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Abstract

We derive invariance relationships in a dynamic, infinite-horizon, equilibrium model

of adverse selection with risk-neutral informed traders, noise traders, market makers, and

with endogenous information production. Scaling laws for bet size and transaction costs

require the assumption that the effort required to generate one bet does not vary across

securities and time. Scaling laws for pricing accuracy and market resiliency require the

additional assumption that private information has the same signal-to-noise ratio across

markets. Prices follow a martingale with endogenously derived stochastic volatility. Re-

turns volatility, pricing accuracy, liquidity, and market resiliency are connected by a spe-

cific proportionality relationship. The model solution depends on two state variables: stock

price and hard-to-observe pricing accuracy. Invariance makes predictions operational by

expressing them in terms of log-linear functions of easily observable variables such as price,

volume, and volatility.
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Define a dimensionless liquidity measure L such that 1⇑L is the average percentage cost of

executing bets in a given asset. Market microstructure invariance predicts that L is proportional

to the cube root of the ratio of dollar trading volume to percentage returns variance. Invariance

also implies that this liquidity measure relates to various quantities via scaling laws: Average

bet size scales with L, the arrival rate of bets scales with the product of returns variance and

L2, and percentage transaction costs scale with 1⇑L. These quantitative relationships can be

derived using either ad hoc empirical conjectures or dimensional analysis and leverage neu-

trality, following Kyle and Obizhaeva (2016) or Kyle and Obizhaeva (2017), respectively. In both

derivations, information and adverse selection play no role.

This paper’s goal is to derive the same invariance-implied scaling laws as endogenous im-

plications of a microfounded economic model of trading with adverse selection. In addition,

explicit modeling of private information makes it possible to obtain new scaling laws that link

the liquidity measure L to price informativeness and market resiliency. Obviously, predictions

about the informativeness of prices intrinsically require a dynamic model in which prices play

an informational role and therefore cannot be derived using the previous two approaches.

Our continuous-time dynamic equilibrium model has the following structure. The unob-

served fundamental value of the stock follows geometric Brownian motion. Risk neutral in-

formed and noise traders arrive stochastically and trade once. Traders differ only in their pri-

vate signals about the fundamental value, obtained at a fixed dollar cost. Each informed trader

obtains an informative signal. Each noise trader obtains a fake signal with the same uncondi-

tional distribution as an informative signal but without any information content. Every trader

believes that his signal is informative and submits the desired quantity to trade (called a bet),

which maximizes his own expected profits. The number of informed traders adjusts endoge-

nously, with new informed traders entering the market as long as they expect to make nonneg-

ative profits, net of transaction costs and net of costs of acquiring signals. Noise traders change

the size and number of their trades to turn over the outstanding float at an exogenously given

rate. Without knowing whether arrived trader is informed or not, competitive risk-neutral mar-

ket makers update their expectations and take the other side of each bet at break-even prices.

We solve for an approximate linear equilibrium in which the number of traders, trading

strategies, market liquidity, volatility, market resiliency, and the informativeness of prices are

log-linear functions of two state variables. These state variables are the current stock price and

the current pricing error variance, defined as the variance of the logarithm of the ratio of prices
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to fundamental value. From the perspective of market makers, the price follows a martingale

even though each trader believes his own trading moves the price toward fundamental value.

Although fundamental volatility is assumed to be constant, returns volatility turns out to be

stochastic and increasing in the size of the pricing error variance because trading a signals gen-

erates a larger price change when prices are less accurate. A conditional steady state occurs

when returns volatility and fundamental volatility coincide, so that new fundamental uncer-

tainty unfolds at the same rate as prices incorporate private information.

These theoretical predictions are difficult to test empirically because the state variable mea-

suring pricing accuracy requires knowing how far prices are currently from fundamentals. Mar-

ket microstructure invariance makes these predictions empirically testable by making it possi-

ble to infer pricing accuracy from observable market characteristics such as the liquidity mea-

sure L, which itself depends on price, volume, and volatility.

Market microstructure invariance is based on the intuition that financial markets are in

some fundamental sense similar to each other, except that they operate at different speeds.

In active liquid markets, business time runs quickly; in inactive illiquid markets, business time

runs slowly. Business time is hard to observe, but it is related to the speed with which bets, or

new investment ideas, arrive to the marketplace. In our model, business time is set by the num-

bers of traders and bet arrival rate, endogenous variables changing with any changes of state

variables.

We prove that two ad hoc empirical conjectures of Kyle and Obizhaeva (2016) hold exactly

in an approximate linear equilibrium. First, bet size invariance says that the distribution of the

dollar risks transferred by bets does not vary when measured in business time. This hypothesis

further implies that average dollar bet size is proportional to L, and bets arrive at a rate propor-

tional to the product of returns variance and L2. Second, transaction cost invariance says that

the expected dollar market impact cost of a bet is an unvarying function of the dollar risks that

it transfers in business time. This hypothesis further implies that percentage transactions costs

are proportional to 1⇑L.

The model also leads to two new invariance hypotheses. Define pricing accuracy as the re-

ciprocal of the standard deviation of the log-distance between the price and fundamental value.

Pricing accuracy invariance says that pricing accuracy is invariant if this standard deviation is

scaled by returns volatility per unit of business time. This hypothesis implies that pricing ac-

curacy is proportional to L. Define market resiliency as the rate at which uninformative shocks
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to prices decay in calendar time or, equivalently, as the rate at which prices converge toward

fundamental value in calendar time. Market resiliency invariance says that market resiliency

is invariant if it is measured per unit of business time. This hypothesis implies that market

resiliency is proportional to the product of returns variance and L2 in calendar time.

In other words, invariance scaling laws connect difficult-to-observe microscopic characteris-

tics—such as bet size, number of bets, market depth, market liquidity, pricing accuracy, and

market resiliency—to more easily observable macroscopic quantities of dollar volume and re-

turns volatility. The difference between prices and fundamental value is difficult to quantify

empirically. The model predicts that its percentage standard deviation is proportional to illiq-

uidity metrics 1⇑L, which is itself a specific function of observable dollar volume and returns

variance. These invariance relationships are summarized in Theorem 2 and Corollary 2 for trad-

ing activity and liquidity, respectively.

Business time passes at a rate proportional to the product of returns variance and L2, or

the two-thirds power of trading activity, defined as the product of dollar volume and returns

volatility. Dimensional analysis can explain the seemingly obscure exponents of one-third and

two-thirds in invariance predictions. For example, trading activity, defined as the product of

dollar volume and returns volatility, has units dollars×days−3⇑2. Since business time has units

of days−1, mapping trading activity into business time requires scaling trading activity by a dol-

lar denominated quantity—related to trading costs or the cost of private information in the

economic model—and then taking a 2⇑3 power.

Our model also helps to clarify the economic intuition behind these exponents. Suppose re-

turns volatility remains constant and equal to fundamental volatility, but market capitalization

increases due to run-up in prices. When market capitalization is higher, more traders execute

bets, dollar volume is higher, the market becomes more efficient in the sense that market depth

increases and the distance between prices and fundamentals shrinks. Traders must execute

bets of larger sizes in order to make enough profits to cover the same dollar costs of produc-

ing a private signal as before. While price follows a diffusion, pricing accuracy changes more

smoothly since its derivative follows a diffusion. Returns volatility per bet and the average log-

distance between prices and fundamentals decrease only half as much as the rate of increase

in the number of bets. Traders thus must scale up the size of their bets by the same rate, which

is half as much as the percentage increase in the number of bets. This implies a one-to-two

ratio between an increase in the size of bets and their arrival rate. Since trading volume is the
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product of the number of bets and their average size, the number of bets increases log-linearly

with the two-thirds power of trading volume and their average dollar size increases linearly with

one-third power of trading volume.

The non-linear invariance predictions turn out to be implications of general properties likely

shared by many models summarized as a meta-model (see equations (61)–(64)). First, trading

volume is defined as the sum of all bets. Second, order flow moves prices and induces returns

volatility; unconditional long-term price impact is linear in the information content of bets.

Third, the dollar cost of acquiring an informative signal—which in equilibrium with free entry

equals the dollar price impact cost of the bet—is the same across assets and time. Fourth, the

distributions of bet size and signals have the same shape across markets, even though the scal-

ing may be different. The invariance of bet size and invariance of market depth require that the

dollar effort cost to generate a signal is invariant (across assets and time). Invariance of pric-

ing accuracy and resiliency requires the additional assumption that the signal-to-noise ratio of

an informative signal is invariant. This approach is further developed by Kyle and Obizhaeva

(2018)

Our paper highlights the difference between two definitions of market efficiency. On the one

hand, the model assumes that the market is efficient in the sense that prices follow a martingale,

consistent with Fama (1970) and LeRoy (1989). On the other hand, we derive endogenously how

pricing errors vary as functions of paths of trading volume and volatility, consistent with the

idea of Black (1986) that market efficiency must relate to how far prices are from fundamentals.

In our model, pricing error variance is proved to be inversely proportional to market resiliency

and the rate at which bets arrive (equation (73)).

Our model blends together several traditional strands of the market microstructure litera-

ture. The model resembles the model of Kyle (1985) by assuming linear trading intensity, linear

price impact, normally distributed random variables, and zero-profit market makers; yet it is

different because the assumed linear trading strategies and pricing updates are only approxi-

mately, not exactly, optimal. The model resembles the models of Glosten and Milgrom (1985)

and Back and Baruch (2004) in that orders arrive sequentially and are processed by market mak-

ers one at a time; it differs by assuming that traders may choose to buy or sell any quantity,

not just one round lot. Like Treynor (1971) and Black (1986), the model assumes that noise

traders trade on uninformative, fake signals; noise traders believe they are informed traders

even though they are trading on noise. Unlike Kyle, Obizhaeva and Wang (2018), traders do
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not smooth out their trades over time but instead trade only once. The issues discussed in our

paper are relevant for all theoretical models regardless of their specific modeling assumptions.

Several empirical studies have recently confirmed predictions implied by invariance. Kyle

and Obizhaeva (2016) find scaling laws for sizes and trading costs of portfolio transition or-

ders executed in the U.S. stock market. Kyle and Obizhaeva (2017) document scaling laws for

quoted bid ask spreads and the number of trades for Russian and U.S. stocks. Kyle, Obizhaeva

and Tuzun (2017) discuss scaling laws for the number of trades and their sizes in tick-by-tick

transaction data in the U.S. stock market. Bae et al. (2014) document scaling laws in the num-

ber of switching points in transactions in the South Korean stock market. Kyle et al. (2010) find

scaling laws in the number of news articles about the U.S. firms. Andersen et al. (2015) find

scaling laws in intraday data for U.S. stock index futures. Consistent with invariance of pric-

ing accuracy, Farboodi, Matray and Veldkamp (2017) show that actively traded stocks are more

accurate predictors of future earnings than the prices of smaller, less actively traded stocks. A

common invariant structure seems to be revealed by these studies approaching the data from

different angles.

This paper is structured as follows. Section 1 presents a setup with a dynamic model of

trading. Section 2 introduces a number of market characteristics and reviews the framework

of market microstructure invariance. Section 3 derives the approximate linear solution. Sec-

tion 4 discusses how to derive invariance relationships in the context of the model. Section 5

shows that many scaling laws can be derived based on a simple four-equation meta-model.

Section 6 discusses invariance implications for market efficiency, liquidity, pricing accuracy,

and resiliency. Section 7 discusses characteristics of steady state, approximations, an exactly

linear model, and other issues. Section 8 concludes. Appendix A discusses approximations.

Appendix B contains proofs.

1 Setup of a Dynamic Model of Trading

This section describes the assumptions and defines the equilibrium for a dynamic model of

sequential speculative trading.

Setup. There are three types of traders: informed traders, noise traders, and market makers.

They exchange a single risky asset with N outstanding shares for a risk-free numeraire asset
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with returns normalized to zero.

Let F(t) be the unobserved fundamental value of a risky asset evolving over time due to

continuous unmodeled changes in production processes, consumer tastes, costs of materials,

prices of outputs, competitor strategies, and other market conditions. Suppose F(t) follows a

geometric Brownian motion with fundamental volatility σF ,

F(t) ∶= F0 ⋅exp(σF ⋅B(t)− 1
2 ⋅σ2

F ⋅ t) , (1)

where B(t) denotes a standardized Brownian motion with B(t+h)−B(t) ∼𝒩 (0,h) for t ≥ 0 and

h ≥ 0, B(0) is normally distributed, and the initial value F0 is a known constant. The term 1
2 ⋅σ2

F ⋅t
adjusts for convexity so that the fundamental value follows an exponential martingale. Trading

takes place until some distant date at which traders receive a payoff equal to the fundamental

value.

Traders arrive into the market sequentially at endogenous times tn , for n = 1,2, . . .. Let 𝒯 (t) =
{t1, . . . , tn ∶ tn < t} denote the set of all arrival times before time t and t+n ∶= limδ↘0 tn +δ. Each

trader anonymously places a bet by announcing a quantity to trade Q(tn) and trades only once

at price P(t+n ), without ever trading again. The other side of each bet is taken by market makers.

Market makers, informed traders, and noise traders observe the public trading history ℋ(t)
consisting of past trade times, quantities, and prices: ℋ(t) ∶= {∐︀tn , Q(tn) , P(t+n )̃︀ ∶ tn ∈ 𝒯 (t)}.

Let Et (︀. . .⌋︀ and Vart (︀. . .⌋︀ denote the expectation and variance operators conditional on ℋ(t),

which excludes information about a bet possibly arriving at date t itself.

A trader may be either informed or uninformed. Informed traders arrive into the market at

rate γI(t), and noise traders arrive at rate γU(t). The combined arrival rate

γ(t) ∶= γI(t)+γU(t) (2)

is an instantaneous arrival rate which depends on the history of trading up to time t and varies

over time, even between arrival of bets. If γ(t) changes very little over some time interval, then

the waiting time between bets has approximately an exponential distribution over this interval,

implying Etn (︀tn+1− tn⌋︀ ≈ 1⇑γ(tn). As we discuss at the end of Section 2, market microstructure

invariance implements the intuition that the expected arrival rate of bets γ(t) sets the pace

of business time in the market, and markets differ from one other due to differences in this

business time.
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Instead of focusing on the market’s estimate of the fundamental value itself, it is more con-

venient to focus on the estimates of the Brownian motion B(t), in terms of which the funda-

mental value is defined in equation (1). Let B̄(t) denote the market’s conditional expectation

of B(t):

B̄(t) ∶= Et (︀B(t)⌋︀ . (3)

The difference B(t)−B̄(t) measures the estimation error. Let Σ(t) denote the conditional vari-

ance of σF ⋅ (B(t)− B̄(t)):

Σ(t) ∶=Vart )︀σF ⋅ (B(t)− B̄(t))⌈︀ . (4)

All traders can infer B̄(t) and the scaled error variance Σ(t) from the trading history.

Both informed traders and noise traders believe they are informed. Each trader pays an ex-

ogenously fixed cost c̄I to observe a private signal i(t). An informed trader’s signal contains

information about the difference between the current price and fundamental value of exoge-

nously fixed precision τ̄, with 0 < τ̄ << 1. A noise trader’s signal is pure noise; it contains no

information.

The private signal has the form

i(t) =

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

i I(t) = τ̄1⇑2 ⋅
σF ⋅ (B(t)− B̄(t))

Σ1⇑2(t)
+(1− τ̄)1⇑2 ⋅ZI(t) if an informed trader,

iU(t) = ZU(t) if a noise trader,

(5)

The random variables ZI(t) and ZU(t) are pure noise distributed as 𝒩(0,1), they are inde-

pendent from the trading history ℋ(t) and fundamental value F(t). The definition of Σ(t) in

equation (4) implies that signals i(t) of both informed and noise traders have the same uncon-

ditional distribution𝒩(0,1).

This particular specification for signals is important for obtaining invariance relationships.

In equation (5), scaling the term B(t)−B̄(t) by the time-varying factor Σ1⇑2(t)⋅σ−1
F insures that

an informed trader’s signal has a constant signal-to-noise ratio τ̄⇑(1−τ̄), which does not depend

on the current level of pricing error. Each bet incorporates the same amount of information into

prices in the sense that it reduces the error variance of prices by a constant fraction proportional

to τ̄. The assumption allows to obtain invariance results. Without such scaling, the percentage
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reduction in error variance would vary with pricing error, itself stochastic.1

Equilibrium. The trading strategy Q̂(t , i) determines the size of a bet at time t as a function

of the trader’s information ℋ(t) and signal i . Informed traders are rational profit maximizers.

Noise traders are irrational in the sense that they trade on noise as if they were informed. When

a trader generates a signal i(tn) at date tn , the trader places a bet of size Q(tn) ∶= Q̂(tn , i(tn)).

The pricing rule P̂(t ,Q) determines the price set by market makers at time t as a function

the market makers’ informationℋ(t) and the size of an arriving bet Q. At any time t , the pricing

rule P̂(t , .) defines the limit order book. When a bet of size Q(tn) arrives at time tn , it is executed

at trade price P(t+n ) = P̂(tn , Q(tn)).2

Define a conditional expected paper-trading profit function

π̂(t , i ,Q) ∶= Et )︀(F(t)−P(t))⋅Q ⋂︀ informative signal i(t) = i⌈︀ , (6)

which expresses a trader’s expected profits from trading quantity Q at time t given information

ℋ(t) with pre-trade benchmark mid-price P(t) and signal i believed to be informative.

Define the dollar price impact cost function

Ĉ(t ,Q) ∶= (P̂(t ,Q)−P(t))⋅Q, (7)

which expresses the dollar cost of executing a bet of arbitrary quantity Q placed at time t con-

ditional onℋ(t). Since adverse selection makes bets move prices, the execution price P̂(t ,Q)
for trading Q is different from the pre-trade mid-price P(t). Perold (1988) calls this measure

of transaction costs expected implementation shortfall; it compares the actual execution price

P̂(t ,Q)with the pre-trade benchmark P(t) under the assumption that entire bet Q is executed.

Definition 1. An equilibrium is a dynamic trading strategy Q̂(t , .), a pricing rule P̂(t , .), an ar-

1For example, if i(t) ∶= τ1⇑2
⋅ (B(t)− B̄(t))+(1−τ)1⇑2 ⋅ ZI (t), then the signal-to-noise ratio of an informative

bet would be equal to τ ⋅Σ(t) ⋅σ−2
F ⇑(1−τ) and would depend on Σ(t)⇑σ2

F , with a smaller reduction in error vari-
ance when Σ(t) is larger or σF is smaller. Also, Kyle, Obizhaeva and Wang (2018) show that this particular way to
model information (5)—in which each informative signal reduces error variance by a constant fraction τ̄—can be
naturally extended to continuous information flow.

2Equation (5) not only describes signals generated at trade dates t = tn but also describes signals that could have
been generated at non-trade dates t ≠ tn , in which case the trade size would have been Q̂(t , i(t)) and the price

would have been P̂(t , Q̂(t , i(t))) if a trade had occurred.
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rival rate for informed traders γI(t), and an arrival rate for noise traders γU(t), all in the infor-

mation setℋ(t), such that the following four conditions hold for all dates t > 0:

1. Profit Maximization: The trading strategy Q̂(t , .) maximizes a trader’s expected trading

profits at time t , net of market impact costs:

Q̂(t , i) = argmax
Q

)︀π̂(t , i ,Q)−Ĉ(t ,Q)⌈︀ . (8)

2. Market Efficiency: The pricing rule P̂(t , .) defines a price equal to the conditional expec-

tation of the fundamental value, given public information ℋ(t) available before time t

and information contained in a bet of size Q:

P̂(t ,Q) = Et )︀F(t) ⋂︀Q̂(t , i(t)) =Q⌈︀ . (9)

3. Free Entry: At any time t , net of information cost c̄I and market impact costs, both in-

formed and noise traders expect to break even if they buy a signal and then trade on it

optimally:

c̄I = Et)︀π̂(t , i(t) , Q̂(t , i(t)))−Ĉ(t , Q̂(t , i(t)))⌈︀. (10)

4. Noise Trader Turnover: Noise traders are expected to trade a rate which turns over the

float N at exogenous rate η at all dates t :

γU(t) ⋅Et )︀⋂︀Q̂(t , i(t))⋂︀⌈︀ = η ⋅N . (11)

The profit maximization condition incorporates the assumption that both informed traders

and noise traders are strategic and risk neutral; they believe themselves to be informed with

probability one. The market efficiency condition incorporates the assumption that market

makers are competitive and risk neutral, trading at prices which earn zero profits conditional

on public information, including the size of the arriving bet. It is also based on the assumption

that market makers do not know whether they trade with an informed trader or noise trader.3

3Like the model of Kyle (1985), the market efficiency condition can be interpreted as a reduced form for a perfect
Bayesian Nash equilibrium among a large number of market makers or value-based investors who compete away
all profit opportunities.
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The free entry condition says not only that traders break even when they trade but also that

would have broken even if they had traded at times when they did not trade. The noise trader

turnover condition implies that noise traders randomly choose when to trade and might trade at

any time; this modelling assumption pins down the amount of noise trading and consequently

the volume of trading in the equilibrium. While other models often assume exogenous noise

trading, our approach differs by assuming that the size and number of noise trades adjusts to

match informed trades.4

Linear Approximations. Two assumptions make the equilibrium nonlinear. First, the orders

observed by market makers are mixtures, not sums, of random variables Second, the exp()
function which maps the Brownian motion to geometric Brownian is nonlinear. Intuition sug-

gests that equilibrium Q̂(t , i) and P̂(t ,Q) should be almost linear functions in i and Q because

the error B(t)− B̄(t) is likely to be almost normally distributed and the exp function is almost

linear for small changes in prices. Since price fluctuations resemble geometric Brownian mo-

tion, we work with approximate linear equilibria in which the trading strategy is assumed to

be linear and pricing rule is therefore approximately linear for bets which have a small price

impact. We discuss these approximations in more detail in Section 7.2. Section 7.3 shows that

when orders are sums, not mixtures, of random variables and when the fundamental value is

Brownian motion, not geometric Brownian motion, then the equilibrium becomes exactly lin-

ear.

Let β(t) and λ(t) be stochastic processes, depending on informationℋ(t), which define a

linear trading strategy of the form

Q̂(t , i) =β(t) ⋅ i (12)

4Kyle (1985) assumes the amount of noise trading is also fixed exogenously; it dictates the quantity traded by the
informed trader and pins down the variance of order flow imbalances. In the one-period version of that model, the
informed trader incorporates half of his signal into prices by submitting an order which has a normal distribution
with the same standard deviation as the exogenous quantity traded by noise traders. In the continuous version
of the model, the variance of the total quantity traded by the informed trader is twice the variance of the quantity
traded by the noise traders. Without the last condition in our model, the volume of trading would be undetermined
in the equilibrium, even though the ratio between the number of informed and noise traders is endogenously fixed:
To maximize profits with linear price impact, informed traders optimally choose to have price impact half as large
as the value change implied by their signal and thus market makers must trade with noise traders one-half the
time to break even. Nothing prevents scaling up or down the amount of noise and informed trading in lockstep.
We explain the consequences of observed trading volume, not where it comes from.
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and a linear pricing rule of the form

P̂(t ,Q) =P(t)+λ(t) ⋅Q. (13)

Definition 2. An approximate linear equilibrium is described by four randomly time-varying

quantities β(t), λ(t), γI(t), and γU(t), all depending onℋ(t), such that a linear trading strat-

egy Q̂(t , i) of the form (12) and a linear pricing rule P̂(t ,Q) of the form (13) satisfy the four

conditions for an equilibrium as approximations.

In an approximate linear equilibrium, market makers take the other side of each bet of size

Q(t) =β(t)⋅ i(t) at adjusted price P(t+) =P(t)+λ(t)⋅Q(t). The price impact is linear in Q(t),

and λ(t) is an endogenous parameter measuring linear price impact. In an approximate linear

equilibrium, the market efficiency condition and the law of iterated expectations imply that

price P(t) is approximately a martingale.

In what follows, we use the notation Q(t) ∶= Q̂(t , I(t)) to denote the random size of an order

conditional on an order arriving at date t . For order arrival times t = tn , Q(t) represents the size

of the order. When an order does not arrive, Q(t) has a probability distribution which can be

used to calculate expected trading volume and market liquidity under the assumption that an

arriving order would use the equilibrium strategy.

We will show that there exists a unique approximate linear equilibrium, which can be easily

characterized in closed form. In this equilibrium, market microstructure invariance conjectures

hold exactly.

2 Market Characteristics and Microstructure Invariance

This section defines several endogenous market characteristics like dollar volume, volatility,

trading activity, price impact, liquidity, pricing accuracy, and resiliency, which vary greatly across

markets and across time. It then briefly reviews market microstructure invariance, according to

which all markets operate in a similar way in the sense that traders play the same trading game,

but at a different speed related to different levels of market liquidity. When market characteris-

tics are scaled to adjust for differences in the pace of business time, they become similar across

markets and across time.
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Volume V (t)V (t)V (t) and volatilityσ(t)σ(t)σ(t). Instantaneous expected volume and volatility are important

concepts in the paradigm of invariance. Define expected instantaneous share volume V (t) by

V (t) ∶= lim
∆t→0

1

∆t
⋅Et ⌊︀ ∑

n∶t≤tn≤t+∆t
⋂︀Q(tn)⋂︀}︀ ≈ γ(t) ⋅Et )︀⋂︀Q(t)⋂︀⌈︀ . (14)

Instantaneous expected dollar volume is P(t) ⋅V (t).

Define instantaneous expected returns variance σ2(t) as the product of the rate at which

bets are expected to arrive and the contribution the price impact of each bet is expected to

make to returns variance:

σ2(t) ∶= lim
∆t→0

1

∆t
⋅Vart ]︀

P(t +∆t)−P(t)
P(t) {︀ ≈ γ(t) ⋅Et ⌊︀(

λ(t) ⋅Q(t)
P(t) )

2

}︀ . (15)

Volatility σ(t) is the square root of returns variance σ2(t). In an approximate linear equilib-

rium, percentage returns variance Vart (︀∆P(t)⇑P(t)⌋︀ and log returns variance Vart )︀ln(P(t +∆t)⇑P(t))⌈︀
are approximately the same.5

Trading Activity W (t)W (t)W (t). Another important concept is a measure of calendar-time trading ac-

tivity W (t), defined as the product of dollar volume P(t) ⋅V (t) and volatility σ(t):

W (t) ∶=P(t) ⋅V (t) ⋅σ(t). (16)

It measures the standard deviation of the dollar change in the mark-to-market value of an entire

day’s trading volume; this is an empirical measure of the rate at which the market transfers risks.

Trading activity is a good observable measure of risk transfer. It takes into account that

assets differ in how risky they are. For low-volatility assets, even a large dollar volume may

ultimately correspond only to an insignificant amount of risk transferred. Unlike share volume

V (t), trading activity is neutral with respect to splits. Unlike dollar volume P(t)⋅V (t) and share

volume V (t), trading activity W (t) is leverage neutral: If a firm increases its leverage by paying

out a debt-financed cash dividend per share that is equal to half of the stock price, then the

value of the stock halves, its return volatility σ(t) doubles, dollar volume P(t) ⋅V (t) halves,

5We ignore the remote possibility that a gigantic negative bet Q might lead to negative prices if P(t)+λ(t)⋅Q < 0.
In such a case, price can be kept positive by replacing P(t)+λ(t)⋅Q with P(t)⋅exp(λ(t)⋅Q⇑P(t)), which is always
positive.
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but trading activity W (t) remains unchanged. The concept of leverage neutrality, an essential

feature of the invariance framework, is further discussed by Kyle and Obizhaeva (2017).

Expected costs C(t)C(t)C(t) and expected profitsπ(t)π(t)π(t). Let C(t) denote the expected dollar price im-

pact cost of executing a bet of optimal size at time t , conditional on past informationℋ(t) but

unconditional on the new signal i(t):

C(t) ∶= Et )︀Ĉ(t , Q̂(t , i(t)))⌈︀ . (17)

Let π(t) denote the expected paper-trading profits of a trader at time t , conditional on past

informationℋ(t) but unconditional on the new signal i(t):

π(t) ∶= Et)︀π̂(t , i(t) , Q̂(t , i(t)))⌈︀. (18)

Liquidity Measure L(t)L(t)L(t). Market practitioners measure liquidity in basis points. Let illiquid-

ity 1⇑L(t) be the average percentage transaction costs, defined as the average dollar cost of

executing bets C(t) in equation (17) scaled as a fraction of expected pre-trade dollar bet size

Et)︀⋂︀P(t) ⋅Q(t)⋂︀⌈︀:
1

L(t) ∶=
C(t)

Et)︀⋂︀P(t) ⋅Q(t)⋂︀⌈︀
. (19)

This dimensionless quantity measures the dollar-volume-weighted expected percentage price

impact cost of executing a bet. For example, if the average dollar cost of executing bets is C(t) =
$2000 and the average bet is one million dollars, then 1⇑L(t) = 0.0020 is a dimensionless fraction

with the interpretation that dollar-weighted average impact costs are 20 basis points. Market

liquidity L(t) can vary greatly across markets even though the average dollar impact costs C(t)
are approximately the same. Liquidity is the central concept in the paradigm of invariance.

Pricing Accuracy Σ−1⇑2(t)Σ−1⇑2(t)Σ−1⇑2(t). Prices fluctuate around stochastically moving fundamentals. If

prices are above fundamentals, then they will tend to decrease over time toward fundamentals,

as trading gradually incorporates private information into prices. If prices are below fundamen-

tals, then informed trading will tend to push prices up over time toward fundamentals. Since

market participants cannot tell whether prices are above or below fundamentals, prices follow

a martingale given the information set of market participants.

13



Recall that the standard deviation of the pricing error Var
1⇑2
t )︀σF ⋅ (B(t)− B̄(t))⌈︀ is denoted

as Σ1⇑2(t) in equation (4). Given our assumption that the conditional error is approximately

normally distributed, we have

P(t) = Et)︀F(t)⌈︀
= F0 ⋅exp(σF ⋅ B̄(t)) ⋅Et)︀exp(σF ⋅ (B(t)− B̄(t))− 1

2 ⋅σ2
F ⋅ t)⌈︀

≈ F0 ⋅exp(σF ⋅ B̄(t)+ 1
2 ⋅Σ(t)− 1

2 ⋅σ2
F ⋅ t).

(20)

The law of iterated expectations implies that P(t) is approximately a martingale.

Equations (1) and (20) yield thatΣ1⇑2(t)measures the standard deviation of the log-difference

between unobservable fundamental value F(t) and observable prices P(t):

Σ1⇑2(t) =Var
1⇑2
t [︀ln(F(t)

P(t))⌉︀. (21)

It also has the interpretation as the average percentage difference between them, or a log-

percentage pricing error.

Its reciprocal Σ−1⇑2(t) measures pricing accuracy. If prices deviate far from fundamental

value, they are less accurate: The pricing error Σ1⇑2(t) is large, and pricing accuracy Σ−1⇑2(t) is

small.

Market Resiliencyρ(t)ρ(t)ρ(t). Define market resiliency ρ(t) as the rate at which the estimation error

B(t)− B̄(t) decays over time. Let Berr(t) ∶= B(t)− B̄(t) denote the unobserved error at time t ;

of course, we have Et (︀Berr(t)⌋︀ = 0 by definition.

Market resiliency measures the speed with which a random shock to prices—or estimation

error resulting from execution of an uninformative bet—dies out over time as informative bets

drive prices back toward fundamental value. In an approximate linear equilibrium, conditional

expectations are approximately linear; therefore, resiliency ρ(t) can be formally defined as the

linear regression coefficient of current innovations in the estimation error Berr(t +∆t)−Berr(t)
on its most recent level Berr(t), both being unobservable:6

Et (︀Berr(t +∆t)−Berr(t) ⋃︀Berr(t)⌋︀ ≈ −ρ(t) ⋅Berr(t) ⋅∆t for small ∆t . (22)

6In equation (22),∆t denotes a small time interval, not the arrival time between bets. Between bet arrivals, ρ(t)
is approximately constant, but increases slightly since pricing error Σ1⇑2

(t) gets slightly larger.
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The instantaneous half-life of the price impact of a noise trade is approximately equal to ln(2)⇑ρ(t).

We will show in Section 6 that the concept of pricing accuracy Σ−1⇑2(t) is closely related to

the concept of market resiliency ρ(t). They are two sides of the same coin; market resiliency is

greater in markets with higher pricing accuracy.

Moment ratios of Bet Sizes ⋂︀Q(t)⋂︀⋂︀Q(t)⋂︀⋂︀Q(t)⋂︀. Define the moment ratio m(t), relating expected unsigned

bet size Et (︀⋂︀Q(t)⋂︀⌋︀ and the standard deviation of signed bet size (Et (︀Q2(t)⌋︀)1⇑2, as

m(t) =
Et )︀⋂︀Q(t)⋂︀⌈︀

(Et (︀Q2(t)⌋︀)1⇑2
. (23)

In the context of invariance, this particular moment ratio is important: The specific moment

in the numerator is related to trading volume V (t) while the moment in the denominator is

related to returns volatility σ(t).

Define the constant m̄ as

m̄ ∶= Et )︀⋂︀i(t)⋂︀⌈︀ . (24)

Since bets are linear in signals i(t) in an approximate linear equilibrium and Et (︀i 2(t)⌋︀ = 1, the

model implies m(t) = m̄, with m̄ =
⌈︂

2⇑π for a normal distribution.

Invariance Conjectures as Empirical Hypotheses. Market microstructure invariance is a col-

lection of empirical hypotheses describing how expected bet size, bet arrival rate, trading costs,

pricing accuracy, and resiliency depend on dollar volume and returns variance.

Broadly speaking, market microstructure invariance is the hypothesis that markets look the

same when examined in business time. The rate of bet arrivals sets the business-time clock,

specific for each market. In active, liquid markets bets arrive at a fast rate; in an inactive, illiq-

uid markets bets arrive at a slow rate. Bets, also often called meta-orders, may be executed as

block trades in a dealer market or shredded into many small trades and executed over time on

exchanges. Our model describes a dealer market in which trades Q(tn) correspond to bets, and

business time passes at rate γ(t).

The starting point for market microstructure invariance is a set of two empirical conjectures

about distributions of bet sizes and transaction costs functions in trading games.

Invariance conjectures begin with measuring the risk transferred by bets in business time,
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denoted I(t). The dollar size of a bet is P(t) ⋅Q(t), and the return standard deviation per unit

of business time is σ(t)⇑γ1⇑2(t). Then, the risk transferred by a bet per unit of business time

can be defined by

I(t) ∶=P(t) ⋅Q(t) ⋅ σ(t)
γ1⇑2(t)

. (25)

This quantity has units of dollars.7 Conditional on historyℋ(t), the quantities P(t), σ(t), and

γ1⇑2(t) are known, but Q(t) is random because i(t) is random; thus, I(t) is random as well.

Bet size invariance hypothesizes that the probability distribution of the risk transferred by a

bet, I(t), is invariant across markets and across time, when measured in dollars and in business

time. This means there exists some invariant random variable I∗ such that

I(t) d= I∗ for all t . (26)

Since Q(t) = β(t) ⋅ i(t) and i(t) has a mean of zero and variance of one, bet size invariance

implies that trading intensity β(t) changes endogenously over time so that bets on average

transfer the same dollar risks in business time.

Transaction cost invariance hypothesizes that the expected dollar price impact cost of exe-

cuting a bet is an invariant function of the dollar risk it transfers per unit of business time. This

means there exists an invariant price impact cost function Ĉ∗(.) such that, with probability one,

Ĉ(t , Q(t))= Ĉ∗(I(t)) where I(t) ≡P(t) ⋅Q(t) ⋅ σ(t)
γ1⇑2(t)

for all t . (27)

Price impact cost functions are invariant across markets and across time (1) if costs are mea-

sured in dollars rather than basis points and (2) if order sizes are measured in terms of dollar

risks they transfer in business time rather than nominal dollar value or shares.

We also introduce two new invariance principles related to the accuracy and resiliency of

prices. These invariance principles require an economic model such as ours, in which bets and

prices convey information about fundamentals.

First, invariance of pricing accuracy hypothesizes that the standard deviation of the pricing

error is invariant when scaled by returns volatility in business time. This means that Σ1⇑2(t) is

7We consider securities traded in one country; Kyle and Obizhaeva (2016) discuss how to refine this assumption
in international context.
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proportional to σ(t)⇑γ1⇑2(t) with an invariant constant of proportionality,

Σ1⇑2(t) ∼ σ(t)
γ1⇑2(t)

for all t . (28)

Pricing accuracyΣ−1⇑2(t) is inversely proportional to the standard deviation of the price impact

of one betσ(t)⇑γ1⇑2(t) in business time. In other words, under the assumption that fundamen-

tals will not be changing over time, it takes the same number of bets for prices to catch up with

fundamentals.

Second, invariance of market resiliency hypothesizes that market resiliency ρ(t) is invariant

in business time. This means that ρ(t) is proportional to γ(t)with an invariant proportionality

constant.

ρ(t) ∼ γ(t) for all t . (29)

Implied Scaling Laws and Invariant Parameters. From the conjectures about bet sizes and

transaction costs, Kyle and Obizhaeva (2016) derive a number of scaling laws for how bet size,

number of bets, market depth, bid-ask spread, and other variables of interest must relate to the

product of dollar volume V (t) ⋅P(t) and returns volatilities σ(t) with different powers of one-

third and two-thirds. It is also possible to derive similar scaling laws for measures of pricing

accuracy and resiliency. We prove in Section 4 that the invariance conjectures as well as the

implied scaling laws are endogenous implications of an approximate linear equilibrium.

The scaling laws are exact implications of the assumption that a small subset of the exoge-

nous parameters are invariant in the sense that they do not vary across time. The two most

important invariant parameters are the cost of a signal and the precision of an informative sig-

nal:

c̄I and τ̄ are invariant. (30)

These particular parameters are of obvious importance in an economic model of costly private

information. Invariance of these two parameters implies that the cost of private information

per unit of precision, c̄I ⇑τ̄, is invariant. It further implies that private information arrives into

market in chunks of cost c̄I . It is important that each arriving signal reduces error variance by a

constant fraction τ̄.

The model also has two other important—but less visible and implicit—invariant parame-
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ters,

m̄ and θ̄. (31)

The first parameter m̄ is defined as m̄ ∶= Et )︀⋂︀i(t)⋂︀⌈︀ in equation (24). Since i(t) ∼ 𝒩(0,1),

we have m̄ =
⌈︂

2⇑π ≈ 0.7979 in our model. For other distributions, m̄ can have any value such

that 0 < m̄ ≤ 1.8 Since m(t) = m̄, invariance of the moment ratio for bet sizes m(t) is almost

hardwired. To make clear that our results do not change if the distribution of signals i(t) is

changed to a different distribution with mean of zero and variance of one, we keep m̄ as an

invariant parameter.

The second parameter also relates to private information. The assumption that informed

and noise traders are risk neutral will lead to the implication that they trade to incorporate half

of their private information into prices. Derivation of invariance properties depends only on

traders incorporating the same fraction of their private information into prices and not on the

particular fraction 1⇑2 implied by risk neutrality. To make this clear, we slightly generalize the

equilibrium concept by assuming that traders multiply their optimal risk neutral quantities by

the fraction 2 ⋅ θ̄ and therefore incorporate a fraction θ̄ of their private information into prices.

The parameter θ̄ is an invariant exogenous parameter, with baseline value θ̄ = 1⇑2 correspond-

ing to explicit model assumptions.9

Some exogenous parameters are not important for generating invariance hypotheses. For

example, the model assumes that shares outstanding N , noise trader turnover rate η, and fun-

damental volatility σF are constant across time. The invariance conjectures would still hold if

these parameters varied over time. To distinguish exogenous parameters which are important

for obtaining invariance from exogenous parameters which are not important, we place a bar

over the important parameters c̄I , τ̄, m̄, and θ̄ and omit a bar from the other parameters N , η,

and σF .10

8Under different distributions for i(t), Jensen’s inequality implies 0 < m̄ ≤ 1. For example, the maximum value
m̄ = 1 is attained if and only if i(t) is a binomial random variable with equally likely values of +1 and −1. We do not
replace m̄ with its value implied by a normal distribution, because the solution to the model does not depend on
the normality assumption except for its effect on m̄. The reader can think of m̄ as an abbreviation for 0.7979. Using
the notation m̄ is a device for keeping track of how the invariant parameter m̄ = 0.7979 affects the equilibrium.

9See equation (47) below. The reader can think of θ̄ as an abbreviation for the fraction 1⇑2. Using the notation θ̄

is a device for keeping track of how the invariant parameter θ̄ = 1⇑2 affects the equilibrium.
10Nothing in the model changes if N , η, and σF are possibly stochastic functions of time. Using the notation

N , η, and σF instead of N(t), η(t), and σF (t) is a simple device for distinguishing exogenous from endogenous
parameters. In our notation, the absence of a time parameter t indicates an exogenous variable, and a bar indicates
that an exogenous parameter is an invariant constant.
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We will next show that as stock prices fluctuate, the market itself changes. When the price—

and therefore market capitalization—increases significantly, dollar trading volume increases,

traders arrive more frequently and place larger bets, market resiliency is higher, returns volatil-

ity is higher than fundamental volatility, trading incorporates information into prices faster

than fundamental uncertainty is unfolding, the pricing error variance is shrinking, the market

is becoming more liquid, and price dynamics quickly converges to a conditional steady state. In

contrast, when prices and market capitalization are falling, trading volume is falling, traders are

arriving less frequently, traders are placing smaller bets, market resiliency and returns volatility

are falling, trading is not incorporating information into prices as fast as fundamental uncer-

tainty is unfolding, the pricing error variance is widening, the market is becoming less liquid,

and the price dynamics may remain far from the conditional steady state for extended periods

of time.

3 Characterization of Approximate Linear Equilibrium

It is straightforward to characterize the unique approximate linear equilibrium in closed form:

Theorem 1 (Characterization of Approximate Linear Equilibrium). There exists a unique ap-

proximate linear equilibrium characterized by the four endogenous parametersλ(t),β(t), γI(t),

γU(t), which are the following functions of the state variables P(t), Σ(t) and the exogenous pa-

rameters τ̄, c̄I , m̄, θ̄, σF , η, and N :

λ(t) = θ̄ ⋅ (1− θ̄) ⋅ τ̄
c̄I

⋅P 2(t) ⋅Σ(t), (32)

β(t) = c̄I

(1− θ̄) ⋅ τ̄1⇑2
⋅ 1

P(t) ⋅Σ1⇑2(t)
, (33)

γI(t) = θ̄ ⋅γ(t), γU(t) = (1− θ̄) ⋅γ(t), where γ(t) = τ̄1⇑2 ⋅η ⋅N
c̄I ⋅m̄

⋅P(t) ⋅Σ1⇑2(t). (34)

At times t ≠ tn when bets do not arrive, the price P(t) is constant, and error variance increases at

the rate fundamental volatility unfolds: dΣ(t)⇑dt = σ2
F . At times tn when bets arrive, the price

P(tn) and error variance Σ(tn) jump, following the difference equation system

P(t+n ) =P(tn)+ θ̄ ⋅ τ̄1⇑2 ⋅P(tn) ⋅Σ1⇑2(tn) ⋅ i(tn), (35)
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Σ(t+n ) ≈Σ(tn) ⋅ (1− θ̄2 ⋅ τ̄) , with Σ(tn) =Σ(t+n−1)+σ2
F ⋅ (tn − tn−1). (36)

Corollary 1. In a approximate linear equilibrium, the endogenous variables V (t), π(t), C(t),

and m(t) are the following functions of the exogenous parameters η, N , θ̄, m̄, and c̄I :

V (t) = η ⋅N
1− θ̄

, π(t) = c̄I

1− θ̄
, C(t) = C̄ ∶= θ̄

1− θ̄
⋅ c̄I , m(t) = m̄. (37)

The endogenous variables Et (︀⋃︀Q(t)⋃︀⌋︀, Et (︀Q2(t)⌋︀, γ(t), γI(t), γU(t), 1⇑L(t), and ρ(t) vary ran-

domly through time as the following functions:

Et)︀⋂︀Q(t)⋂︀⌈︀ = c̄I ⋅m̄
(1− θ̄) ⋅ τ̄1⇑2

⋅ 1

P(t) ⋅Σ1⇑2(t)
, (38)

Et)︀Q2(t)⌈︀ =
c̄2

I

(1− θ̄)2 ⋅ τ̄
⋅ 1

P 2(t) ⋅Σ(t) , (39)

1

L(t) =
θ̄ ⋅ τ̄1⇑2

m̄
⋅Σ1⇑2(t), (40)

σ2(t) = θ̄2 ⋅ τ̄3⇑2

c̄I ⋅m̄
⋅η ⋅N ⋅P(t) ⋅Σ3⇑2(t), (41)

ρ(t) = θ̄2 ⋅ τ̄3⇑2

c̄I ⋅m̄
⋅η ⋅N ⋅P(t) ⋅Σ1⇑2(t). (42)

The endogenous quantities in the model are all functions of the two state variables P(t) and

Σ(t), which change randomly due to arrival of bets and realization of fundamental uncertainty.

Before discussing the intuition of this equilibrium, we outline the main steps of the proof and

point out some of its interesting properties. The rest of this section proves Theorem 1. Details

of the proof of Theorem 1 and proofs of Corollary 1 are presented in Appendices B.1 and B.3.

3.1 Proof of Theorem 1

We first derive a key equation for each of the four equilibrium conditions. The solution of these

four equations implies values for β(t), λ(t), γI(t), and γU(t) in equations (32), (33), and (34).

We then discuss the two-variable difference-equation system (35) and (36).
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1. Profit Maximization. Since every trader believes that his signal is informative, each trader

chooses Q to maximize

π̂(t , i(t),Q)−Ĉ(t ,Q) = Et)︀(F(t)−P(t))⋅Q ⋂︀ informative i(t)⌈︀−Ĉ(t ,Q)
= Et)︀F(t)−P(t) ⋂︀ informative i(t)⌈︀ ⋅Q −(P̂(t ,Q)−P(t))⋅Q.

(43)

In an approximate linear equilibrium, linear price impact satisfies P̂(t ,Q)−P(t) =λ(t)⋅Q. This

makes the objective function quadratic. A strategic trader solves the linear first-order condition

to obtain the quantity Q(t) which maximizies profits net of market impact costs:

Q(t) = argmax
Q

)︀Et)︀F(t)−P(t) ⋂︀ informative i(t)⌈︀ ⋅Q −λ(t) ⋅Q2⌈︀

=
Et)︀F(t)−P(t) ⋂︀ informative i(t)⌈︀

2 ⋅λ(t) .
(44)

The conditional estimate of the fundamental value using private signal i(t) and the history

of prices, including the most recently observed price, is

Et)︀F(t)−P(t) ⋂︀ informative i(t)⌈︀ ≈ τ̄1⇑2 ⋅P(t) ⋅Σ1⇑2(t) ⋅ i(t). (45)

This linear filtering rule yields the solution to the first-order condition

Q(t) =β(t) ⋅ i(t), where β(t) = τ̄1⇑2 ⋅P(t) ⋅Σ1⇑2(t)
2 ⋅λ(t) . (46)

Equation (46) says that the informed trader trades to incorporate exactly one half of his

information into prices, as reflected by a factor of 2 in its denominator. Generalizing the defi-

nition of equilibrium and assuming that the trader incorporates a fraction θ̄ of his information

into price, with 0 < θ̄ < 1, changes equation (46) to the first key equation11

β(t) = θ̄ ⋅ τ̄1⇑2 ⋅P(t) ⋅Σ1⇑2(t)
λ(t) . (47)

This approach accommodates the possibility that traders are risk averse, in which case θ < 1⇑2

might be optimal. It also accommodates the possibility of information leakage, in which case

11We use an equality sign “=” instead of an approximation sign “≈” in the rest of our paper.
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θ > 1⇑2 might be optimal. The generalization makes it possible to show that the invariance

results derived below do not depend on the specific value θ̄ = 1⇑2 in equation (46) implied by

risk neutral profit maximization; the invariance results depend only of θ̄ being an invariant

constant.

2. Pricing Rule. Conditional on observing a bet of size Q(t), market makers infer that the bet

has a probability γI(t)⇑γ(t) of being informative and a probability γU(t)⇑γ(t) of being noise.

Market makers can infer the signal i(t) from size of the bet Q(t) = β(t) ⋅ i(t). This inference

follows from the fact that informative bets and noise bets arrive anonymously and are drawn

from the same unconditional distribution 𝒩(0,β2(t)). Since the price update implied by an

informative bet is τ̄1⇑2 ⋅P(t) ⋅Σ1⇑2(t) ⋅ i(t) and the price update implied by a noise bet is zero,

the market makers update prices as

Et)︀F(t)−P(t) ⋂︀ Q(t)⌈︀

= γI(t)
γ(t) ⋅Et)︀F(t)−P(t) ⋂︀ informative Q(t)⌈︀+ γU(t)

γ(t) ⋅Et)︀F(t)−P(t) ⋂︀ noise Q(t)⌈︀.

= γI(t)
γ(t) ⋅ τ̄

1⇑2 ⋅P(t) ⋅Σ1⇑2(t) ⋅ i(t).

(48)

This implies the pricing rule P̂(t ,Q) =P(t)+λ(t) ⋅Q, where λ(t) satisfies the second key equa-

tion

λ(t) = γI(t)
γI(t)+γU(t) ⋅

τ̄1⇑2 ⋅P(t) ⋅Σ1⇑2(t)
β(t) . (49)

3. Free Entry. The free entry condition says that the expected profits of both informed traders

and noise traders, net of market impact costs C(t) = Et (︀λ(t) ⋅Q2(t)⌋︀ and costs of information

c̄I , are equal to zero. Plugging the optimal demand (47) into the maximized profits of traders,

net of price impact costs, then using Et (︀i 2(t)⌋︀ = 1, yields the third key equation

θ̄ ⋅ (1− θ̄) ⋅ (τ̄1⇑2 ⋅P(t) ⋅Σ1⇑2(t))2

λ(t) = c̄I . (50)

The expected trading profits, calculated before the signal i(t) is realized and net of transaction

costs, must equal the cost of information c̄I .
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Since a noise trade may occur at any time, traders must be indifferent between trading and

not trading at any time as well. Thus, equation (50) must hold at all times, both when trades

occur and when trades do not occur. Intuitively, it implies that market makers adjust market

impact λ(t) continuously to make informed and noise traders indifferent between trading and

not trading at every point in time.

4. Noise Traders. Noise traders generate share volume at rate γU(t) ⋅Et )︀⋂︀Q(t)⋂︀⌈︀ = η ⋅N . Since

Q(t) =β(t) ⋅ i(t) and Et )︀⋂︀i(t)⋂︀⌈︀ = m̄, the expected size of a bet is

Et )︀⋂︀Q(t)⋂︀⌈︀ =β(t) ⋅m̄. (51)

This implies the fourth key equation

γU(t) = η ⋅N
β(t) ⋅m̄ . (52)

Without the fourth equilibrium condition that noise traders turn over the float at rate η,

the model assumptions would imply that informed and noise traders are indifferent between

trading and not trading at every point in time. This would make any assumed rate of trade by

noise traders γI(t) consistent with the first three equilibrium conditions. The assumption that

η is constant is a simplistic modeling device for pinning down equilibrium volume.

Solution of Four-Equation System. The four key log-linear equations (47), (49), (50), and (52)

involve only the four endogenous parameters β(t), λ(t), γI(t), and γU(t) given in Theorem

1; exogenous parameters; and the state variables P(t) and Σ(t). These four equations can be

easily solved for the endogenous parameters to obtain equations (32), (33), and (34) as follows:

(1) Solve equation (50) for λ(t). (2) Use the result to solve equation (47) for β(t). (3) Use the so-

lutions for β(t) to solve equation (52) for γU(t). (4) Use the solutions for λ(t), β(t), and γU(t)
to solve equation (49) for γI(t). The solution is an approximate linear equilibrium because the

trader’s second order condition (λ(t) > 0) holds.

State Variables P(t)P(t)P(t) andΣ(t)Σ(t)Σ(t). In an approximate linear equilibrium, the state variables P(t)
and Σ(t) are sufficient statistics for describing the market’s information at date t . These state

variables correspond to the conditional mean and error variance of the Kalman filter defined
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as the market’s estimate of fundamental value given public information. The price P(t) simul-

taneously describes the market’s estimate of fundamental value F(t) and noise trader dollar

volume η ⋅N ⋅P(t).12 Pricing error variance Σ(t) is a natural way to describe the importance of

adverse selection in the market. Since equation (40) implies market liquidity L(t) is inversely

proportional to the standard deviation of pricing error Σ1⇑2(t), with invariant constant of pro-

portionality, liquidity L(t) could also be a natural second state variable which captures adverse

selection: Less accurate prices are associated with more adverse selection and less liquidity. We

discuss these variables in more detail in Section 6.

When bets do not arrive, the market obtains no new information about fundamental value

and therefore the price P(t) is constant, but fundamental uncertainty continues to unfold so

that dΣ(t) =σ2
F ⋅dt . When a bet arrives, the price changes by λ(tn) ⋅β(tn) ⋅ i(tn), and the error

variance Σ(tn) is reduced by fraction θ̄2 ⋅ τ̄. If market makers could tell whether each bet was

informative or uninformative, then the error variance would decrease by fraction τ̄ with prob-

ability θ̄ when an informative bet arrived and would remain unchanged with probability 1− θ̄
when an uninformative bet arrived. On average, the percentage reduction would be θ̄ ⋅ τ̄, not

θ̄2 ⋅ τ̄. Since market makers cannot distinguish informative bets from uninformative bets, the

price impact of a bet is smaller (multiplied by additional factor θ̄) and the proportional vari-

ance reduction is only θ̄2 ⋅ τ̄, as reflected in equation (36). Appendix B.2 contains a more formal

proof.

The solutions for λ(t) and β(t) in equations (32) and (33) imply equations (35) and (36).

The price follows a martingale (approximately) with stochastic returns volatility σ(t), which

depends on stochastic state variables P(t) and Σ(t). Thus, σ2(t) is stochastic even though the

innovation variance of fundamentals σ2
F is constant. This completes the proof of Theorem 1.

The proof of Corollary 1 is in Appendix B.3.

3.2 Intuition and Properties of Equilibrium

Figure 1 illustrates the intuition. Informed traders strategically incorporate a fraction θ̄ of their

information into prices by trading Q(t), and the price jumps by θ̄ ⋅ Et)︀F(t) − P(t) ⋂︀ Q(t)⌈︀,
which is equal to λ(t) ⋅Q(t). Informed traders incur transaction costs C(t) and expect to make

trading profits of π(t)−C(t) as the price gradually converges to expected fundamental value

12If the model were changed to make noise trader share volume η ⋅N randomly time varying, the equilibrium
would change only cosmetically, but price P(t) and η ⋅N ⋅P(t)would become two separate state variables.
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Et)︀F(t) ⋂︀ Q(t)⌈︀ due to the subsequent trading of other informed traders. These profits are re-

alized at some distant date when the game ends and all positions are liquidated at the expected

fundamental value. In contrast, noise traders execute orders which also incur expected dol-

lar transaction costs C(t), but they lose money since, on average, the price converges back to

pre-trade levels after their trades.

Figure 1: Intuition for the Model.
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The figure illustrates price dynamics in response to arrival of a bet. The horizontal
axis measures the size of a bet Q(t), and the vertical axis represents its price im-
pact ∆P(t) = λ(t) ⋅Q(t). In the equilibrium, the trader executes Q(t) = β(t) ⋅ i(t)
After informed bets, the price continues to increase to fully incorporate the infor-
mation content of the bet into prices to λ(t) ⋅Q(t)⇑θ. After noise bets, the price
reverses to its initial level. Both noise and informed traders pay Ĉ(t , Q(t)) as mar-
ket impact costs to market makers, but informed traders also earn trading profits of
π̂(t , Q(t)).

The solution is characterized by two break-even conditions and a third property related to

the market efficiency condition.

First, market makers break even on average. As Treynor (1971) describes, the expected losses

market makers incur trading with informed tradersπ(t)−C(t)must on average be equal to their

expected gains from trading with noise traders C(t). Since informed traders and noise traders
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arrive at a rate γI(t) and γU(t), respectively, this leads to the equilibrium condition

γI(t) ⋅ (π(t)−C(t)) = γU(t) ⋅C(t). (53)

Second, the free entry condition implies the break-even condition for traders

c̄I +C(t) =π(t). (54)

On average, expected profits have to cover costs of obtaining a signal and executing a bet.

Third, interestingly, profit maximization (47) and the pricing rule (49) do not imply a so-

lution for β(t) and λ(t); the system is overdetermined. Instead, these two equations imply

that the fraction of informed traders γI(t)⇑γ(t) is equal to the fraction of the informed trader’s

information which is incorporated into prices θ̄ = 1⇑2:13

γI(t)
γI(t)+γU(t) = θ̄. (55)

Since θ̄ and c̄I are constant, the above three equations imply the invariance of expected

dollar price impact costs C(t):

C(t) = C̄ ∶= θ̄

1− θ̄
⋅ c̄I , (56)

For the baseline case θ̄ = 1⇑2, an approximate linear equilibrium implies that the price impact

cost of a bet C(t) = C̄ is exactly equal to the invariant cost of a signal c̄I . Recall that the in-

variance of the moment ratio m(t) = m̄ is almost hardwired into the model due to linearity of

demand. The invariance of both C(t) and m(t) is essential for the non-obvious scaling laws

described in the next section.
13In the continuous model of Kyle (1985), the price impact parameter λ(t) is not identified from the market

efficiency conditions either. Instead, market depth is pinned down by a condition stating that all volatility results
from trading, or equivalently, that the error variance disappears by the end of the game, since the informed trader
has pushed prices all the way to fundamental value.
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4 Invariance Theorem

We have shown that the solution can be presented in terms of the two state variables P(t) and

Σ(t). While it is easy to observe the price, the error variance is hard to estimate. This makes

it difficult to use equations (32)–(42) as a basis for operational quantitative predictions about

financial variables. In this section, we show how to solve this problem by expressing the model’s

predictions in terms of easily observable variables P(t), V (t), andσ(t); this exercise ultimately

leads to market microstructure invariance and makes analysis amenable to empirical testing.

The core result of this paper is that both the invariance conjectures and their implied scal-

ing laws hold in an approximate linear equilibrium. While the model hardwires linearity and

normal distributions, the invariance hypotheses and scaling laws they imply are non-obvious

implications of the model’s assumptions. To state this result in a self-contained way, we sum-

marize notation and formulate a theorem.

The invariant parameters are the cost of a signal c̄I , the precision of a signal τ̄, the fraction

θ̄ of information in signal i(t) incorporated into prices by an informed trader, and the moment

ratio m̄ = Et )︀⋂︀i(t)⋂︀⌈︀. The baseline model assumes θ̄ = 1⇑2 for risk neutral traders and m̄ =
⌈︂

2⇑π ≈
0.7979 for normally distributed signals i(t).

Theorem 2 (Invariance in an Approximate Linear Equilibrium). Bet size invariance holds in the

sense that the dollar risk I(t) transferred by a bet per unit of business time has an invariant

distribution C̄ ⋅ i(t), where i(t) ∼ 𝒩(0,1) and C̄ is the invariant expected cost C(t) of executing

a bet:

I(t) =P(t) ⋅Q(t) ⋅ σ(t)
γ1⇑2(t)

= Q(t)
V (t) ⋅W

2⇑3(t) ⋅ (m̄ ⋅C̄)1⇑3 = C̄ ⋅ i(t), (57)

C(t) =λ(t) ⋅Et)︀Q2(t)⌈︀ = C̄ ∶= c̄I ⋅
θ̄

1− θ̄
. (58)

Transaction cost invariance holds in the sense that the expected dollar cost Ĉ(Q, t) of executing

a bet of size Q is an invariant quadratic function of the dollar risk I this bet transfers in units of

business time:

Ĉ(t ,Q) = 1

C̄
⋅ I 2, where I ≡P(t) ⋅Q ⋅ σ(t)

γ1⇑2(t)
. (59)

The number of bets γ(t), the size of bets Q(t), market impact λ(t), liquidity L(t), pricing accu-

racyΣ−1⇑2(t), and market resiliency ρ(t) are related to easily observable price P(t), share volume

V (t), volatility σ(t), and trading activity W (t) ∶=P(t) ⋅V (t) ⋅σ(t) by the following scaling laws
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summarized in one line as:

(W (t)
m̄ ⋅C̄ )

2⇑3

= γ(t) = (
Et )︀⋂︀Q(t)⋂︀⌈︀

V (t) )
−1

= ( λ(t) ⋅V (t)
σ(t) ⋅P(t) ⋅m̄)

2

=
(σ(t) ⋅L(t))2

m̄2
= σ2(t)
θ̄2 ⋅ τ̄ ⋅Σ(t)

= ρ(t)
θ̄2 ⋅ τ̄

. (60)

Proof. See Appendix B.4.

Since trading activity W (t) ∶= P(t) ⋅V (t) ⋅σ(t) is observable, the scaling laws (60) provide a

way to measure the number of bets γ(t), the expected size of bets Q(t), market impact λ(t),

liquidity L(t), pricing accuracy Σ−1⇑2(t), and market resiliency ρ(t) in terms of the 2⇑3 power

of W (t) with C̄ , m̄, and θ̄2 ⋅ τ̄ as invariant proportionality coefficients.

These equations directly correspond to the empirical hypotheses and scaling laws proposed

in Kyle and Obizhaeva (2016). Equation (57) directly corresponds to bet size invariance. Equa-

tion (59) directly corresponds to transaction costs invariance; equation (58) is the unconditional

version of the same statement. Equation (60) summarizes empirical implications about bet ar-

rival rate, bet size, and price impact. The bet arrival rate γ(t) is proportional to W 2⇑3(t); the

size of bets as a fraction of volume Et )︀⋂︀Q(t)⇑V (t)⋂︀⌈︀ is proportional to W −2⇑3(t); and market

liquidity L(t) is proportional to W 1⇑3(t)⇑σ(t).14 The empirical predictions about pricing ac-

curacy and resiliency are new. The pricing error Σ1⇑2(t) is proportional to σ(t)⇑W 1⇑3(t), and

resiliency ρ(t) is proportional to W 2⇑3(t).

The first four scaling laws for number of bets γ(t), the size of bets Q(t), market impactλ(t),

and liquidity L(t) require invariance of the market impact cost of a bet C̄ = θ̄ ⋅ c̄I ⇑(1− θ̄) and the

moment ratio of bet sizes m̄. Scaling laws for pricing accuracy Σ−1⇑2(t) and market resiliency

ρ(t) additionally require invariance of the informativeness of a bet θ̄2 ⋅ τ̄.

The three parameters C̄ , m̄, and θ̄2 ⋅ τ̄ can be estimated empirically as the intercepts in re-

gressions of logs of the corresponding variables on logs of trading activity. For example, equa-

tion (60) implies that the number of bets γ(t) is proportional to easily observable W 2⇑3(t) with

the proportionality coefficient (m̄ ⋅ C̄)−2⇑3. Thus, one can generate quantitative predictions

about γ(t) if one either knows values of the parameters m̄ and C̄ or, alternatively, estimates

the value of (m̄ ⋅C̄)−2⇑3 by regressing ln(γ(t)) on ln(W 2⇑3(t)).

The constants C̄ , m̄, and θ̄2 ⋅ τ̄ in our structural model play a role somewhat similar to the

14Since Et )︀⋂︀i(t)⋂︀⌈︀ = m̄ implies Et (︀⋃︀I ⋃︀⌋︀ = m̄ ⋅ C̄ from (57), one can easily check that equations (B-16) for bet arrival
rate γ(t), (B-17) for bet size Q(t), and (B-20) for illiquidity 1⇑L(t) are exactly equivalent to invariance equations
(7), (8), and (15) in Kyle and Obizhaeva (2016).
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role played by Boltzmann’s constant or Avogadro’s number in physics. Theoretical models help

to fill in detail and connect these constants to deep parameters of the model.

Although the model describes the time series properties of a single stock as its market cap-

italization changes due to price changes, the model applies cross-sectionally across different

securities under the assumption that the exogenously assumed cost of a private signal c̄I , the

shape of the distribution of signals m̄, and the informativeness of bets θ̄2 ⋅ τ̄ are constant across

all markets. The possible economic mechanism is intuitive. Suppose the cost of private signals

c̄I is proportional to the average wages of finance professionals, adjusted for their productivity

or effort required to generate one bet. They optimally allocate skills across different markets

to maximize the value of trading on the private signals that they generate. In equilibrium, the

average cost of generating a private signal c̄I is likely to be similar across markets.

Price, volatility, and volume are public, macroscopic quantities in the sense that, for a spe-

cific asset at a specific time, these quantities are aggregate statistics describing the interaction

of all of the traders in the market, and their values can be estimated from aggregate market data.

The distribution of bet size Q(t), bet arrival rate γ(t), the average cost of a bet 1⇑L(t), pricing

accuracyΣ1⇑2(t), and resiliency ρ(t), and the price impact or information content of individual

bets are, by contrast, microscopic quantities in the sense that they are statistics describing in-

dividual bets, and their values are difficult to observe. Invariance helps to link together macro-

scopic and microscopic quantities.

5 A Four-Equation Meta-Model

Is all of the machinery of the dynamic model necessary to derive invariance relationships? We

will show that an unconditional version of the invariance hypotheses describing average bet

size and transaction costs relies on only four simple equations; therefore, only a subset of the

dynamic model’s structure is required. We call these four structural properties a meta-model:

1. Volume Equation: Trading volume results from bets. Since bets of average size Et )︀⋂︀Q(t)⋂︀⌈︀
arrive at rate γ(t), share trading volume V (t) satisfies

γ(t) ⋅Et )︀⋂︀Q(t)⋂︀⌈︀ =V (t). (61)

2. Volatility Equation: The dynamic model implies that returns volatility results from the
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linear price impact of bets. Since one bet moves prices by λ(t) ⋅Q(t) dollars and bets

arrive at rate γ(t), the calendar-time variance of dollar price change σ2(t)⋅P 2(t) satisfies

γ(t) ⋅λ2(t) ⋅Et)︀Q2(t)⌈︀ =σ2(t) ⋅P 2(t). (62)

3. Price Impact Cost Equation: Since each bet moves prices by λ(t) ⋅Q(t) and thus incurs a

price impact cost λ(t)⋅Q2(t), the expected dollar price impact cost of a bet C(t) satisfies

λ(t) ⋅Et)︀Q2(t)⌈︀ =C(t). (63)

4. Moment Equation: Expected unsigned bet size Et )︀⋂︀Q(t)⋂︀⌈︀ and the standard deviation of

signed bet size (Et)︀Q2(t)⌈︀)1⇑2
are related by a moment ratio m(t) satisfying

Et )︀⋂︀Q(t)⋂︀⌈︀

(Et)︀Q2(t)⌈︀)1⇑2
=m(t). (64)

The four structural equations (61)–(64) define a meta-model in the sense that they define

structural properties that may be shared by many models of market microstructure without

filling in details which may differ across models. The second equation says that order flow

moves prices; the three other equations are simply definitions.

All four meta-model equations hold in an approximate linear equilibrium. The volume

equation assumes that market makers take the other side of each bet, so that V (t) simulta-

neously measures buy volume, sell volume, and market maker volume; it is the same as equa-

tion (14). The volatility equation is consistent with linear price impact of bets, but equation

(62) does not itself imply linear price impact because it is an unconditional assertion about

price impact, not a conditional assertion; it is implied by equation (15). The price impact cost

equation is consistent with price impact costs being quadratic, but equation (63) itself does not

imply quadratic costs because it is an unconditional assertion about the variance of Q(t), not a

conditional assertion about its shape as a function of Q(t); it is the same as equation (17). The

moment equation defines m(t) as a moment ratio depending on the shape, but not the scaling

of the distribution of bet size; it is implied by equation (23).

As we discussed in Section 3.2, the dynamic model implies invariance of two variables C(t) =
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C̄ ∶= θ̄
1−θ̄
⋅c̄I and m(t) = m̄ in meta-model equations (63) and (64). Combined with the invariance

of C(t) and m(t), the meta-model then implies scaling laws.

Theorem 3 (Invariance and Meta-Model). If C(t) = C̄ and m(t) = m̄, then the four meta-model

equations (61), (62), (63), and (64) are a log-linear system which can be solved for the four pa-

rameters γ(t), λ(t), Et )︀⋂︀Q(t)⋂︀⌈︀, and Et)︀Q2(t)⌈︀ in terms of P(t), V (t), σ(t), C̄ ∶= θ̄
1−θ̄
⋅ c̄I , and m̄,

as in Theorem 2.

Proof. See Appendix B.5.

Except for the two equalities for pricing error Σ(t) and resiliency ρ(t), all other invariance

results in Theorem 2 can be derived based on the four meta-model equations (61)–(64) com-

bined with the invariance results C(t) = C̄ and m(t) = m̄. Invariance relationships therefore

represent general properties inherent to many microstructure models of speculative trading.

The two invariance relationships related to pricing accuracy and market resiliency require the

full machinery of the dynamic model of adverse selection.

The structural meta-model helps to reveal a particular relationship between the two hy-

potheses of bet size invariance and transaction costs invariance. The four meta-model equa-

tions refer to the first and second moments of unsigned bet size distribution but not any other

moments. It has several implications related to the first two moments.

First, if C(t) = C̄ and m(t) = m̄, then meta-model equations (62), (63), and (64) imply a

specific connection between the first moment of invariant risk transfer Et)︀⋂︀I(t)⋂︀⌈︀ and the cost

invariant C̄ :

Et)︀⋂︀I(t)⋂︀⌈︀ = m̄ ⋅C̄ . (65)

Second, if C(t) = C̄ and m(t) = m̄, then meta-model equations (62) and (63) lead to another

restriction on that connects the second moment of invariant risk transfer Et)︀I 2(t)⌈︀ and the cost

invariant C̄ ,

Et)︀I 2(t)⌈︀ = C̄ 2. (66)

Recall that the risk transferred by bets in business time I(t), defined in (25), is distributed as

some invariant random variable I∗. Since signals, and therefore bets, are normally distributed,

the dynamic model implies that

I(t) d= I∗ where I∗ ∼𝒩 (0 , C̄ 2) and Et)︀⋃︀I∗⋃︀⌈︀ = m̄ ⋅C̄ . (67)
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This distribution of I∗ is invariant because C̄ and m̄ are shown to be invariant constants.

The two restrictions (65) and (66) impose a particular structure on the proportionality con-

stants in invariance relationships, derived in Kyle and Obizhaeva (2016). It is this structure that

ultimately allows us to link to one another disconnected scaling relationships in that paper and

write them in a consolidated one-line form of equation (60) in the invariance Theorem 2.

6 Liquidity, Market Efficiency, Pricing Accuracy, and Resiliency

The liquidity measure L(t) can be expressed in two different ways. First, equation (40) implies

that liquidity L(t) is proportional to pricing accuracy Σ−1⇑2(t):

L(t) = m̄

θ̄ ⋅ τ̄1⇑2
⋅Σ−1⇑2(t). (68)

Liquidity is proportional to how much information has been incorporated into prices from past

trading, and it has nothing to do with how fast information is being incorporated into prices

at the current moment t . This suggests that liquidity should not vary a great deal over short

periods of time because pricing error Σ1⇑2(t) changes only gradually due to steadily unfolding

fundamental volatility σF and each bet reduces error variance Σ(t) by only a small fraction.

Since liquidity L(t) and pricing accuracy Σ1⇑2(t) are proportional, equation (68) implies that

L(t) could replace Σ(t) as the second state variable in the model.

Second, equation (60) implies that liquidity L(t) can be also expressed as a function of dollar

volume P(t) ⋅V (t) and variance σ2(t), expected at a particular moment in time:15

L(t) = (m̄2 ⋅P(t) ⋅V (t)
C̄ ⋅σ2(t) )

1⇑3

. (69)

Expected returns variance σ2(t) measures how fast information is expected to be incorporated

into prices at a particular point in time, and it is known to change over the trading day. Liquidity

is not a function of fundamental volatility σF .

Equations (68) and (69), taken together, generate an important empirical prediction. For

liquidity L(t) to be relatively constant over time, even when volatility σ(t) and prices P(t) are

time varying, the ratio of instantaneous expected dollar volume P(t) ⋅V (t) to instantaneous

15Kyle and Obizhaeva (2016) and Kyle and Obizhaeva (2017) use the same expression for L(t) as equation (69).
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expected returns variance σ2(t) must vary slowly, preserving proportionality to slowly varying

pricing accuracy Σ−1⇑2(t). By imposing this strong volume-volatility relationship on the equi-

librium price discovery process, the dynamic model allows both equations (68) and (69) to be

valid simultaneously.

Corollary 2. Scaling laws (60) can be expressed in terms of L(t) instead of trading activity W (t):

L2
(t) = (

m̄2

C̄
⋅

P(t) ⋅V (t)

σ2
(t)

)

2⇑3
= (

m̄2

C̄
⋅

W (t)

σ3
(t)
)

2⇑3
=

m̄2
⋅γ(t)

σ2
(t)

= (
Et (︀⋃︀P(t) ⋅Q(t)⋃︀⌋︀

C̄
)

2

=
m̄2

C̄
⋅
P 2
(t)

λ(t)
=

m̄2

θ̄2
⋅ τ̄
⋅

1

Σ(t)
=

m̄2

θ̄2
⋅ τ̄
⋅
ρ(t)

σ2
(t)

.

(70)

Proof. Equation (70) is a direct implication of equations (69) and (60).

Corollary 2 says that P(t) ⋅Q(t) is proportional to L(t), γ(t) is proportional to σ2(t) ⋅L2(t),

λ(t) is proportional to P 2(t)⇑L(t), Σ1⇑2(t) is proportional to 1⇑L(t), and ρ(t) is proportional

to σ2(t) ⋅L2(t).

The concept of liquidity relates to the concept of market efficiency. There are two different

definitions of market efficiency. Our model helps to clarify the sharp distinction between them.

Eugene Fama conceptualizes a market to be efficient if all available information is appropri-

ately reflected in price; this implies that prices—adjusted for the risk-free rate, dividend yield,

and risk premium—follow a martingale, regardless of how much information is available overall

in the market. In our model, prices in equation (35) are always efficient in the sense of Fama’s

definition because prices are martingales which accurately incorporate all public information.

Fischer Black (1986) conceptualizes market efficiency as the accuracy with which observ-

able prices estimate unobservable fundamental value. In our model, pricing accuracy Σ−1⇑2(t)
is directly related to this concept because its reciprocal quantifies the standard deviation of

the log-distance between the fundamental value and the price. As pricing accuracy varies en-

dogenously over time, the log-distance between prices and fundamentals may be either large

or small; higher capitalization (and prices) is associated with more bets and greater efficiency

in the sense of Black’s definition.

Black conjectures that “almost all markets are efficient” in the sense that “price is within a

factor 2 of value” at least 90% of the time. The market becomes more efficient if the standard

deviation of the log-distance Σ1⇑2(t) between prices and fundamentals becomes smaller. Since

the probability that a normal distribution is within 1.64 standard deviations of its mean is ap-

proximately 90%, Black’s conjecture holds formally when a 1.64 standard deviation event does
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not deviate from the mean by more than a factor of 2. In the context of our model, Black would

say that markets are efficient if Σ1⇑2(t) < ln(2)⇑1.64 ≈ 0.42.

It is convenient to scale the pricing error variance Σ(t) by annual returns variance σ2(t)
so that Σ(t)⇑σ2(t) quantifies the number of years by which the informational content of prices

lags behind fundamental value given current level of returns volatility. If prices are less accurate

and returns volatility is lower (larger Σ(t) and smaller σ2(t)), it takes more years for prices to

catch up with fundamentals. For example, suppose a stock’s annual volatility is σ(t) = 0.35

and Σ1⇑2(t) = ln(2)⇑1.64. Then, since Σ(t)⇑σ2(t) = (ln(2)⇑1.64)2⇑0.352 ≈ 1.50, this implies that

prices are about 1.50 years behind fundamental value. On average, it would take about 1.50

years of 35% annual returns volatility for prices to converge to fundamental value under the

counterfactual assumption that the current fundamental value would remain frozen in time.

In practice, it is difficult to observe directly Black’s measure of market efficiency Σ−1⇑2(t)
because fundamental value is unobservable. Yet, it is possible to infer Σ−1⇑2(t) indirectly from

a closely related, easier-to-observe measure of market resiliency, as also discussed by Black.

Market resiliency ρ(t) is the mean-reversion parameter (per calendar year) measuring the

speed with which a random shock to prices—resulting from execution of an uninformative

bet—dies out over time, as informative bets drive prices back toward fundamental values. If

resiliency is approximately constant over a given time period, then the half-life of an uninfor-

mative shock to prices must be equal to ln(2)⇑ρ(t).

Black (1986) intuited that since transitory noise affects prices, returns variance is larger

than the variance of innovations in fundamental value, and this implies mean reversion in re-

turns.Black’s intuition is incorrect because prices have a martingale property due to efficient

pricing. In fact, his intuition must apply to the log-ratio of prices to fundamental value. It is

the difference between prices and fundamentals that exhibits mean reversion, not prices them-

selves. If prices become disconnected from fundamentals permanently, the presence of a bub-

ble creates arbitrage opportunities for traders without private information. In our model, trad-

ing based on private information gradually drives prices toward fundamental value, preventing

bubbles. Since prices follow a martingale (by assumption), our model reflects intuition different

from Shiller (1992), who describes an inefficient market with excess volatility and predictable

mean reversion over long time periods.

Theorem 4 (Liquidity, resiliency, volatility, and pricing error variance). There is the following

quantitative relationships between market resiliency ρ(t), volatility σ(t), liquidity L(t), and
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pricing error variance Σ(t):

Σ(t) =Vart )︀σF ⋅ (B(t)− B̄(t))⌈︀ , (71)

σ2(t) = θ̄2 ⋅ τ̄ ⋅Σ(t) ⋅γ(t), (72)

ρ(t) = θ̄2 ⋅ τ̄ ⋅γ(t) = θ̄2 ⋅ τ̄
m̄2
⋅σ2(t) ⋅L2(t) = σ2(t)

Σ(t) . (73)

Proof. This result follows from equations (4), (34), (40), (41), and (42).

Equation (73) is very important. It illustrates the relationship among these four variables.

Market resiliency ρ(t) is greater in markets with higher pricing accuracy Σ−1⇑2(t), higher liq-

uidity L(t) and higher returns volatility σ(t), where liquidity can be proxied by the inverse of

bid-ask spread.

Equation (73) suggests an empirical strategy for calibration of unobservable pricing accu-

racy Σ(t) from an estimate of resiliency ρ(t). The latter can be obtained by examining how

fast the temporary price impact of noise trades dies out over time. In the previous example, if

volatility is 35% per year and Σ1⇑2(t) = ln(2)⇑1.64, then Σ(t)⇑σ2(t) ≈ 1.50 and prices are about

1.50 years behind the fundamental value. The error B(t)− B̄(t) in equation (22) mean-reverts

at rate ρ(t) =σ2(t)⇑Σ(t) = 0.352⇑(ln(2)⇑1.64)2 = 0.69 per year. This implies that the half-life of

the price impact of noise trades is equal to ln(2)⇑ρ(t) ≈ 1 year. Thus, Black (1986) could have

equivalently defined an efficient market where “price is within a factor 2 of value” as a market

where “the half-life of the price impact of noise trades is less than one year.”

The empirical strategy of using ρ(t) to infer pricing accuracyΣ−1⇑2(t) also makes it possible

to infer the information content of one bet θ̄2 ⋅ τ̄. Equation (73) implies θ̄2 ⋅ τ̄ = ρ(t)⇑γ(t). To

illustrate the concept, suppose it is known that Black’s marginally efficient stock withρ(t) ≈ 0.69

per year has about 100 bets per day, or 25,000 bets per year based on the assumption of 250

trading days per year. It immediately follows that θ̄2 ⋅τ̄ ≈ 0.69⇑25000 = 0.28×10−4. From equation

(36), the invariance of resiliency and pricing accuracy then implies that, in any market and at

any time, one bet reduces the error variance of prices Σ(t) by about 0.0028 percent.

Alternatively, pricing accuracy Σ−1⇑2(t) can be calibrated from an estimate of liquidity L(t),

where the latter can be for example proxied by percentage bid-ask spread, and vice versa. Equa-

tion (73) implies 1
Σ(t) = L2(t) ⋅ m̄2

θ̄2⋅τ̄
. Pricing accuracy Σ−1⇑2(t) is higher when liquidity L(t) is

higher. If Σ1⇑2(t) = ln(2)⇑1.64, m̄ = 0.7979, and θ̄2 ⋅ τ̄ ≈ 0.69⇑5000 = 0.28×10−4, then the average

percentage transaction costs are 1⇑L(t) = 0.0028 or 28 basis points. All these numbers seem to
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be realistic.

7 Model Discussion and Robustness

The model has a simple structure carefully designed to formulate empirical hypotheses relat-

ing the dynamics of market liquidity to the informativeness of prices. It has infinite horizon and

small number of parameters with natural empirical interpretation. The model suggests an em-

pirically implementable measure of liquidity which satisfies invariance hypothesis and changes

gradually with a slowly moving ratio of returns variance to dollar volume.

7.1 Conditional Steady State.

The price P(t) follows a martingale with stochastic returns variance σ2(t). Although the error

variance of prices Σ(t) follows a jump process, its expected change is like a time derivative

which implies thatΣ(t) changes much more slowly than the price P(t). The percentage change

of error variance has the following two moments:

lim
∆t→0

1

∆t
⋅Et ]︀

Σ(t +∆t)−Σ(t)
Σ(t) {︀ = 1

Σ(t) ⋅ (σ
2
F −σ2(t)) , (74)

lim
∆t→0

1

∆t
⋅Vart ]︀

Σ(t +∆t)−Σ(t)
Σ(t) {︀ = θ̄2 ⋅ τ̄ ⋅σ2(t). (75)

Unfolding fundamental uncertainty increases error variance at rateσ2
F , while information being

incorporated into prices reduces error variance at rate σ2(t). When returns volatility σ(t) is

greater (smaller) than fundamental volatility σF , information is being incorporated into prices

faster (slower) than fundamental uncertainty is unfolding, and pricing error variance Σ(t) in

equation (74) is shrinking (increasing) at a rate σ2
F −σ2(t). The variance is equal to θ̄2 ⋅ τ̄ ⋅σ2(t);

it is much smaller than the returns variance of prices σ2(t), because 0 < θ̄2 ⋅ τ̄ << 1.

If the two forces are in balance so that σ2
F ≈ σ2(t), then the pricing error variance remains

constant at a level Σ∗(t), which we call a conditional steady state. This conditional steady state
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has an associated conditional steady state level of liquidity L∗(t):

Σ∗(t) ∶=
σ2

F

γ(t) ⋅ θ̄2 ⋅ τ̄

= m̄2

θ̄2 ⋅ τ̄
⋅ 1

L∗(t)2
, where L∗(t) ∶= (m̄2 ⋅P(t) ⋅V (t)

C̄ ⋅σ2
F

)
1⇑3

.

(76)

The first equality can be proved by substitution of fundamental variance σ2
F for market return

variance σ2(t) in equations (72). The second equality can be proved by substitution of funda-

mental variance σ2
F for market return variance σ2(t) in equations (41) and then plugging C̄ and

V (t) from equation (37).

The conditional steady state Σ∗(t) does not represent a steady state in the usual sense; it

represents the level to which Σ(t) would converge over time if market capitalization were not

changing, as proxied by the price P(t) since shares outstanding N do not change. The condi-

tional steady state level of liquidity L∗(t) is obtained from L(t) by replacing market volatility

σ(t) with fundamental volatility σF . Keeping σF fixed, more accurate signals θ̄2 ⋅ τ̄ and more

frequent bets γ(t) make steady-state error variance Σ∗(t) smaller, market prices on average

more accurate, and percentage trading costs are lower.

Looking at financial markets from a bird eye’s view, our model presents the following picture

of what happens when prices change. Changes in prices P(t) immediately lead to changes in

market capitalization P(t) ⋅N , changes in returns volatility σ(t) in equation (41), and changes

in the arrival rate of betsγ(t) in equation (34). The value ofΣ(t) gradually drifts in equation (36)

toward a conditional steady-state level of Σ∗(t), which it is constantly chasing, but never fully

converges to, since the steady-state level is itself constantly changing with changes in P(t).

When price is high, corresponding to both dollar capitalization and dollar trading volume

being high, then returns volatility is high, bets arrive quickly, and Σ(t) moves quickly toward

its conditional steady state level; returns volatility remains close to fundamental volatility; and

Σ(t) does not deviate far from its conditional steady-state level. When prices are low and dol-

lar trading volume is low, bets arrive slowly and Σ(t) adjusts only slowly toward its conditional

steady-state level; returns volatility may remain below fundamental volatility for extended pe-

riods of time.

The invariance holds both in the steady-state and outside of the steady state. Suppose that

the market is in a conditional steady state with σ(t) = σF , but the price suddenly rises by a
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factor of 8. Theorem 1 shows what happens in the short run. The price change increases the

arrival rate of bets γ(t), return variance σ2(t), and market resiliency ρ(t) by a factor of 8, but

leaves market accuracy Σ−1⇑2(t), market liquidity L(t), percentage market impact λ(t)⇑P 2(t)
and average dollar bet size Et )︀⋂︀P(t) ⋅Q(t)⋂︀⌈︀ initially unchanged, while reducing share bet size

Q(t) by a factor of 8 and increasing λ(t) by a factor of 82. The effect of the increase in γ(t),

ρ(t), and σ2(t) is balanced out by the drop in Q(t) and increase in λ(t), so that invariance

relationships continue to hold.

In the long run, the high arrival rate of bets makes market prices more accurate through

equation (36), eventually reducing pricing errors Σ1⇑2(t) by a factor of 2 (81⇑3 = 2) to the new

conditional steady-state level described in equation (76). In the new conditional steady state,

pricing accuracyΣ−1⇑2(t), liquidity L(t), and average bet size Et )︀⋂︀P(t) ⋅Q(t)⋂︀⌈︀ are 2 times higher

than before (81⇑3 = 2); the arrival rate of bets γ(t) and resiliency slow down but remain 4 times

higher than before (82⇑3 = 4); returns variance is equal to its conditional steady state levelσ2(t) =
σ2

F . The invariance exponents of 1⇑3 and 2⇑3 for Et )︀⋂︀P(t) ⋅Q(t)⋂︀⌈︀ and γ(t) are reflected in this

new steady state with adjusted pricing accuracy.

The properties of exponential martingales imply with probability one that (1) the values of

F(t) and P(t)will eventually converge to zero, (2) both the bet arrival rate and returns volatility

will eventually converge to zero, and (3) pricing error variance Σ(t) will eventually become un-

boundedly large. The model makes realistic predictions that trading volume in any given stock

eventually dies out, and at any point in time, much of the volume in the market consists of trad-

ing in a small number of active stocks. This is consistent with the interpretation that almost all

stocks are eventually de-listed. As Keynes would say, in the long run, all companies are dead.

7.2 Approximations

To obtain a close-form solution, we make several assumptions involving approximations. First,

we assume that the estimation error B(t)− B̄(t) is approximately normally distributed. This

assumption makes the filtering problem of an informed trader linear when the signal of an

informed trader is jointly normally distributed with the valuation error. This assumption is an

approximation because each price increment is a mixture—not a sum or an average—of trades

by either informed traders or noise traders.

Second, we assume that an informed trader chooses a quantity to trade which is linear in
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the estimate of the information content of the private signal. This assumption makes the quan-

tity Q(t) observed by market makers jointly normally distributed with the valuation error and

thus justifies linear filtering by market makers. This assumption is an approximation because a

linear approximation to the exponential function associated with geometric Brownian motion

is used.

Third, we assume that the market makers choose a price impact parameter λ(t) so that

price impact is a linear function of the quantity traded Q(t). This assumption makes price

changes approximately normally distributed and justifies linear filtering. It is an approxima-

tion because the geometric Brownian motion assumption implies that price impact should be

nonlinear.

For empirically reasonable parameter values describing publicly traded stocks with reason-

ably active trading volume, we believe that all of these approximations involve economically

inconsequential errors. Proving this formally is a topic for future research, but simulations in

Appendix A provide some supportive evidence.

This paper shows how invariance can be derived in the context of an equilibrium model.

Empirical evidence is certainly more consistent with more general empirical hypotheses about

bet sizes and transaction costs, rather than the properties of our structural linear-normal model.

For example, Kyle and Obizhaeva (2016) find that the sizes of unsigned bets closely fit a log-

normal distribution with log-variance of 2.50, not a normal distribution. A square root price

impact model often predicts transaction costs better than a linear model, although both mod-

els predict transaction costs reasonably well if the linear model is supplemented with a constant

bid-ask spread cost. While it may be possible to modify our structural model to accommodate

non-normally distributed bet size, non-linear price impact, and dynamic execution of bets at

an equilibrium speed proportional to the rate at which business time unfolds, this will make

the model much less tractable and linear approximations less accurate.

7.3 An Exactly Linear Model.

Nonlinearity of the model raises the question whether a modified version of the model, which

is exactly linear, would yield similar results. The following alternative assumptions describe a

model with an exactly linear equilibrium:

• Fundamental value follows Brownian motion, not a geometric Brownian motion. This
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makes the valuation formula linear, with F(t) = F0+F1⋅σF ⋅B(t) and P(t) = F0+F1⋅σF ⋅B̄(t)
for some fixed constants F0 and F1.16

• Informative bets and noise bets arrive anonymously, in matched pairs, at non-stochastic

time intervals ∆t = 1⇑γU(t) = 1⇑γI(t) = 2⇑γ(t). This changes the mixture of bets to their

linear combination.17

We continue to assume that traders are risk-neutral monopolists, who optimally incorporate

exactly half of their information into prices, consistent with θ̄ = 1⇑2.18

In the modified model, market makers observe two bets at the same time; they know one bet

is informative and another one is noise, but they do not know which is which. Under this batch-

ing assumption, the dollar pricing error F1 ⋅σF ⋅ (B(t)− B̄(t)) and the two bets are jointly nor-

mally distributed. This makes linear projections exactly the same as conditional expectations,

not an approximation as has been assumed so far. The error B(t)− B̄(t) is exactly normally

distributed, and conditional expectations are exactly linear.

In the modified model, the explicit solutions in Theorem 1 and Corollary 1 as well as the

invariance results in Theorem 2 and the relation between returns variance, resiliency, and busi-

ness time continue to hold almost exactly as before, except for some minor differences. These

results and proofs are presented in Appendix B.6.

In the exactly linear model, the conditional steady state becomes an actual steady state

when volatility is expressed with dollar units. Over time, the dollar error variance Σ(t) ⋅P 2(t)
converges to a steady state value given by equation (B-49), with constant volume V (t) = 2 ⋅η ⋅N .

In this steady state, trading intensity β(t), market impact λ(t), the bet arrival rate γ(t), and

16The new exogenous constant F1, with units dollars⇑share, is needed so that the exogenous parameter σF

continues to have the same units day−1⇑2 as an our main model. Without loss of generality, one may assume
F1 = 1 dollar⇑share.

17It would also be possible to assume that bets arrive randomly in matched pairs at an exponentially distributed
arrival rate ∆t . This would not alter the structure of the model in a substantive way.

18Arithmetic Brownian motion implies that fundamental value may eventually be negative. To deal with this
issue in a realistic manner, it would be possible to assume that the firm makes capital calls to add cash to its
capital structure or disposes of excess cash by paying dividends as needed, keeping the price positive. Adding these
leverage changes to the model requires some accounting notation but does not change the underlying economics.
It does allow the firm to control the percentage volatility of its equity to keep volatility from being either too high
or too low. Leverage neutrality implies that these changes have no effect on the dollar risk transferred by bets
and therefore no effect on dollar market impact costs. Changes in leverage do not change trading activity W (t)
and therefore invariance relationships continue to hold. Since capital calls would necessitate more complicated
mathematical notation, we do not deal with this issue in this paper.
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dollar pricing error Σ(t) ⋅P 2(t) are constants; bet size has an unchanging distribution Q(t).

Liquidity L(t) converges to a steady state value L∗ given by equation (B-49).

Invariance relationships no longer show up in the time series because endogenous param-

eters like γ(t), β(t), λ(t) are constant, but they show up in the cross-section when different

assets have different value for σF , η, and N .

From an empirical perspective, the exactly linear model has the undesirable property that

percentage volatility σ2(t) changes and dollar volatility σ2(t) ⋅ P 2(t) remains constant in a

steady state. Fundamental value and prices will eventually become negative with probability

one and will eventually reach an arbitrarily high level with probability one. This means that

returns volatility goes to zero as prices increase and percentage volatility eventually explodes as

prices go to zero. In the approximate linear model, returns volatility is much more stable. Geo-

metric Brownian motion makes it possible to describe the time series properties of the life cycle

of a stock in an empirically more realistic manner; for example, when a stock’s market capital-

ization increases, returns volatility increases somewhat in the short run while pricing accuracy

and liquidity increase in the long run.

Since the meta-model equations are largely the same, both approaches generate invariance

relationships. While a potential disadvantage of our approach is that we rely on linear approxi-

mations, we believe the approximate linear equilibrium is close to an exact non-linear equilib-

rium. Since the exactly linear model is not significantly easier to describe than the approximate

linear equilibrium, we have chosen to emphasize the more empirically realistic approximate

linear equilibrium in the main part of our paper. This makes it easier to show why invariance

relationships hold both outside of a conditional steady state and in a steady state, when en-

dogenous parameters are not constant.

8 Conclusion

The dynamic structural model described in this paper is to be interpreted as a proof of concept

that invariance hypotheses and scaling laws may be derived in the context of a reasonable, well-

specified theoretical model of speculative trading based on adverse selection.

The derivation of invariance relationships relies mostly on the four meta-model equations

(61)–(64). These equations capture generic properties of models of speculative trading: (1) or-

der flow creates volume and induces volatility, (2) the expected dollar transaction costs of a bet
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are invariant across assets and time, and (3) the ratio of moments of bet size distributions is sta-

ble across assets and time. We therefore conjecture that more general invariance relationships

can be obtained in the context of other market microstructure models as well and explore this

issue in Kyle and Obizhaeva (2018).
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Appendix A Approximation for the Distribution of Errors

The approximate linear solution relies on the assumption that errors σF ⋅ (B(t)− B̄(t)) are dis-

tributed approximately as a normal distribution 𝒩(0,Σ(t)). This appendix analyzes the ro-

bustness of this assumption using numerical simulations.
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Assume the following about the model parameters: The annual volatility of fundamentals is

σF = 0.35, the fraction of informed traders is θ̄ = 0.5, the unconditional dollar costs of producing

a signal is C̄ = $2000, the moment ratio is m̄ = 0.80 corresponding to normal random variables,

the number of shares outstanding is N = 250 million, the annualized turnover of noise traders is

η = 0.5, and the precision of private information is τ̄ = 0.000552, which is obtained asρ(t)⇑(γ(t)⋅
θ̄2) under the assumption that annual resiliency satisfies ρ(t) = 0.69 and there are γ(t) = 5000

bets executed per year (i.e., 20 bets per day over 250 days).

We simulate 100,000 scenarios with the arrival of 50,000 bets, which approximately corre-

sponds to a ten-year time period. As the initial starting point for each scenario at time t0, we

assume that fundamental F(t0) is $40, price P(t0) is $40, error variance Σ(t0) is 0.422, and the

expected number of bets γ(t0) is 5000 per year.

On the kth step, assume that a trader arrives after time ∆t = 1⇑γ(tk). This trader is an in-

formed or noise trader with equal probability 1⇑2. If a trader is informed, then he observes a

signal i I(tk) = τ̄1⇑2

Σ1⇑2
(tk)
⋅σF ⋅ (B(tk) − B̄(tk)) + (1− τ̄)1⇑2 ⋅ ZI(t), as defined in equation (5); us-

ing equations (1) and (20), the current error σF ⋅ (B(tk)− B̄(tk)) can be inferred from current

fundamentals and prices as ln(F(tk)⇑P(tk))+0.5 ⋅Σ(tk). If a trader is a noise trader, then he

observes a signal iU(tk) = ZU(tk), as defined in equation (5). We next update the arrival rate of

bets γ(tk+1) using equation (34), the fundamental value F(tk+1) using equation (1), the share

price P(tk+1) and the error variance Σ(tk+1) using recursive equations (35) and (36).

After 100,000 of such updates, we calculate the final distribution of errors σF ⋅ (B(tK+1) −
B̄(tK+1)) at time tK+1 as ln(F(tK+1)⇑P(tK+1))+0.5⋅Σ(tK+1) and then scale it byΣ1⇑2(tK+1). This

simulated distribution of standardized errors is a proxy for the distribution of pricing errors,

which we assume to be close to a standardized normal in our approximate linear solution.

The figure shows that the simulated distribution of steady-state scaled errors between prices

and fundamentals σF ⋅ (B(tK+1)− B̄(tK+1))⇑Σ1⇑2(tK+1) indeed does not differ much from the

standardized normal distribution. Panel A shows the histogram of these simulated scaled er-

rors, and panel B shows the quantile-to-quantile plot of the simulated distribution against the

standardized normal distribution with the zero mean and unit variance. Both figures suggest

that the normal approximation is reasonable. Even the formal Kolmogorov–Smirnov test pro-

duces the p-value of p = 0.51 and does not reject the normality assumption. In our simulations,

the median error variance Σ(tK+1) is equal to 0.0564, the median price is $35.97, the median

fundamental value is $35.22, and the median number of bets is 15,682 per year. This is con-
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sistent with the median conditional steady-state error variance Σ∗(tK+1) ∶= σ2
F

γ(tK+1)⋅θ̄2⋅τ̄
in equa-

tion (76), which is equal to 0.0567. Since the median Σ1⇑2(tK+1) is equal to 0.23, and it is less

than ln(2)⇑1.64 or 0.42, the simulated market is efficient in the sense of Fischer Black.

Appendix B Proofs

B.1 Details of the Proof of Theorem 1

The proof of Theorem 1 in Section 3.1 relies on equation (45), which we prove below. When a

trader observes a signal i(t), he thinks that the signal is informative and linearly updates the

estimate of B(t) by

∆B̄(t) ∶= Et)︀B(t)− B̄(t) ⋂︀ informative i(t)⌈︀ ≈ τ̄1⇑2 ⋅Σ1⇑2(t)
σF

⋅ i(t). (B-1)

Since linear filtering approximates a conditional expectation, the coefficient of i(t) is a linear

regression coefficient defined as the ratio of Covt)︀i(t) , B(t) − B̄(t) ⋂︀ informative signal⌈︀ to

Vart (︀i I(t)⌋︀ = 1.

Conditional on public informationℋ(t) and observations of i(t), the differenceσF ⋅(B(t)−
B̄(t)) is normally distributed with the mean ofσF ⋅∆B̄(t) and variance ofΣ(t)−σ2

F ⋅Vart (︀∆B̄(t)⌋︀.
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Then, the following chain of approximate equalities holds,

Et (︀F(t)−P(t) ⋃︀ informative i(t)⌋︀ =P(t) ⋅Et )︀exp(σF ⋅ (B(t)− B̄(t))− 1
2 ⋅Σ(t))−1 ⋂︀ informative i(t)⌈︀

≈P(t) ⋅(exp(σF ⋅∆B̄(t)− 1
2 ⋅σ2

F ⋅Vart (︀∆B̄(t)⌋︀)−1)

≈P(t) ⋅σF ⋅∆B̄(t)+error.

(B-2)

The first line of this equation uses equations (1) for F(t) and (20) for P(t). The second line

of the next equation then follows from E(︀exp(x)⌋︀ = exp(E(︀x⌋︀ + 1
2 Var(︀x⌋︀) when x is normally

distributed. The second line is exact if B(t)− B̄(t) is exactly jointly normally distributed with

the zero-mean informative signal i(t). The third line is a Taylor series approximation to the

exponential function which keeps second-order terms. The fourth line sets the second-order

terms to zero using the approximation Vart (︀∆B̄(t)⌋︀ ≈ ∆B̄ 2(t), which is exact in expectation.

It implies that a revision ∆B̄(t) to the estimate of B̄(t) changes prices P(t) by approximately

P(t) ⋅σF ⋅∆B̄(t).

Equations (B-2) and (B-1) imply that the trader’s update to fundamental value is approxi-

mately linear in the signal i(t):

Et (︀F(t)−P(t) ⋃︀ informative i(t)⌋︀ ≈P(t) ⋅ τ̄1⇑2 ⋅Σ1⇑2(t) ⋅ i(t). (B-3)

The difference between an (exact nonlinear) equilibrium and an approximate linear equilib-

rium is that traders and market makers use the linear approximation in equation (B-3) instead

of the exact, potentially nonlinear conditional expectation. This completes the proof.

B.2 Details of State Variables Dynamics

The state variable P(t) is an estimate of fundamental value, and the state variable Σ(t) is the

error variance of this estimate when the error is expressed in logs as a percentage error σF ⋅
(B(t)− B̄(t)). The state variables P(t) and Σ(t) follow a jump process.

Case 1: Bets do not arrive. At times t ≠ tn when bets do not arrive, the price P(t) is con-

stant, but fundamental value F(t) changes and error variance increases at the rate fundamental
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volatility unfolds:

Σ(t) =Vart)︀σF ⋅ (B(t)− B̄(t))⌈︀
=σF ⋅Vart)︀(B(t)− B̄(t))⌈︀
=σ2

F ⋅ t .

(B-4)

Hence,

dΣ(t)⇑dt =σ2
F . (B-5)

Case 2: Bets arrive. At times tn when bets arrive, both the price P(tn) and error variance

Σ(tn) jump. The price changes from the pre-trade midpoint P(tn) to the post-trade midpoint

P(t+n ),

P(t+n ) =P(tn)+λ(tn) ⋅Q(tn),

=P(tn)+λ(tn) ⋅β(tn) ⋅ i(tn),

=P(tn)+ θ̄ ⋅ τ̄1⇑2 ⋅P(tn) ⋅Σ1⇑2(tn) ⋅ i(tn),

(B-6)

using equation (46) to prove the last equality.

Price changes are by definition orthogonal increments, approximating a martingale. The

error variance jumps down by the variance of the price change. Given the percentage price

changes of
P(t+n )−P(tn)

P(tn)
= θ̄ ⋅ τ̄1⇑2 ⋅Σ1⇑2(tn) ⋅ i(tn), (B-7)

the error variance jumps down from Σ(tn) to Σ(t+n ) by

Σ(tn)−Σ(t+n ) =Var)︀θ̄ ⋅ τ̄1⇑2 ⋅Σ1⇑2(tn) ⋅ i(tn)⌈︀ . (B-8)

If market makers could distinguish between uninformative and uninformative bets, then
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error variance would shrink from Σ(tn) to Σ(t+n ),

Σ(t+n ) =Pr )︀Q(tn) is informative ⋂︀ Q(tn) arrives⌈︀ ⋅Vartn)︀σF ⋅ (B(tn)− B̄(tn)) ⋂︀ informative Q(tn)⌈︀
+Pr )︀Q(tn) is noise ⋂︀ Q(tn) arrives⌈︀ ⋅Vartn)︀σF ⋅ (B(tn)− B̄(tn)) ⋂︀ noise Q(tn)⌈︀

= γI(t)
γ(t) ⋅Vartn)︀σF ⋅ (B(tn)− B̄(tn)) ⋂︀ informative Q(tn)⌈︀

+ γU(t)
γ(t) ⋅Vartn)︀σF ⋅ (B(tn)− B̄(tn)) ⋂︀ noise Q(tn)⌈︀

= θ̄ ⋅Vartn)︀σF ⋅ (B(tn)− B̄(tn)) ⋂︀ informative Q(tn)⌈︀+(1− θ̄) ⋅Vartn)︀σF ⋅ (B(tn)− B̄(tn)) ⋂︀ noise Q(tn)⌈︀

≈ θ̄ ⋅ (Σ(tn)−σ2
F ⋅ (

τ̄1⇑2 ⋅Σ(tn)1⇑2

σF
)2 ⋅Vartn)︀i(tn)⌈︀)+(1− θ̄) ⋅Σ(tn)

= θ̄ ⋅ (1− τ̄) ⋅Σ(tn)+(1− θ̄) ⋅Σ(tn)
= (1− θ̄ ⋅ τ̄) ⋅Σ(tn),

(B-9)

using equation (B-1) and Vartn)︀i(tn)⌈︀ = 1. Hence,

Σ(t+n )
Σ(tn)

≈ 1− θ̄ ⋅ τ̄. (B-10)

The conditional error variance would decrease by a factor of θ̄ ⋅ τ̄.

Yet, market makers cannot distinguish between uninformative and uninformative bets. They

update the estimate of B̄(tn) conditional on observing a mixture of either informative or noise

signal i(tn) by

∆B̄(tn) ∶= Et)︀B(tn)−B̄(tn) ⋂︀ either informative or noise i(tn)⌈︀ ≈
θ̄ ⋅ τ̄1⇑2 ⋅Σ(tn)1⇑2

σF
⋅i(tn). (B-11)

Since linear filtering approximates a conditional expectation, the coefficient of i(t) is a linear

regression coefficient defined as the ratio of Covt)︀i(tn) , B(tn)− B̄(tn)⌈︀ to Vart (︀i(tn)⌋︀ = 1. This

equation is the counterpart to equation (B-1). This further implies

Σ(t+n ) ≈Σ(tn)−σ2
F ⋅ (

θ̄ ⋅ τ̄1⇑2 ⋅Σ(tn)1⇑2

σF
)2 ⋅Vartn)︀i(tn)⌈︀

= (1− θ̄2 ⋅ τ̄) ⋅Σ(tn).

(B-12)
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Hence, the error variance changes from Σ(tn) to Σ(t+n ), which is given by

Σ(t+n )
Σ(tn)

≈ 1− θ̄2 ⋅ τ̄. (B-13)

The conditional error variance decreases by a factor of θ̄2 ⋅ τ̄, which is smaller than a factor θ̄ ⋅ τ̄
in equation B-10, because market makers can not distinguish informative and noise bets.

B.3 Proof of Corollary 1

It is easy to prove equation (37): (1) Use equations (14), (12), (33), (34), and (24) to solve for V (t).

(2) Since Ĉ(t ,Q) = λ(t) ⋅Q(t) = λ(t) ⋅β(t)2, use equations (32) and (33) to solve for C(t). (3)

Use equation for C(t) and (10) to solve for π(t). (4) Use equations (23), (24), and (46) to solve

for m(t).

The endogenous variables in equations (38)–(41) can be obtained as follows: (1) Solve equa-

tions (34) and (37) for Et)︀⋂︀Q(t)⋂︀⌈︀. (2) Solve equations (12) and (33) for Et)︀Q2(t)⌈︀. (3) Solve

equations (19), (37), and (38) for L(t). (4) Solve equations (15), (34) and (39) for σ2(t).

To derive equation (42) forρ(t), write the changes in the unobserved estimation error Berr(t) ∶=
B(t)− B̄(t) as

Et (︀Berr(t +∆t)−Berr(t) ⋃︀Berr(t) , i(t)⌋︀ ≈ −θ ⋅ τ̄
1⇑2 ⋅Σ1⇑2(t)

σF
⋅ i(t)

= −θ ⋅ τ̄
1⇑2 ⋅Σ1⇑2(t)

σF
⋅ (θ ⋅ τ̄1⇑2 ⋅

σF ⋅ (B(t)− B̄(t))
Σ1⇑2(t)

+θ ⋅ (1− τ̄)1⇑2 ⋅ZI(t)+(1−θ) ⋅ZU(t)). (B-14)

Normality is preserved because a mixture of normal variables with the same mean and variance

has a normal distribution. Joint normality is not preserved because higher order co-moments

are affected by the mixture of distributions; this makes results approximations. The first equa-

tion is similar to equation (B-1), except a factor θ reflects the probability of signal being in-

formative. The second equation is obtained by using equation (5). Compare equations (22)

and (B-14) and use ∆t = 1⇑γ(t) to get

ρ(t) = θ2 ⋅τ ⋅γ(t). (B-15)

49



Then, plug in equation (34) to solve for ρ(t). This completes the proof of the corollary.

B.4 Proof of Theorem 2

Equation (58) follows from equation (37). Equation (57) follows from equations (33), (34), and (41)

using equation (12) and definition (16). Equation (59) follows from plugging equations (46)

and (57) into Ĉ(t ,Q) = λ(t) ⋅Q2 and using λ(t) ⋅β(t)2 = C̄ obtained from equations (32), (32),

and (37). It is easy to prove equation (60) by using equations (32) through (42) and equation (16).

This completes the proof.

B.5 Proof of Theorem 3

Invariance relationships in equation (60), formulated in terms of C(t) = C̄ and m(t) = m̄, can

be derived based on the four structural economic equations (61)–(64), which define a meta-

model. In this system of four equations, one can think of γ(t), λ(t), Et (︀Q2(t)⌋︀, and Et )︀⋂︀Q(t)⋂︀⌈︀
as unknown variables to be solved for in terms of known variables V (t), P(t), σ(t), C(t) = C̄ ,

and m(t) = m̄.

Using the definition of trading activity W (t) = P(t) ⋅V (t) ⋅σ(t), solve the system of four

equations (61)–(64) for four unknowns γ(t), Et )︀⋂︀Q(t)⋂︀⌈︀, λ(t), and Et )︀⋂︀Q(t)⋂︀⌈︀ as follows. Di-

vide (62) by the squared product of (63) and (64) and use (61) to solve for γ(t), obtaining

γ(t) = (m̄ ⋅C̄)−2⇑3 ⋅W 2⇑3(t). (B-16)

Plug (B-16) into (61) to solve for Et )︀⋂︀Q(t)⋂︀⌈︀:

Et )︀⋂︀Q(t)⋂︀⌈︀ = (m̄ ⋅C̄)2⇑3 ⋅V (t) ⋅W −2⇑3(t). (B-17)

Multiply (63) by the square of (64) and use (B-17) to solve for λ(t):

λ(t) = (m̄2

C̄
)

1⇑3

⋅ 1

V 2(t) ⋅W
4⇑3(t). (B-18)
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Plug (B-17) into (64) to solve for Et (︀Q2(t)⌋︀:

Et)︀Q2(t)⌈︀ = (C̄ 2

m̄
)

2⇑3

⋅V 2(t) ⋅W −4⇑3(t). (B-19)

Equation (B-17) and the definition of illiquidity 1⇑L(t) ∶= C̄⇑(Et )︀⋂︀P(t) ⋅Q(t)⋂︀⌈︀) imply

1

L(t) = (
m̄2

C̄
)
−1⇑3

⋅σ(t) ⋅W −1⇑3(t). (B-20)

Then, equations (B-16) for γ(t), (B-17) for ⋂︀Q(t)⋂︀, (B-18) for λ(t), and (B-20) for 1⇑L(t) can

be combined as in equation (60). This completes the proof of Theorem 3.

B.6 Exactly Linear Model with Brownian motion and Batched Bets

In the exactly linear model, risk-neutral informed and noise bets arrive anonymously, in batched

pairs, at non-stochastic time intervals ∆t = 1⇑γU(t) = 1⇑γI(t) = 2⇑γ(t). For bets arriving at time

t , an informed trader’s signal is denoted i I(t), a noise trader’s signal is denoted iU(t), and a

signal which might be either informed or uninformed is denoted i(t). The fundamental value

follows arithmetic, not geometric, Brownian motion,

F(t) ∶= F0+F1 ⋅σF ⋅B(t), (B-21)

where B(t) denotes a standardized Brownian motion with B(t +h)−B(t) ∼ 𝒩 (0,h) for t ≥ 0

and h ≥ 0, B(0) is normally distributed, the initial value F0 and the sensitivity parameter F1 are

known constant with units dollars⇑share. The error variance is defined as

Σ(t) ∶=Vart ]︀
F(t)−P(t)

P(t) {︀ =Vart ⌊︀
F1 ⋅σF ⋅ (B(t)− B̄(t))

P(t) }︀ . (B-22)

HereΣ(t) is percentage error variance, slightly different from log-error-variance in equation (21).
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This requires that the informative signal structure is redefined,

i(t) =

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

i I(t) = τ̄1⇑2 ⋅
F1 ⋅σF ⋅ (B(t)− B̄(t))

P(t) ⋅Σ1⇑2(t)
+(1− τ̄)1⇑2 ⋅ZI(t) if an informed trader,

iU(t) = ZU(t) if a noise trader,

(B-23)

Both informative and noise signals have the same unconditional distribution𝒩(0,1).

Slightly modified versions of Theorem 1, Corollary 1, and Theorem 2 continue to hold. Mi-

nor changes in notation are needed to deal with batching of orders. The main substantive dif-

ferences are that bets are exactly linear functions of signals, signals and fundamental value are

exactly jointly normally distributed, and the error B(t)− B̄(t) is exactly normally distributed.

Theorem 5 and Corollary 3 are the counterparts for Theorem 1 and Corollary 1.

Theorem 5 (Characterization of Exactly Linear Equilibrium). There exists a unique exact linear

equilibrium characterized by the four endogenous parameters λ(t), β(t), γI(t), γU(t), which

are the following functions of the state variables P(t), Σ(t) and the exogenous parameters τ̄, c̄I ,

m̄, F1 ⋅σF , η, and N :

λ(t) = τ̄

4 ⋅ c̄I
⋅P 2(t) ⋅Σ(t), (B-24)

β(t) = 2 ⋅ c̄I

τ̄1⇑2
⋅ 1

P(t) ⋅Σ1⇑2(t)
, (B-25)

γI(t) = γU(t) = γ(t)
2

, where γ(t) = η ⋅N
c̄I ⋅m̄

⋅ τ̄1⇑2 ⋅P(t) ⋅Σ1⇑2(t). (B-26)

At times t ≠ tn when no bet arrives, the price P(t) is constant, and error variance increases at the

rate fundamental volatility unfolds: dΣ(t)⇑dt = (F1 ⋅σF ⇑P(t))2
. At times tn when a pair of bets

arrive, the price P(tn) and error variance Σ(tn) jump, following the difference equation system

P(t+n ) =P(tn)+
τ̄1⇑2 ⋅P(t) ⋅Σ1⇑2(tn)

2
⋅ (i I(tn)+ iU(tn)), (B-27)

Σ(t+n ) =Σ(tn)(1− τ̄
2
) , with Σ(tn) =Σ(t+n−1)+

F 2
1 ⋅σ2

F

P 2(t) ⋅ (tn − tn−1). (B-28)

Corollary 3. In an exactly linear equilibrium, the endogenous variables V (t), π(t), C(t), and

m(t) are the same functions of the exogenous parameters η, N , θ̄, m̄, and c̄I as in Corollary 1

with θ̄ = 1⇑2. The endogenous variables Et )︀⋂︀Q(t)⋂︀⌈︀, Et (︀Q2(t)⌋︀, γ(t), γI(t), γU(t), 1⇑L(t), and
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ρ(t) vary randomly through time as the slightly modified functions

Et)︀⋂︀Q(t)⋂︀⌈︀ = 2 ⋅ c̄I ⋅m̄
τ̄1⇑2

⋅ 1

P(t) ⋅Σ1⇑2(t)
, (B-29)

Et)︀Q2(t)⌈︀ =
4 ⋅ c̄2

I

τ̄
⋅ 1

P 2(t) ⋅Σ(t) , (B-30)

1

L(t) =
τ̄1⇑2

2 ⋅m̄ ⋅Σ
1⇑2(t), (B-31)

σ2(t) = τ̄3⇑2

4 ⋅ c̄I ⋅m̄
⋅η ⋅N ⋅P(t) ⋅Σ3⇑2(t), (B-32)

ρ(t) = τ̄3⇑2

4 ⋅ c̄I ⋅m̄
⋅η ⋅N ⋅P(t) ⋅Σ1⇑2(t). (B-33)

Proof of Theorem 5. The proof is similar to the proof of Theorem 1. It starts with deriving the

system of four equations and then solving it for β(t), λ(t), γI(t), and γU(t).

First, derive the profit maximization condition. The risk-neutral informed or noise trader

maximizes profits net of market impact costs by solving the problem

Q(t) = argmax
Q

Et)︀(F(t)− P̂(t ,Q)) ⋅Q ⋂︀ informative i(t)⌈︀. (B-34)

Since each trader thinks that his signal contains information and

Et (︀F(t)−P(t) ⋃︀ informative i(t)⌋︀ = τ̄1⇑2 ⋅P(t) ⋅Σ1⇑2(t) ⋅ i(t), (B-35)

the optimization problem (B-34) is exactly quadratic, not approximately quadratic as in equa-

tion (B-3). Its first-order condition yields

Q(t) =β(t) ⋅ i(t), where β(t) = τ̄1⇑2 ⋅P(t) ⋅Σ1⇑2(t)
2 ⋅λ(t) . (B-36)

Second, derive the pricing rule. Informed bets and noise bets arrive in pairs. Market makers

observe QI(t)+QU(t), the sum of an informed bet QI(t) ∶=β(t)⋅ i I(t) and a noise bet QU(t) ∶=
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β(t) ⋅ iU(t). Since they do not know which bet contains information, they update prices as

Et)︀F(t)−P(t) ⋂︀ QI(t)+QU(t)⌈︀

= Et)︀F1 ⋅σF ⋅ (B(t)− B̄(t)) ⋂︀ τ̄1⇑2 ⋅
F1 ⋅σF ⋅ (B(t)− B̄(t))

P(t) ⋅Σ1⇑2(t)
+(1− τ̄)1⇑2 ⋅ZI(t)+ZU(t)⌈︀

= 1

2 ⋅β(t) ⋅ τ̄
1⇑2 ⋅P(t) ⋅Σ1⇑2(t) ⋅ (QI(t)+QU(t)).

(B-37)

This implies the pricing rule P̂(. . .) and market depth λ(t) given by

P̂(t , QI(t)+QU(t)) =P(t)+λ(t)⋅(QI(t)+QU(t)), where λ(t) = 1

2
⋅ τ̄

1⇑2 ⋅P(t) ⋅Σ1⇑2(t)
β(t) .

(B-38)

The conditions (B-36) and (B-38) are equivalent to each other; both define the product of β(t) ⋅
λ(t), but not the coefficients β(t) and λ(t) separately.

Third, the free entry condition says that the expected profits of an informed trader, net of

market impact costs C(t) = Et (︀λ(t) ⋅Q2
I (t)⌋︀ and costs of information c̄I , are equal to zero.

c̄I = Et)︀(F(t)−P(t)) ⋅QI(t)−λ(t) ⋅Q2
I (t)⌈︀. (B-39)

Intuitively, equation (B-40) implies that market liquidity adjusts continuously to make informed

traders and noise traders indifferent between trading and not trading at any time. Since Q(t) =
β(t) ⋅ i(t) from equation (B-36) and Et (︀i 2(t)⌋︀ = 1, free entry implies the third key equation

(τ̄1⇑2 ⋅P(t) ⋅Σ1⇑2(t))2

4 ⋅λ(t) = c̄I . (B-40)

This equation defines λ(t). Then, equation (B-36) or (B-38) yields the solution for β(t).

Fourth, noise traders generate share volume at rate γU(t)⋅Et )︀⋂︀Q(t)⋂︀⌈︀ = η ⋅N . Bets arriving in

pairs implies γU(t) = γI(t). Since Et )︀⋂︀i(t)⋂︀⌈︀ = m̄, the expected size of a bet is

Et )︀⋂︀Q(t)⋂︀⌈︀ =β(t) ⋅m̄. (B-41)
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This implies the equation for the arrival rate of traders

γU(t) = γI(t) = γ(t)
2

= η ⋅N
β(t) ⋅m̄ . (B-42)

The four key log-linear equations (B-36), (B-38), (B-40), and (B-42) yield solutions for β(t),

λ(t), γU(t) = γI(t) = γ(t)⇑2 in Theorem 5.

In an exactly linear equilibrium, the state variables P(t) and Σ(t) are sufficient statistics for

describing the market’s information at date t . When bets do not arrive, the market obtains no

new information about fundamental value and therefore the price P(t) is constant, but funda-

mental uncertainty continues to unfold so that dΣ(t) = F 2
1 ⋅σ

2
F

P 2(t) ⋅dt . When a bet arrives, the price

changes by λ(tn) ⋅ (QI(tn)+QU(tn)) = λ(tn) ⋅β(tn) ⋅ (i I(tn)+ iU(tn)), and the error variance

Σ(tn) is reduced by fraction τ̄⇑2. The sum of two bets, one of which has precision of τ̄ and the

other contains no information, effectively has a precision of τ̄⇑2. The solutions for λ(t) and

β(t) in equations (B-24) and (B-25) imply equations (B-27) and (B-28).

Proof of Corollary 3. Equations (B-26) and Et )︀⋂︀i(t)⋂︀⌈︀ = m̄ imply that, in terms of exogenous

variables, share volume V (t) constitutes a constant fraction of shares outstanding N :

V (t) = 2 ⋅η ⋅N . (B-43)

The endogenous variables in equations (B-29)–(B-32) can be obtained as follows: (1) Solve

Q(t) =β(t) ⋅ i(t) and equation (B-25) for Et)︀⋂︀Q(t)⋂︀⌈︀ and Et)︀Q2(t)⌈︀. (2) Solve definition (19) to-

gether with equations (B-24), (B-29), and (B-30) for L(t). (3) Solve equations (15), (B-24), (B-26)

and (B-30) for P 2(t) ⋅σ2(t).

To derive equation (B-33) for ρ(t), write the changes in the unobserved estimation error

Berr(t) ∶=B(t)− B̄(t) conditional on the sum of informed and noise signals i I(t)+ iU(t) as

Et (︀Berr(t +∆t)−Berr(t) ⋃︀Berr(t) , i I(t)+ iU(t)⌋︀ = − τ̄
1⇑2 ⋅P(t) ⋅Σ1⇑2(t)

2 ⋅F1 ⋅σF
⋅ (i I(tn)+ iU(tn))

= − τ̄
1⇑2 ⋅P(t) ⋅Σ1⇑2(t)

2 ⋅F1 ⋅σF
⋅ (τ̄1⇑2 ⋅

F1 ⋅σF ⋅ (B(t)− B̄(t))
P(t) ⋅Σ1⇑2(t)

+(1− τ̄)1⇑2 ⋅ZU(t)+ZI(t)) . (B-44)

The first equation, which is similar to the approximate equation (B-1), is exact, not an ap-
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proximation. The second equation is obtained by using equation (5). Compare equations (22)

and (B-44) and use ∆t = 2⇑γ(t) to obtain

ρ(t) = τ̄

2
⋅ γ(t)

2
. (B-45)

Then, plug in equation (B-26) to solve for ρ(t). In the exactly linear model in which risks are

modeled using arithmetic Brownian motion, the relationship (73) of variance σ2(t), resiliency

ρ(t), and business time ∆t = 2⇑γ(t) becomes

ρ(t) = τ̄

2
⋅ γ(t)

2
= σ2(t)
Σ(t) . (B-46)

Theorem 2, Theorem 3, and the four meta-model equations (61)–(64) hold as before, but

with θ̄ = 1⇑2. The volatility equation (B-32) implies two ways to describe liquidity L(t):

L(t) = 2 ⋅m̄
τ̄1⇑2 ⋅Σ1⇑2(t)

and L(t) = (m̄2 ⋅P(t) ⋅V (t)
C̄ ⋅σ2(t) )

1⇑3

. (B-47)

In the exactly linear model, the conditional steady state is an actual steady state when volatil-

ity is expressed with dollar units! The dynamics of Σ(t) is affected by realization of fundamen-

tal uncertainty at a rate F 2
1 ⋅σ

2
F

P 2(t) ⋅∆t and incorporation of private information into prices at a rate

σ2(t) ⋅∆t :

lim
∆t→0

1

∆t
⋅Et (︀Σ(t +∆t)−Σ(t)⌋︀ =

F 2
1 ⋅σ2

F

P 2(t) −σ
2(t). (B-48)

In a steady state, returns volatility σ(t) and fundamental volatility F1 ⋅σF are related by σ(t) ⋅
P(t) = F1 ⋅σF . The price P(t) follows an arithmetic Brownian motion and volatility σ(t) is

stochastic, but their product is equal to non-stochastic F1 ⋅σF .
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Over time, the dollar variance P 2(t) ⋅Σ(t) converges to a steady state value given by

P 2(t) ⋅Σ(t) ∶=
4 ⋅F 2

1 ⋅σ2
F

γ(t) ⋅ τ̄

=
4 ⋅F 2

1 ⋅σ2
F

τ̄
⋅ ( C̄ ⋅m̄

F1 ⋅σF ⋅V (t))
2⇑3

= F 2
1 ⋅m̄2

τ̄⇑4
⋅ 1

L∗2
, where L∗2 ∶= (m̄2 ⋅F1 ⋅V (t)

C̄ ⋅σ2
F

)
1⇑3

(B-49)

The first equation is obtained from equation (B-46) by substituting market volatility σ(t) ⋅P(t)
for fundamental volatility F1 ⋅σF . The second equation is obtained from equation (B-32) by

substitution market volatility σ(t)⋅P(t) for fundamental volatility F1 ⋅σF , C̄ = c̄I , and V (t) from

equation (B-43). Equation (B-49) is the counterpart of equation (76). The steady state level of

liquidity L∗ is similar to the liquidity measure in equation (B-47) with fundamental volatility σF

replacing market volatility σ(t) and fundamental dollar value F1 replacing market price P(t)
In the steady state, dollar error variance Σ(t)⋅P 2(t), volume V (t) = 2 ⋅η ⋅N , trading intensity

β(t), market impact λ(t), bet arrival rate γ(t), and resiliency ρ(t) are constant; bet size has

an unchanging distribution; returns volatility σ(t) and fundamental volatility σF are related by

σ(t) ⋅P(t) = F1 ⋅σF , and liquidity L(t) changes so that P(t)⇑L(t) remains constant.
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