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Abstract

We examine invariance relationships in tick-by-tick transaction data in the U.S. stock market.

Over the period 1993–2001, monthly regression coefficients of the log of the trade arrival rate on

the log of trading activity have an almost constant value of 0.666, close to the value of two-thirds

predicted by market microstructure invariance. Over the 2001–2014 period, after decimaliza-

tion and the increasing use of electronic order matching systems and algorithmic trading, the

coefficients increase to about 0.79. The evidence suggests that changes in coefficients are due

to increasing importance of minimum lots size in a world where algorithmic traders split orders

into tiny pieces.
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We examine time-series and cross-sectional implications of market microstructure invari-

ance hypotheses, described by Kyle and Obizhaeva (2016), for transaction frequencies and trans-

action sizes in the U.S. equity market. According to the invariance principles, trading in all se-

curities is similar after accounting for differences in the flow of risk transfer among traders. The

empirical results show that predictions based on this invariance principle fit the data much bet-

ter than alternatives, especially for earlier years before algorithmic trading led to the extensive

use of order splitting. Deviations from invariance benchmarks may be attributed to market mi-

crostructure frictions related to institutional details such as minimum tick size and minimum

lot size.

Regardless of the nature of the security and absent institutional frictions, trading in securi-

ties markets can be modeled as the same trading game, but played at different speeds for dif-
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ferent assets. Asset managers place bets or meta-orders, which approximately represent uncor-

related decisions to buy or sell specific numbers of shares; the arrival times of bets are random.

Each bet, of institutional size, may be executed as a sequence of many smaller orders submitted

milliseconds apart. The expected arrival rate of new bets determines the pace of business time

in each market. Trading in liquid securities occurs at fast speeds, with new bets arriving over

short horizons, perhaps only a few seconds or minutes. Trading in illiquid securities takes place

slowly, with new bets arriving over longer horizons, perhaps a few days or even months.

Market microstructure invariance has useful practical applications. Invariance suggests a

parsimonious characterization of how different securities trade. It generates operational time-

series and cross-sectional predictions for many variables; it helps to understand transaction

costs, trading volumes, trade counts, and trade sizes. For practitioners, models based on in-

variance principles allow analysts to develop transaction cost models for securities for which

data are limited or unavailable. For regulators and practitioners who design markets, invari-

ance makes it possible to predict market activity for securities that have not yet traded and to

assess effects of contemplated fees and other market frictions on trading and liquidity.

Trade counts and trade sizes are predictable based on dollar volume and returns variance.

Since the predictions are consistent with market microstructure invariance, our results increase

confidence in the invariance hypothesis.

The invariance hypothesis implies that the dollar risks transferred by bets and the dollar

costs of executing bets are the same across markets when measured per unit of business-time,

which corresponds to the expected arrival rate of bets. Invariance implies a specific decompo-

sition of the order flow. Let trading activity be a measure of aggregate risk transfer in calendar

time, defined as the product of chronological (daily) dollar volume and chronological (daily)

return volatility. Then, in frictionless markets, invariance implies that the number of bets (per

day) is proportional to the two-thirds power of trading activity, and the distribution of bet sizes

as a fraction of (daily) volume is inversely proportional to the two-thirds power of trading activ-

ity. Kyle and Obizhaeva (2016) provide empirical evidence in favor of the invariance hypothesis

using a sample of portfolio transitions as proxies for bets.

We extend the invariance principle from bets (or meta-orders) to transactions (or prints)

resulting from executing bets as small pieces over time in different trading venues. If one as-

sumes that each bet is shredded into some number of trades, and this number of trades is ap-

proximately the same across time and assets, then the exponents of two-thirds will show up in

the relationships between trades and trading activity as well. These predictions are then tested

for the number of trades and the distribution of trade sizes in the Trades and Quotes (TAQ)

dataset, which contains tick-by-tick transactions over the period 1993–2014 for the stocks listed

in the U.S. market, and compared with the fit of predictions generated by alternative models.

The empirical results supplement previous findings because they are based on a much broader

sample of all publicly reported transactions in the U.S. stock market, rather than a small subset

of transactions related exclusively to portfolio transitions. This advantage comes at the expense

of having to deal with transaction data affected by order splitting practices, intermediation,

market frictions, and institutional features of trading and trade reporting.

Over the 1993–2001 subperiod, a time series of month-by-month cross-sectional regression

coefficients of the log of trade arrival rates on the log of trading activity shows that the estimated

coefficients remained virtually constant. The estimated coefficient of 0.666 is indeed strikingly

close to the benchmark invariance prediction of two-thirds. After 2001, the monthly estimates
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increase from about 0.690 in 2001 to about 0.77 in 2014; this breakdown in the invariance rela-

tionships is both statistically and economically significant. The evidence suggests that changes

in fit in the recent period are due to the increasing importance of minimum lots sizes in a world

where algorithmic traders shred their orders. Our results also indicate further changes in trends

in 2008–2009; identifying why these changes occurred is left for future research.

For the years 1993, 2001, and 2014, the empirical distributions of logs of scaled print sizes for

stocks sorted into ten dollar-volume groups and four price-volatility groups tell a similar story.

In 1993, consistent with invariance, all 40 empirical distributions resemble a bell-shaped nor-

mal density function with common mean and variance across the forty subgroups. In 2001 and

2014, the shape of the distributions looks much less like the shape of a normal distribution than

in 1993. Furthermore, average scaled trade sizes decrease during the 1993–2014 period by a fac-

tor of about 7. The results clearly reject the hypothesis that scaled trade sizes are distributed as

a common log-normal random variable. The rejection arises due to clearly visible microstruc-

ture effects related to tick size, censoring of trades at the minimum round-lot threshold, and

clustering of trades at round-lot sizes such as 100, 1,000, and 5,000 shares. These results are

consistent with the findings of Alexander and Peterson (2007) and O’Hara et al. (2014).

Invariance principles explain a substantial fraction of the variation in trade arrival rates and

average trade sizes across stocks, especially in the first half of the sample.

Specifically, when the slope coefficient is restricted to be ±2/3 as predicted by the invari-

ance hypothesis and only intercepts are estimated in separate month-by-month regressions,

the time series of R2s fluctuates around 0.88. Glosten and Harris (1988) find that average trade

size (in shares) is negatively related to market depth. Brennan and Subrahmanyam (1998)

regress average trade sizes on return volatility, standard deviation of trading volume, market

capitalization, number of analysts following a stock, number of institutional investors holding

a stock, and the proportion of shares institutional investors hold. Although their samples of

dependent variables are not exactly the same as ours, the R2 of 0.92 in their cross-sectional

regressions with multiple explanatory variables is only modestly larger than the average R2 of

0.88 in our regressions with coefficients fixed at levels predicted by invariance. This small dif-

ference suggests that other variables offer only limited improvement in explanatory power over

the invariance hypothesis.

In practice, trade sizes and transaction counts may depend on structural issues such as tick

sizes, on size-based secondary precedence rules, on fixed trade-ticket charges by clearing en-

tities, and on minimum lots sizes that provide incentives to execute large trades. The unex-

plained time-series and cross-sectional variations in the variables of interest are likely to be

related to complex interactions between market friction parameters and stock characteristics,

such as volume, volatility, and stock price. These market frictions are studied by Harris (1994),

Angel (1997), Goldstein and Kavajecz (2000), and Schultz (2000).

A new perspective on their results about market frictions comes from examining the data

through the lens of the invariance hypothesis. We introduce two new measures of frictions that

take into account that trading games in different financial markets run at different speeds. We

define effective price volatility as price volatility in business time. Effective tick size is defined as

the ratio of tick size to price volatility in business time. Effective lot size is defined as a ratio of

lot size to a median bet, or equivalently to volume in business time. Both of these measures are

closely related to effective price volatility in the U.S. equity market, where tick sizes and lot sizes

do not vary much across assets. In addition to the 88% of the variation in print arrival rates and
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average print sizes explained by the invariance principle, an additional 4.5% and 5.5% can be

attributed to variations in effective price volatility during the 1993–2000 and 2001–2014 periods,

respectively. Disentangling the effects of lot size and tick size further is difficult because they

operate in opposite directions. Yet, among the two main frictions, minimum lot size seems to

become more important and tick size seems to become less important in the later period.

Building theoretical microfoundations for the invariance hypothesis is an important issue.

Kyle and Obizhaeva (2017a) show that invariance predictions for bets can be derived in the

context of a dynamic equilibrium infinite-horizon model with informed trading, noise trad-

ing, market making, endogenous production of information, and linear market impact. The

key assumptions in the model is that each informed trader must pay some cost for generating

a bet, and this cost is the same across time periods and traders. Kyle and Obizhaeva (2018a)

and Kyle and Obizhaeva (2018b) clarify that invariance predictions for bets come from several

generic properties of theoretical models rather than specific modeling details. Building a theo-

retical model delivering invariance predictions for trades is difficult because it requires model-

ing how traders strategically shred their bets over time, for example, along the lines of Kyle et al.

(2018). Yet, invariance predictions for trades can be justified using the approach of Kyle and

Obizhaeva (2017b), which is based on dimensional analysis arguments, leverage neutrality, and

a bet-invariance assumption.

In the remainder of the paper, we provide the implications of the invariance hypothesis for

transaction sizes and counts, discuss the design of our empirical tests and institutional details

related to microstructure of trading, present our results, and examine the effects of market fric-

tions.

1. Testable implications of the invariance hypothesis

We first review the empirical hypothesis of market microstructure invariance developed by

Kyle and Obizhaeva (2016), show how to formulate a similar hypothesis and develop predictions

for transaction frequencies and transaction sizes in the TAQ dataset, and then briefly discuss

possible alternative hypotheses.

An invariance hypothesis. According to market microstructure invariance, trading in all as-

sets is similar after accounting for differences in the flow of risk transfer among traders, which

measures business time. Asset managers buy and sell securities by placing bets that represent

decisions to acquire long-term positions of a specific size, distributed approximately indepen-

dently from other such decisions. Intermediaries with short-term trading strategies clear mar-

kets by taking the other side of bets. The same trading game is played at a fast pace in active,

liquid markets and at a slow pace in inactive, illiquid markets. The expected arrival rate of bets

determines the speed of business time in each market.

Suppose bets arrive at an expected rate of γ j t bets per day and their sizes are random vari-

ables Q̃ j t shares for asset j at time t . The random variable Q̃ j t has a zero mean; positive values

represent buying, and negative values represent selling. Let V j t be the expected daily share vol-

ume per day. This variable is equal to the product of the expected number of bets per day γ j t

and their average size E
[

|Q̃ j t |
]

, adjusted for an intermediation multiplier ζ j t :

V j t =
ζ j t

2
·γ j t ·E

[

|Q̃ j t |
]

. (1)
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Total volume is divided by the factor 2 because each unit of volume has both a buy side and a

sell side.

The parameter ζ j t in equation (1) measures short-term intermediation trading by market

makers, high-frequency traders, and other arbitragers who intermediate among long-term bets.

Intuitively, it reflects the typical length of intermediation chains in the market; the longer the

intermediation chains, the larger the ζ j t . Without intermediation, ζ j t = 1. If each bet is in-

termediated by a single market maker, similar to a New York Stock Exchange (NYSE) specialist

intermediating every bet in the market, then ζ j t = 2. If each bet is intermediated by two market

makers, who lay off positions trading with one another, similar to NASDAQ dealers in the early

1990s, then ζ j t = 3. If each bet goes through the hands of multiple short-term intermediaries

before finding its place in portfolios of long-term traders, then ζ j t > 3.

Let W j t denote daily trading activity, or an aggregate risk transfer per day. Let P j t be the

price in dollars per share and σ j t be returns volatility per day. Then, trading activity W j t is

defined as the product of returns volatility σ j t and expected dollar volume P j t ·V j t per day:

W j t =σ j t ·P j t ·V j t . (2)

Plugging equation (1) into equation (2) yields another equation for trading activity:

W j t =
ζ j t

2
·σ j t ·P j t ·E

[

|Q̃ j t |
]

·γ j t . (3)

This equation shows that trading activity W j t , which is easy to calculate from the data on prices

and trading volume, can be decomposed into the product of much less readily obtainable char-

acteristics such as expected bet arrival rates γ j t and average bet sizes E
[

|Q̃ j t |
]

. The invariance

principle helps to predicts how these characteristics γ j t and E
[

|Q̃ j t |
]

vary across markets with

different levels of trading activity W j t .

According to market microstructure invariance, the dollar risks transferred by bets per unit

of business time 1/γ j t are the same across assets and time. More specifically, the random vari-

able Ĩ j t , defined as

Ĩ j t :=
P j t ·Q̃ j t ·σ j t

γ1/2
j t

d
= Ĩ , (4)

has an invariant probability distribution denoted Ĩ . Here, the risk transferred by a bet Q̃ j t per

unit of business time is equal to the product of its dollar size P j t ·Q̃ j t and returns volatility per

unit of business time σ j t ·γ
−1/2
j t

.

Take the expectation of equation (4) and use the result to eliminate σ j t ·P j t · E
[

|Q̃ j t |
]

in

equation (3) to get the following testable prediction concerning how expected bet arrival rate

γ j t varies with trading activity W j t :

γ j t =µγ ·W
2/3
j t . (5)

Divide the absolute value of equation (4) by equation (2) and plug in γ j t from equation (5) to

obtain
|Q̃ j t |

V j t

d
=µq ·W

−2/3
j t · |Ĩ |. (6)
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The parameters µγ and µq depend on the volume multiplier ζ j t and moments of random vari-

able |Ĩ |.3 In these equations, the distribution of the random variable Ĩ is approximately the

same across assets and time. In what follows, we make an identifying assumption that the vol-

ume multiplier ζ j t is also somewhat constant, and therefore µn does not have indices j and

t . Of course, in reality the volume multiplier ζ j t may change over time and assets, and—as we

discus later—this variation might explain the difference between our results for samples before

and after the year 2000.

Under the above assumptions, equations (5) and (6) state that the expected bet arrival rate

γ j t scaled by W −2/3
j t

and distributions of bet sizes |Q̃ j t |/V j t scaled by W 2/3
j t

(that is, all of its

percentiles) are the same across all markets and times. In line with these predictions, Kyle and

Obizhaeva (2016) find that the distributions of logs of scaled portfolio transition orders, (2/3) ·

ln(W j t )+ln(|Q j t |/V j t ), which can be thought of as proxies for bets, are similar to each other and

to a normal distribution with log-variance of 2.53.

Equations (5) and (6) characterize the flow of bets in the markets with different trading ac-

tivity W j t . Differences in trading activity come from both differences in average bet sizes and

differences in expected bet arrival rates. For example, if ζ j t and Ĩ are indeed constant, then—

fixing returns volatility σ j t —it follows that a 1% increase in trading activity W j t comes from an

increase by two-thirds of 1% in the expected bet arrival rate γ j t and an increase of one-third of

1% of the scaling of the entire distribution of unsigned bet sizes P j t |Q̃ j t |. The latter statement

is also equivalent to a downward shift by two-thirds of 1% in the distribution of unsigned bet

sizes as a fraction of share volume, |Q̃ j t |/V j t .

Kyle and Obizhaeva (2016) also discuss another invariance hypothesis related to transaction

costs. In this paper, we focus only on order flow and leave testing the implications for market

impact and bid-ask spreads for future research.

Invariance implications for TAQ print data. The TAQ dataset reports transaction prices and

share quantities for all trades in stocks listed in the United States from 1993 to 2014. Each report

of a trade execution is called a “print.” We test implications of the invariance hypothesis using

data on TAQ print sizes and the number of TAQ prints recorded per day.

Testing invariance in this way is not straightforward because prints are different from bets.

One bet may generate multiple prints. To minimize transaction costs, traders often break bets

or meta-orders into smaller pieces—as documented in Keim and Madhavan (1995), among

others—and execute them at several venues, trading with multiple counterparties at multiple

prices.

Let X̃ j t denote the number of shares in a single print for asset j and at time t . Let ξ j t repre-

sents into how many prints each bet generates. Then, the distribution of print sizes X̃ j t differs

from the distribution of bet sizes Q̃ j t by a factor ξ j t :

X̃ j t =
|Q̃ j t |

ξ j t
. (7)

Let N j t denote the expected number of prints per day for asset j at time t . Each bet Q̃ j t

3The specific parameter values are µγ = µγ, j t := E
[

ζ j t

2
· |Ĩ |

]−2/3
and µq = µq, j t := E

[

ζ j t

2
· |Ĩ |

]−1/3
, where the sub-

scripts j and t can be dropped under the assumption made below that ζ j t is constant across time and assets.
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results on average in ξ j t prints, and its execution inflates trading volume by a factor of ζ j t /2

due to induced intermediation volume. Thus, the expected number of prints N j t differs from

the expected number of bets γ j t by a factor of ξ j t ·ζ j t /2:

N j t = ξ j t ·
ζ j t

2
·γ j t . (8)

Using predictions (5) and (6) for the number of bets and their sizes, one obtains similar

testable implications for the number of prints and their sizes with the exponents αn = −αx =

2/3:

N j t =µn ·W
αn

j t
, (9)

|X̃ j t |

V j t

d
=µx ·W

αx

j t
· |Ĩ |. (10)

The values of the exponents αn and αx may be different under alternative hypotheses intro-

duced below. The proportionality coefficients µn and µx depend on the volume multiplier ζ j t ,

the order-splitting multiplier ξ j t , and moments of |Ĩ |.4

As a benchmark for interpreting our results, we make two identifying assumptions. First,

assume that a constant order-splitting multiplier ξ exists such that ξ j t = ξ for any asset j and

time t . Second, assume that a constant volume multiplier ζ exists such that ζ j t = ζ for any

asset j and time t . For simplicity of exposition, results may be interpreted under the identifying

assumptions that ξ = 1 and ζ = 2. This case would correspond to the hypothesis that each bet

is executed as one print against a single intermediary and makes µn and µx in equations (9)

and (10) constant across markets with no indices j and t . These predictions can be written in

the form of regressions.

In actual markets, parameters ξ and ζ may vary in cross-section and time-series. In practice,

the order-splitting multiplier ξ depends on specific details of order-splitting algorithms used by

traders—as modeled by Almgren and Chriss (2000) and Obizhaeva and Wang (2013)—and it

may potentially vary across stocks in a complex and systematic manner that depends on bet

size, tick size, lot size, and perhaps other factors. For example, tiny orders may be executed as

one print and gigantic orders may be executed as thousands of small prints. The amount of

intermediation may also fluctuate with volatility, trading volume, and other factors. We discuss

these microstructure issues in detail later.

Two alternative hypotheses. We also consider two alternative hypotheses about trading pro-

cesses that make different predictions about the implied exponents αn and αx in equations (9)

and (10).

In the first alternative hypothesis, invariance of print frequency, we assert that the expected

number of prints is the same for all stocks, implying αn = −αx = 0 in equations (9) and (10).

If returns volatility is approximately the same across markets, this hypothesis implies that the

number of prints is constant across markets, and only their average dollar sizes change. Of

4Specific parameter values areµn =µn, j t := (ξ j t ·ζ j t /2)·E
[

ζ j t

2 · |Ĩ |
]−2/3

and µx =µx, j t := ξ−1
j t
·E

[ ζ j t

2 ·|Ĩ |
]−1/3

, where

the subscripts j and t can be dropped under the assumption below that ξ j t and ζ j t are constant across time and

assets.
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course, this hypothesis is empirically unrealistic; actively traded stocks are well-known to have

more prints than inactively traded stocks. This benchmark is interesting because the illiquidity

measure of Amihud (2002)—the empirical application of the notion that illiquidity is the price

response per dollar traded on a percentage basis—is implicitly based on the assumption that

the standard deviation of order imbalances is proportional to trading volume. This assump-

tion holds only if the number of bets is constant across markets and time, as stated in the first

alternative hypothesis.5

In the second alternative hypothesis, invariance of print sizes, we assert that the number of

prints is proportional to trading activity, implying that αn = −αx = 1 in equations (9) and (10).

If returns volatility is approximately the same across markets, this hypothesis implies that aver-

age dollar sizes of prints are constant across markets, and only their number per day changes.

Related models are discussed in Tauchen and Pitts (1983), Harris (1987), Jones et al. (1994), Has-

brouck (1999), and Ané and Geman (2000), among others.

Although extreme, these two hypotheses provide convenient benchmarks for thinking about

the relationship between invariance and the literature on print sizes and print frequencies.

Institutional details related to the microstructure of TAQ data. Although we make the identi-

fying assumptions that the order-splitting multiplier is constant (ξ j t = ξ) and the volume mul-

tiplier is constant (ζ j t = ζ), we do not expect these assumptions to perfectly describe the U.S.

equity market. Instead, these assumptions generate benchmarks that can be used to evaluate

the economic significance of various institutional arrangements related to tick size, lot size, and

intermediation.

Changes in institutional arrangements in the U.S. equity market may have affected the order-

splitting multiplier ξ j t and volume multiplier ζ j t over the 1993–2014 sample period. If these

multipliers changed through time, they affect only the constant terms in equations (9) and (10),

when expressed as OLS regressions, and not the slope coefficients on trading activity W j t . If

these multipliers are correlated with trading activity, they induce omitted-variable bias.

Progress in computing technology and regulatory changes have significantly affected trad-

ing. The degree of order splitting varies with order size, ticker symbol, prices, and time. Our

results imply that less order splitting occurred in the earlier part of our sample, and large bets

may result in more prints than small bets.

At the NYSE in the early 1990s, traders typically executed large bets as block trades in the

“upstairs” market, in which case at least one side of a reported block trade might correspond

precisely to a bet. Prior to the changes in order handling rules in 1997, NASDAQ dealers often

took the other side of entire bets because customers themselves could not place their own or-

5Amihud (2002) defines an illiquidity measure as the ratio of the absolute value of daily returns |r | to daily dollar

volume V ·P . This measure can be thought of as an empirical proxy for the market impact parameter λ in Kyle

(1985), scaled by P 2 to represent the percentage price change per dollar traded. The value of λ is equal to the ratio

of fundamental volatility σv to the standard deviation of order imbalances σu , and also scaled by P 2 to represent

the percentage price change per dollar traded. The absolute value of daily returns |r | in the numerator of the

Amihud illiquidity ratio is a good proxy for a theoretical variable σv /P . The daily volume V ·P in the denominator

of the Amihud ratio is a reasonable proxy for a theoretical variable σu ·P only if the number of bets γ executed

per day is constant across time and assets. While equations for share volume V ·P = γ · |Q | ·P and the standard

deviation of order imbalances σu ·P = γ1/2 ·|Q |·P show that V ·P is proportional to σu only when γ is constant, our

tests reject the hypothesis of invariant print frequencies.
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ders into a central limit order book and NASDAQ dealers were unhappy if customers “bagged”

them by dumping many blocks into the market one after another. As the use of the NYSE’s Di-

rect Order Transfer (DOT) system became more commonly used by professional traders in the

1990s, the use of electronic order submission strategies and order splitting increased. For NAS-

DAQ stocks, this practice accelerated after new order handling rules were implemented in the

late 1990s. Splitting thus was more significant in the first half of our sample (2001–2014) than in

the second half (1993–2000).

Another important market friction is tick size. In May and June of 1997, the major U.S. stock

exchanges reduced tick sizes from 12.5 cents (1/8 of a dollar) to 6.25 cents (1/16 of a dollar).

Before that, tick sizes were also reduced for some subsamples of stocks. In September 1992, the

AMEX reduced tick sizes from 1/8 of a dollar to 1/16 of a dollar for stocks priced under five dol-

lars. In 1995, NASDAQ stocks with bid quotations at or above ten dollars per share were traded

with tick sizes of 1/8 of a dollar, and NASDAQ stocks with bid quotations below ten dollars per

share were traded with tick sizes of 1/32 of a dollar, as mentioned in Bessembinder (2000).

In 2001, the tick size was further cut from 6.25 cents (1/16 o a dollar) to one cent. As a result,

some quoted bid-ask spreads decreased, and fewer shares were shown at the best bid and best

offer. Traders used electronic interfaces to place scaled limit orders of small size at adjacent

price points separated by one cent, and this led to smaller print sizes for bets of the same size.

Regulation National Market System (NMS), introduced in 2005, further encouraged market

fragmentation and competition among multiple trading venues based on speed and efficiency

of electronic interfaces, which led to significant order shredding across both time and trading

venues. Over the period 2001–2014, continued improvements in computer technology have

widened the use of electronic order handling systems and have made it practical to shred bets

for many thousands of shares into tiny pieces of 100 shares or fewer.

Several institutional details associated with trade reporting may have further influenced the

magnitude of order splitting parameter ξ:

• Traders shred bets to hide their sizes, and this order splitting is likely to depend on the

price level because prices affect the dollar value of a 100-share trade. Thus, splitting may

depend more on the dollar value of a trade than the number of shares traded.

• Larger bets are likely to be matched against multiple bets of smaller sizes, possibly result-

ing in disproportionably more TAQ prints for larger bets than for smaller ones.

• “Tape shredding” affects trading patterns. As suggested by Caglio and Mayhew (2016),

large orders may be broken up into more trades than small orders to generate additional

revenue from sales of consolidated trade and quote data.

• The number of prints per order and their sizes may depend upon details of the procedures

exchanges use to report transactions. Exchanges may report transactions either from the

perspective of the active party placing the executable order or the passive party whose

limit orders were executed. Sometimes the rules of reporting are asymmetric across buy

and sell orders as well as across different trading venues and time periods.

• During the sample period, odd-lot transactions were executed through a separate odd-

lot trading system, and these small trades were not reported for dissemination on the

consolidated tape, as discussed by O’Hara et al. (2014).
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• Although traders may have increasingly shredded orders into “odd lots” of fewer than 100

shares, some traders probably resist splitting orders into numerous odd lots.

• Under NYSE Rule 411(b), broker-dealer member firms are obligated to consolidate a cus-

tomer’s odd-lot orders if the share amount of such orders exceeded 100 shares; brokers-

dealer member firms could combine (or “bunch”) multiple odd-lot orders from different

customers after prior approval. Other exchanges had similar provisions and brought en-

forcement cases against member firms that did not comply with those rules.

• Buy and sell orders are treated asymmetrically. According to the Consolidated Tape As-

sociation (CTA), the exchanges are required to collect and report last sale data (CTA Plan

(1992) Section VIII). At the NYSE, for example, the member representing the seller has to

ensure that a trade has been reported. Because the rules required reporting of “sales” and

not “trades,” order splitting may be intrinsically more important for intended buy orders

than intended sell orders.

The volume multiplier most likely also varies with intended order size, ticker symbol, and

time. In 1993, the volume multiplier was probably larger for orders traded on NASDAQ than

for orders traded on the NYSE. Atkyn and Dyl (1997) claim that because NASDAQ dealers were

either buyers or sellers in almost every trade on NASDAQ, the NASDAQ trading volume was

inflated by at least a factor of 2 relative to the number of trades actually occurring between end

investors. Over time, these patterns may have changed, as dealers’ participation rates in trade

facilitation has decreased and trades from other trading systems have begun to be reported on

the consolidated tape through the NASDAQ system.

Technological developments have most likely increased the amount of intermediation in

securities markets during 2003–2014. The number of TAQ prints has soared because of order

splitting and intermediation by high-frequency traders, who now account for a significant share

of trading volume, as described by Chordia et al. (2011) and Hendershott et al. (2011). For ex-

ample, Kirilenko et al. (2017) find that high-frequency traders account for more than 30% of

stock index futures trading volume but hold their inventories for only a few minutes. Smaller

print sizes could also be the result of a larger number of liquidity suppliers providing the same

aggregate size using smaller orders.

Another important market friction for the extent of intermediation is the tick size. The pri-

mary channel by which tick size influences trade sizes is by increasing the value of secondary

precedence rules. When the secondary precedence rules are important, market makers may

submit substantial size to obtain precedence for larger portions of their orders than they would

if the secondary precedence rules were not important. Changes in tick size affect trading deci-

sions by changing incentives to provide liquidity and shred orders, as discussed in Harris (1994).

When volatility is high and stock price is high, the tick size is small relative to a typical day’s trad-

ing range, and better opportunities thus exist for order splitting and intermediation. Although

firms can implement stocks splits to adjust percentage tick sizes, these adjustments occur in-

frequently and with long time lags, as noted by Angel (1997).

2. Data

We use the NYSE TAQ database, which contains trades and quotes reported on the consol-

idated tape by each participant in the Consolidated Tape Association (CTA) for all stocks listed
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on all exchanges during the entire 1993–2014 sample period. The data are accessed through

Wharton Research Data Services (WRDS),

2.1. Data description

Because we do not attempt to sign trades as buys (positive) or sells (begative) based on

whether they are executed at the bid or ask price, our analysis employs only data on trades,

not quotes. For each trade, the dataset contains the time, exchange, ticker symbol, number

of shares traded, execution price, trade condition, and other parameters. There are about 50

billion records, with the number of data entries exponentially increasing over time from over 5

million records per month in 1993 to over 400 million records per month in 2014.

We transform the very large raw data files into a smaller dataset. First, bad records are

removed using standard filters. The TAQ database provides information about the quality of

recorded trades using condition and correction codes. We eliminate prints with condition codes

8, 9, A, C , D, G , L, N , O, R , X , Z or with correction codes greater than 1. The correction code 8

indicates, for example, that the trade was canceled.

Second, the remaining prints are aggregated in a specific way to reduce the size of the data

set while preserving information about the monthly distributions of trade sizes. For each ticker

symbol and each day, each print is placed into one of 55 bins constructed based on the number

of shares traded. Letting X denote the size of a print in shares, “even” bins correspond to prints

of the following exact “even” sizes of X = 100, X = 200, X = 300, X = 400, X = 500, X = 1,000, X =

2,000, X = 3,000, X = 4,000, X = 5,000, X = 10,000, X = 15,000, X = 20,000, X = 25,000, X =

30,000, X = 40,000, X = 50,000, X = 60,000, X = 70,000, X = 75,000, X = 80,000, X = 90,000,

X = 100,000, X = 200,000, X = 300,000, X = 400,000, and X = 500,000 shares. “Odd” bins

correspond to prints with trade sizes X between adjacent even bins—that is, X < 100, 100< X <

200, . . ., 400,000< X < 500,000, and 500,000< X . Note that the size of bins grows approximately

at a log-rate. Prints with even sizes are considered separately because trades tend to cluster in

round-lot sizes.

The result is a much smaller dataset storing the number of trades by day, ticker symbol,

and bin. To simplify the subsequent analysis, we make the approximate assumption that the

assumed average print size in a bin (in shares) is equal to a midpoint of that bin. If print size

is larger than 500,000 shares, we assign it to the 55th bin and assume its size to be 1,000,000

shares. This simplified aggregation makes it possible to capture the most important proper-

ties of print-size distributions while implementing our analysis efficiently. The convenience

comes, however, at the expense of introducing some additional noise, which may slightly affect

results. As a robustness check in the Appendix, we present the results of our tests for different

percentiles for three periods: April 1993, April 2001, and April 2014 for the data aggregated by

bins in Table A.7 and for the raw data in Table A.8; all results are quantitatively similar to each

other. Also, Table A.17 shows that the dollar volume computed from the aggregated data and

the raw data are very similar to each other for all bins; Table A.18 provides further results.

For each day and each ticker symbol, the small database also stores the open price; the close

price; the number of trades per day; the dollar volume per day; the share volume per day; the

close-to-close return; and the volatility, defined as the daily standard deviation of returns over

the past 20 trading days from the TAQ data.

Then, we use the data collected for each stock, each size bin, and each day to average the

frequency distributions of scaled print sizes and to construct an empirical distribution of print
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sizes (in shares) for each stock and each month in the sample. Aggregation by month makes it

possible to build better empirical approximations to theoretical distributions of bet sizes, given

that many inactively-traded stocks have very few daily prints.

In addition to calculating the average number of prints per day, we calculate several statis-

tics describing the possibly complicated shape of the distribution of print sizes. We consider

the average print size and various percentiles of trade-size distributions. We refer to these per-

centiles as trade-weighted percentiles. For example, the xth trade-weighted percentile corre-

sponds to a print size such that prints with sizes below this threshold constitute x% of all prints

for a given stock in a given month. Note that trade-weighted percentiles effectively put the same

weight onto prints of different sizes, which tends to emphasize small trades. For example, if the

sample contains 99 prints of 100-share lots and one print of 100,000 shares, then the distribu-

tion of print sizes is mostly concentrated at the 100-share level. All trade-weighted percentiles

below the 99th percentile are equal to 100 shares. The total trading volume and average print

size, however, are largely determined by one big print of 100,000 shares.

Because large trades are economically more important than small trades, we also investigate

the right tail of print-size distributions in more detail by examining volume-weighted percentiles

based on trades’ contributions to total volume. The contribution to the total volume by trades

from a given print-size bin is calculated based on its midpoint.

The volume-weighted distributions give the percentage of trading volume resulting from

prints of different sizes. The xth volume-weighted percentile corresponds to a trade size such

that trades with sizes below this threshold constitute x% of total trading volume. In the example

in the previous paragraph, percentiles 1–9 are 100 shares and percentiles 10–99 are 100,000

shares.

We report empirical results for both trade- and volume-weighted distributions. Of course,

if we know a trade-weighted distribution of print sizes, then we can easily calculate a volume-

weighted distribution as well. For the purpose of comparing trade-weighted and volume-weighted

distributions, the log-normal is a useful benchmark. One can show (using a change in proba-

bility measure) that if the log of trade-weighted print size is distributed as N (µ,σ2), then the

log of volume-weighted print size is distributed as N (µ+σ2,σ2). The only difference between

the two distributions is the shift in mean; the log-variance remains the same.

To acquire share and exchange codes for stocks in our sample, the monthly data are matched

with the Center for Research and Security Prices (CRSP) data, which is accessed through WRDS.

Only common stocks listed on the NYSE, AMEX, and NASDAQ from 1993 through 2014 are in-

cluded in our study. Stocks that had splits or reverse splits in a given month are eliminated from

the sample for that month. For each stock and each month, using the TAQ data, we compute

average daily volume (in dollars and in shares), average price, and the standard deviation of

close-to-close daily returns.

As robustness checks, we also rerun our tests for two alternative measures of daily returns

volatility. First, we use an ARCH(5) model to predict one-day ahead volatility. Second, we com-

pute daily volatility by using the standard deviation of the 5-day log return cumulative from the

previous 50 trading days. In both cases, the average daily volume is also recalculated over the

same corresponding trading window (5-day or 50-days) as volatility for consistency. We con-

vert daily volatility and daily volume measures to monthly numbers by averaging them within

the month. As a robustness check, we also implemented our tests on the data aggregated over

annual frequency rather than monthly frequency. Tables A.9, A.10, A.11, and A.12 report the
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robustness results for volatility estimations, elimination of 10-share stocks, and annual data

aggregation. These results are very similar to our main results.

In Table A.19 and Figure A.13 in the Appendix, we also present our results for alternative

measures of volatility adjusted for tick size following Harris (1990). The results remain quanti-

tatively similar.6

Our final sample includes 1,383,857 stock-month observations, covering on average about

5,262 stocks for each of the 263 months between February 1993 and December 2014.

2.2. Descriptive statistics

We present descriptive statistics in Table 1. Panel A reports statistics for the 1993–2000 sub-

period. Panel B reports statistics for the 2001–2014 subperiod. Statistics are calculated for all

securities in aggregate, as well as separately for 10 groups of stocks sorted by average dollar

volume. Instead of dividing the securities into 10 deciles with the same number of securities,

volume break points are set at the 30th, 50th, 60th, 70th, 75th, 80th, 85th, 90th, and 95th per-

centiles of dollar volume for the universe of stocks listed on the NYSE with CRSP share codes of

10 and 11. Group 1 contains stocks in the bottom 30th percentile. Group 10 contains stocks in

the top 5th percentile. Group 10 approximately covers the universe of S&P 100 stocks. The top

five groups approximately cover the universe of S&P 500 stocks. Smaller percentiles for the more

active stocks make it possible to focus on the stocks that are the most economically important.

For each month, the thresholds are recalculated and stocks are reshuffled across groups.

Summary statistics before 2001. Panel A of Table 1 reports statistical properties of securities

and prints in the sample before 2001. For the entire sample of stocks, the average trading vol-

ume is $6.186 million per day, ranging from $0.15 million for the lowest volume decile to $176.99

million for the highest volume decile. The average volatility for the entire sample is 4% per day.

The volatility tends to be higher for smaller stocks. The volatility is 4.5% for the lowest-volume

decile and 2.9% for the highest-volume group. Thus, the measure of trading activity, equal to

the product of dollar volume and volatility, increases from 0.15 ·0.045 to 176.99 ·0.029—that is,

by a factor of 760 from the lowest- to the highest-volume group.

Before 2001, the average print size is equal to $23,629, ranging from $11,441 for low-volume

stocks to $89,338 for high-volume stocks. This corresponds to a decrease from 7.6% to 0.05%

of daily volume from the lowest- to the highest-volume group. The median is much lower than

the mean, as large prints make the distribution of print sizes positively skewed. The trade-

weighted median ranges from $5,682 for low-volume stocks to $28,567 for high-volume stocks,

corresponding to a decrease from 3.8% to 0.016% of daily volume. Note that the invariance

hypothesis predicts that the shape of the distributions of trade sizes as a fraction of daily vol-

ume must be similar across stocks, with the only difference that their log-means are shifted

downward by two-thirds of the increase in a log-trading activity (equation (10)). Because trad-

ing activity increases by a factor of 760 from the lowest to the highest deciles, a back-of-the-

envelope calculation suggests that the distributions of trade sizes as a fraction of volume should

be shifted downward by a factor of 7602/3 ≈ 80. This estimate is less than the observed differ-

ences in means of 7.6%/0.05% ≈ 150 and medians of 3.8%/0.016% ≈ 240 between the highest-

6The variance adjustment is σ2 − 1
6
·

(

Tick Size
P

)2
.
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and lowest-volume groups.

In the 1993–2001 subperiod, the average number of prints recorded per day is 142 for the en-

tire sample, increasing monotonically from 17 to 2,830 from the first to the tenth volume group.

The number of prints increases by a factor of 2,830/17 ≈ 166. Using the invariance hypothesis,

we predict that the expected number of prints should increase by two-thirds of the increase

in trading activity (equation (9))—that is, 7602/3 ≈ 80. This back-of-the envelope calculation

suggests that the number of prints increases more than predicted, potentially reflecting a more

intensive order splitting in high-volume groups where the stocks also tend to have higher price

levels, but further investigation is certainly warranted.

Some print sizes are unusually common in the TAQ data. Before 2001, even-sized trades

account for over 61% of volume traded and 80% of trades executed. The fraction of even-prints

is stable across volume groups. The prevalence of these prints validates our choice of bins with

even-share bins considered separately. About 16% of all transactions and 2% of volume traded

are executed in 100-share prints. These trades represent 15% of transactions for low-volume

stocks and 25% of transactions for high-volume stocks. The number of 1,000-share prints is

also significant. The large fraction of 1,000-share prints for low-volume stocks relative to high-

volume stocks—18% versus 14%—probably reflects the regulatory rule according to which the

NASDAQ market makers had to post quotes for at least 1,000 shares prior to 1997.

It may also be partially related to the difference in typical price levels for low-volume and

high-volume stocks, which makes 1,000-lot trades to be of a smaller dollar value for stocks with

lower volume.

Summary statistics after 2001. Panel B of Table 1 provides statistical properties of the sample

after 2001. Daily volume more than tripled from $6.18 million before 2001 to over $24.4 million

after 2001. Volatility decreased from 4.0% to 3.1% per day. These numbers imply that trading

activity doubled from the 1993–2001 to 2001–2014 subperiods. The average number of prints

increased by a factor of 21 from 143 to 3,013, and the average print size decreased by more

than a factor of 3 from $23,629 to $6,424. Back-of-the-envelope calculations implied by the

invariance hypothesis suggest that the changes in print arrival rates and print sizes cannot be

explained only by differences in levels of trading activity between the two subperiods but must

be attributed to other factors. One of these factors is the order splitting that became increas-

ingly prevalent over time, especially after the reduction in tick size to one cent on January 29,

2001, for NYSE stocks and on April 9, 2001, for NASDAQ stocks. The growth of algorithms and

tape shredding have likely influenced patterns of trading as well. During the 2001–2014 sub-

period, for example, 100-share trades account for 57% of all transactions and 25% of volume

traded, with these numbers reaching their peaks at 73% and 41%, respectively, in 2013. Trades

of 1,000 shares became less important in this half of the sample. Evident order splitting is likely

to significantly affect tests of the invariance hypothesis using TAQ data after 2001.

Frequency and sizes of TAQ prints during the 1993–2014 period.

In Figure 1, we plot the 263 scaled numbers of monthly total prints, calculated as Nm,i ·

W −2/3
i

, where Nm,i is the total number of prints per month and Wi is trading activity. Fig-

ure 1 also shows the averages of the 20th, 50th, and 80th percentiles of the trade- and volume-

weighted distributions of logs of scaled print sizes, calculated as ln(|X̃i |/Vi ·W
2/3

i
), where |X̃i | is

the print size. To facilitate comparison across stocks and across time, all variables are scaled by
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W −2/3
i

and W 2/3
i

as implied by the invariance hypothesis. The left panel shows the scaled vari-

ables averaged across low-volume stocks (group 1). The right panel shows the scaled variables

averaged across high-volume stocks (groups 9 and 10).

A comparison of the left column to the right column of Figure 1 reveals that the profiles of

volume-weighted percentiles of scaled trade sizes and the scaled number of prints per month

are very similar across stocks. This similarity is evidence in favor of the invariance hypothesis.

Trading patterns differ significantly across the 1993–2000 and 2001–2014 subperiods. For

high-volume stocks, the percentiles of print sizes and print rates do not change much prior to

the beginning of decimalization in 2001. Afterward, percentiles of print size decrease steadily,

and the average number of prints correspondingly increases. For low-volume stocks, simi-

lar changes started to occur even before 2001. Because most low-volume stocks are NASDAQ

stocks, the pre-2001 decrease in print sizes and increase in print arrival rates may be explained

by the reduction in tick size from 12.5 cents (1/8 of a dollar) to 6.25 cents (1/16 of a dollar) an-

nounced at NASDAQ in 1997. Also, for some subsets of low-priced NASDAQ and AMEX stocks,

tick sizes were reduced from 1/8 to either 1/16 or 1/32 as earlier as in 1992 and 1995. With the

exception of the largest print sizes in high-volume stocks, the downward trend in scaled print

sizes and the upward trend in scaled number of prints seems to end at around 2007, and all vari-

ables stabilize at some constant levels. A similar pattern can be found in figures in Hendershott

et al. (2011). In the following sections, we examine these patterns in more detail.

3. Results

The invariance hypothesis and the two alternative models make distinctively different predictions—

all three nested in equations (9) and (10)—concerning the differences in the distributions of

print sizes and their frequencies across stocks and time. We run our tests based on both the

number of prints and distributions of their sizes to determine which models provides the most

reasonable description of the data.

3.1. Tests based on print frequency

Comparison of three models. According to each model, the scaled number of prints W
−αn

i
·

Ni per day is constant across stocks. The three models differ only in the exponent a used to

normalize the average number of prints. The invariance hypothesis impliesαn = 2/3, the model

of invariant print size implies an = 0, and the model of invariant print frequency implies αn = 1.

Figure 2 shows how the log-number of prints ln(N ·W −αn ) changes with trading activity W ,

when the number of prints are scaled in three different ways, respectively, according to pre-

dictions of the three models. The figure has three columns and four rows. Each of the three

columns contains plots of the log of the average number of prints per day N against the log

of trading activity W , where the average number of prints is scaled according to each of the

three models, respectively. The four rows present results for the NYSE in April 1993, for NAS-

DAQ in April 1993, for all exchanges in April 2001, and for all exchanges in April 2014. Results

are presented for different periods because trading has changed dramatically over time. Also,

trading patterns of the NYSE- and NASDAQ-listed stocks differed historically because of dif-

ferences in regulatory rules across exchanges during the earlier part of the sample; therefore,

our results are presented separately for the NYSE- and NASDAQ-listed stocks in April 1993. We

choose the month of April to avoid seasonality, as trades tend to cluster much less before the
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end of the calendar quarter, as shown by Moulton (2005). Each observation corresponds to the

average number of prints per day for a given stock in a given month. Each subplot has about

6,000 observations. If the model is correctly specified, the points are expected to line up along

a horizontal line.

In subplots for the invariance hypothesis, observations are scattered around horizontal lines

for each of the three years. The invariance hypothesis explains the data very well, especially for

the NYSE stocks traded in April 1993. The levels of the horizontal lines move up from the top

to bottom figures, showing that the average number of prints has increased over time. For April

1993, the average number of prints is slightly higher for the NYSE stocks than for the NASDAQ

stocks. Some NASDAQ stocks with low trading activity have outliers with a very small number of

prints. A few of the most illiquid NASDAQ stocks also have outliers with a very high number of

prints in April 1993. The outliers for the small stocks may be due to the short sample period, as

one month may be not enough to get a good estimate of mean volume for small illiquid stocks.

In subplots for the model of invariant print frequency, observations are lined up across a

line with a positive slope. The model attributes all differences in trading activity entirely to

differences in print sizes. Because changes in trading activity are also partially explained by

changes in print arrival rates, the model tends to underestimate the number of prints for high-

volume stocks and overestimate it for low-volume stocks.

In subplots for the model of invariant print size, observations are lined up along a line with

a negative slope. The model attributes all differences in trading activity entirely to differences

in trading rates. Because some part of these differences is actually explained by differences in

print sizes, the model tends to overestimate the number of prints for high-volume stocks and

underestimate it for low-volume stocks.

OLS estimates of the number of TAQ prints.

The distinctly different predictions of the models can be nested into a simple linear regres-

sion,

ln(Ni ) =µn +an · ln

(

Wi

W∗

)

+ ǫ̃i , (11)

where W∗ is an arbitrary scaling constant specified below. The equation relates the log of the

average daily number of prints Ni for each month for stock i to the level of trading activity

Wi , where Wi is average daily notional volume times standard deviation of daily returns for

stock i for each month. The invariance hypothesis predicts an = 2/3, the model of invariant

print frequency predicts an = 0, and the model of invariant print size predicts an = 1. For each

month, we estimate the parametersµn and an using an OLS regression with one observation per

stock per month. The constant term µn is scaled to represent the log of the expected number of

prints for a benchmark stock with trading activity W∗. The scaling constant W∗= (40)(106)(0.02)

measures trading activity for an arbitrary benchmark stock with a price of $40 per share, trading

volume of 1 million shares per day, and daily volatility of 2% per day.

Figure 3 shows the time series of coefficients from the monthly regressions (11) between

February 1993 and December 2014. The time series is constructed with 263 month-by-month

regression coefficients an from monthly regression equations (11). We denote the estimate

of coefficients as µ̂n,T and ân,T for month T . The superimposed horizontal line represents

an = 2/3, the value predicted by the invariance hypothesis. The figure shows two distinc-

tive sub-periods, 1993–2000 and 2001–2014. Both the constant term µn and the coefficient an
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changed over time and may have time trends that are different over the 1993–2000 and 2001–

2014 subperiods. Over the 1993–2000 subperiod, all estimated coefficients an remained virtu-

ally constant. The average value of 0.666 is strikingly close to the predicted values of 2/3. Over

the 2001–2014 subperiod, the estimates began to drift up from the values implied by the invari-

ance hypothesis, increasing from about 0.65 to about 0.77 by the end of 2014. Around 2009,

the upward trend in the time-series estimates slowed down and even reversed its direction; the

explanation for this change remains unclear.

Following the approach of Fama and MacBeth (1973), Table 2 presents estimates of the co-

efficients in the pooled-over-time regression (11), adjusted for time trends visible in Figure 3.

The six columns show the results for all stocks, the subsets of NYSE/AMEX-listed stocks, and

the subset of NASDAQ-listed stocks, each shown during the 1993–2000 and 2001–2014 subperi-

ods. To account for time trends in monthly coefficients, we calculate the Newey–West standard

errors with three lags relative to a linear time trend, estimated by OLS regressions from the es-

timated coefficients µ̂n,T and ân,T for each month T . The linear time trend is estimated from

the equations µ̂n,T = µn,0 +µn,t · (T − T̄ )/12+ ǫ̃T and ân,T = an,0 + an,t · (T − T̄ )/12+ ǫ̃T , where

T is the number of months from the beginning of the subsample and T̄ is the mean month in

the subsample. For the subperiod February 1993 to December 2000, T = 1 for February 1993

and T = 95 for December 2000—that is, T̄ = 48. For the subperiod January 2001 to December

2014, T = 1 for January 2001 and T = 168 for December 2014—that is, T̄ = 84.5. Table 2 contains

estimates of µn,0, µn,t , an,0, and an,t .

For the 1993–2000 subperiod, the point estimate of an,0 is equal to 0.666, statistically indis-

tinguishable from the predicted value of 2/3. For the subperiod 2001–2014, the point estimate

of an,0 is equal to 0.79. The standard errors of these estimates are 0.002 and 0.005, respectively.

Note also that the alternative models predicting an,0 = 0 and an,0 = 1 are clearly rejected. For the

period 1993–2000, the estimated time trend coefficient an,t of −0.001 per year is statistically in-

significant. The estimates for an,0 of 0.626 and 0.76 for NYSE stocks during the two sub-periods

1993–2000 and 2001–2014, respectively, are smaller than the corresponding estimates for an,0

of 0.679 and 0.816 for NASDAQ stocks.

For the 2001–2014 period, the estimated time trend coefficient an,t of 0.007 per year is sta-

tistically significant; it approximately corresponds to the increase in an by 0.11, from about 0.66

to about 0.77, over the 13-year period.

The point estimate of intercept µn,0 is equal to 6.147 for the 1993–2000 subperiod and 8.513

for the 2001–2014 subperiod, indicating an increase in the average number of prints over time.

The constant terms µn,t of 0.093 and 0.148 for those subperiods also show statistically signif-

icant upward time trends, corresponding to growth rates in the number of prints per year of

about 9.3% and 14.8% for the two subperiods, respectively.

The combined results for both subperiods are consistent with the following interpretation:

Over the 1993–2000 subperiod, the invariance hypothesis held due to a reasonably close corre-

spondence between TAQ prints and bets. Over the 2001–2014 subperiod, the invariance rela-

tionship broke down because order splitting and intermediation have increased over time and

affected high-volume stocks more than low-volume stocks after decimalization in 2001. These

results may be also related to differences in degrees of order splitting and intermediation across

low-price and high-price stocks. We discuss these patterns further in Subsection 3.3.
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3.2. Tests based on TAQ print sizes

Comparison of three models. We now examine the trade- and volume-weighted distribu-

tions of print sizes scaled for differences in trading activity as suggested by the three models.

The three models predict that the distributions of W αx · |X̃ |/V are constant across stocks and

time, but the models make different assumptions about the exponentαx . The invariance model

predicts αx = 2/3, the model of invariant print frequency predicts αx = 0, and the model of in-

variant print size predicts αx = 1.

To approximate the distribution, we calculate print size |X | based on the mid-point of a

print-size bin where it was placed. For each month and for each volume group, the stock-

level distributions of scaled print sizes are combined by averaging across stocks in each volume

group the frequency distributions of the number of prints in each bin. The results are plotted

in Figures 5 and 6. For illustrative purposes, only results for April 1993 are presented, but the

data for the entire 1993–2014 period are examined more closely below.

Figure 5 shows the distributions of logs of scaled print sizes for the NYSE stocks. The figure

has three rows and six columns. The three rows contain plots for low-volume stocks in vol-

ume group 1, medium-volume stocks in volume groups 2 through 8, and high-volume stocks

in volume group 9–10, respectively. The first three columns contain plots of the trade-weighted

distributions, with the density of logs of scaled print sizes on the vertical axis. The second three

columns contain plots of the volume-weighted distributions, with the volume contribution of

these trades on the vertical axis. In each of the three columns, print sizes are scaled according

to the three models. If one of the three models is correct, then the three distributions in the

column corresponding to that model should be the same across rows.

To make it easier to interpret results, we superimpose the bell-shaped densities of a normal

distribution with the common means and variances equal to the means and variances of trade-

and volume-weighted distributions of scaled print sizes based on the entire sample. As pre-

viously discussed, if trade-weighted distributions are log-normally distributed, then volume-

weighted distributions are log-normally distributed as well. If scaled sizes are distributed as

a log-normal, then the three plots in each column of plots are expected to coincide with the

superimposed common normal density.

The first column presents the three trade-weighted distributions implied by the invariance

hypothesis; they have similar means, variance, and supports. The shapes of the distributions

bear some resemblance to the superimposed normal density, but the fit is by no means exact.

The low-volume group matches the superimposed normal better than the medium- and high-

volume groups. The fourth column presents the volume-weighted distributions implied by the

invariance hypothesis; they are even more similar to the superimposed common normal den-

sity. Thus, the invariance hypothesis explains a substantial part of variation in the distribution

of print sizes, especially in the distribution of economically important large trades. The print

sizes seem to be distributed similarly to a log-normal; Kyle and Obizhaeva (2016) find that the

distribution of portfolio-transition orders is close to a log-normal as well.

For the model of invariant print frequency, the trade-weighted densities are in the second

column and the volume-based densities are in the fifth column; they are much less stable across

volume groups. In both columns, the distributions shift to the left as trading volume increases,

which suggests that the first alternative model understates print sizes for high-volume stocks

and overestimates them for low-volume stocks. The model fails to account for the fact that

some variation in trading activity is explained by variation in the number of prints.
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For the model of invariant print size, the trade-weighted densities are in the third column

and the volume-based densities are in the sixth column; they are clearly unstable across volume

groups as well. In both columns, the distributions shift to the right as trading volume increases.

The second alternative model overstates print sizes for high-volume stocks and underestimates

them for low-volume stocks. The alternative models clearly provide worse explanations for the

observed variations in print sizes than the invariance hypothesis.

Figure 6 shows our results for the sample of NASDAQ stocks. Similar to the NYSE stocks, the

distributions of print sizes are more stable across volume groups when print sizes are scaled

according to the invariance hypothesis. Compared with the NYSE distributions, the NASDAQ

distributions are less smooth and have more spikes, especially the trade-based densities. We

attribute these patterns to a regulatory rule that required NASDAQ dealers to quote prices for at

least 1,000 shares, leading to a disproportionably large number of 1,000-share NASDAQ trades

recorded on the consolidated tape before 1997.

Implications for log-normal distributions. The invariance hypothesis makes predictions

about the mean of the distribution of bet size, not the shape of the distribution. Calibrating the

shape of distributions is nevertheless important. Kyle and Obizhaeva (2016) find that the dis-

tribution of portfolio transition orders closely resembles a log-normal with a large log-variance

and therefore heavy tails. Kyle and Obizhaeva (2018c) predict the size and frequency of stock

market crashes based on extrapolating the frequency of tail events in the distribution of portfo-

lio transition orders to bets on the market as a whole.

Comparing distributions of bet size and trade size may provide insights about the order

splitting algorithms used by traders. Therefore, we examine whether the distribution of trade

size resembles a log-normal by superimposing onto the graphs of the distributions of log of

trade size a normal distribution with mean consistent with invariance and common log vari-

ance. Figures 5 presents the results for NYSE stocks, and Figure 6 presents the results for NAS-

DAQ stocks. As previously discussed, if the log of trade-weighted scaled print sizes is distributed

as N (µ,σ2), then the log of volume-weighted scaled print sizes is distributed as N (µ+σ2,σ2).

For NYSE stocks, the constraint implies that the volume-weighted mean of 0.97 should be

the same as the sum of the trade-weighted mean of −1.15 and its variance of 1.90. As −1.15+

1.90 = 0.75 6= 0.97, we see that the constraint fails to hold by a margin of only about 25%. The

log-variance of 3.04 for the volume-based distribution is much larger than the log-variance of

1.90 for the trade-weighted distribution. This discrepancy is inconsistent with log-normality,

which implies that these log-variances should be the same.

For NASDAQ stocks, the volume-weighted mean of 1.2 should be the same as the sum of

the trade-weighted mean of −0.19 and its variance of 1.93. As −0.19+1.93 = 1.72 6= 1.2, we see

that this constraint fails to hold by a margin of about 30%. The log-variance of 1.98 for the

volume-based distribution is similar to the log-variance of 1.93 for the trade-weighted distri-

bution, consistent with the predictions of log-normality. Because these moment restrictions

are not perfectly satisfied in the data, the hypothesis of log-normality can be valid only as a

very rough approximation at best. Deviations from log-normality include clustering of trades

in even-lot sizes (especially prints of 1,000 shares on NASDAQ), censoring and rounding of odd

lots, clustering of 100-share trades, and the possibility that very large trades follow a fatter-tailed

power-law distribution rather than a log-normal distribution.
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OLS regression estimates of TAQ print sizes, February 1993 to December 2014. We test impli-

cations of the invariance hypothesis for print sizes using OLS regressions in which the left-side

variable is either a mean or a percentile of either the trade- or volume-weighted distributions of

logs of print sizes. For each stock in a given month, the trade- and volume-weighted distribu-

tions of logs of print sizes are constructed. Letting f (.) denote a functional that corresponds to

either the mean or the pth percentiles (20th, 50th, 80th) of these distributions, these variables

are regressed on logs of trading activity:

f

(

ln

(

X̃i

Vi

))

=µx +ax · ln

(

Wi

W∗

)

+ ǫ̃i . (12)

Equations (11) and (12) are closely related. Expected trading volume V is equal to the prod-

uct of the expected number of prints N and expected print size E
[

X̃
]

, V = N ·E
[

X̃
]

, implying

that the left side of equation (11) is ln N = − ln
(

E
[

X̃
]

/V
)

. Thus, the left-hand side variable in

equation (12) is similar to reversing the sign on the left-hand-side variable in the regression

equation (11). For example, if X̃ /V were distributed log-normally with the same variance across

stocks, then the coefficient estimates for an and ax would be the same in absolute value and op-

posite in sign in all of the regressions in equations (12) and (11), but the constant terms µn and

µx would be different. In our data (as we show below), X̃ /V deviates from a log-normal distri-

bution sufficiently to make the coefficients an and ax vary across regression specifications.

Figure 4 shows the time series of coefficients of the monthly regressions from February 1993

to December 2014. Plotted are the time series of 263 month-by-month regression coefficients

ax from regression equation (12) for the 20th, 50th, and 80th percentiles of print sizes over the

1993–2014 period. Panel A presents results for trade-weighted distributions. Panel B presents

results for volume-weighted distributions. Superimposed horizontal lines represent the level of

−2/3, the benchmark predicted by the invariance hypothesis.

As before, the figure shows two distinct subperiods. Over the 1993–2000, all estimated co-

efficients remain close to −2/3. The estimates of ax are lower than the predicted value of

−2/3 for the 20th, 50th, and 80th percentiles of trade-weighted distributions; they fluctuate

between −0.70 and −0.82, implying that small print sizes as a fraction of volume decrease faster

with trading activity than predicted by the invariance hypothesis. For the 50th and 80th per-

centiles of volume-weighted distributions, the estimates of ax fluctuate between −0.45 and

−0.70, somewhat higher than predicted by the invariance hypothesis, and all estimates for the

20th volume-weighted percentiles are close to −2/3.

Over the 2001–2014 subperiod, the estimates begin to drift away from their initial levels.

For the volume-weighted percentiles, the estimates of ax decrease from about −0.45 to −0.82

for the 80th percentile, from about −0.54 to −0.89 for the 50th percentile, and from −0.645 to

−0.75 for the 20th percentile. For the trade-weighted percentiles, the estimates for the 20th and

50th percentiles do not exhibit any definite patterns, but the estimates for the 80th percentile

decrease from about −0.71 to −0.77. As before, the behavior of estimated coefficients changes

in 2009. Overall, changes in the large print sizes (right tails) are more significant than changes

in the small print sizes (left tails).

Table 3 reports the estimates from regressions in equation (12) pooled over the 1993–2000

period. The first four columns show estimates for the means and percentiles of the trade-

weighted distributions. The last four columns show estimates for the means and percentiles

of the volume-weighted distributions. Because the monthly estimates of µ̂x,T and âx,T for
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each month T are changing over time, we add a linear time trend. The table reports Fama–

MacBeth estimates of the coefficients, with Newey–West standard errors calculated with three

lags relative to a linear time trend estimated by OLS regressions from the estimated coeffi-

cients µ̂x,T and âx,T for each month. As before, the equations estimated for the time trend are

µ̂x,T = µx,0 +µx,t · (T − T̄ )/12+ ǫ̃T and âx,T = ax,0 +ax,t · (T − T̄ )/12+ ǫ̃T , where T is the number

of months from the beginning of the subsample and T̄ is the median month in the subsample.

For the trade-weighted distributions, the estimate of ax,0 is equal to −0.741 for the means.

This estimate is larger in absolute value by 0.075 than the estimate of 0.666 for the number

of prints in Table 2. For the trade-weighted percentiles, the estimated coefficients range from

−0.781 for the 20th percentile to −0.725 for the 80th percentile. All of these estimates are larger

in absolute value than the value of −2/3 predicted by the invariance hypothesis, which implies

that print sizes as a faction of volume tend to decrease with trading activity faster than implied

by the theory. For the volume-weighted distributions, the estimated coefficient ax,0 is equal

to −0.56 for the means; the estimates range from −0.661 for the 20th percentile to −0.481 for

the 80th percentile. Across means and percentiles, the standard errors of estimates ax,0 range

from 0.002 to 0.003; these values are similar in magnitude to the averages of standard errors of

ax from the cross-sectional monthly regressions (12), in which those values range from 0.002

to 0.065. The data suggests that the invariance hypothesis ax,0 = −2/3 explains the data much

better than the alternatives ax,0 = 0 and ax,0 =−1, but all three models are statistically rejected.

For the trade-weighted distributions, the estimated time trend coefficient ax,t ranges from

0.008 to 0.012 per year and is statistically significant. For the volume-weighted distributions,

the time-trend coefficient is either statistically insignificant or negative.

The estimated intercept µx,0 of −7.238 in the regression for the trade-weighted means im-

plies that the median print size for the benchmark stock is equal to exp(−7.238), or 0.07% of

daily volume. The estimated intercepts of −8.490 and −6.260 in the regressions for the 20th

and 80th percentiles suggest that the average 20th and 80th print-size percentiles are equal to

0.02% and 0.19% of daily volume for the benchmark stock, respectively. Under the assump-

tion of log-normality, Kyle and Obizhaeva (2016) note that the fraction of volume generated by

trades larger than z standard deviations above the log-mean (which equals the median) is given

by 1−N (z −σ), where σ is the standard deviation for the distribution of the log of trade sizes;

based on the trade-weighted variance of 1.90 in Figure 5, log-normality would imply that about

91% of volume occurs in print sizes larger than 0.07% of daily volume (median trade). The stan-

dard errors of µx,0 in cross-sectional regressions are similar in magnitude and range between

0.014 and 0.031, across means and percentiles. The negative and statistically significant esti-

mates of time trend µx,t indicate that the print sizes have been gradually decreasing during the

1993–2000 subperiod, with a downward drift that is especially pronounced in the right tails of

the distributions.

The R2 is lower in regressions based on volume-weighted distributions than in regressions

based on trade-weighted distributions. For the means, the values of R2 are 0.90 and 0.69, respec-

tively. The difference in R2 increases monotonically from a difference between 0.87 and 0.83 for

the 20th percentiles to a difference between 0.88 and 0.52 for the 80th percentiles. These num-

bers show more unexplained variation in large print sizes than in small print sizes. Note that

some of this variation may result from the rounding of large odd-size trades to the mid-point of

bins or from the small number of observations in the largest bins.

Table 4 reports the estimates for regressions in equation (12) for the 2001–2014 subperiod.
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For the means, the estimates of ax,0 are −0.779 for trade-weighted distributions and −0.776

for volume-weighted distributions. These estimates are larger in absolute value than the cor-

responding estimates of −0.741 and −0.560 for the 1993–2000 subperiod in Table 3. All but

one of the estimates of −0.757, −0.769, and −0.811 for the 20th, 50th, and 80th trade-weighted

percentiles, respectively, and −0.796, −0.843, and −0.779 for the 20th, 50th, and 80th volume-

weighted percentiles, respectively, are also higher in absolute values than the estimates of−0.781,

−0.750, −0.725, −0.661, −0.579, and −0.481 for the earlier subperiod. The biggest changes oc-

cur in the estimates for the 80th percentile of trade-weighted distributions and the 50th and

80th percentiles of volume-weighted distributions, which suggests that recent technological

and regulatory changes had the largest effect on the right tail of print-size distributions. The

standard errors of ax,0 are between 0.003 and 0.004, similar to the averages of standard errors of

ax in monthly regressions (12). This fact validates the adjustment for time trend in the Fama–

MacBeth procedure; without inclusion of a time trend, the standard errors would have been

higher.

The estimates of the intercept µx,0 for the 1993–2000 subperiod are lower than for the 2001–

2014 subperiod for the means as well as for all percentiles. For the pooled sample, for example,

the estimate of −9.029 in Table 4 is lower than the corresponding estimate of −7.238 in Table 3;

these estimates imply that a typical print size for the benchmark stock fell from 0.07% to 0.01%

of daily volume over the 1993–2000 subperiod. The estimated time trend µx,t is negative and

statistically significant in all columns, except for the 20th percentile of trade-weighted distribu-

tions, also implying that the distributions of print sizes have been shifting downward.

3.3. Detailed analysis of market frictions over time

We next study how market frictions such as tick size and lot size affect the trading process.

More specifically, we examine whether these market frictions can help explain variations across

markets in the number and size distribution of prints that cannot be explained by the invariance

hypothesis.

To facilitate our analysis, we introduce several new concepts that measure restrictiveness of

market frictions in the spirit of the invariance hypothesis. We also discuss why these measures

are related to price volatility and share volume in business time as well as to each other.

Effective price volatility and effective tick size. Tick size imposes a restriction on the min-

imum price change. The tick size changed from 1/8 of a dollar to 1/16 of a dollar in the late

1990s and then to one cent in 2001. To assess the restrictiveness of this friction, one can com-

pare it with price volatility—that is, with a typical price change. Based on the same intuition,

practitioners often measure price volatility in units of tick size. For example, if a $40 stock has

a volatility of 2% per day, then daily dollar price volatility is equal to $0.80= $40 ·0.02 and a tick

size of $0.01 is equal to 1/80 of price volatility.

The invariance hypothesis suggests defining the relative tick size as a fraction of price volatil-

ity in business time, not in calendar time. Business time is proportional to the expected arrival

rate of bets γ j t , or in terms of trading activity it is also proportional to W 2/3
j t

, as shown in equa-

tion (5). Hence, define effective price volatility in asset j and time t as

Effective Price Volatilityj t := P j t ·σ j t ·

(

W j t

W∗

)−1/3

. (13)
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This measure is scaled by a constant W −1/3
∗ , previously defined as trading activity in the bench-

mark stock, so that effective price volatility is exactly equal to daily price volatility for the bench-

mark stock. In comparison with calendar-time volatility, effective price volatility is lower for

more liquid stocks and higher for less liquid stocks to take into account that business time runs

faster in more liquid securities.

Now define effective tick size as the ratio of the dollar tick size to effective price volatility:

Effective Tick Size j t :=
Tick Size j t

P j t ·σ j t

P∗·σ∗
·

(

W j t

W∗

)−1/3
. (14)

The presence of P∗ ·σ∗ in the denominator scales the definition of relative tick size to make it

exactly equal to the dollar tick size for the benchmark stock. A higher effective price volatility

makes the effective tick size lower. We conjecture that lower effective tick size may encourage

traders to shred meta-orders into a larger number of trades and may affect the amount of inter-

mediation.

Effective share volume and effective lot size. Round lot size imposes a restriction on the min-

imum number of shares in prints on the tape. For most stocks in the sample, the lot size is equal

to 100 shares. An odd lot comprises orders smaller than a round lot (e.g., 30 shares) or the non-

round-lot portion of larger orders (e.g., the 30-share portion of a 530-share order); these odd-lot

transactions are executed according to special, often less flexible rules, and information about

them is not disseminated to the tape, as described in detail by Hasbrouck et al. (1993).

To assess how restrictive this friction is, one can compare it with the size of a median bet in

the corresponding market. Equation (10) implies that median bet size is also proportional to

share volume in business time, which we refer to as effective share volume:

Effective Share Volumej t :=V j t ·

(

W j t

W∗

)−2/3

. (15)

This measure takes into account that business time runs faster by a factor of W 2/3
j t

in more liquid

securities. Scaling it by the constant W −2/3
∗ makes effective share volume equal to daily share

volume for the benchmark stock.

Now define effective lot size as the ratio of the lot size to effective share volume:

Effective Lot Size j t :=
Lot Size j t

V j t

V∗
·

(

W j t

W∗

)−2/3
. (16)

Practitioners often measure order size as a fraction of daily volume and restrict their trading

rate to a fixed fraction—say, 5%—of volume in order to control transaction costs. Scaling by V∗

makes the effective lot size equal to the lot size for the benchmark stock. A lower effective share

volume makes the effective lot size larger and therefore more binding, in the sense that a larger

fraction of bets falls below that threshold. Some small bets may be executed as odd lots and not

recorded on the consolidated tape, some may not be executed at all, and some may be rounded

up to round-lot size. The extent of such censoring and rounding is expected to be related to

effective lot size.
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Since W j t = V j t ·P j t ·σ j t , the product of effective tick size (14) and effective lot size (16)

equals to the product of tick size and lot size:

Effective Tick Size j t ·Effective Lot Size j t = Tick Size j t ·Lot Size j t (17)

For most stocks in our sample (with one-cent tick size and 100-share lot size), the right-hand

side of this equation is a constant equal to one dollar. It relates to the minimum possible dollar

cost (and profit) per transaction in the market.

For a given month in the sample, dollar tick size and lot size are usually constant across

most of the U.S. stocks, implying that effective tick size and effective lot size are closely related

to each other and to effective price volatility. In the following analysis, we therefore examine

how trading patterns differ across stocks with different levels of effective price volatility.

The effects of the two market frictions on the number of prints and print-size distributions

are difficult to separate. For example, higher effective price volatility makes effective tick size

lower, but it also makes effective lot size higher; lower effective share volume has similar impli-

cations. The first effect, operating through lower effective tick size, probably encourages more

intermediation and more order splitting of bets into smaller trades placed at finer adjacent price

points as a strategy to avoid front-running, leading to more prints of smaller sizes. The second

effect, operating through higher effective lot size, probably encourages more censoring and

rounding up of odd-lot trades, thus leading to fewer prints of larger sizes in the data sample.

Distributions of print sizes over time. We next examine how market frictions affect trading in

the U.S. equity market cross-sectionally and through time. After sorting stocks into 10 volume

groups and 4 effective price-volatility groups, we analyze distributions of the logs of scaled print

sizes ln
(

Xi

Vi
·W 2/3

i

)

, with the scaling factor W 2/3
i

implied by the invariance hypothesis. According

to the invariance hypothesis, these 40 distributions are the same in frictionless markets. To

examine how these distributions change over the entire sample period, we examine the shape

of the distributions for the months April 1993, April 2001, and April 2014.

Because dollar tick size and lot size are constant during selected months, sorting stocks into

effective price-volatility groups allows us to study the effects of variations in both effective tick

size and lot size.

Trade-weighted distributions for NYSE-listed stocks, April 1993. In April 1993, NYSE-listed

stocks were priced in increments of 12.5 cents (1/8 of a dollar). Most of the stocks were traded

in multiples of 100-share lots, even though some of them were traded in multiples of 10-share

lots, as described in Hasbrouck et al. (1993).

Figure 7 shows the trade-weighted distributions of logs of scaled print sizes for 5 of the 10

volume groups and all 4 effective price-volatility groups for the NYSE-listed stocks in April 1993.

The 100-share trades are highlighted in light gray and 1,000-share trades in dark gray. The num-

ber of stocks in each subgroup and the average number of trades per day for these stocks are

also reported. On each subplot, the density of a normal distribution with the mean of −1.15

and standard deviation of 1.38 is superimposed, calculated for the pooled sample in April 1993.

If the invariance hypothesis holds, identification assumptions are valid, and bet sizes are dis-

tributed as a log-normal, then all distributions are expected to be invariant across 40 subplots

and coincide with the superimposed normal density. For most subgroups, distributions are

indeed close to the superimposed normal.
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The data are clearly truncated below the 100-share odd-lot boundary and cluster in 100-

share trades, shown in light gray, in the left tails of the distributions. Because variation in levels

of dollar volume within groups is small, the 100-share trades usually fall into the same bin or

into two adjacent bins. The only exception is the first volume group, where large variation in

trading activity makes the 100-share trades spread over more than four bins.

The distributions have spikes because of clustering of trades at round-lot levels. Spikes are

visible at the 100-share level and the 1,000-share level, marked by the clustering of light gray and

dark gray columns. Spikes at 200-share and 500-share levels are also visible but not explicitly

marked. For example, the sample contains more trades of 5,000 shares than 4,000 or 6,000

shares, and far more than 4,900 or 5,100 shares. For the subsample of stocks with low volume

and low price volatility, large variation in trading activity smooths out spikes in the distribution

of print sizes.

A visual inspection suggests that, holding effective price volatility fixed, the supports of dis-

tributions stay relatively constant across volume groups, but their shapes become more skewed

to the right as volume increases, especially when price volatility is low, consistent with large or-

ders being shredded into smaller trades.

Holding dollar volume fixed, the distributions vary across effective price-volatility groups

in a systematic way as well. When effective price volatility increases, the 100-share boundary

becomes more binding, the truncation threshold shifts to the right, and the effects of censor-

ing and rounding to the 100-share boundary become more pronounced. At the same time,

the relative tick size decreases, thus encouraging more order splitting. The first effect seems

to dominate, because the average number of prints decreases with price volatility. For high-

volume stocks, for example, the average number of prints decreases monotonically from 1,139

prints recorded per day for low-volatility stocks to only 285 prints for high-volatility stocks. In

the absence of any market frictions, the number of trades is expected to be relatively constant

within a given volume group because volatility does not vary much.

Volume-weighted distributions for NYSE-listed stocks, April 1993. Figure 8 shows the volume-

weighted distributions of logs of scaled print sizes for the NYSE stocks in April 1993. In compar-

ison with the trade-weighted distributions in Figure 7, the volume-weighted distributions put

more weight onto larger trades and allow us to see more clearly the distribution of large print

sizes.

According to Hasbrouck et al. (1993), a block of 10,000 shares was not a particularly large

trade in 1993. Some block trades (of 10,000 shares or more), especially block trades in illiquid

stocks, were executed in the upstairs market. The average size of upstairs-facilitated blocks was

about 43,000 shares.

In comparison with the trade-weighted distributions in Figure 7, the volume-weighted dis-

tributions are more stable across subgroups and more closely resemble the superimposed nor-

mal distribution. On most plots, the space below the bell-shaped density function is filled up.

The truncation at the odd-lot boundary is almost invisible, because the numerous 100-share

trades almost “disappear” from the left tail of the distribution, as they contribute little to overall

volume.

Small gaps in the distributions relative to a log-normal can be seen in mid-range print sizes

between 1,000 shares and 10,000 shares. Perhaps these gaps represent intended orders shred-

ded into smaller trades. The strong visual resemblance of the graphs to a log-normal, as in Kyle
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and Obizhaeva (2016), are consistent with the interpretation that most of the largest orders in

1993 appear to have been executed as single blocks, generating large print sizes. An exception is

the low-volume group for which the largest orders appear to be shredded because the distribu-

tions are skewed to the right. Although the volume-weighted distributions are much smoother

than the trade-weighted distributions, small spikes are still detectable. These spikes, which

likely correspond to clusters of trades at the levels of 1,000 shares, 5,000 shares, and 10,000

shares, are clearly visible, for example, in distributions for stocks with high volume and high

effective price volatility. A few spikes in the far-right tails of several distributions suggest that

occasional very large prints occur in the data more often than explained by log-normality.

Trade-weighted distributions for NASDAQ-listed stocks, April 1993. In April 1993, the NASDAQ-

listed stocks usually had the minimum lot size of 100 shares. Quotes were restricted to incre-

ments of 1/8 of a dollar if the bid price exceeded $10.00, but trades were permitted in finer

increments of 1/64 of a dollar for all stocks, even though these prices were then rounded to the

nearest eighths for reporting, as described in Christie et al. (1994) and Smith et al. (1998).

Also, in 1988, the Securities and Exchange Commission required NASDAQ market makers

to have a quotation size of at least 1,000 shares for most stocks. The rule mostly affected large

stocks, and, indeed, we observe larger spikes in subplots for high-volume stocks. For small

stocks, the rule was slightly different. For example, orders smaller than 1,000 shares could be

executed through the Small Order Execution System (SOES) in stocks that were trading at prices

lower than $250 per share. After 1996, the minimum quote size restriction was gradually re-

moved. Under the Actual Size Rule, the minimum quote size was reduced from 1,000 to 100

shares, first for 50 pilot stocks in January 1997, then for an additional 104 stocks in Novem-

ber 1997, and finally for all others.

Figure 9 shows the trade-weighted distributions of logs of scaled print sizes for NASDAQ

stocks in April 1993. The biggest difference between the trade-weighted distributions of the

NASDAQ stocks and the NYSE stocks is the very large fraction of 1,000-share trades, shown as

dark gray spikes, typically in the middle of the NASDAQ distributions. These spikes can be

attributed to the requirement to quote at least 1,000 shares. In line with this explanation, we

do not observe the clustering at the 1,000-share level after 2001 (unreported). Apart from the

clustering in the 1,000-share level and truncation at the 100-share level, the distributions bear

some resemblance to the superimposed normal distribution.

Trade-weighted distributions for all stocks, April 2001 and 2014. After decimalization in 2001,

U.S. stocks traded in increments of one cent. The round-lot size is 100 shares; odd-lot trades

account for a large fraction of trades, but they are not reported in the TAQ dataset. The U.S.

stock market is fragmented into multiple trading venues. Angel et al. (2011; 2015) discuss other

recent innovations in trading.

Figures 10 and 11 show the trade-weighted distributions of logs of scaled print sizes for all

stocks traded in April 2001 and April 2014, respectively. In 2001, decimalization and use of

electronic interfaces led to a significant increase in order splitting, the effect of which is clearly

seen in both figures.

The frequency of trades increased significantly over time. For high-volume and low-volatility

stocks, for example, the number of trades has increased from about 325 trades per day in April 1993

to 16,230 trades per day in April 2001 and 41,295 trades per day in April 2014. The distributions
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of scaled print sizes shifted substantially to the left during the 1993–2014 period. Based on the

means of superimposed normals, for example, the median print size dropped from 0.11% of

daily volume for the NYSE stocks in April 1993 and 0.08% for the NASDAQ stocks to 0.003% in

2001 and only 0.001% in 2014. The market for block trades seems almost to have disappeared,

and trading is now dominated by transactions of 100 shares. Indeed, trades of 100 shares con-

stitute about 57% of trades executed and 38% of volume traded in 2014.

Note that the estimated log-variances of 2.05 in 1993, 1.78 in 2001, and 1.21 in 2014 for

trade-weighted distributions of scaled print sizes are lower than the variance of 2.50 for the

distributions of portfolio-transition orders, reported by Kyle and Obizhaeva (2016). A gradual

decrease in log-variance is consistent with the hypothesis that large bets in liquid stocks in 2014

result in disproportionately more prints than small bets in illiquid stocks.

Regressions with effective price volatility. Table 5 presents Fama–MacBeth estimates of µn

and aσ from monthly regressions:

ln(Ni ) =µn +
2

3
· ln

(

Wi

W∗

)

+aσ · ln

(

Pi ·σi

P∗ ·σ∗

·

(

Wi

W∗

)−1/3
)

+ ǫ̃i . (18)

The regression effectively imposes the invariance restriction of an = 2/3 in regression (11) and

adds effective price volatility as an additional explanatory variable to capture the effect of both

market frictions. The table reports Fama–MacBeth estimates of the coefficients, with Newey–

West standard errors calculated with three lags relative to a linear time trend estimated by OLS

regressions from the estimated monthly coefficients µ̂n,T and âσ,T for each month. Specifically,

the specification is µ̂n,T =µn,0+µn,t ·(T −T̄ )/12+ǫ̃T and âσ,T = aσ,0+aσ,t ·(T −T̄ )/12+ǫ̃T , where

T is the number of months from the beginning of the subsample, and T̄ is the mean month

in the subsample. The six columns show the results for the entire sample as well as subsets

of NYSE/AMEX-listed stocks and NASDAQ-listed stocks during the 1993–2000 and 2001–2014

subperiods.

The point estimates for aσ,0 are negative and statistically significant for all subsamples. The

estimates of −0.471, −0.338, and −0.497 for the 1993–2000 subperiod are smaller in absolute

terms than the corresponding estimates of −0.608, −0.475, and −0.676 for the 2001–2014 sub-

period. The standard errors range from 0.003 to 0.001. The point estimates of aσ,t are equal

to −0.007, −0.02, −0.007, −0.027, −0.023, and −0.013, with standard errors between 0.001 and

0.003. The number of prints is inversely related to effective price volatility. Higher effective

volatility implies fewer prints in the context of the invariance hypothesis. The estimates of µn,0

and µn,t are not too different from the corresponding estimates in Table 2.

The significant increase in values of R2 in regression equations (18), relative to values of R2

in regression (11) constrained with an = 2/3, shows that differences in effective price volatil-

ity partially explain the cross-sectional variation in the number of prints unexplained by the

invariance hypothesis. For the entire sample period, adding effective price volatility as an ex-

planatory variable increases the R2 from 0.873 to 0.918 for the 1993–2000 subperiod and from

0.899 to 0.955 for the 2001–2014 subperiod. For NYSE stocks, the R2 increases from 0.908 and

0.917 to 0.924 and 0.955; for NASDAQ stocks, the R2 increases from 0.857 and 0.881 to 0.917 and

0.959 during the two subperiods.

Finally, we analyze the R2 in the regression that imposes the invariance restriction an = 2/3

in regression (11), but allows the coefficients on the three components of trading activity Wi
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(volume Vi , price Pi , and volatility σi ) to vary freely:

ln(Ni ) =µn +
2

3
ln

(

Wi

W∗

)

+b1 · ln

(

Vi

(106)

)

+b2 · ln

(

Pi

(40)

)

+b3 · ln

(

σi

(0.02)

)

+ ǫ̃i . (19)

Table 6 presents the results. For the 1993–2000 subperiod, the estimates are b̂1,0 = 0.122 for

the coefficient on volume Vi , b̂2,0 = −0.370 for the coefficient on price Pi , and b̂3,0 = −0.514

for the coefficient on volatility σi . For the entire 2001–2014 period, the estimates are b̂1,0 =

0.259 for the coefficient on volume Vi , b̂2,0 = −0.281 for the coefficient on price Pi , and b̂3,0 =

−0.492 for the coefficient on volatility σi . All coefficients are statistically different from zero.

Similar patterns are observed for other subperiods and subsamples of the NYSE stocks and the

NASDAQ stocks. The exponents for volatility b̂3,0 behave similarly to the exponents for price

b̂2,0 and differently from the exponents for volume b̂1,0, but the p-values of statistical tests of

the linear restriction b2,0 = b3,0 = −2×b1,0 are less than 0.001. This implies that the rejection

of the invariance hypothesis might depend in a subtle manner on how effective price-volatility

influences incentives to shred orders and make intermediation trades. Note that for the pooled

sample, the R2 increases from 0.873 to 0.928 for the 1993–2000 subperiod and from 0.899 to

0.970 for the 2001–2014 subperiod. The R2 of 0.928 and 0.970 are only slightly larger than the R2

of 0.918 and 0.955 in regression equations (18), respectively. Although statistically significant,

the addition of two extra degrees of freedom beyond the effective price volatility improves the

R2 by only a small amount.

4. Conclusion

The distributions of TAQ print sizes (adjusted for trading activity as suggested by invariance

hypotheses) resemble a log-normal, with truncation below the 100-share odd-lot boundary.

The resemblance was stronger during the earlier 1993–2001 subperiod than during the later

2001–2014 subperiod, and it shows up more clearly in volume-weighted distributions than in

trade-weighted distributions.

The invariance hypothesis explains about 88% of variation across stocks in the number of

prints. The unexplained 10% can be most likely attributed to other microstructure effects such

as order splitting, intermediation activity, and various market frictions like lot size and tick size.

For example, subtle effects of effective price volatility explain an additional 4.5% and 5.5% of

variations during the 1993–2000 and 2001–2014 periods, respectively. An interesting topic for

future research would be to analyze these effects at a deeper level by designing more refined

econometric tests.
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Table 1

Descriptive statistics.

This table reports descriptive statistics for securities and prints. Each observation represents averages for one security over one month. Panel A reports

statistics for data from February 1993 to December 2000. Panel B reports statistics for data from January 2001 to December 2014. Both panels show the average

print size, the trade-weighted median print size, the volume-weighted median print size (in dollars), the average number of prints per day, the daily dollar

volume (in thousands of dollars), the average volatility of daily returns, the average price, and the percentage of trades and the percentage of volume in the

100-share lot, in the 1,000-share lot, and in the even lots for all samples as well as for 10 volume groups. Volume groups are based on average dollar trading

volume with thresholds corresponding to the 30th, 50th, 60th, 70th, 75th, 80th, 85th, 90th, and 95th percentiles of the dollar volume for NYSE-listed common

stocks. Volume group 1 has stocks with the lowest volume, and volume group 10 has stocks with the highest volume.

Volume groups: All 1 2 3 4 5 6 7 8 9 10

Panel A: 1993–2000

Avg. Print Size ($) 23,629 11,441 27,378 36,432 43,558 49,274 53,421 60,364 67,904 78,139 89,338

Med. (VW) Print Size ($) 111,195 48,999 158,303 190,228 218,529 218,038 250,510 255,284 291,867 317,847 373,248

Med. (TW) Print Size ($) 9,363 5,682 10,842 13,407 15,402 16,910 18,024 20,049 21,909 24,599 28,567

Avg # of Prints, γ 142 17 73 126 185 257 333 409 549 852 2,830

Avg. Daily Volume ($ 1,000) 6,186 151 1,197 2,808 5,051 7,999 11,263 15,847 23,901 42,408 176,985

Avg. Daily Volatility 0.040 0.045 0.031 0.032 0.030 0.030 0.030 0.029 0.029 0.029 0.029

Avg. Price ($) 17.58 10.25 20.38 24.50 27.84 31.57 34.73 38.34 43.03 49.98 64.43

100-Shares: % Prints/ %Vol 16/2 15/2 17/2 18/2 19/2 20/2 21/2 21/2 21/2 22/2 25/3

1,000-Shares: % Prints/ %Vol 18/14 18/15 18/13 17/12 16/12 15/11 15/11 14/10 14/10 13/10 13/10

Even Lots: %Prints/ % Vol 80/61 80/63 80/60 80/59 80/58 80/57 80/57 79/56 79/55 79/56 81/58

# Obs 634,322 391,611 93,732 37,272 33,145 14,896 14,155 13,039 12,276 11,831 12,365

Panel B: 2001–2014

Avg. Print Size ($) 6,424 3,645 6,715 8,776 10,379 11,913 13,308 14,863 17,003 19,852 26,335

Med. (VW) Print Size ($) 29,900 27,916 23,464 26,460 29,278 27,822 41,432 36,663 42,728 53,538 83,227

Med. (TW) Print Size ($) 2,895 1,642 3,244 4,163 4,793 5,419 6,005 6,647 7,469 8,378 10,533

Avg # of Prints, γ 3,013 399 2,178 3,584 5,069 6,733 8,323 10,062 12,846 17,651 37,495

Avg. Daily Volume ($ 1,000) 24,408 937 8,295 16,961 27,429 40,200 54,090 72,872 102,484 162,619 503,229

Avg. Daily Volatility 0.031 0.035 0.026 0.025 0.024 0.024 0.023 0.022 0.022 0.022 0.022

Avg. Price ($) 21.16 12.56 26.77 32.00 34.92 37.81 40.92 44.46 48.24 51.77 63.33

100-Shares: % Prints/ %Vol 57/25 56/23 64/33 61/31 60/29 58/28 57/28 56/28 55/27 53/25 49/20

1,000-Shares: % Prints/ %Vol 3/6 4/6 2/4 2/4 2/4 2/4 2/4 2/4 2/4 3/4 3/5

Even Lots: %Prints/ % Vol 86/63 85/60 90/68 89/68 89/67 88/66 88/65 87/65 87/64 86/62 84/59

# Obs 749,535 477,127 97,347 39,485 36,846 17,455 16,780 16,222 15,858 15,815 16,600
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Table 2

OLS estimates of number of TAQ prints.

This table presents Fama–MacBeth estimates µn and an from monthly regressions

ln(Ni ) =µn +an · ln

(

Wi

W∗

)

+ ǫ̃i .

Each month has one observation for each stock i . The value of Ni is the average number of prints per

day. Trading activity Wi is the product of average daily dollar volume Vi ·Pi and the percentage standard

deviation σi of daily returns in a given month. The scaling constant W∗ = (40)(106)(0.02) corresponds

to the measure of trading activity for a benchmark stock with a price of $40 per share, trading volume

of 1 million shares per day, and daily volatility of 0.02. Newey–West standard errors are calculated with

three lags relative to a linear time trend estimated by OLS regressions from the estimated coefficients

µ̂n,T and ân,T for each month: µ̂n,T = µn,0 +µn,t · (T − T̄ )/12+ ǫ̃T and ân,T = an,0 +an,t · (T − T̄ )/12+ ǫ̃T ,

where T is the number of months from the beginning of the sample and T̄ is the mean month. “Avg Adj-

R2” denotes the adjusted R2 averaged over monthly regressions, and “Avg # of Obs” denotes the number

of stocks averaged over monthly regressions. The estimates are reported for 1993–2000 and 2001–2014

subperiods.

All stocks NYSE/AMEX NASDAQ

1993–2000 2001–2014 1993–2000 2001–2014 1993–2000 2001–2014

µn,0 6.147 8.513 6.109 8.396 6.143 8.646

0.017 0.041 0.012 0.040 0.020 0.048

µn,t 0.093 0.148 0.042 0.178 0.141 0.115

0.007 0.013 0.005 0.012 0.008 0.015

an,0 0.666 0.790 0.626 0.760 0.679 0.816

0.002 0.005 0.001 0.005 0.002 0.006

an,t -0.001 0.007 0.002 0.006 0.003 0.003

0.001 0.001 0.000 0.001 0.001 0.002

Avg Adj-R2 0.87 0.92 0.91 0.93 0.86 0.91

Avg # of Obs 6,621 4,452 2,189 1,759 4,432 2,694
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Table 3

Regression estimates of TAQ print sizes, February 1993 to December 2000.

This table presents Fama–MacBeth estimates µx and ax from the monthly regressions of the mean and

percentiles of print size on trading activity W for the sample from February 1993 to December 2000. The

coefficients µQ and aQ are based on monthly regressions

ln

(

|Xi |

Vi

)

=µx +ax · ln

(

Wi

W∗

)

+ ǫ̃i ,

where the left-hand side is either the mean or the pth (20th, 50th and 80th) percentile of the distribu-

tion of logarithms of (unsigned) print sizes |Xi |, expressed as a fraction of daily volume Vi in a given

month. The means and percentiles are calculated based on both trade-weighted and volume-weighted

distributions. One observation corresponds to each month and each stock i with trading activity Wi ,

defined as the product of the average daily dollar volume Vi · Pi and the percentage standard devia-

tion σi of daily returns. The scaling constant W∗ = (40)(106)(0.02) corresponds to the trading activity

of the benchmark stock with a price of $40 per share, trading volume of 1 million shares per day, and

volatility of 2% per day. Newey–West standard errors are calculated with three lags relative to a linear

time trend estimated by OLS regressions from the estimated coefficients µ̂x,T and âx,T for each month:

µ̂x,T =µx,0+µx,t ·(T − T̄ )/12+ ǫ̃T and âx,T = ax,0+ax,t ·(T − T̄ )/12+ ǫ̃T , where T is the number of months

from the beginning of the sample and T̄ is the mean month. “Avg Adj-R2” denotes the adjusted R2 aver-

aged over monthly regressions, and “Avg # of Obs” denotes the number of stocks averaged over monthly

regressions.

Trade-weighted distribution Volume-weighted distribution

Mean 20th 50th 80th Mean 20th 50th 80th

µx,0 -7.238 -8.495 -7.289 -6.260 -4.684 -6.364 -4.887 -3.326

0.020 0.027 0.031 0.014 0.020 0.016 0.019 0.026

µx,t -0.047 -0.039 -0.046 -0.064 -0.137 -0.101 -0.157 -0.153

0.008 0.011 0.012 0.006 0.008 0.006 0.008 0.011

ax,0 -0.741 -0.781 -0.750 -0.725 -0.560 -0.661 -0.579 -0.481

0.002 0.003 0.002 0.003 0.003 0.002 0.003 0.003

ax,t 0.008 0.012 0.007 0.005 -0.007 -0.001 -0.009 -0.009

0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Avg Adj-R2 0.90 0.87 0.88 0.88 0.69 0.83 0.68 0.52

Avg # of Obs 6,621 6,621 6,621 6,621 6,621 6,621 6,621 6,621
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Table 4

Regression estimates of TAQ print sizes, January 2001 to December 2014.

This table presents Fama–MacBeth estimates µx and ax from the monthly regressions of the mean and

percentiles of print size on trading activity W for the sample from January 2001 to December 2014. The

coefficients µx and ax are based on monthly regressions

ln

(

|Xi |

Vi

)

=µx +ax · ln

(

Wi

W∗

)

+ ǫ̃i ,

where the left-hand side is either the mean or the pth (20th, 50th and 80th) percentile of the distribution

of logarithms of (unsigned) print sizes |Xi |, expressed as a fraction of daily volume Vi in a given month.

The means and percentiles are calculated based on both trade- and volume-weighted distributions. One

observation corresponds to each month and each stock i with trading activity Wi , defined as the product

of the average daily dollar volume Vi ·Pi and the percentage standard deviation σi of daily returns. The

scaling constant W∗ = (40)(106)(0.02) corresponds to the trading activity of the benchmark stock with a

price of $40 per share, trading volume of 1 million shares per day, and volatility of 2% per day. Newey–

West standard errors are calculated with three lags relative to a linear time trend estimated by OLS re-

gressions from the estimated coefficients µ̂x,T and âx,T for each month µ̂x,T =µx,0+µx,t ·(T − T̄ )/12+ ǫ̃T

and âx,T = ax,0+ax,t ·(T −T̄ )/12+ǫ̃T , where T is the number of months from the beginning of the sample

and T̄ is the mean month. “Avg Adj-R2” denotes the adjusted R2 averaged over monthly regressions, and

“Avg # of Obs” denotes the number of stocks averaged over monthly regressions.

Trade-weighted distribution Volume-weighted distribution

Mean 20th 50th 80th Mean 20th 50th 80th

µx,0 -9.029 -9.519 -9.268 -8.633 -7.420 -9.004 -8.123 -6.304

0.030 0.024 0.038 0.039 0.058 0.047 0.059 0.059

µx,t -0.097 -0.013 -0.084 -0.173 -0.192 -0.091 -0.251 -0.251

0.009 0.007 0.012 0.012 0.018 0.015 0.018 0.018

ax,0 -0.779 -0.757 -0.769 -0.811 -0.776 -0.796 -0.843 -0.779

0.003 0.003 0.003 0.004 0.007 0.006 0.009 0.010

ax,t 0.000 0.005 0.003 -0.006 -0.018 -0.005 -0.021 -0.026

0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.003

Avg Adj-R2 0.907 0.866 0.884 0.913 0.892 0.892 0.862 0.760

Avg # of Obs 4,452 4,452 4,452 4,452 4,452 4,452 4,452 4,452
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Table 5

OLS estimates of number of TAQ prints with effective volatility.

This table presents Fama–MacBeth estimates µn and aσ from monthly regressions

ln(Ni ) =µn +
2

3
· ln

(

Wi

W∗

)

+aσ · ln

(

Pi ·σi

P∗ ·σ∗

·

( Wi

W∗

)−1/3
)

+ ǫ̃i .

One observation corresponds to each month and each stock i with trading activity Wi , defined as the

product of the average daily dollar volume Vi ·Pi and the percentage standard deviation σi of daily re-

turns. Effective price volatility is defined as Pi ·σi ·

(

Wi

W∗

)−1/3
, with the effective price volatility of the bench-

mark stocks P∗ ·σ∗ equal to 40 ·0.02. The value of Ni is the average number of prints per day. The scaling

constant W∗ = (40)(106)(0.02) corresponds to the measure of trading activity for the benchmark stock

with a price of $40 per share, trading volume of 1 million shares per day, and daily volatility of 2%. Newey–

West standard errors are calculated with three lags relative to a linear time trend estimated by OLS re-

gressions from the estimated coefficients µ̂n,T and âσ,T for each month: µ̂n,T =µn,0+µn,t ·(T −T̄ )/12+ǫ̃T

and âσ,T = aσ,0+aσ,t ·(T −T̄ )/12+ǫ̃T , where T is the number of months from the beginning of the sample

and T̄ is the mean month. “Avg Adj-R2” denotes the adjusted R2 averaged over monthly regressions. The

table also reports the average R2 from the restricted regressions with aσ = 0 as well as the average R2 from

unconstrained regressions

ln(Ni ) =µn +
2

3
ln

(

Wi

W∗

)

+b1 · ln

(

Vi

(106)

)

+b2 · ln

(

Pi

(40)

)

+b3 · ln

(

σi

(0.02)

)

+ ǫ̃i .

“Avg # of Obs” is the number of stocks averaged over monthly regressions. The estimates are reported for

1993–2000 and 2001–2014 subperiods.

All stocks NYSE/AMEX NASDAQ

1993–2000 2001–2014 1993–2000 2001–2014 1993–2000 2001–2014

µn,0 6.270 7.952 6.316 7.998 6.247 7.942

0.016 0.023 0.009 0.025 0.020 0.027

µn,t 0.087 0.116 0.024 0.151 0.125 0.093

0.007 0.007 0.004 0.007 0.009 0.008

aσ,0 -0.471 -0.608 -0.338 -0.475 -0.497 -0.676

0.003 0.009 0.005 0.008 0.003 0.010

aσ,t -0.007 -0.020 -0.007 -0.027 -0.023 -0.013

0.001 0.003 0.002 0.002 0.001 0.003

Avg Adj-R2 0.918 0.955 0.924 0.955 0.917 0.959

Avg# of Obs 6,621 4,452 2,189 1,759 4,432 2,694

Regression with coefficient on effective price volatility aσ = 0.

Avg Adj-R2 0.873 0.899 0.908 0.917 0.857 0.881

Regression with separate coefficients for price, volume, and volatility.

Avg Adj-R2 0.928 0.970 0.940 0.974 0.923 0.975
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Table 6

OLS estimates of number of TAQ prints with price, volatility, and volume.

This table presents Fama–MacBeth estimates µn and aσ from monthly regressions

ln (Ni ) =µn +
2

3
ln

(

Wi

W∗

)

+b1 · ln

(

Vi

(106)

)

+b2 · ln

(

Pi

(40)

)

+b3 · ln

(

σi

(0.02)

)

+ ǫ̃i .

One observation corresponds to each month and each stock i with trading activity Wi , defined as the product of

the average daily dollar volume Vi ·Pi and the percentage standard deviation σi of daily returns. Effective price

volatility is defined as Pi ·σi ·

(

Wi

W∗

)−1/3
, with the effective price volatility of the benchmark stocks P∗ ·σ∗ equal to

40 ·0.02. The value of Ni is the average number of prints per day. The scaling constant W∗ = (40)(106)(0.02) corre-

sponds to the measure of trading activity for the benchmark stock with a price of $40 per share, trading volume of 1

million shares per day, and daily volatility of 2%. Unrestricted regressions are run without any restriction on coeffi-

cients while restricted regressions introduce the restriction of b2 = b3 =−0.5×b1. Newey–West standard errors are

calculated with three lags relative to a linear time trend estimated by OLS regressions from the estimated coeffi-

cients µ̂n,T and âσ,T for each month: µ̂n,T =µn,0+µn,t ·(T −T̄ )/12+ ǫ̃T and âσ,T = aσ,0+aσ,t ·(T −T̄ )/12+ ǫ̃T , where

T is the number of months from the beginning of the sample and T̄ is the mean month. “Avg Adj-R2” denotes the

adjusted R2 averaged over monthly regressions.

All stocks NYSE/AMEX NASDAQ

Unrestricted Unrestricted Unrestricted

1993–2000 2001–2014 1993–2000 1993–2000 1993–2000 1993–2000

µn,0 6.242 8.350 6.131 8.214 6.323 8.513

0.015 0.036 0.012 0.036 0.022 0.041

µn,t 0.114 0.133 0.070 0.161 0.166 0.101

0.007 0.011 0.006 0.010 0.009 0.013

b1,0 0.122 0.259 0.069 0.216 0.148 0.294

0.001 0.005 0.002 0.006 0.001 0.005

b1,t 0.010 0.012 0.006 0.014 0.017 0.007

0.001 0.001 0.001 0.002 0.001 0.001

b2,0 -0.370 -0.281 -0.351 -0.230 -0.363 -0.300

0.003 0.006 0.003 0.008 0.004 0.005

b2,t 0.005 -0.004 0.010 -0.011 -0.002 -0.003

0.001 0.002 0.001 0.002 0.001 0.002

b3,0 -0.514 -0.492 -0.524 -0.493 -0.482 -0.556

0.006 0.009 0.004 0.024 0.004 0.006

b3,t 0.049 -0.017 0.019 -0.005 0.024 -0.013

0.002 0.001 0.002 0.003 0.001 0.002

Avg Adj-R2 0.928 0.970 0.940 0.974 0.923 0.975

Avg # of Obs 6,621 4,452 2,189 1,759 4,432 2,694

b2,0 = b3,0 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001

b2,0 =−2×b1,0 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001

b3,0 =−2×b1,0 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001

b2,0 = b3,0 =−2×b1,0 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001
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Figure 1: Time series of percentiles of scaled TAQ print size and mean number of prints, 1993–2014. The figure shows the dynamics of the 20th,

50th, and 80th percentiles for logarithms of the pooled scaled print sizes as well as the means of the scaled number of prints per month from

1993 to 2014. Volume groups are based on average dollar trading volume with thresholds corresponding to the 30th, 50th, 60th, 70th, 75th,

80th, 85th, 90th, and 95th percentiles of the dollar volume for common NYSE-listed stocks. Trade-weighted percentiles and volume-weighted

percentiles are shown for stocks in volume group 1 (low volume) and volume groups 9 and 10 (high volume). For each print, the logarithm

of scaled print size is calculated based on the midpoint of the print size bin, scaled according to the model of trading game invariance—that

is, ln
(

W 2/3
i

· |Xi |/Vi

)

, where |Xi | is a midpoint of a print size bin in shares, Vi is the average daily volume in shares, and Wi is the measure of

trading activity equal to the product of dollar volume and returns standard deviation. The scaled number of total monthly prints is calculated

as Nm,i ·W −2/3
i

, where Nm,i is the total number of trades per month. The stock-level distributions of scaled print sizes are averaged across

stocks for volume groups 1 and 9–10 in a given month. The trade- and volume-weighted percentiles are plotted on this figure.
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Figure 2: The scaled number of TAQ prints plotted against trading activity for three models. The figure shows the logarithm of the scaled number

of prints across different levels of the logarithm of trading activity Wi . The scaled number of prints is defined by Ni W
−αn
i

, with αn = 2/3 for

the model of trading game invariance, αn = 0 for the model of invariant bet frequency, and αn = 1 for the model of invariant bet size. Four

subsamples are considered: NYSE-listed stocks in April 1993, NASDAQ-listed stocks in April 1993, both NYSE and NASDAQ stocks in April 2001

and both NASDAQ and NYSE stocks in April 2014. Trading activity Wi is calculated as the product of average daily dollar Pi ·Vi volume and the

percentage standard deviation of daily returns σi for a given month.
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Figure 3: Time series of monthly OLS coefficient estimates for number of trades, 1993–2014. The fig-

ure shows the dynamics of coefficients from regressions of number of prints on the measure of trading

activity Wi from 1993 to 2014. The coefficient an is calculated from monthly regressions

ln(Ni ) =µn +an · ln

(

Wi

W∗

)

+ ǫ̃i ,

where Ni is the average number of prints per day in a given month. The model of trading game invariance

predicts an = 2/3, and alternative models predict that an = 0 or an = 1. The model of trading game

invariance predicts ax =−2/3, and alternative models predict that ax = 0 or ax =−1. Trading activity Wi

is defined as the product of dollar volume and daily percentage standard deviation of returns, and W∗

measures trading activity of the benchmark stock.
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Figure 4: Time series of monthly OLS coefficient estimates for trade-weighted percentiles, and volume-weighted

percentiles, 1993–2014. The figure shows the dynamics of coefficients from regressions of various percentiles on

the measure of trading activity Wi from 1993 to 2014. The coefficient ax is calculated from monthly regressions

ln

(

X̃i

Vi

)

=µx +ax · ln

(

Wi

W∗

)

+ ǫ̃i ,

where the left-hand side is the pth (20th, 50th and 80th) percentiles of the distribution of logarithms of print

sizes X̃i . The model of trading game invariance predicts ax = −2/3, and alternative models predict that ax = 0

or ax =−1. Panel C shows the coefficient ax from similar monthly regressions, but these regressions are based on

percentiles Q
p

i
, where percentiles are calculated based on the contribution to total trading volume. The model of

trading game invariance predicts ax =−2/3, and alternative models predict that ax = 0 or ax =−1. Trading activity

Wi is defined as the product of dollar volume and daily percentage standard deviation of returns, and W∗ measures

trading activity of the benchmark stock.
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Figure 5: Trade-weighted and volume-weighted distributions of scaled TAQ print size for three models, NYSE-listed Stocks, April 1993. This figure shows

the distribution of the logarithm of scaled print sizes for three different models for NYSE-listed stocks traded in April 1993. The print sizes are scaled as

W
αx

i
· |Xi |/Vi , with αx = 2/3 for the model of invariant bet frequency, α= 0 for the model of invariant bet frequency, and αx = 1 for the model of invariant bet

size. Trading activity Wi is calculated as the product of dollar volume Pi ·Vi and the daily percentage standard deviation of returns σi . Panel A shows trade-

weighted distributions, and Panel B shows volume-weighted distributions. The subplots show stock-level distributions averaged across stocks in volume

group 1 (low volume), volume groups 2–8, and volume groups 9–10 (high volume). Volume groups are based on average dollar trading volume with thresholds

corresponding to the 30th, 50th, 60th, 70th, 75th, 80th, 85th, 90th, and 95th percentiles of the dollar volume for NYSE-listed common stocks. All subplots in

each of the size columns show a fitted normal distribution (in dashed lines) with moments calculated based on a pooled data.
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Figure 6: Trade-weighted and volume-weighted distributions of scaled TAQ print size for three models, NASDAQ-Listed Stocks, April 1993. This figure shows

the distribution of the logarithm of scaled print sizes for three different models for NASDAQ-listed stocks traded in April 1993. The print sizes are scaled as

W
αx

i
· |Xi |/Vi , with αx = 2/3 for the model of invariant bet frequency, αx = 0 for the model of invariant bet frequency, and αx = 1 for the model of invariant bet

size. Trading activity Wi is calculated as the product of dollar volume Pi ·Vi and the daily percentage standard deviation of returns σi . Panel A shows trade-

weighted distributions, and panel B shows volume-weighted distributions. The subplots show stock-level distributions averaged across stocks in volume

group 1 (low volume), volume groups 2–9, and volume groups 9–10 (high volume). Volume groups are based on average dollar trading volume with thresholds

corresponding to the 30th, 50th, 60th, 70th, 75th, 80th, 85th, 90th, and 95th percentiles of the dollar volume for NASDAQ-listed common stocks. All subplots

in each of the size columns show a fitted normal distribution (in dashed lines) with moments calculated based on a pooled data.
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Figure 7: Trade-weighted distributions of scaled TAQ print sizes, NYSE-listed stocks, April 1993. This figure shows distributions of the logarithms of scaled

print sizes for NYSE stocks in April 1993. For each trade, the scaled print size is calculated as ln
(

W 2/3
i

· |Xi |/Vi

)

based on the invariance hypothesis, where |Xi |

is the midpoint of the print size bin in shares, Vi is the average daily volume in shares, and Wi measures trading activity as the product of dollar volume and

the daily percentage standard deviation of returns. Ten volume groups are constructed based on average dollar trading volume with thresholds corresponding

to the 30th, 50th, 60th, 70th, 75th, 80th, 85th, 90th, and 95th percentiles of the dollar volume for common NYSE-listed stocks. Four equally spaced volatility

groups are constructed based on effective price volatility, defined as Pi ·σi · (Wi /W∗)−1/3. The subplots show stock-level distributions averaged across stocks

for volume groups 1 (low volume), 4, 7, 9, and 10 (high volume) and for all four price volatility groups 1 (low price volatility), 2, 3, and 4 (high price volatility).

The 100-share trades are highlighted in light gray; the 1,000-share trades are highlighted in dark gray. Each subplot also shows a normal distribution with the

pooled average print size mean of -1.15 and standard deviation of 1.38. M is the number of stocks, and N is the average number of prints per day for the stocks

in a given subgroup.
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Figure 8: Volume-weighted distributions of scaled TAQ print sizes, NYSE-listed stocks, April 1993. This figure shows distributions of total volume across

different scaled print size bins for the NYSE stocks in April 1993. For each stock, the volume distribution is calculated as the contribution to the total volume by

trades from a given trade size bin. The x-axis is the log of scaled print sizes, defined by ln
(

W 2/3
i

·
|Xi |

Vi

)

according to the invariance hypothesis, where |Xi | is a print

size in shares (midpoint of a bin), Vi is the average daily volume in shares, and Wi is the measure of trading activity equal to the product of dollar volume and

returns standard deviation. Ten volume groups are constructed based on average dollar trading volume with thresholds corresponding to the 30th, 50th, 60th,

70th, 75th, 80th, 85th, 90th, and 95th percentiles of the dollar volume for NYSE-listed common stocks. Four equally spaced volatility groups are constructed

based on effective price volatility, defined as Pi ·σi · (Wi /W∗)−1/3. The subplots show stock-level distributions averaged across stocks for volume groups 1 (low

volume), 4, 7, 9, and 10 (high volume) and for all four price volatility groups 1 (low price volatility), 2, 3, and 4 (high price volatility). The 100-share trades are

highlighted in light gray, and the 1,000-share trades are highlighted in dark gray. Each subplot also shows a normal distribution with the pooled average print

size mean of 1.1 and standard deviation of 1.74. M is the number of stocks, and N is the average number of prints per day for the stocks in a given subgroup.
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Figure 9: Trade-weighted distributions of scaled TAQ print sizes, NASDAQ-listed stocks, April 1993. This figure shows distributions of the logarithms of scaled

print sizes for NASDAQ stocks in April 1993. For each trade, the scaled print size is calculated as ln
(

W 2/3
i

· |Xi |/Vi

)

based on the invariance hypothesis, where

|Xi | is the midpoint of the print size bin in shares, Vi is the average daily volume in shares, and Wi measures trading activity as the product of dollar volume and

the daily percentage standard deviation of returns. Ten volume groups are constructed based on average dollar trading volume with thresholds corresponding

to the 30th, 50th, 60th, 70th, 75th, 80th, 85th, 90th, and 95th percentiles of the dollar volume for common NYSE-listed stocks. Four equally spaced volatility

groups are constructed based on effective price volatility, defined as Pi ·σi · (Wi /W∗)−1/3. The subplots show stock-level distributions averaged across stocks

for volume groups 1 (low volume), 4, 7, 9, and 10 (high volume) and for all four price volatility groups 1 (low price volatility), 2, 3, and 4 (high price volatility).

The 100-share trades are highlighted in light gray; the 1,000-share trades are highlighted in dark gray. Each subplot also shows a normal distribution with the

pooled average print size mean of -0.19 and standard deviation of 1.39. M is the number of stocks, and N is the average number of prints per day for the stocks

in a given subgroup.
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Figure 10: Trade-weighted distributions of scaled TAQ print sizes, all stocks, April 2001. This figure shows distributions of the logarithms of scaled print sizes

for NYSE and NASDAQ stocks in April 2001. For each trade, the scaled print size is calculated as ln
(

W 2/3
i

· |Xi |/Vi

)

based on the invariance hypothesis, where

|Xi | is the midpoint of the print size bin in shares, Vi is the average daily volume in shares, and Wi measures trading activity as the product of dollar volume and

the daily percentage standard deviation of returns. Ten volume groups are constructed based on average dollar trading volume with thresholds corresponding

to the 30th, 50th, 60th, 70th, 75th, 80th, 85th, 90th, and 95th percentiles of the dollar volume for common NYSE-listed stocks. Four equally spaced volatility

groups are constructed based on effective price volatility, defined as Pi ·σi · (Wi /W∗)−1/3. The subplots show stock-level distributions averaged across stocks

for volume groups 1 (low volume), 4, 7, 9, and 10 (high volume) and for all four price volatility groups 1 (low price volatility), 2, 3, and 4 (high price volatility).

The 100-share trades are highlighted in light gray; the 1,000-share trades are highlighted in dark gray. Each subplot also shows a normal distribution with the

pooled average print size mean of −1.35 and standard deviation of 1.33. M is the number of stocks, and N is the average number of prints per day for the

stocks in a given subgroup.
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Figure 11: Trade-weighted distributions of scaled TAQ print sizes, all stocks, April 2014. This figure shows distributions of the logarithms of scaled print sizes

for NYSE and NASDAQ stocks in April 2014. For each trade, the scaled print size is calculated as ln
(

W 2/3
i

· |Xi |/Vi

)

based on the invariance hypothesis, where

|Xi | is the midpoint of the print size bin in shares, Vi is the average daily volume in shares, and Wi measures trading activity as the product of dollar volume and

the daily percentage standard deviation of returns. Ten volume groups are constructed based on average dollar trading volume with thresholds corresponding

to the 30th, 50th, 60th, 70th, 75th, 80th, 85th, 90th, and 95th percentiles of the dollar volume for common NYSE-listed stocks. Four equally spaced volatility

groups are constructed based on effective price volatility, defined as Pi ·σi · (Wi /W∗)−1/3. The subplots show stock-level distributions averaged across stocks

for volume groups 1 (low volume), 4, 7, 9, and 10 (high volume) and for all four price volatility groups 1 (low price volatility), 2, 3, and 4 (high price volatility).

The 100-share trades are highlighted in light gray; the 1,000-share trades are highlighted in dark gray. Each subplot also shows a normal distribution with the

pooled average print size mean of −2.25 and standard deviation of 1.10. M is the number of stocks, and N is the average number of prints per day for the

stocks in a given subgroup.
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Appendix A. Robustness results

This appendix presents robustness results for our data aggregation, variable construction,

and model estimations. 7

Aggregating data into bins. We calculate the percentiles of trade size distributions from the

raw TAQ data without aggregating data into bins. We run our print size regressions with these

percentiles. Given the large volume of the raw transactions data, we produce our results for

three months: April 1993, April 2001, and April 2014 and compare them with the results from

our bin-aggregated dataset. Table A.7 reports for the percentiles from the aggregated data and

Table A.8 reports the results for the percentiles from the raw data. In addition, we calculate

dollar volume from the bins using the midpoint of the bins. Table A.17 shows the dollar volume

computed from the bins and the actual dollar volume. The distribution of these two dollar

volume measures are very comparable. Table A.18 shows estimates from the regression of the

actual dollar volume on the dollar volume from the bins. The coefficient on the dollar volume

from bins is about 0.97 in both subsample periods.

Volatility estimation. We estimate the daily stock volatility in two different ways: 1) using an

ARCH (5) model to predict one-day ahead volatility; 2) computing the daily volatility by using

the standard deviation of 5-day log return cumulative from the previous 50 trading days. In

both cases, average daily volume is also recalculated over the same window with the volatility

for consistency.

Eliminating 10-share stocks. We assess how our results are affected by 10-share stocks by

aiming to remove them from our sample. For each month and stock, we calculate the ratio of

trades that are below 100 shares. For each month, across stocks, we determine the 95th per-

centile of the ratio of trades that are below 100 shares. For each month, we remove the stocks

that have higher ratio of trades that are below 100 shares than the 95th percentile of the ratio of

trades that are below 100 shares.

Annual aggregation. Rather than monthly frequency, we aggregate the data to the annual

frequency and rerun our regressions.

Tables A.9, A.10, A.11, and A.12 report the robustness results for volatility estimations, elim-

ination of 10-share stocks, and annual data aggregation.

Effective volatility results without restriction on ln(W ). We rerun our estimation for Table 5

without a restriction on ln(W ). Table A.13 reports the regression results with and without this

restriction.

Weighting coefficients with their standard errors. We weight the monthly regression coef-

ficients with the inverse of their standard errors. Tables A.14 and A.15 report the results for

weighted coefficients with their standard errors.

Stock and month fixed effects. Instead of month-by-month regressions, we run our number

prints estimation with month and stock fixed effects. Table A.16 reports the results of these

7For simplicity, we report monthly OLS regression results without the second-stage time-trend regressions.
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regressions. In Figure A.12, we plot the stock fixed effect from the first panel of Table A.16 against

the stock level average value of ln(E PV ). Stock fixed-effects and ln(E PV ). display a negative

correlation, especially when stock fixed-effects are computed after controlling for month fixed-

effects. When the effective price volatility is large (the effective tick size is low and the effective

lot size is large), the number of prints is low; this suggests the importance of lot size constraint

in the U.S. stock market.

Adjusting volatility for tick size. Following Harris (1990), we adjust our volatility estimate

for tick-size discreteness. Decimalization of the tick size happened in several stages and these

stages can be different for different stocks. However, for simplicity purposes, we take the tick

size as 1/8 from January 1993 to May 1997, 1/16 from May 1997 to June 2001, and 0.01 after

June 2001. With the tick-size adjustment, we compute the W and rerun our number of prints

regression (without time trends). Table A.19 reports the results of this regression. The coeffi-

cients on ln(w) are very similar to the ones reported in Table 2. In addition, Figure A.13 plots

our estimated coefficients for ln(w) with the ones from Table 2; the difference between the two

series is very small.
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Table A.7

Data aggregation: Bins.

Panel A: April 1993

Trade-weighted Volume-weighted

Mean 20th 50th 80th Mean 20th 50th 80th

Intercept -7.003 -8.383 -7.081 -5.883 -4.158 -5.930 -4.282 -2.803

0.021 0.025 0.024 0.023 0.026 0.023 0.027 0.031

ln(W /W∗) -0.735 -0.795 -0.747 -0.698 -0.507 -0.625 -0.519 -0.426

0.004 0.005 0.004 0.004 0.005 0.004 0.005 0.006

Avg Adj-R2 0.864 0.844 0.837 0.828 0.668 0.786 0.648 0.500

Avg # of Obs 5,623 5,623 5,623 5,623 5,623 5,623 5,623 5,623

Panel B: April 2001

Trade-weighted Volume-weighted

Mean 20th 50th 80th Mean 20th 50th 80th

Intercept -7.743 -8.963 -7.926 -6.763 -5.289 -6.984 -5.549 -3.894

0.012 0.015 0.012 0.012 0.018 0.013 0.019 0.022

ln(W /W∗) -0.720 -0.733 -0.738 -0.712 -0.581 -0.674 -0.611 -0.513

0.002 0.003 0.002 0.002 0.004 0.003 0.004 0.004

Avg Adj-R2 0.942 0.913 0.936 0.941 0.820 0.914 0.816 0.691

Avg # of Obs 6,005 6,005 6,005 6,005 6,005 6,005 6,005 6,005

Panel C: April 2014

Trade-weighted Volume-weighted

Mean 20th 50th 80th Mean 20th 50th 80th

Intercept -9.424 -9.393 -9.392 -9.285 -7.939 -9.358 -9.094 -7.468

0.015 0.019 0.019 0.016 0.034 0.017 0.018 0.025

ln(W /W∗) -0.741 -0.712 -0.715 -0.786 -0.797 -0.751 -0.870 -0.858

0.004 0.005 0.005 0.004 0.009 0.005 0.005 0.007

Avg Adj-R2 0.892 0.832 0.837 0.897 0.657 0.873 0.892 0.805

Avg # of Obs 3,675 3,675 3,675 3,675 3,675 3,675 3,675 3,675
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Table A.8

Data aggregation: No bins.

Panel A: April 1993

Trade-weighted Volume-weighted

Mean 20th 50th 80th Mean 20th 50th 80th

Intercept -7.005 -8.389 -7.106 -5.894 -4.333 -5.936 -4.273 -2.738

0.021 0.025 0.024 0.023 0.024 0.025 0.028 0.031

ln(W /W∗) -0.733 -0.797 -0.750 -0.697 -0.506 -0.625 -0.513 -0.404

0.004 0.005 0.004 0.004 0.004 0.005 0.005 0.006

Avg Adj-R2 0.860 0.840 0.834 0.823 0.698 0.769 0.626 0.471

Avg # of Obs 5,623 5,623 5,623 5,623 5,623 5,623 5,623 5,623

Panel B: April 2001

Trade-weighted Volume-weighted

Mean 20th 50th 80th Mean 20th 50th 80th

Intercept -7.756 -8.965 -7.948 -6.790 -5.449 -7.004 -5.526 -3.825

0.012 0.015 0.013 0.012 0.017 0.015 0.020 0.023

ln(W /W∗) -0.719 -0.736 -0.738 -0.711 -0.577 -0.673 -0.601 -0.487

0.002 0.003 0.003 0.002 0.003 0.003 0.004 0.005

Avg Adj-R2 0.939 0.911 0.931 0.936 0.835 0.898 0.794 0.657

Avg # of Obs 6,005 6,005 6,005 6,005 6,005 6,005 6,005 6,005

Panel C: April 2014

Trade-weighted Volume-weighted

Mean 20th 50th 80th Mean 20th 50th 80th

Intercept -9.768 -10.095 -9.404 -9.290 -8.198 -9.360 -9.047 -7.008

0.013 0.017 0.018 0.016 0.016 0.017 0.019 0.028

ln(W /W∗) -0.748 -0.703 -0.709 -0.786 -0.778 -0.755 -0.877 -0.824

0.004 0.005 0.005 0.004 0.004 0.005 0.005 0.008

Avg Adj-R2 0.920 0.864 0.849 0.898 0.896 0.870 0.885 0.758

Avg # of Obs 3,675 3,675 3,675 3,675 3,675 3,675 3,675 3,675
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Table A.9

Number of prints: Robustness results.

Panel A

Volatility Estimation #1 Volatility Estimation #2

1993-2000 2000-2014 1993-2000 2000-2014

Intercept 5.929 8.207 5.958 8.364

0.030 0.047 0.032 0.051

Ln(W /W∗) 0.681 0.815 0.652 0.791

0.001 0.003 0.002 0.003

Adj-R2 0.879 0.932 0.827 0.904

# of Obs 6,653 4,457 6,605 4,446

Panel B

Eliminating 10-share stocks Annual Aggregation

1993-2000 2000-2014 1993-2000 2000-2014

Intercept 6.147 8.506 6.232 8.542

0.024 0.051 0.101 0.144

Ln(W /W∗) 0.667 0.780 0.709 0.829

0.001 0.003 0.004 0.009

Adj-R2 0.873 0.921 0.889 0.933

# of Obs 6,618 4,331 6,281 4,253
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Table A.10

1993–2000 print sizes: Robustness results.

Panel A: Volatility Estimation #1

Trade-weighted Volume-weighted

Mean 20th 50th 80th Mean 20th 50th 80th

Intercept -6.997 -8.319 -7.119 -6.091 -4.567 -6.216 -4.764 -3.235

0.023 0.020 0.022 0.019 0.035 0.027 0.039 0.039

ln(W /W∗) -0.758 -0.803 -0.771 -0.743 -0.574 -0.678 -0.594 -0.492

0.002 0.003 0.002 0.002 0.003 0.001 0.003 0.004

Avg Adj-R2 0.902 0.887 0.897 0.893 0.684 0.836 0.678 0.519

Avg # of Obs 6,653 6,653 6,653 6,653 6,653 6,653 6,653 6,653

Panel B: Volatility Estimation #1

Trade-weighted Volume-weighted

Mean 20th 50th 80th Mean 20th 50th 80th

Intercept -7.009 -8.440 -7.239 -6.225 -4.723 -6.363 -4.928 -3.397

0.027 0.018 0.020 0.016 0.031 0.023 0.035 0.036

ln(W /W∗) -0.721 -0.763 -0.732 -0.709 -0.554 -0.650 -0.575 -0.479

0.003 0.003 0.002 0.002 0.003 0.002 0.003 0.004

Avg Adj-R2 0.837 0.870 0.879 0.876 0.647 0.812 0.645 0.482

Avg # of Obs 6,605 6,605 6,605 6,605 6,605 6,605 6,605 6,605

Panel C: Eliminating 10-share Stocks

Trade-weighted Volume-weighted

Mean 20th 50th 80th Mean 20th 50th 80th

Intercept -7.239 -8.496 -7.290 -6.261 -7.239 -6.365 -4.888 -3.327

0.016 0.018 0.020 0.018 0.016 0.026 0.039 0.039

ln(W /W∗) -0.741 -0.781 -0.750 -0.725 -0.741 -0.661 -0.579 -0.481

0.002 0.003 0.002 0.002 0.002 0.001 0.003 0.003

Avg Adj-R2 0.896 0.867 0.878 0.880 0.896 0.831 0.679 0.524

Avg # of Obs 6,618 6,618 6,618 6,618 6,618 6,618 6,618 6,618

Panel D: Annual aggregation

Trade-weighted Volume-weighted

Mean 20th 50th 80th Mean 20th 50th 80th

Intercept -7.346 -8.606 -7.420 -6.362 -4.795 -6.485 -4.992 -3.488

0.081 0.076 0.102 0.086 0.123 0.110 0.143 0.125

ln(W /W∗) -0.778 -0.814 -0.792 -0.762 -0.628 -0.700 -0.622 -0.572

0.009 0.015 0.009 0.007 0.008 0.004 0.009 0.011

Avg Adj-R2 0.909 0.884 0.895 0.895 0.716 0.854 0.719 0.557

Avg # of Obs 6,281 6,281 6,281 6,281 6,281 6,281 6,281 6,281
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Table A.11

2001–2014 print sizes: Robustness results.

Panel A: Volatility Estimation #1

Trade-weighted Volume-weighted

Mean 20th 50th 80th Mean 20th 50th 80th

Intercept -8.729 -9.270 -9.015 -8.361 -7.158 -8.738 -7.834 -6.038

0.031 0.011 0.031 0.055 0.064 0.053 0.080 0.080

ln(W /W∗) -0.803 -0.782 -0.795 -0.836 -0.800 -0.821 -0.868 -0.802

0.002 0.003 0.002 0.003 0.007 0.004 0.008 0.010

Avg Adj-R2 0.917 0.881 0.900 0.926 0.781 0.903 0.869 0.763

Avg # of Obs 4,457 4,457 4,457 4,457 4,457 4,457 4,457 4,457

Panel B: Volatility Estimation #1

Trade-weighted Volume-weighted

Mean 20th 50th 80th Mean 20th 50th 80th

Intercept -8.871 -9.445 -9.197 -8.557 -7.372 -8.942 -8.065 -6.268

0.035 0.014 0.035 0.059 0.067 0.056 0.084 0.082

ln(W /W∗) -0.777 -0.751 -0.764 -0.806 -0.779 -0.795 -0.846 -0.784

0.002 0.002 0.002 0.003 0.007 0.004 0.008 0.010

Avg Adj-R2 0.881 0.872 0.891 0.918 0.770 0.894 0.860 0.753

Avg # of Obs 4,446 4,446 4,446 4,446 4,446 4,446 4,446 4,446

Panel C: Eliminating 10-share Stocks

Trade-weighted Volume-weighted

Mean 20th 50th 80th Mean 20th 50th 80th

Intercept -9.020 -9.509 -9.259 -8.623 -7.426 -8.999 -8.120 -6.307

0.034 0.014 0.033 0.057 0.068 0.056 0.084 0.083

ln(W /W∗) -0.766 -0.743 -0.756 -0.798 -0.768 -0.785 -0.835 -0.778

0.002 0.003 0.002 0.002 0.006 0.003 0.007 0.010

Avg Adj-R2 0.905 0.862 0.881 0.912 0.862 0.891 0.860 0.753

Avg # of Obs 4,331 4,331 4,331 4,331 4,331 4,331 4,331 4,331

Panel D: Annual Aggregation

Trade-weighted Volume-weighted

Mean 20th 50th 80th Mean 20th 50th 80th

Intercept -9.048 -9.500 -9.298 -8.674 -7.457 -9.068 -8.186 -6.375

0.089 0.037 0.080 0.168 0.195 0.152 0.250 0.250

ln(W /W∗) -0.801 -0.771 -0.785 -0.842 -0.845 -0.832 -0.899 -0.873

0.005 0.009 0.007 0.008 0.021 0.011 0.025 0.034

Avg Adj-R2 0.911 0.861 0.885 0.923 0.799 0.905 0.895 0.800

Avg # of Obs 4,253 4,253 4,253 4,253 4,253 4,253 4,253 4,253
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Table A.12

Robustness results: Number of prints with effective price volatility.

This table presents Fama–MacBeth estimates µn and aσ from monthly regressions

ln
(

Ni

)

=µn +
2

3
· ln

(

Wi

W∗

)

+aσ · ln

(

Pi ·σi

P∗ ·σ∗
·

( Wi

W∗

)−1/3
)

+ ǫ̃i .

One observation corresponds to each month and each stock i with trading activity Wi , defined as the product of the average daily dollar volume

Vi ·Pi and the percentage standard deviation σi of daily returns. Effective price volatility is defined as Pi ·σi ·

(

Wi
W∗

)−1/3
, with the effective price

volatility of the benchmark stocks P∗ ·σ∗ equal to 40 · 0.02. The value of Ni is the average number of prints per day. The scaling constant

W∗ = (40)(106 )(0.02) corresponds to the measure of trading activity for the benchmark stock with a price of $40 per share, trading volume of 1

million shares per day, and daily volatility of 2%. “Adj-R2” denotes the adjusted R2 averaged over monthly regressions. The table also reports

the average R2 from the restricted regressions with aσ = 0 as well as the average R2 from unconstrained regressions

ln
(

Ni

)

=µn +
2

3
ln

(

Wi

W∗

)

+b1 · ln

(

Vi

(106)

)

+b2 · ln

(

Pi

(40)

)

+b3 · ln

(

σi

(0.02)

)

+ ǫ̃i .

“# of Obs” is the number of stocks averaged over monthly regressions. The estimates are reported for 1993–2000 and 2001–2014 subperiods.

Panel A

Volatility estimation #1 Volatility estimation #2

1993–2000 1993–2000 2000–2014 2000–2014 1993–2000 1993–2000 2000–2014 2000–2014

Intercept 6.083 6.114 7.805 8.234 6.130 6.148 7.848 8.273

0.029 0.025 0.039 0.039 0.030 0.034 0.039 0.044

ln(EPV /EPV∗) -0.438 -0.600 -0.492 -0.594

0.004 0.008 0.006 0.007

ln(V /V∗) 0.120 0.260 0.134 0.266

0.002 0.004 0.003 0.004

ln(P /P∗) -0.359 -0.265 -0.380 -0.275

0.004 0.005 0.005 0.005

ln(σ/σ∗) -0.460 -0.441 -0.557 -0.535

0.020 0.014 0.011 0.009

Avg Adj-R2 0.915 0.922 0.952 0.966 0.870 0.881 0.929 0.946

Avg # of Obs 6,653 6,653 4,457 4,457 6,605 6,605 4,446 4,446

Panel B

Eliminating 10-share stocks Annual aggregation

1993–2000 1993–2000 2000–2014 2000–2014 1993–2000 1993–2000 2000–2014 2000–2014

Intercept 6.271 6.242 7.972 8.350 6.197 6.292 7.939 8.419

0.022 0.028 0.039 0.046 0.095 0.103 0.126 0.138

ln(EPV /EPV∗) -0.473 -0.590 -0.488 -0.589

0.003 0.007 0.007 0.029

ln(V /V∗) 0.122 0.256 0.151 0.276

0.002 0.004 0.008 0.014

ln(P /P∗) -0.372 -0.281 -0.350 -0.228

0.002 0.003 0.016 0.016

ln(σ/σ∗) -0.516 -0.494 -0.451 -0.410

0.012 0.008 0.063 0.040

Avg Adj-R2 0.918 0.928 0.953 0.969 0.932 0.939 0.950 0.970

Avg # of Obs 6,618 6,618 4,331 4,331 4,253 4,253 4,253 4,253
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Table A.13

Number of prints with effective price volatility: Restriction.

Panel A: All Stocks

Restricted Model Unrestricted Model

1993-2000 2000-2014 1993-2000 2000-2014

Intercept 6.270 7.952 6.114 8.216

0.022 0.038 0.029 0.045

Ln(W/W_bar) 0.667 0.667 0.631 0.746

0.002 0.003

Ln(EPV/EPV_bar) -0.471 -0.608 -0.497 -0.546

0.003 0.008 0.002 0.007

Adj-R2 0.918 0.955 0.920 0.965

# of Obs 6,621 4,452 6,621 4,452

Panel B: NYSE/AMEX

Restricted Model Unrestricted Model

1993-2000 2000-2014 1993-2000 2000-2014

Intercept 6.316 7.998 6.049 8.167

0.008 0.049 0.014 0.053

Ln(W/W_bar) 0.667 0.667 0.597 0.741

0.001 0.003

Ln(EPV/EPV_bar) -0.338 -0.475 -0.417 -0.443

0.004 0.010 0.003 0.010

Adj-R2 0.924 0.955 0.935 0.965

# of Obs 2,189 1,759 2,189 1,759

Panel C: NASDAQ

Restricted Model Unrestricted Model

1993-2000 2000-2014 1993-2000 2000-2014

Intercept 6.247 7.942 6.146 8.293

0.031 0.032 0.041 0.038

Ln(W/W_bar) 0.667 0.667 0.646 0.754

0.002 0.002

Ln(EPV/EPV_bar) -0.497 -0.676 -0.510 -0.604

0.006 0.007 0.005 0.006

Adj-R2 0.917 0.959 0.918 0.969

# of Obs 4,432 2,694 4,432 2,694
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Table A.14

Number of prints: Standard-error weighted results.

Panel A

All stocks NYSE/AMEX NASDAQ

1993–2000 2001–2014 1993–2000 2001–2014 1993–2000 2001–2014

Intercept 6.192 8.476 6.125 8.348 6.212 8.586

0.165 0.053 0.131 0.051 0.182 0.057

ln(W /W∗) 0.666 0.785 0.626 0.753 0.680 0.811

0.011 0.007 0.009 0.010 0.012 0.009

Avg Adj-R2 0.873 0.923 0.912 0.933 0.858 0.913

Avg # of Obs 6,621 4,452 2,189 1,759 4,432 2,694

Panel B

All stocks NYSE/AMEX NASDAQ

1993–2000 2000–2014 1993–2000 2000–2014 1993–2000 2000–2014

Intercept 6.290 7.899 6.322 7.948 6.279 7.891

0.097 0.065 0.077 0.108 0.110 0.067

ln(W /W∗) 0.667 0.667 0.667 0.667 0.667 0.667

ln(E PV /E PV∗) -0.473 -0.604 -0.340 -0.483 -0.502 -0.669

0.007 0.007 0.007 0.014 0.010 0.005

Avg Adj-R2 0.918 0.955 0.924 0.955 0.917 0.959

Avg # of Obs 6,621 4,452 2,189 1,759 4,432 2,694
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Table A.15

Print sizes: Standard error weighted results.

Panel A: January 1993 to December 2001

Trade-weighted Volume-weighted

Mean 20th 50th 80th Mean 20th 50th 80th

Intercept -7.263 -8.516 -7.320 -6.296 -4.731 -6.415 -4.944 -3.370

0.201 0.226 0.227 0.186 0.111 0.180 0.125 0.085

ln(W /W∗) -0.738 -0.776 -0.746 -0.722 -0.562 -0.661 -0.581 -0.483

0.013 0.013 0.016 0.014 0.008 0.012 0.009 0.007

Avg Adj-R2 0.896 0.866 0.878 0.880 0.686 0.830 0.679 0.524

Avg # of Obs 6,621 6,621 6,621 6,621 6,621 6,621 6,621 6,621

Panel B: January 2001 to December 2014

Trade-weighted Volume-weighted

Mean 20th 50th 80th Mean 20th 50th 80th

Intercept -8.983 -9.508 -9.221 -8.566 -7.267 -8.962 -8.123 -6.271

0.056 0.063 0.063 0.053 0.134 0.055 0.107 0.096

ln(W /W∗) -0.778 -0.760 -0.771 -0.805 -0.756 -0.791 -0.834 -0.764

0.012 0.012 0.013 0.010 0.016 0.008 0.007 0.009

Avg Adj-R2 0.907 0.866 0.884 0.913 0.778 0.892 0.862 0.760

Avg # of Obs 4,452 4,452 4,452 4,452 4,452 4,452 4,452 4,452
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Table A.16

Number-of-prints regressions with stock and month fixed effects.

This table presents the results from the panel regression:

ln
(

Ni

)

= µn +α · ln

(

Wi

W∗

)

+ ǫ̃i .

The panel regressions are run with and without stock and month fixed effects. The White standard errors are reported below the coefficient

estimates.

Panel A: All stocks: February 1993 to December 2014

Intercept 7.828 6.295 7.479 5.543

0.002 0.008 0.003 0.007

ln(W /W∗) 0.837 0.741 0.746 0.595

0.000 0.000 0.001 0.000

Stock Fixed Effects No No Yes Yes

Month Fixed Effects No Yes No Yes

Avg Adj-R2 0.78 0.94 0.87 0.97

Avg # of Obs 1,383,857 1,383,857 1,383,857 1,383,857

ln(W /W∗)=2/3 p < 0.001 p < 0.001 p < 0.001 p < 0.001

Panel B: All stocks: February 1993 to December 2000

Intercept 6.221 6.146 5.714 5.173

0.002 0.002 0.003 0.006

ln(W /W∗) 0.683 0.666 0.567 0.517

0.000 0.002 0.001 0.001

Stock Fixed Effects No No Yes Yes

Month Fixed Effects No Yes No Yes

Avg Adj-R2 0.87 0.89 0.93 0.95

Avg # of Obs 634,322 634,322 634,322 634,322

ln(W /W∗)=2/3 p < 0.001 p = 0.0242 p < 0.001 p < 0.001

Panel C: All stocks: January 2001 to December 2014

Intercept 8.551 8.439 8.050 6.226

0.002 0.001 0.003 0.007

ln(W /W∗) 0.818 0.785 0.669 0.587

0.000 0.000 0.001 0.001

Stock Fixed Effects No No Yes Yes

Month Fixed Effects No Yes No Yes

Avg Adj-R2 0.88 0.93 0.92 0.97

Avg # of Obs 749,535 749,535 749,535 749,535

ln(W /W∗)=2/3 p < 0.001 p < 0.001 p = 0.0052 p < 0.001
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Table A.17

Volume comparison statistics.

Panel A: 1993–2000

5th 25th 50th 75th 95th Mean Std Dev

Dollar Volume ($ 1000) 9.01 55.35 275.40 1,749.73 21,001.95 6,186.11 47,661.55

Dollar Volume from Bins ($ 1000) 8.95 55.68 278.68 1,781.85 21,571.51 6,368.07 49,229.03

Panel B: 2001–2014

5th 25th 50th 75th 95th Mean Std Dev

Dollar Volume ($ 1000) 11.96 123.96 1,365.52 10,692.92 108,488.27 24,407.87 122,187.42

Dollar Volume from Bins ($ 1000) 12.11 125.85 1,389.41 10,902.08 110,867.82 24,914.80 124,924.79

6
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Table A.18

Volume comparison regression.

Dollar Volume

1993–2000 2001–2014

Intercept 68,111 220,509

55,022 162,649

Dollar Volume From Bins 0.9682 0.9715

0.0099 0.0071

# of obs. 634,322 749,535

Adj-R2 0.9795 0.9867
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Table A.19

Regression after tick-size adjustment.

1993–2000 2001–2014

Intercept 6.1390 8.5132

0.0244 0.0513

ln(W _T ick_Ad j /W ∗) 0.6619 0.7900

0.0010 0.0033

# of Stocks 6502 4448

Adj-R2 0.867 0.923
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Figure A.12: Stock fixed effects.
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Figure A.13: Number-of-prints regression coefficients with tick-size adjustment.
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