet size for the benchmark stock, in basis points of average daily
volume. The benchmark stock has daily volatility of 2%, share price of $40, and daily volume of one million shares.
The standard errors are shown in parentheses. The sample ranges from January 2001 to December 2005.

© 2016 The Econometric Society DOI: 10.3982/ECTA10486
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TABLE A.II

OLS ESTIMATES FOR ORDER SIZE: MODEL CALIBRATIONa

NYSE NASDAQ

All Buy Sell Buy Sell

Restricted Specification: α0 = −2/3, b1 = b2 = b3 = b4 = 0

ln[q̄] −5�71 −5�70 −5�68 −5�70 −5�77
(0�019) (0�023) (0�019) (0�042) (0�039)

Q∗/V ∗ · δ× 104 33�13 33�46 34�14 33�46 31�20
MSE 2�53 2�61 2�54 2�32 2�56
R2 0�3149 0�2578 0�2599 0�4278 0�3479

Unrestricted Specification With 5 Degrees of Freedom: α0 = −2/3

ln[q̄] −5�53 −5�55 −5�48 −5�77 −5�48
(0�019) (0�026) (0�019) (0�051) (0�047)

b1 0�42 0�47 0�53 0�19 0�33
(0�040) (0�050) (0�043) (0�094) (0�087)

b2 0�24 0�17 0�29 0�04 0�33
(0�019) (0�021) (0�017) (0�049) (0�040)

b3 0�06 0�06 0�07 −0�06 0�07
(0�010) (0�012) (0�009) (0�026) (0�021)

b4 −0�18 −0�24 −0�22 −0�02 −0�11
(0�015) (0�020) (0�017) (0�040) (0�032)

R2 0�3229 0�2668 0�2739 0�4318 0�3616
#Obs 439,765 131,530 150,377 69,871 87,987

aTable presents the estimates and the mean squared error (MSE) for the regression

ln
[
Xi
Vi

]
= ln[q̄] + α0 · ln

[
Wi
W ∗

]
+ b1 · ln

[
σi

0�02

]
+ b2 · ln

[
Pi
40

]
+ b3 · ln

[
Vi

106

]
+ b4 · ln

[
νi

1/12

]
+ ε̃i�

with α0 restricted to be −2/3 as predicted by invariance and b1 = b2 = b3 = 0. Each observation corresponds to
transition order i with order size Xi , pre-transition price Pi , expected daily volume Vi , expected daily volatility σi ,
trading activity Wi , and monthly turnover rate νi . The parameter q̄ is the measure of order size such that for δ = 1,
Q∗/V ∗ · δ−1 × 104 measures the median bet size for the benchmark stock, in basis points of average daily volume.
The benchmark stock has daily volatility of 2%, share price of $40, and daily volume of one million shares. The R2’s
are reported for restricted specification with α0 = −2/3, b1 = b2 = b3 = b4 = 0 as well as for unrestricted specification
with coefficients ln[q̄] and b1� b2� b3� b4 allowed to vary freely. The standard errors are clustered at weekly levels for
17 industries and shown in parentheses. The sample ranges from January 2001 to December 2005.

• Kyle and Obizhaeva (2016) compared extrapolations of the linear market
impact estimates in this paper to publicly documented quantities sold in five
stock market crashes. The price declines in the 1987 crash and the 2008 liqui-
dation of Jerome Kerviel’s rogue trades at Societe Generale, which occurred
over time frames similar to large portfolio transitions, were close to the pre-
dicted declines. Transitory price declines were larger than predicted in the two
“flash crashes,” when sales occurred unusually rapidly, and smaller in the 1929
crash, when sales were stretched out over weeks and months. While consis-
tent with the invariance hypotheses, these results also suggest that the speed of
execution influences temporary market impact.
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TABLE A.III

TRANSACTION-COST ESTIMATES IN REGRESSION WITH LINEAR IMPACTa

NYSE NASDAQ

All Buy Sell Buy Sell

βmkt 0�66 0�63 0�62 0�77 0�77
(0�013) (0�016) (0�016) (0�037) (0�036)

κ∗
0 × 104 6�28 6�51 5�43 5�94 6�54

(0�890) (1�600) (1�154) (2�147) (1�501)
α1 −0�40 −0�36 −0�39 −0�44 −0�40

(0�020) (0�048) (0�029) (0�051) (0�031)
κ∗
I × 104 2�73 2�63 2�10 3�69 3�13

(0�252) (0�460) (0�346) (0�663) (0�765)
α2 −0�31 −0�45 −0�31 −0�32 −0�28

(0�028) (0�038) (0�041) (0�056) (0�058)

R2 0�0993 0�1105 0�1014 0�0931 0�0901
#Obs 439,765 131,530 150,377 69,871 87,987

aTable presents the estimates for βmkt�α1�κ
∗
0�α2, and κ∗

I in the regression

IBS�i · Si ·
(0�02)
σi

= βmkt ·Rmkt�i ·
(0�02)
σi

+ IBS�i · κ∗
0 ·

[
Wi
W ∗

]α1 + IBS�i · κ∗
I ·

[
Wi
W ∗

]α2 ·
[
φIi
0�01

]z
+ ε̃i�

where z = 1 and φIi/0�01 = Xi/(0�01Vi) · (Wi/W ∗)2/3. Si is implementation shortfall. Rmkt�i is the value-weight
market return for the first day of transition. The trading activity Wi is the product of expected volatility σi , pre-
transition price Pi , and expected volume Vi . The scaling constant W ∗ = (0�02)(40)(106) is the trading activity for the
benchmark stock with volatility of 2% per day, price $40 per share, and trading volume of one million shares per day.
Xi is the number of shares in the order i. The parameter κ∗

I × 104 is the market impact cost of executing a trade of

one percent of daily volume in the benchmark stock, and κ∗
0 × 104 is the effective spread cost; both are measured in

basis points. The standard errors are clustered at weekly levels for 17 industries and shown in parentheses. The sample
ranges from January 2001 to December 2005.

• Kyle, Obizhaeva, and Tuzun (2016) examined the hypothesis that the size
of “prints” of stock market trades in Trade and Quotations (TAQ) data is pro-
portional to the size of bets. This hypothesis holds up well during the 1990s,
consistent with the interpretation that bets were negotiated and printed as
block trades. The hypothesis breaks down after 2001, when trade size collapsed
toward the round-lot minimum size of 100 shares for many trades. The changes
after 2001 may be the result of the reduction in the minimum tick size to one
cent and the increased use of electronic order-shredding algorithms.

• Kyle, Obizhaeva, and Sinha (2012) examined whether the monthly fre-
quency of Thomson Reuters news articles is proportional to the 2/3 power of
trading activity for individual stocks. The estimated exponent is close to the
predicted value of 2/3 prior to a strategic decision by Thomson Reuters to in-
crease the number of news articles about less actively traded stocks, after which
the coefficient changes in a manner consistent with their strategic decision.

Using a different proprietary data set, Bae, Kyle, Lee, and Obizhaeva (2014)
examined the number of times individual trading accounts switch between buy-
ing and selling individual stocks. Consistent with the predictions of invariance,
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TABLE A.IV

TRANSACTION COSTS: MODEL CALIBRATIONa

NYSE NASDAQ

All Buy Sell Buy Sell

Linear Model: z = 1, β1 = β2 = β3 = β4 = β5 =β6 = β7 = β8 = 0

βmkt 0�6571 0�6308 0�6195 0�7693 0�7771
(0�0135) (0�0159) (0�0158) (0�0371) (0�0365)

κ0 × 104 8�2134 7�1934 6�7698 9�1832 9�2658
(0�5776) (1�1215) (0�7943) (1�5627) (0�7811)

κI × 104 2�5003 3�3663 1�9220 3�4614 2�4629

(0�1903) (0�3700) (0�2650) (0�3953) (0�3267)
R2 0�0991 0�1102 0�1012 0�0926 0�0897

Square-Root Model: z = 1/2, β1 = β2 = β3 = β4 = β5 = β6 = β7 = β8 = 0

βmkt 0�6552 0�6285 0�6192 0�7598 0�7782
(0�0134) (0�0158) (0�0159) (0�0365) (0�0364)

κ0 × 104 2�0763 −1�3091 0�9167 2�2844 4�6530
(0�7035) (1�2779) (0�9264) (2�0554) (0�8244)

κI × 104 12�0787 15�6544 11�0986 13�5025 10�4063

(0�7416) (1�2177) (1�2979) (1�4564) (1�2069)
R2 0�1007 0�1116 0�1027 0�0941 0�0911

(Continues)
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TABLE A.IV—Continued

NYSE NASDAQ

All Buy Sell Buy Sell

Unrestricted Specification With 12 Degrees of Freedom

βmkt 0�66 0�63 0�62 0�76 0�78
(0�013) (0�016) (0�015) (0�036) (0�036)

κ∗
0 × 104 0�94 −0�05 0�47 1�55 1�61

(0�675) (0�124) (0�556) (1�698) (1�148)
β1 −0�43 −2�47 −1�08 −0�44 −0�46

(0�147) (0�890) (0�392) (0�489) (0�131)
β2 0�17 2�87 0�23 0�20 0�11

(0�072) (1�230) (0�231) (0�127) (0�109)
β3 −0�56 1�85 −0�47 −0�47 −0�49

(0�159) (0�754) (0�296) (0�238) (0�155)
β4 0�62 0�13 0�49 0�49 0�58

(0�173) (0�620) (0�490) (0�313) (0�175)
κ∗
I × 104 9�36 11�61 10�93 8�88 5�00

(1�307) (2�471) (1�804) (3�340) (2�033)
z 0�58 0�54 0�52 0�58 0�63

(0�041) (0�039) (0�042) (0�094) (0�083)
β5 0�02 −0�11 0�36 −0�17 −0�23

(0�135) (0�192) (0�229) (0�252) (0�242)
β6 −0�14 −0�11 0�03 −0�27∗ −0�22

(0�061) (0�113) (0�100) (0�120) (0�113)
β7 0�01 −0�07 0�04 0�00 −0�16

(0�037) (0�050) (0�052) (0�099) (0�100)
β8 0�08 0�07 −0�11 0�08 0�39

(0�067) (0�086) (0�101) (0�143) (0�153)

R2 0�1016 0�1121 0�1032 0�0957 0�0944
#Obs 439,765 131,530 150,377 69,871 87,987

aTable presents the estimates for the regression

IBS�i · Si ·
(0�02)
σi

= βmkt ·Rmkt�i ·
(0�02)
σi

IBS�i · κ∗
0 ·

[
Wi
W ∗

]−1/3
· σ

β1
i · Pβ2

i · V β3
i · νβ4

i

(0�02)(40)
(
106)

(1/12)

+ IBS�i · κ∗
I ·

[
φIi
0�01

]z
·
[
Wi
W ∗

]−1/3
· σ

β5
i · Pβ6

i · V β7
i · νβ8

i

(0�02)(40)
(
106)

(1/12)
+ ε̃i�

where φIi/0�01 =Xi/(0�01Vi) · (Wi/W ∗)2/3. Si is implementation shortfall. Rmkt�i is the value-weight market return
for the first day of transition. The trading activity Wi is the product of expected volatility σi , pre-transition price Pi ,
and expected volume Vi . The scaling constant W ∗ = (0�02)(40)(106) is the trading activity for the benchmark stock
with volatility of 2% per day, price $40 per share, and trading volume of one million shares per day. Xi is the number
of shares in the order i. The parameter κ∗

I × 104 is the market impact cost of executing a trade of one percent of

daily volume in the benchmark stock, and κ∗
0 × 104 is the effective spread cost; both are measured in basis points. The

R2’s are reported for restricted specification as well as for unrestricted specification with twelve coefficients βmkt, z,
κ∗
I �κ

∗
0�β1�β2�β3�β4�β5�β6�β7�β8 allowed to vary freely. The standard errors are clustered at weekly levels for 17

industries and shown in parentheses. The sample ranges from January 2001 to December 2005.
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TABLE A.V

TRANSACTION-COST ESTIMATES IN REGRESSION WITH QUOTED SPREADa

NYSE NASDAQ

All Buy Sell Buy Sell

βmkt 0�65 0�63 0�62 0�76 0�77
(0�013) (0�016) (0�015) (0�036) (0�037)

κI × 104 2�95 2�97 2�24 3�76 2�95
(0�261) (0�504) (0�366) (0�700) (0�749)

α2 −0�32 −0�44 −0�32 −0�37 −0�33
(0�029) (0�036) (0�039) (0�053) (0�060)

βS 0�71 0�61 0�74 0�61 0�75
(0�053) (0�110) (0�094) (0�127) (0�073)

R2 0�0976 0�1094 0�1010 0�0891 0�0872
#Obs 436,649 131,100 149,600 69,218 86,731

aTable presents the estimates for βmkt�κI �α2, and βS in the regression

IBS�i · Si ·
(0�02)
σi

= βmkt ·Rmkt�i ·
(0�02)
σi

+ IBS�i ·βS · 1
2

· si
Pi

· (0�02)
σi

+ IBS�i · κI ·
[
φIi
0�01

]
·
[
Wi
W ∗

]α2 + ε̃i�

where invariant Ii = Xi
(0�01)Vi

· [ Wi
W ∗ ]2/3. Each observation corresponds to order i. IBS�i is a buy/sell indicator, Si is

implementation shortfall, Rmkt�i is the value-weight market return for the first day of transition. The term (0�02)/σi
adjusts for heteroscedasticity. The trading activity Wi is the product of expected volatility σi , pre-transition price Pi ,
and expected volume Vi . The scaling constant W ∗ = (0�02)(40)(106) is the trading activity for the benchmark stock
with volatility of 2% per day, price $40 per share, and trading volume of one million shares per day. Xi is the number
of shares in the order i. The parameter κ∗

I × 104 is the market impact cost of executing a trade of one percent of daily
volume in the benchmark stock, measured in basis points. si/Pi is the quoted percentage spread. The standard errors
are clustered at weekly levels for 17 industries and shown in parentheses. The sample ranges from January 2001 to
December 2005.

it is shown that the number of switching points is proportional to the 2/3 power
of trading activity.
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