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Abstract

In this paper, we study how the intertemporal supply/demand of a security affects trading strategy.

We develop a general framework for a limit order book market to capture the dynamics of supply/

demand. We show that the optimal strategy to execute an order does not depend on the static

properties of supply/demand such as bid–ask spread and market depth, it depends on their dynamic

properties such as resilience: the speed at which supply/demand recovers to its steady state after a

trade. In general, the optimal strategy is quite complex, mixing large and small trades, and can

substantially lower execution cost. Large trades remove the existing liquidity to attract new liquidity,

while small trades allow the trader to further absorb any incoming liquidity flow.
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1. Introduction

The supply/demand of financial securities is in general not perfectly elastic.2

What trading strategy is optimal in a market with limited supply/demand or liquidity?
How do different aspects of supply/demand affect the optimal strategy? How significant
are cost savings from the optimal trading strategy? Traders face these questions each time
when they trade. The answers to these questions are thus essential for our understanding of
how market participants behave, how liquidity is provided and consumed, how it affects
security prices, and more generally, how securities markets function.
We approach this problem by focusing on the optimal strategy of a trader who has to

execute an order over a given time period.3 This problem is also referred to as the optimal
execution problem.4 Previous work has provided valuable insights about how liquidity
affects trading behavior of market participants (e.g., Bertsimas and Lo, 1998; Almgren and
Chriss, 1999; Huberman and Stanzl, 2005). This literature tends to view supply/demand as
a static object when analyzing their effect on optimal trading strategies. In particular, it
describes the demand or supply of a security facing a large trade (depending on its sign) by
specifying an instantaneous price impact function (i.e., a time-insensitive demand/supply
schedule). Liquidity is, however, dynamic by its nature. Our contribution is to show that it
is the dynamic properties of supply/demand such as its time evolution after trades, rather
than its static properties, such as spread and depth, that are central to the cost of trading
and the design of optimal strategy.
We propose a general framework to model the dynamics of supply/demand. We

consider a limit order book market, in which the supply/demand of a security is
represented by the limit orders posted on the ‘‘book’’ and trade occurs when buy and sell
orders match. We describe the shape of the limit order book and especially how it evolves
over time to capture the intertemporal nature of supply/demand that a large trader faces.
We choose to focus on the limit order book market merely for convenience. Our main goal
is to demonstrate the importance of supply/demand dynamics in determining the optimal
trading strategy, and our main conclusions remain applicable to other market structures.
Our model explicitly incorporates three basic characteristics of liquidity documented

empirically: bid–ask spread, market depth, and resilience. The first two features — bid–ask
spread and market depth — capture the static aspects of liquidity. They are related to the
shape of the limit order book, which determines how much the current price moves in
response to a trade. Bid–ask spread and market depth therefore are key for determining
the transaction cost that the trader incurs upon the execution of his trades instantaneously.
The third feature — resilience — reflects the dynamic aspect of liquidity. Resilience is
2See, for example, Scholes (1972), Shleifer (1986), Holthausen, Leftwitch, andMayers (1987, 1990), Kaul, Mehrotra,

and Morck (2000), and more recently, Greenwood (2005) for empirical evidence on imperfect elasticity in the supply/

demand of individual securities. Extensive theoretical work justifies such an inelasticity based on market frictions and

asymmetric information (e.g., Kyle, 1985; Grossman and Miller, 1998; Vayanos, 1999, 2001).
3Ideally, we should consider both the optimal size of an order and its execution, taking into account the

underlying motives to trade (e.g., return, risk, preferences, and constraints) and the costs to execute trades.

The diversity in trading motives makes it difficult to tackle such a problem at a general level. Given that in practice

the execution of trades is often separated from the investment decisions, we focus on the execution problem as an

important and integral part of a more general problem of optimal trading behavior.
4The relevance of this problem for practitioners is highlighted in Chan and Lakonishok (1995, 1997), Keim and

Madhavan (1995, 1997), and Obizhaeva (2008), among others.
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related to how future limit-order book evolves in response to the current trade. We assume
that initial price impact gradually dissipates over time as new liquidity providers step in to
replenish the book. The further away the current quotes are from steady-state levels, the
more aggressive liquidity providers post new orders.

We show that the optimal strategy crucially depends on the dynamic properties of the
limit order book. The strategy consists of an initial large trade, followed by a sequence of
small trades, and a final discrete trade to finish the order. The combination of large and
small trades for the optimal execution strategy is in a sharp contrast to the simple strategies
of splitting a order evenly into small trades, as suggested in previous studies (e.g.,
Bertsimas and Lo, 1998; Almgren and Chriss, 1999). The intuition behind the complex
trading pattern is simple. The initial large trade is aimed at pushing the limit order book
away from its steady state in order to attract new liquidity providers. The size of the large
trade is chosen optimally to draw sufficient number of new orders while not incurring too
high transaction costs. The subsequent small trades then pick off incoming orders and keep
the inflow at desirable prices. A final discrete trade finishes off any remaining order at the
end of the trading horizon when future demand/supply is no longer of concern.

Surprisingly, the optimal strategy and the cost saving depend primarily on the dynamic
properties of supply/demand and is not very sensitive to their static properties described by
instantaneous price-impact function, which has been the main focus in previous work.
In particular, the speed at which the limit order book rebuilds itself after being hit by a
trade, i.e., the resilience of the book or its replenish rate, plays a critical role in determining
the optimal execution strategy and the cost it saves.

Moreover, we find that the cost savings from the optimal execution strategy can be
substantial. As an illustration, let us consider the execution of an order of the size 20 times
the market depth within a one-day horizon. Under the formulation of static supply/
demand function in Bertsimas and Lo (1998) and Almgren and Chriss (1999), the proposed
strategy is to spread the order evenly over time. However, when we take into account the
dynamics of supply/demand, in particular the half-time for the limit-order book to recover
after being hit by trades, the execution cost of the order under the optimal strategy is lower
than the even strategy. For example, if the half-life for the book to recover is 0.90 minutes,
which is relatively short, the cost saving is 0.33%. It becomes 1.88% when the half-life of
recovery is 5.40 minutes and 7.41% when the half-life of recovery is 27.03 minutes. Clearly,
cost savings increase and become substantial when the book’s recovery time increases.

Many authors have studied the problem of optimal order execution. For example,
Bertsimas and Lo (1998) propose a linear price impact function and solve for the optimal
execution strategy to minimize the expected cost of executing a given order. Almgren and
Chriss (1999, 2000) include risk considerations in a similar setting.5 The framework used in
these studies relies on static price impact functions at a set of fixed trading times. Fixing
trading times is clearly undesirable because the timing of trades is an important choice
variable and should be determined optimally. More importantly, the pre-specified static
price impact functions fail to capture the intertemporal nature of supply/demand. They
ignore how the path of trades influences the future evolution of the book. For example,
Bertsimas and Lo (1998) assume a linear static price impact function. Consequently,
the overall price impact of a sequence of trades depends only on their total size and is
5See also Grinold and Kahn (2000), Subramanian and Jarrow (2001), Dubil (2002), and Almgren (2003), among

others.
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independent of their distribution over time. Moreover, the execution cost becomes strategy
independent when more frequent trades are allowed. Almgren and Chriss (1999, 2000) and
Huberman and Stanzl (2005) introduce a temporary price impact as a modification, which
depends on the pace of trades. Temporary price impact adds a dynamic element to the
price impact function by penalizing speedy trades. This approach, however, restricts the
execution strategy to continuous trades, which is in general sub-optimal.
What the previous analysis does not fully capture is how liquidity replenishes in the

market, as well as how it interacts with trades. Our framework explicitly describes this
process by directly modeling the book dynamics in a limit order book market, which, as we
show, is critical in determining the optimal execution strategy.6

Our description of the limit order book dynamics relies on an extensive empirical
literature. For example, using data from the Paris Bourse, Biais, Hillion and Spatt (1995)
have shown empirically that market resilience is finite (e.g., Coppejans, Domowitz, and
Madhavan, 2004, Ranaldo, 2004, Degryse, De Jong, Van Ravenswaaij, and Wuyts, 2005,
Large, 2007, and Kempf, Mayston, and Yadav, 2009).
In addition to the empirical evidence, the dynamic behavior of the book we try to

capture is also consistent with the equilibrium models of the limit order book markets.
The idea of liquidity being consumed by a trade and then replenished as additional
liquidity providers attempt to benefit is behind most of these models. For example,
Foucault (1999), Foucault, Kadan, and Kandel (2005), and Goettler, Parlour, and Rajan
(2005) build theoretical models of limit-order book markets, which exhibit different but
finite levels of resilience in equilibrium, depending on the characteristics of market
participants.7 The level of resilience reflects the amount of hidden liquidity in the market.
Our framework allows us to capture this dynamic aspect of the supply/demand in a flexible
way and to examine the optimal execution strategy under more realistic market conditions.
Our analysis is partial equilibrium in nature, taking the dynamics of the limit order book

as given. Although we do not attempt to provide an equilibrium justification for the
specific limit order book dynamics used in the paper, our framework allows more general
dynamics. In follow-up research, several authors have used this framework to incorporate
richer book behavior. For example, Alfonsi et al., (2010) consider general, but continuous
shapes of the limit order book and Predoiu, Shaikhet, and Shreve (2010) allow discrete
orders and more general dynamics. Endogenizing the limit order book dynamics in a full
equilibrium setting is certainly desirable, but challenging. Existing equilibrium models,
such as those mentioned above, have to severely limit the set of admissible order-placement
strategies. For example, Foucault, Kadan, and Kandel (2005), Ros-u (2008, 2009) only
allow orders of a fixed size and Goettler, Parlour, and Rajan (2005) focus on one-shot
strategies. These simplifications are helpful in obtaining certain simple properties of the
book, but they are quite restrictive when analyzing the optimal trading strategy. A more
general and realistic equilibrium model must allow general strategies. From this
6In concurrent work, Esser and Monch (2005) also consider the effect of finite market resilience. But instead of

considering the optimal strategy in the general strategy space, they only consider iceberg strategies.
7Back and Baruch (2007) consider a full equilibrium model of a limit order market in which an insider trades

strategically with liquidity traders who choose between block orders or working orders to save cost. See, also,

Goettler, Parlour, and Rajan (2009). What we focus on, as well as the papers mentioned above, is the interaction

among the liquidity traders. In particular, we look at the interaction between a large strategic liquidity trader and

a set of small non-strategic liquidity providers, whose behavior is described by the dynamics of the book in a

reduced form.
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perspective, our analysis, namely solving the optimal execution strategy under general
supply/demand dynamics, is a key step in this direction.

The rest of the paper is organized as follows. Section 2 states the optimal execution
problem. Section 3 introduces a limit order book framework. Section 4 shows that the
conventional setting in previous work can be viewed as a special case of our framework,
involving unrealistic assumptions and undesirable properties. Section 5 provides the
solution for a problem in the discrete time. Section 6 provides the solution for a problem in
the continuous time. Section 7 analyzes the properties and cost savings of optimal
strategies. Section 8 discusses extensions. Section 9 concludes. All proofs are given in the
Appendix.
2. Statement of the problem

The problem we are interested in is how a trader optimally executes a given order.
We assume that the trader has to buy X0 units of a security over a fixed time period ½0,T �.
Suppose that the trader completes the order in N þ 1 trades at times t0,t1, . . . ,tN , where
t0 ¼ 0 and tN ¼ T . Let xtn

denote the trade size for the trade at tn. We then have

XN

n ¼ 0

xtn
¼X0: ð1Þ

A strategy to execute the order is given by the number of trades, N þ 1, the set of times to
trade, f0rt0,t1, . . . ,tN�1,tNrTg and trade sizes fxt0 ,xt1 , . . . ,xtN

: xtn
Z0 8n and ð1Þg. Let

YD denote the set of these strategies:

YD ¼ fxt0 ,xt1 , . . . ,xtN
g : 0rt0,t1, . . . ,tNrT ; xtn

Z08n;
XN

n ¼ 0

xtn
¼X0

( )
: ð2Þ

Here, we have assumed that the strategy set consists of execution strategies with a finite
number of trades at discrete times. This is done merely for easy comparison with previous
work. Later we will expand the strategy set to allow an uncountable number of trades over
time as well (Section 6).

Let Pn denote the average execution price for trade xtn
. The trader chooses his execution

strategy over a given trading horizon T to minimize the expected total cost of his purchase:

min
x2YD

E0

XN

n ¼ 0

Pnxn

" #
: ð3Þ

This objective function implies that the risk-neutral trader cares only about the expected
value but not the uncertainty of the total cost. Later, we will further incorporate risk
considerations (in Section 8).

It is important to recognize that the execution price Pn for trade xn in general will
depend not only on xn, the current trade size, but also all past trades. Such a dependence
reflects two dimensions of the price impact of trading. First, it changes the security’s
current supply/demand. For example, after a purchase of x units of the security at the
current price of P, the remaining supply of the security at P usually decreases. Second, a
change in current supply/demand can affect future supply/demand and therefore the costs
for future trades. In other words, the price impact is determined by the full dynamics of
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supply/demand in response to a trade. In order to fully specify and solve the optimal
execution problem, we thus need to properly model the supply/demand dynamics.
3. Limit order book and supply/demand dynamics

The actual supply/demand of a security and its dynamics depend on the actual trading
process. From different markets, the trading process varies significantly, ranging from a
specialist market, a dealer market to a centralized electronic market with a limit order
book. In this paper, we consider the limit order book market. However, our analysis is of a
general nature, and we expect our results to be relevant for other market structures as well.
3.1. Limit order book

A limit order is an order to trade a certain number of shares of a security at a given
price. In a market operated through a limit order book (LOB), traders post their supply/
demand in the form of limit orders to an electronic trading system.8 A trade occurs when
an order, say a buy order, enters the system at the price of an opposite order on the book,
in this case a sell order. The collection of all limit orders posted can be viewed as the total
demand and supply in the market.
Let qAðPÞ be the density of limit orders to sell at price P, and let qBðPÞ be the density of

limit orders to buy at price P. The number of sell orders in a small price interval ½P,Pþ dPÞ

is qAðPÞ dP. Typically, we have

qAðPÞ ¼
þ, PZA

0, PoA

(
and qBðPÞ ¼

0, P4B,

þ, PrB,

(

where AZB are the best ask and bid prices, respectively. We define

V ¼ ðAþ BÞ=2, s¼A�B, ð4Þ

where V is the mid-quote price and s is the bid–ask spread. Then, A¼V þ s=2 and
B¼V�s=2. Because we are considering the execution of a large buy order, we focus on the
upper half of the LOB and simply drop the subscript A.
In order to model the execution cost for a large order, we need to specify the initial LOB

and how it evolves after been hit by a series of buy trades. Let the LOB (the upper half of it)
at time t be qðP;Ft;Zt; tÞ, where Ft denotes the fundamental value of the security and Zt

represents the set of state variables that may affect the LOB such as past trades.
We consider here a simple model for the LOB that captures its dynamic nature. This model
allows us to illustrate the importance of supply/demand dynamics for analyzing the
optimal execution problem. We discuss below how to extend this model to better fit the
empirical LOB dynamics (Section 8).
8The number of exchanges adopting electronic trading platforms has been increasing. Examples for the stock

market include NYSE’s OpenBook program, NASDAQ’s SuperMontage, Toronto Stock Exchange, Vancouver

Stock Exchange, Euronext (Paris, Amsterdam, Brussels), London Stock Exchange, Copenhagen Stock Exchange,

Deutsche Borse, and Electronic Communication Networks. Examples for the fixed income market include eSpeed,

Euro MTS, BondLink, and BondNet. Examples for the derivatives market include Eurex, Globex, ISE, and

Matif.
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The fundamental value Ft follows a Brownian motion reflecting the fact that, in the
absence of any trades, the mid-quote price may change due to news about the fundamental
value. Thus, Vt¼Ft in the absence of any trades, and the LOB maintains the same shape
except that the mid-point, Vt, is changing with Ft. For simplicity, we assume that the only
set of relevant state variables Zt is the history of past trades, denoted by x½0,t�.

At time 0, the mid-quote is V0 ¼ F0 and the LOB has a simple block-shape density,

q0ðPÞ � qðP;F0; 0; 0Þ ¼ q1fPZA0g,

where A0 ¼ F0 þ s=2 is the initial ask price and 1fzZag is an indicator function:

1fzZag ¼
1, zZa,

0, zoa:

(

In other words, q0 is a step function of P with a jump from zero to q at the ask price
A0 ¼V0 þ s=2¼ F0 þ s=2. Panel A of Fig. 1 shows the shape of the book at time 0.

Now we consider a buy trade of size x0 shares at t¼0. The trade will ‘‘eat off’’ all the sell
orders with prices from F0 þ s=2 up to A0þ , where A0þ is given byZ A0þ

F0þs=2
q dP¼ x0:

From this formula, we find that the new ask price is A0þ ¼ F0 þ s=2þ x0=q. The average
execution price for trade x0 is linear in the size of trade and is equal to
P ¼ F0 þ s=2þ x0=ð2qÞ. Thus, the block shape of the LOB is consistent with the linear
price impact function assumed in previous work. This is also the main reason we adopted
this specification here. Right after the trade, the limit order book is described as

q0þðPÞ � qðP;F0;Z0þ ; 0þÞ ¼ q1fPZA0þ g
,

q

Panel A Panel B Panel C Panel D Panel E

p

Vt+s/2 Vt+s/2 Vt+s/2 Vt+s/2

qt(p) qt(p) qt(p) qt(p) qt(p)

q

p

At

At
At

At=

Vt+s/2
At=

q

p

q

p

q

p

t=t0 t=t0+ t=t1 t=t2 t=t3

Fig. 1. The limit order book and its dynamics. This figure illustrates how the sell side of the limit-order book

evolves over time in response to a buy trade. Before the trade at time t0 ¼ 0, the limit-order book is full at the ask

price A0 ¼V0 þ s=2, which is shown in the first panel from the left. The trade of size x0 at t¼0 ‘‘eats off’’ the

orders on the book with the lowest prices and pushes the ask price up to A0þ ¼ ðF0 þ s=2Þ þ x0=q, as shown in the

second panel. During the following periods, new orders will arrive at the ask price At. These orders fill up the book

and lower the ask price until this price converges to its new steady state At ¼ Ft þ lx0 þ s=2, as shown in the last

panel on the right. For clarity, we assume that there are no fundamental shocks during this period.
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where A0þ ¼ F0 þ s=2þ x0=q is the new ask price. Orders at prices below A0þ have all been
executed. The book is left with sell limit orders at prices above (including) A0þ . Panel B of
Fig. 1 plots the limit order book right after the trade.
3.2. Limit order book dynamics

We next specify how the LOB evolves over time after being hit by a trade. This amounts
to describing how new sell limit orders arrive to fill the book. First, we need to specify the
impact of the trade on the mid-quote price. Usually, the mid-quote price will be shifted up
by the trade. We assume that the shift in the mid-quote price is linear in the size of the total
trade. That is,

V0þ ¼ F0 þ lx0,

where 0rlr1=q and lx0 corresponds to the permanent price impact of trade x0. If initial
trade x0 at t¼0 is not followed by other trades and if there are no shocks to the
fundamentals, then as time t goes to infinity, the limit order book eventually converges to
its new steady state:

q1ðPÞ ¼ q1fPZA1g,

where the new mid-quote V1 ¼ F0 þ lx0 and ask price A1 ¼Vt þ s=2. Next we need
to specify how the limit-order book converges to its steady state. Note that right after
the trade, the ask price is A0þ ¼ F0 þ s=2þ x0=q, while in the steady state it is A1 ¼

F0 þ s=2þ lx0. The difference between the two is A0þ�A1 ¼ x0ð1=q�lÞ. We assume that
the limit-order book converges to its steady state exponentially,

qtðPÞ ¼ q1fPZAtg, ð5Þ

where

At ¼Vt þ s=2þ x0ke�rt, k¼ 1=q�l, ð6Þ

Vt ¼V0þ in the absence of new trades and changes in fundamental Ft, and parameter rZ0
corresponds to the convergence speed, which measures the ‘‘resilience’’ of the LOB.
If we define Dt being the deviation of current ask price At from its steady state level

Vt þ s=2,

Dt ¼At�Vt�s=2, ð7Þ

then Eqs. (5) and (6) imply that after a buy trade x0, the new sell limit orders will start
coming into the book at the new ask price At at the rate of rqDt. Thus, the further the
current ask price is from its steady state, the more aggressively liquidity providers step in
and post new orders to offer replenished liquidity. Panel C to Panel E in Fig. 1 illustrate
the time evolution of the LOB after a buy trade.
We can easily extend the LOB dynamics to allow multiple trades and shocks to the

fundamental value. Let n(t) denote the number of trades during interval ½0,tÞ. Define a
trading sequence with n(t) trades at times t1, . . . ,tnðtÞ of size xti

. Let Xt be the remaining
order to be executed at time t, before trading at time t occurs. We have XTþ ¼ 0 and

Xt ¼X0�
X
tnot

xtn
: ð8Þ
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If X0�Xt is the total amount of purchase during ½0,tÞ, then the mid-quote Vt at any time t is

Vt ¼ Ft þ lðX0�XtÞ ¼ Ft þ l
XnðtÞ
i ¼ 0

xti
: ð9Þ

The ask price at any time t is

At ¼Vt þ s=2þ
XnðtÞ
i ¼ 0

xti
ke�rðt�tiÞ, ð10Þ

and the limit order book is given by (5). The above description can be extended to include
sell orders, which may occur in the meantime shifting the mid-quote Vt. But if they are not
predictable, we can simply omit them, as they will not affect our analysis.

Before we go ahead with the LOB dynamics and examine its implications for execution
strategy, several comments are in order. First, the key feature of the LOB is its finite
resilience, which is captured by r, the refresh rate of the book. This is motivated by a range
of empirical evidence such as those documented in Biais, Hillion, and Spatt (1995), Hamao
and Hasbrouck (1995), and Coppejans, Domowitz, and Madhavan (2004), among others.
Second, although the LOB dynamics specified here is taken as given, without additional
equilibrium justification, its qualitative behavior, namely, the finite resilience, is consistent
with those obtained in simple equilibrium models of LOB markets considered by Foucault,
Kadan, and Kandel (2005) and Goettler, Parlou, and Rajan (2005).9 Third, existing
equilibrium models are inadequate for analyzing the problem of execution as they limit the
admissible strategies severely by restricting trade size and frequency. Thus, in order to
develop a full equilibrium model for the execution problem, we first need to know its
solution under general demand/supply dynamics and then arrive at equilibrium dynamics.
From this point of view, this paper focuses on the first part of this undertaking. Fourth,
our setting is very flexible in allowing an arbitrary shape of the book and rich dynamics for
its time evolution in response to an arbitrary set of trades. Since the main goal of this paper
is to demonstrate the importance of supply/demand dynamics in determining the optimal
trading behavior rather than obtaining a general solution to the problem, we narrow down
our analysis to a specific case of the general setting. The qualitative conclusions we obtain
from the simple case remain robust when more general forms of the book and its dynamics
are allowed, as follow-up research has shown (e.g., Alfonsi et al., 2010).
3.3. Execution cost

Given the LOB dynamics, we can describe the total cost of an execution strategy for a
given order X0. Let xtn

denote the trade at time tn, and Atn
denote the ask price at time tn

prior to this trade. Since the evolution of the ask price At in (10) is not continuous, we denote
by At the left limit of At, At ¼ lims-t�As, i.e., the ask price before the trade at time t.
9The literature on the strategic behavior of traders submitting limit orders include Glosten (1994), Rock (1996),

Seppi (1997), Harris (1998), Parlour (1998), Foucault (1999), Sandas (2001), Parlour and Seppi (2003), Ros-u

(2008, 2009). Cao, Hansch, and Wang (2003), Bloomfield, O’Hara, and Saar (2004), Ranaldo (2004), and Harris

and Panchapagesan (2005), also show that traders indeed use the rich information revealed by the book when

deciding on their order submissions.
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The same convention is followed for Vt as well. The cost for a single trade xtn
is then given by

cðxtn
Þ ¼

Z xtn

0

Ptn
ðxÞ dx, ð11Þ

where Pt(x) is defined by equation:

x¼

Z PtðxÞ

At

qtðPÞ dP: ð12Þ

For the block-shaped LOB given in (5), we have PtðxÞ ¼At þ x=q and

cðxtn
Þ ¼ ½Atn

þ xtn
=ð2qÞ�xtn

: ð13Þ

The total cost of N þ 1 trades of size xtn
, n¼ 0,1, . . . ,N, is

PN
n ¼ 0 cðxtn

Þ. Thus, the optimal
execution problem (3) is reduced to

min
x2YD

E0

XN

n ¼ 0

½Atn
þ xtn

=ð2qÞ�xtn

" #
, ð14Þ

under the LOB dynamics given in (9) and (10).
4. Conventional models as a special case

Previous work on the optimal execution strategy usually uses a discrete-time setting with
fixed time intervals (e.g., Bertsimas and Lo, 1998; Almgren and Chriss, 1999, 2000). Such a
setting, however, avoids the question of how to determine the optimal trading times. In this
section, we show that it represents a special case of our framework with specific restrictions
on the LOB dynamics, which lead to crucial limitations.
4.1. Conventional setup

We first consider a simple discrete-time setting proposed by Bertsimas and Lo (1998),
which captures the basic features of the models used in earlier work.
In such a setting, the trader trades at fixed equally spaced time intervals, nt, where

t¼ T=N and n¼ 0,1, . . . ,N, while trading horizon T and the number of trades N are
given. Each trade has an impact on the price, which will affect the total cost of the trade
and all future trades. Most models assume a linear price-impact function of the following
form:

Pn ¼ Pn�1 þ lxn þ un ¼ ðFn þ s=2Þ þ l
Xn

i ¼ 0

xi, ð15Þ

where the subscript n denotes the n-th trade at tn ¼ nt, Pn is the average price at which
trade xn is executed with P0� ¼ F0 þ s=2, l is the price impact coefficient, and un is an i.i.d.
random variable with a mean of zero and a variance of s2t. These assumptions are
reasonable given the conclusion of Huberman and Stanzl (2004) that in the absence of
quasi-arbitrage, permanent price-impact functions must be linear. In the second equation,
we have set Fn ¼ F0 þ

Pn
i ¼ 0 ui. Parameter l captures the permanent price impact of a trade.
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The trader wishing to execute an order of size X0 solves the following problem:

min
fx0,x1,...,xN g

E0

XN

n ¼ 0

Pnxn

" #
¼ ðF0 þ s=2ÞX0 þ l

XN

n ¼ 0

XnðXnþ1�XnÞ, ð16Þ

where Pn is defined in (15) and Xn is a number of shares left to be acquired at time tn (before
trade xtn

) with XNþ1 ¼ 0.
As shown in Bertsimas and Lo (1998), given that the objective function is quadratic in

xn, it is optimal for the trader to split his order into small trades of equal sizes and execute
them at regular intervals over the fixed period of time:

xn ¼
X0

N þ 1
, ð17Þ

where n¼ 0,1, . . . ,N.
4.2. The continuous-time limit

Although the discrete-time setting with a linear price impact function gives a simple
and intuitive solution, it leaves a key question unanswered, namely, what determines
the time-interval between trades. An intuitive way to address this question is to take the
continuous-time limit of the discrete-time solution (i.e., to let N go to infinity). However, as
Huberman and Stanzl (2005) point out, the solution to the discrete-time model (16) does
not have a well-defined continuous-time limit. In fact, as N-1, the cost of the trades as
given in (16) approaches the following limit of:

ðF0 þ s=2ÞX0 þ ðl=2ÞX 2
0 :

This limit depends only on the total trade size X0 and not on the actual trading strategy
itself. Thus, for a risk-neutral trader, the execution cost with continuous trading is a fixed
number and any continuous strategy is as good as another. Consequently, the discrete-time
model does not have a well-behaved continuous-time limit.10 The intuition is that a trader
can simply walk up the supply curve, and the speed of his trading is irrelevant. Without
increasing the cost, the trader can choose to trade intensely at the very beginning and
complete the whole order in an arbitrarily small period. For example, if the trader becomes
slightly risk averse, he will choose to finish all the trades right at the beginning, irrespec-
tive of their price impact.11 Such a situation is clearly undesirable and economically
unreasonable.
10In taking the continuous-time limit, we have held l constant. This is, of course, unrealistic. For different t, l
can well be different. But the problem remains as long as l has a finite limit when t-0.

11As N-1, the objective function to be minimized for a risk-averse trader with a mean–variance preference

approaches the following limit:

Cðx½0,T �Þ ¼ E

Z T

0

Pt dX t

� �
þ
1

2
a Var

Z T

0

Pt dX t

� �
¼ ðF0 þ s=2ÞX0 þ ðl=2ÞX 2

0 þ
1

2
as2

Z T

0

X 2
t dt,

where a40 is the risk-aversion coefficient and s is the price volatility. The trader cares not only about expected

execution costs but also its variance, which is given by the last term. Only variance of the execution cost depends

on the strategy. The optimal strategy is to choose an L-shaped profile for the trades, i.e., to trade with infinite

speed at the beginning, thus making the variance term zero.
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4.3. A special case of our framework

We can see the limitations of the conventional model by considering it as a special case
of our framework. Indeed, we can specify the parameters in the LOB framework so that it
will be equivalent to the conventional setting. First, we set the trading times at fixed
intervals: tn ¼ nt, n¼ 0,1, . . . ,N. Next, we make the following assumptions about the LOB
dynamics as described in (5) and (9):

q¼ 1=ð2lÞ, l¼ l, r¼1, ð18Þ

where the second equation simply states that the price impact coefficient in the LOB
framework is set to be equal to its counterpart in the conventional setting. These restrictions
imply the following dynamics for the LOB. As it follows from (10), after the trade xn at tn

(tn ¼ nt), the ask price Atn
jumps from level Vtn

þ s=2 to level Vtn
þ s=2þ 2lxn. Since

resilience is infinite, over the next period, ask price comes all the way down to the new steady
state level of Vtn

þ s=2þ lxn (assuming no fundamental shocks from tn to tnþ1). Thus, the
dynamics of ask price Atn

is equivalent to the dynamics of Ptn
in (15).

For the parameters in (18), the cost for trade xtn
is given in (13), which becomes

cðxtn
Þ ¼ ½Ftn

þ s=2þ lðX0�Xtn
Þ þ lxtn

�xtn
,

which is the same as the trading cost in the conventional model (16). Thus, the
conventional model is a special case of the LOB framework with the parameters in (18).
The main restrictive assumption we have to make to obtain the conventional setup is

r¼1. This assumption means that the LOB always converges to its steady state before
the next trading time. This is not crucial if the time between trades is held fixed. If the time
between trades is allowed to shrink, this assumption becomes unrealistic. It takes time for
the new limit orders to come in to fill up the book again. In reality, the shape of the limit
order book after a trade depends on the flow of new orders as well as the time elapsed. As
the time between trades shrinks to zero, the assumption of infinite recovery speed becomes
less reasonable and gives rise to the problems in the continuous-time limit of the
conventional model.
4.4. Temporary price impact

This problem has led several authors to modify the conventional setting. He and
Mamaysky (2005), for example, directly formulate the problem in continuous-time and
impose fixed transaction costs to rule out any continuous trading strategies. Similar to the
more general price impact function considered by Almgren and Chriss (1999, 2000) and
Huberman and Stanzl (2005) proposes a temporary price impact of a particular form to
penalize high-intensity continuous trading. Both of these modifications limit us to a subset
of feasible strategies, which is in general sub-optimal. Given its closeness to our paper, we
now briefly discuss the modification with a temporary price impact.
Almgren and Chriss (1999, 2000) include a temporary component in the price impact

function, which can depend on the trading interval t. The temporary price impact
gives additional flexibility in dealing with the continuous-time limit of the problem.
In particular, they specify the following dynamics for the execution prices of trades:

P̂n ¼ Pn þ Gðxn=tÞ, ð19Þ
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where Pn is the same as given in (15), t¼T=N is the time between trades, and Gð�Þ describes
a temporary price impact and reflects temporary price deviations from ‘‘equilibrium’’ caused
by trading. With Gð0Þ ¼ 0 and G0ð�Þ40, the temporary price impact penalizes high trading
volume per unit of time, xn=t. Using a linear form for Gð�Þ, GðzÞ ¼ yz, it is easy to show that
as N goes to infinity, the expected execution cost approaches to

ðF0 þ s=2ÞX0 þ ðl=2ÞX 2
0 þ y

Z T

0

dXt

dt

� �2

dt

(e.g., Grinold and Kahn, 2000; Huberman and Stanzl, 2005). Clearly, with the temporary
price impact, the optimal execution strategy has a continuous-time limit. In fact, it is very
similar to its discrete-time counterpart: This strategy is deterministic and the trading
intensity, defined by the limit of xn=t, is constant over time.12

The temporary price impact reflects an important aspect of the market, namely, the
difference between short-term and long-term supply/demand. If a trader speeds up his buy
trades, as he can do in the continuous-time limit, he will deplete the short-term supply and
increase the immediate cost for additional trades. As more time is allowed between trades,
supply will gradually recover. However, as a heuristic modification, the temporary price
impact does not provide an accurate and complete description of the supply/demand
dynamics. This leads to several drawbacks. For example, the temporary price impact function
in the form considered by Almgren and Chriss (2000) and Huberman and Stanzl (2005) rules
out the possibility of discrete trades. This is not only artificial but also undesirable. As we show
later, the optimal execution strategy generally involves both discrete and continuous trades.
Moreover, introducing the temporary price impact does not capture the full dynamics of
supply/demand. For example, two sets of trades close to each other in time versus far apart
will generate different supply/demand dynamics, while in Huberman and Stanzl (2005) they
lead to the same dynamics. Finally, simply specifying a particular form for the temporary price
impact function says little about the underlying economic factors that determine it.
5. Discrete-time solution

We now return to our general framework and solve for the optimal execution strategy.
Suppose that trading times are fixed at tn ¼ nt, where t¼ T=N and n¼ 0,1, . . . ,N. We
consider the corresponding strategies x½0,T � ¼ fx0,x1, . . . ,xng within the strategy set YD

defined in Section 2. Using (3), (9), (10) and (14), the optimal execution problem is reduced to

J0 ¼ min
fx0,...,xN g

E0

XN

n ¼ 0

½Atn
þ xn=ð2qÞ�xn

" #

s:t: Atn
¼ Ftn

þ lðX0�Xtn
Þ þ s=2þ

Xn�1
i ¼ 0

xike�rtðn�iÞ, ð20Þ

where Ft follows a random walk. This problem can be solved using dynamic programming.
12If the trader is risk-averse with a mean–variance preference, the optimal execution strategy has a decreasing

trading intensity over time. See Almgren and Chriss (2000) and Huberman and Stanzl (2005).
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Proposition 1. The solution to the optimal execution problem (20) is

xn ¼�
1

2
dnþ1½Dtn

ð1�bnþ1e�rt þ 2kgnþ1e
�2rtÞ�Xtn

ðlþ 2anþ1�bnþ1ke�rtÞ�, ð21Þ

with xN ¼XN and Dt ¼At�Vt�s=2. The expected cost for future trades under the optimal

strategy is determined according to

Jtn
¼ ðFtn

þ s=2ÞXtn
þ lX0Xtn

þ anX 2
tn
þ bnDtn

Xtn
þ gnD2

tn
, ð22Þ

where the coefficients anþ1, bnþ1, gnþ1, and dnþ1 are determined recursively as follows:

an ¼ anþ1�
1

4
dnþ1ðlþ 2anþ1�bnþ1ke�rtÞ2, ð23aÞ

bn ¼ bnþ1e
�rt þ

1

2
dnþ1ð1�bnþ1e

�rt þ 2kgnþ1e�2rtÞðlþ 2anþ1�bnþ1ke�rtÞ, ð23bÞ

gn ¼ gnþ1e
�2rt�

1

4
dnþ1ð1�bnþ1e

�rt þ 2gnþ1ke�2rtÞ2, ð23cÞ

with dnþ1 ¼ ½1=ð2qÞ þ anþ1�bnþ1ke�rt þ gnþ1k
2e�2rt��1 and terminal conditions

aN ¼ 1=ð2qÞ�l, bN ¼ 1 and gN ¼ 0: ð24Þ

Proposition 1 describes the optimal execution strategy when we fix the trading times at a
certain interval t. This strategy is optimal only among strategies with the same fixed
trading interval. In principle, we want to choose the trading interval to minimize the
execution costs. One way to allow different trading intervals is to take the limit t-0, i.e.,
N-1, in the problem (20). Fig. 2 plots optimal execution strategies fxn,n¼ 0,1, . . . ,Ng
for different values of N: N¼10, 25, 100, respectively. As N becomes large, the strategy
splits into two parts, large trades at both ends of the trading horizon (at the beginning and
0
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Fig. 2. Optimal strategy with N fixed discrete trading intervals. This figure plots the optimal trades for N fixed

intervals, where N is 10, 25, and 100 for respectively the top, middle and bottom panels. The initial order to trade

is set at X0 ¼ 100,000 units, the time horizon is set at T¼1 day, the market depth is set at q¼5,000 units, the price-

impact coefficient is set at l¼ 1=ð2qÞ ¼ 10�4, and the resilience coefficient is set at r¼ 2:231.
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at the end) and small trades in between. Clearly, these strategies are very different from the
conventional strategy (17) obtained previously when the dynamics of demand/supply is
ignored.

Proposition 2 describes the continuous-time limit of the optimal execution strategy and
the expected cost.

Proposition 2. As N-1, the optimal execution strategy becomes

lim
N-1

x0 ¼ xt ¼ 0 ¼
X0

rT þ 2
, ð25aÞ

lim
N-1

xn=ðT=NÞ ¼ _X t ¼
rX0

rT þ 2
, t 2 ð0,TÞ, ð25bÞ

lim
N-1

xN ¼ xt ¼ T ¼
X0

rT þ 2
, ð25cÞ

where x0 is the trade at the beginning of trading period, xN is the trade at the end of trading

period, and _X t is the speed of trading in between these trades. The expected cost is determined

according to

Jt ¼ ðF0 þ s=2ÞXt þ lX0Xt þ atX
2
t þ btXtDt þ gtD

2
t ,

where coefficients at, bt, and gt are given by

at ¼
k

rðT�tÞ þ 2
�
l
2
, bt ¼

2

rðT�tÞ þ 2
, gt ¼�

rðT�tÞ

2k½rðT�tÞ þ 2�
: ð26Þ

What is the intuition underlying this complex trading pattern? The initial discrete trade
x0 is aimed at pushing the limit-order book away from its steady state. This deviation
makes liquidity providers to step in and place new orders onto the book. The size of
discrete trade x0 is chosen optimally to draw a sufficient number of new orders while not
incurring too high transaction costs. The subsequent continuous trades then pick off
incoming orders and keep the inflow coming at desirable prices. A final discrete trade xN

finishes off any remaining order at the end of trading horizon when future demand/supply
is no longer of concern. In Section 7, we examine in more detail the properties of the
optimal execution strategy and their dependence on the LOB dynamics.
6. Continuous-time solution

The continuous-time limit of the discrete-time solution suggests that limiting ourselves to
discrete strategies can be suboptimal. Instead, we should formulate the problem in a continuous-
time setting and allow for both continuous and discrete trading strategies. We show next how to
derive the optimal strategy in the continuous-time version of the LOB framework.

Let the fundamental value be Ft ¼ F0 þ sZt, where Zt is a standard Brownian motion
defined on ½0,T �. Variable Ft fully captures the uncertainty in the model. Let F t denote the
filtration generated by Zt. A general execution strategy can consist of two components:
a set of discrete trades at certain times and a flow of continuous trades. A set of discrete
trades is also called an ‘‘impulse’’ trading policy.
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Definition 1. Let Nþ ¼ f1,2, . . .g. An impulse trading policy ðtk,xkÞ : k 2 Nþ is a sequence
of trading times tk and trade amounts xk such that: (1) 0rtkrtkþ1 for k 2 Nþ, (2) tk is a
stopping time with respect to F t, and (3) xk is measurable with respect to F tk

.

The continuous trades can be defined by a continuous trading policy described by the
trading intensity m½0,t�, where mt is measurable with respect to F t and mt dt represents the
trades during time interval ½t,tþ dtÞ. Let T̂ denote the set of impulse trading times. Then,
the set of admissible execution strategies for a buy order is

YC ¼ m½0,T �,xft2T̂ g : mt, xtZ0,

Z T

0

mt dtþ
X
t2T̂

xt ¼X0

( )
, ð27Þ

where mt is the rate of continuous buy trades at time t and xt is the size of the discrete buy
trade for t 2 T̂ . The dynamics of Xt, the number of shares yet to acquire at time t, is then
given by the following equation:

Xt ¼X0�

Z t

0

ms ds�
X

s2T̂ ,sot

xs:

Now let us specify the dynamics of the ask price At. Similar to the discrete-time setting, we
have A0 ¼ F0 þ s=2 and

At ¼A0 þ

Z t

0

½dV s�rDs ds�k dX s�, ð28Þ

where mid-quote is Vt ¼ Ft þ lðX0�XtÞ as in (9) and deviation is Dt ¼At�Vt�s=2 as in (7).
The dynamics of ask price At captures the evolution of the limit-order book, in particular the
changes in mid-quote Vt, the inflow of new orders, and the continuous execution of trades.
Next, we compute the execution cost consisting of two parts: the costs from continuous

trades and discrete trades, respectively. The execution cost from t to T is

Ct ¼

Z T

t

Asms dsþ
X

s2T̂ ,trsrT

½As þ xs=ð2qÞ�xs: ð29Þ

Given the dynamics of the state variables in (9), (28), and cost function in (29), the
optimal execution problem now becomes

Jt � JðXt,At,Vt,tÞ ¼ min
fm½0,T �,fxt2T̂ gg2YC

Et½Ct�, ð30Þ

where Jt is the value function at time t equal to the expected cost for future trades under
the optimal execution strategy. At time T, the trader is forced to buy all of the remaining
order XT, which leads to the following boundary condition:

JT ¼ ½AT þ 1=ð2qÞXT �XT :

Proposition 3 gives the solution to the problem.

Proposition 3. The value function for the optimization problem (30) is

Jt ¼ ðFt þ s=2ÞXt þ lX0Xt þ atX
2
t þ btDt þ gtD

2
t ,
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where Dt ¼At�Vt�s=2. The optimal execution strategy is

x0 ¼ xT ¼
X0

rT þ 2
, mt ¼

rX0

rT þ 2
8t 2 ð0,TÞ, ð31Þ

where the coefficients at, bt, and gt are the same as in Proposition 2.

The optimal strategy consists of an initial discrete trade, followed by a sequence of
continuous trades, and finished with a final discrete trade. Obviously, the solution in the
continuous-time setting from Proposition 3 is identical to the continuous-time limit of the
solution in the discrete-time setting from Proposition 2. The optimal execution strategy is,
however, different from strategies obtained in the conventional setting (17). Since the
strategy involves both discrete and continuous trades, this clearly indicates that the timing
of trades is a critical part of the optimal strategy. This also shows that ruling out discrete or
continuous trades ex ante is in general suboptimal. Our solution demonstrates that both
static and dynamic properties of supply/demand, which are captured by the LOB dynamics
in our framework, are important in analyzing the optimal execution strategy and its cost.

7. Optimal strategy and cost savings

In contrast with previous work, the optimal execution strategy includes discrete and
continuous trading. We now analyze the properties of the optimal execution strategy in
more detail and quantify the cost reduction it accomplishes.

7.1. Properties of optimal execution strategy

The first thing to notice is that the execution strategy given in (31) does not depend on
the price impact l and market depth q. Coefficient l captures the permanent price impact
of a trade and, given a linear form of the price impact function, fully describes the
instantaneous (static) supply/demand. Independence of optimal strategy on l is a rather
striking result given that most of the previous work focuses on l as the key parameter
determining the execution strategy and cost. As we show earlier, l affects the execution
strategy when the times to trade are exogenously set at fixed intervals. When the times to
trade are determined optimally, the impact of l on execution strategy disappears.

Coefficient q captures the depth of the LOB market. In the simple model we consider, it
is assumed to be constant at all price levels above the ask price. In this case, the actual
value of market depth does not affect the optimal execution strategy. For more general
(and possibly more realistic) shapes of the limit order book, the optimal execution strategy
may well depend on the static characteristics of the book. Our analysis clearly shows that
the static aspects of the supply/demand does not fully capture the factors that determine
the optimal execution strategy.

The optimal execution strategy depends on two parameters, the LOB resilience r and the
execution horizon T. We consider these dependencies separately.

Panel A of Fig. 3 plots the optimal execution strategy, namely, the time path Xt of the
remaining order. Clearly, the nature of the optimal strategy is different from strategies
proposed in the literature and involving a smooth flow of small trades. When the timing of
trades is determined optimally, the optimal execution strategy consists of both large
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Fig. 3. Profiles of the optimal execution strategy and ask price. Panel A plots the profile of optimal execution policy as

described by Xt, the number of units left to be traded at time t. Panel B plots the profile of realized ask price At. A discrete

trade occurs at time 0 and moves the ask price up. After the initial trade, continuous trades are executed as a constant

fraction of newly incoming sell orders to keep the deviation of the ask price At from its steady state Vt þ s=2, shown with

dashed line in Panel B, at a constant level. A discrete trade occurs at the last moment T to complete the order.
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discrete trades and continuous trades. In particular, under the LOB dynamics we consider
here, the optimal execution involves a discrete trade at the beginning, followed by a flow of
small trades and then a discrete terminal trade. Such a strategy seems intuitive given the
dynamics of the limit order book. The initial discrete trade pushes the limit order book
away from its stationary state so that new orders are lured in. The subsequent flow of small
trades will ‘‘eat up’’ these incoming orders thus keeping them coming. At the end,
a discrete trade finishes the remaining part of the order.
The size of the initial trade is chosen optimally to draw sufficient number of new orders

while not incurring too high transaction costs. If the initial trade is too large, then it will
raise the average prices of the new orders. If the initial trade too small, then it will not lure
in enough orders before the terminal time. The trade off between these two factors largely
determines the size of the initial trade.
The subsequent continuous trades are intended to maintain the flow of new limit orders

at desirable prices. To see how this works, let us consider the path of the ask price At under
the optimal execution strategy. It is plotted in Panel B of Fig. 3. The initial discrete trade
consumes the liquidity by ‘‘eating up’’ bottom limit orders and pushes up the ask price
from its initial level of A0 ¼V0 þ s=2 to its new level of A0þ ¼V0 þ s=2þ X0=ðrT þ 2Þ=q.
Afterwards, the optimal execution strategy keeps Dt ¼At�Vt�s=2, the deviation of the
current ask price At from its steady state level Vt þ s=2, at a constant level of
kX0=ðrT þ 2Þ. Consequently, the rate of new sell order flow, which is given by r�Dt,
is also maintained at a constant level. The ask price At goes up together with Vt þ s=2, the
steady-state ‘‘value’’ of the security, which is shown with the dashed line in Fig. 3(b).
Plugging dAt¼dVt for 0otoT into (28), we find that rDt ¼ kmt. In other words,
mt ¼ ð1=kÞrDt, implying that under the optimal execution strategy, a constant fraction of
1=k of the new sell orders is executed to maintain a constant order flow.
The final discrete trade is determined by two factors. First, the order has to be completed

within the given horizon. Second, the evolution of supply/demand afterwards no longer
matters. In practice, both of these factors can take different forms. For example,
the trading horizon T can be endogenously determined rather than exogenously given.
We consider this extension by allowing risk considerations in Section 8.
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Our discussion above shows that the LOB dynamics captured by the resilience
parameter r is the key factor in determining optimal execution strategy. In order to better
understand this link, let us consider two extreme cases, when r¼ 0 and r¼1. When
r¼ 0, we have no recovery of the limit order book after a trade. The execution costs will be
strategy independent; it does not matter when and at what speed the trader eats up the
limit-order book. This result is also true in a discrete setting for any value of N, as well as
in its continuous-time limit. When r¼1, the limit order book rebuilds itself immediately
after a trade. As we discussed in Section 4, this case corresponds to the conventional
setting. Again, the execution cost becomes strategy independent. It should be pointed out
that even though in the limit of r-0 or r-1, the optimal execution strategy given in
Proposition 3 converges to a pure discrete strategy or a pure continuous strategy, many
other strategies are equally good given the degeneracy in these two cases.

When the resilience of the limit order book is finite, 0oro1, the optimal strategy is a
mixture of discrete and continuous trades. The fraction of the total order executed through
continuous trades is

R T

0 mt dt=X0 ¼ rT=ðrT þ 2Þ. This fraction increases with r. It is more
efficient to use small trades when the limit order book is more resilient. The intuition is
that, given a larger resilience, smaller discrete trades are required to lure the same amount
of new order flows, against which one can take full advantage by trading continuously.

Another important parameter in determining the optimal execution strategy is the time-
horizon T to complete the order. From Proposition 3, we see that as T increases, the size of
the two discrete trades decreases. This result is intuitive. The more time we have to execute
the order, the more we can spread continuous trades to benefit from the inflow of new
orders mitigating the total cost.
7.2. Cost savings

So far, we have focused on the optimal execution strategy. We now turn to the savings
the optimal strategy can yield. For this purpose, we use the strategy obtained in the con-
ventional setting and its cost as the benchmark. As shown in Section 4, the con-
ventional strategy is a constant flow of trades with intensity m1 ¼X0=T , t 2 ½0,T �.
The subscript 1 denotes here the infinite resilience implicitly assumed in this setting.
Under this simple strategy, we have the mid-quote Vt ¼ Ft þ lðt=TÞX0, the deviation Dt ¼

½kX0=ðrTÞ�ð1�e�rtÞ, and the ask price At ¼Vt þDt þ s=2. The expected net execution cost
for the strategy with a constant rate of execution m1 is given by

~J
CM

0 ¼E0

Z T

0

ðAt�Ft�s=2ÞðX0=TÞ dt

� �
¼ ðl=2ÞX 2

0 þ k
rT�ð1�e�rT Þ

ðrTÞ2
X 2

0 ,

where the superscript CM in ~J
CM

0 stands for the ‘‘Conventional Model.’’ The total expected
execution cost of a buy order of size X0 is equal to its fundamental value ðF0 þ s=2Þ X0 plus
the extra cost from the price impact of trading. Since the first term is unrelated to the
execution strategy, we consider only the net cost, not including the expenses related to the
fundamental value.

From Proposition 3, the net expected cost under the optimal execution strategy is

~J 0 ¼ J0�ðF0 þ s=2ÞX0 ¼ ðl=2ÞX 2
0 þ

k
rT þ 2

X 2
0 :
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The improvement in expected execution cost can be calculated as JCM
0 �J0, given by

~J
CM

0 �
~J 0 ¼ k

2rT�ðrT þ 2Þð1�e�rT Þ

ðrT þ 2ÞðrTÞ2
X 2

0 :

It can be shown that this improvement is always non-negative. The relative gain in
execution quality can be defined as D¼ ð ~J

CM
� ~J 0Þ= ~J

CM
.

In order to calibrate the magnitude of costs reduction by the optimal execution strategy,
we consider several numerical examples. Let the size of the order to be executed be
X0 ¼ 100,000 shares and the initial security price be A0 ¼ F0 þ s=2¼ $100. We choose the
width of the limit order book, which gives the depth of the market, to be q¼5,000. This
implies that if the order is executed at once, the ask price will move up by 20%. Without
loss of generality, we consider the execution horizon to be one day, T¼1. The other
parameters, especially r, may well depend on the security under consideration. We will
analyze how the optimal strategy and its cost savings depend on a range of values for
resilience r and price impact l.
Table 1 reports the numerical values of the optimal execution strategy for different

values of r. As discussed above, for small values of r, most of the order is executed
through two discrete trades, while for large values of r, most of the order is executed
through a flow of continuous trades as in the conventional models. For intermediate
ranges of r, a mixture of discrete and continuous trades is used.
Table 2 reports the relative improvement in the expected net execution cost by the optimal

execution strategy over the simple strategy of the conventional setting. Let us first consider the
extreme case in which the resilience of the LOB is very small, e.g., r¼ 0:001 and the half-life
for the LOB to rebuild itself after being hit by a trade is 693.15 days. In this case, even though
the optimal execution strategy looks very different from the simple execution strategy, as
shown in Fig. 4, the improvement in execution cost is minuscule. This is not surprising as we
Table 1

Profiles of the optimal execution strategy for different levels of LOB resilience r.

r Half-life (log 2=r) Trade x0 Trade over ð0,TÞ Trade xN

0.001 693.15 day 49,975 50 49,975

0.01 69.31 day 49,751 498 49,751

0.5 1.39 day 40,000 20,000 40,000

1 270.33 minutes 33,333 33,334 33,333

2 135.16 minutes 25,000 50,000 25,000

4 67.58 minutes 16,667 66,666 16,667

5 54.07 minutes 14,286 71,428 14,286

10 27.03 minutes 8,333 83,334 8,333

20 13.52 minutes 4,545 90,910 4,545

50 5.40 minutes 1,921 96,153 1,921

300 0.90 minutes 331 99,338 331

1000 0.20 minutes 100 99,800 100

10000 0.03 minutes 10 99,980 10

The table reports values of optimal discrete trades x0 and xT at the beginning and the end of the trading horizon

and the intensity of continuous trades in between for an order of X0 ¼ 100,000 for different values of the LOB

resilience parameter r or the half-life of an LOB disturbance t1=2, which is defined as expf�rt1=2g ¼ 1=2.
The initial ask price is $100, the market depth is set at q¼5,000 units, the (permanent) price-impact coefficient is

set at l¼ 1=ð2qÞ ¼ 10�4, and the trading horizon is set at T¼1 day, which is 6.5 hours (390 minutes).



Table 2

Cost savings by the optimal execution strategy from the simple trading strategy.

l

r Half-life 1

2q

1

10q

1

50q

1

100q

0

0.001 693.15 day 0.00 0.01 0.02 0.02 0.02

0.01 69.31 day 0.08 0.15 0.16 0.16 0.17

0.5 1.39 day 2.82 5.42 5.99 6.06 6.13

1 270.33 minutes 3.98 8.16 9.14 9.26 9.39

2 135.16 minutes 4.32 9.97 11.51 11.71 11.92

4 67.58 minutes 3.19 9.00 11.05 11.35 11.65

5 54.07 minutes 2.64 8.07 10.21 10.53 10.86

10 27.03 minutes 1.13 4.58 6.65 7.01 7.41

20 13.52 minutes 0.37 1.98 3.54 3.89 4.31

50 5.40 minutes 0.07 0.49 1.24 1.50 1.88

300 0.90 minutes 0.00 0.02 0.08 0.13 0.33

1000 0.20 minutes 0.00 0.00 0.01 0.02 0.10

10000 0.03 minutes 0.00 0.00 0.00 0.00 0.09

Relative improvement in expected net execution cost D¼ ð ~J
CM
� ~J 0Þ= ~J

CM
is reported for different values of LOB

resilience coefficient r and the permanent price-impact coefficient l. The order size is set at 100,000, the market

depth is set at q¼5,000, and the horizon for execution is set at T¼1 day (equivalent of 390 minutes).

0                      0                      

1

Panel  A

1

t

1

Panel  B

tt

Optimal Strategy Conventional Strategy

Xt /X0 Xt /X0 Xt /X0

TTT

Panel  C

0

Fig. 4. Optimal strategy versus simple strategy from the conventional models. The figure plots the time paths of

remaining order to be executed for the optimal strategy (solid line) and the simple strategy obtained from the

conventional models (dashed line), respectively. The order size is set at X0 ¼ 100,000, the initial ask price is set at

$100, the market depth is set at q¼5,000 units, the (permanent) price-impact coefficient is set at l¼ 1=ð2qÞ ¼ 10�4,

and the trading horizon is set at T¼1 day, which is assumed to be 6.5 hours (390 minutes). Panels A, B, and C plot

the strategies for r¼ 0:001,2 and 1,000, respectively.

A.A. Obizhaeva, J. Wang / Journal of Financial Markets 16 (2013) 1–32 21
know the execution cost becomes strategy independent when r¼ 0. For a modest value of r,
e.g., r¼ 2 with a half life of 135 minutes (2 hours and 15 minutes), the improvement in
execution cost ranges from 4.32% for l¼ 1=ð2qÞ to 11.92% for l¼ 0. When r becomes large
and the LOB becomes very resilient, e.g., r¼ 300 and the half-life of LOB deviation is 0.90
minute, the improvement in execution cost becomes small again, with a maximum of 0.33%
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when l¼ 0. This is again expected as we know that the simple strategy is close to the optimal
strategy when r-1 (as in this limit, the cost becomes strategy independent).
Table 2 also reveals an interesting result. The relative savings in execution cost by

the optimal execution strategy is the highest when l¼ 0, i.e., when the permanent price
impact is zero. Of course, the magnitude of net execution cost becomes very small as l goes
to zero.13

In order to see the difference between the optimal strategy and the simple strategy
obtained in conventional settings, we compare their profiles Xt in Fig. 4. The solid line
shows the optimal execution strategy of the LOB framework and the dashed line shows the
execution strategy of the conventional setting. Obviously, the difference between the two
strategies are more significant for smaller values of r.

8. Extensions

We have used a parsimonious LOB model to analyze the impact of supply/dynamics on
optimal execution strategy. Obviously, the simple characteristics of the model does not
reflect the richness in the LOB dynamics observed in the market. The framework we
developed, however, is quite flexible to allow for extensions in various directions. In this
section, we briefly discuss some of them.

8.1. Time varying LOB resilience

Our model can easily incorporate time variation in LOB resilience. It has been
documented that trading volume, order flows, and transaction costs all exhibit U-shaped
intraday patterns. These variables are high at the opening of the trading day, then fall to
lower levels during the day and finally rise again towards the close of a trading day. This
suggests that the liquidity in the market may well vary over a trading day. Monch (2004)
has attempted to incorporate such a time-variation in the conventional models.
We can easily allow for deterministic time variation in LOB dynamics. In particular, we

can allow the resilience coefficient to be time dependent, r¼ rt for t 2 ½0,T �. The results in
Propositions 1–3 still hold if we replace r by rt, rT by

R T

0
rt dt, and rðT�tÞ by

R T

t
rt dt.

8.2. Different shapes for LOB

We have considered a simple shape for the LOB described by a step function with the
constant density of limit orders placed at various price levels. As shown in Section 3, this
form of the LOB is consistent with the static linear price-impact function widely used in the
literature. Although Huberman and Stanzl (2004) have provided theoretical arguments in
support of the linear price impact functions, the empirical literature has suggested that the
shape of the LOB can be more complex (e.g., Hopman, 2007). Addressing this issue, we can
allow more general shapes of the LOB in our framework. This will also make the LOB
dynamics more convoluted. As a trade eats away the tip of the LOB, we have to specify how
the LOB converges to its steady state. With a complicated shape for the LOB, this
convergence process can take many forms. Modeling more complex shapes of the LOB
13When X0 is big, the execution costs are largely determined by substantial costs related to the permanent price

impact when it is present. Any cost reductions due to optimal dealing with the temporary price impact will seem

small as a percentage of total costs.
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involves assumptions about the flow of new orders at a range of prices. Recently, Alfonsi,
Schied, and Schulz (2009) extended our analysis to LOB with a general density of placed
limit orders. Remarkably, the authors find a close-form solution for a broad class of limit-
order books and show that the suggested optimal strategies are qualitatively similar to those
derived for a block-shaped LOB. Their findings thus confirm the robustness of our results.
8.3. Risk aversion

We have considered the optimal execution problem for a risk-neutral trader. We can
extend our framework to consider the optimal execution problem for a risk-averse trader
as well. For tractability, we assume that this trade has a mean-variance objective function
with a risk-aversion coefficient of a. The optimization problem (30) now becomes

Jt � JðXt,At,Vt,tÞ ¼ min
fm½0,T �,fxt2T̂ gg2YC

Et½Ct� þ
1

2
a Vart½Ct�, ð32Þ

with (9), (28), and (29). At time T, the trader is forced to buy all of the remaining order XT.
This leads to the following boundary condition:

JT ¼ ½AT þ 1=ð2qÞXT �XT :

Since the only source of uncertainty in (32) is Ft and only the trades executed in interval
½t,tþ dtÞ will be subject to uncertainty in Ft, we can rewrite this formula in a more
convenient form:

Jt ¼ min
fm½0,T �,fxt2T̂ gg2YC

Et½Ct� þ
1

2
a

Z T

t

s2X 2
s ds: ð33Þ

Proposition 4 gives the solution to the problem for a risk-averse trader:

Proposition 4. The optimal execution strategy for the optimization problem (33) is

x0 ¼X0
kf 0ð0Þ þ as2

krf ð0Þ þ as2
,

mt ¼ kx0
rgðtÞ�g0ðtÞ

1þ kgðtÞ
e
�
R t

0
ððkg0ðsÞþrÞ=ð1þkgðsÞÞÞ ds

, 8t 2 ð0,TÞ,

xT ¼X0�x0�

Z T

0

ms ds:

The value function is determined by

Jt ¼ ðFt þ s=2ÞXt þ lX0Xt þ atX
2
t þ btDt þ gtD

2
t ,

where Dt ¼At�Vt�s=2. The coefficients at,bt,gt are given by

at ¼
kf ðtÞ�l

2
, bt ¼ f ðtÞ, gt ¼

f ðtÞ�1

2k
,

where functions f(t) and g(t) are defined as

f ðtÞ ¼ ðv�as2Þ=ðkrÞ þ �
kr
2v
þ eð2rv=ð2krþas2ÞÞðT�tÞ kr

2v
�

kr
v�as2�kr

� �� ��1
,
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Fig. 5. Profiles of optimal strategies for different coefficients of risk aversion a. This figure shows the profiles of

optimal execution policies Xt for the traders with different coefficients of risk aversion a¼0 (solid line), a¼0.05

(dashed line), and a¼0.5 (dashed-dotted line) and a¼1 (dotted line), respectively. The variable Xt indicates how

much shares still has to be executed before trading at time t. The order size is set at X0 ¼ 100,000, the market

depth is set at q¼5,000 units, the permanent price-impact coefficient is set at l¼ 0, the trading horizon is set at

T¼1, and the resilience coefficient is set at r¼ 1.
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gðtÞ ¼�
f 0ðtÞ�rf ðtÞ

kf 0ðtÞ þ as2

with v¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2s4 þ 2as2kr

p
.

It can be shown that as the risk aversion coefficient a goes to 0, the coefficients at, bt, and
gt converge to those in Proposition 2 that were obtained for a risk-neutral trader. The nature
of the execution strategy that is optimal for a risk-averse trader remains qualitatively similar
to the strategy that is optimal for a risk-neutral trader. A risk-averse trader will place discrete
trades at the beginning and at the end of trading period and trade continuously in between.
The initial and final discrete trades are, however, of different magnitude. The more risk
averse the trader is, the faster he wants to execute his order to avoid future uncertainty and
the more aggressive orders he submits in the beginning. The effect of trader’s risk aversion a

on the optimal trading profile is shown in Fig. 5.
9. Conclusion

In this paper, we examine how the limited elasticity of the supply/demand of a security
affects trading behavior of market participants. Our main goal is to demonstrate the
importance of supply/demand dynamics in determining optimal trading strategies.
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The execution of orders is usually not costless. The execution prices are different
from pre-trade benchmarks, since implemented transactions consume liquidity and
change the remaining supply/demand. The supply/demand schedule right after a trans-
action will be determined by its static properties. Furthermore, trades often trigger a
complex evolution of supply/demand. Rather then being permanent, its initial changes
may partially dissipate over time as liquidity providers step in and replenish liquidity.
Thus, supply/demand represents a complex object in the marketplace that changes in
response to executed trades. While designing trading strategies traders have to take into
account a full dynamics of supply/demand since their transactions are often spread
over time.

In this paper, we focus on the optimal execution problem faced by a trader who wishes to
execute a large order over a given period of time. We explicitly model supply/demand as a
limit order book market. The shape of a limit-order book determines static properties of
supply/demand such as bid–ask spread and price impact. The dynamics of a limit order book
in response to trades determines its dynamic properties such as resilience. We are interested
in how various aspects of liquidity influence trading strategies. We show that when trading
times are chosen optimally, the resilience is the key factor in determining the optimal
execution strategy. The strategy involves discrete trades as well as continuous trades, instead
of merely continuous trades as in previous work that focuses only on price impact and
spread. The intuition is that traders can use discrete orders to aggressively consume available
liquidity and induce liquidity providers to step in and place new orders into the trading
system, thus making the execution of future trades cheaper. The developed framework for
supply/demand is based on the limit order book market for convenience. Our main
conclusions remain applicable to any other market structures. The framework is fairly
general to accommodate rich forms of supply/demand dynamics. It represents a convenient
tool for those who wish to fine-tune their trading strategies to realistic dynamics of supply/
demand in the marketplace.

Appendix A

A.1. Proof of Proposition 1

From (7), we have

Dtn
¼Atn

�Vtn
�s=2¼

Xn�1
i ¼ 0

xti
ke�rtðn�iÞ: ðA:1Þ

From (A.1), the dynamics of Dt between trades will be

Dtnþ1
¼ ðDtn

þ xtn
kÞe�rt, ðA:2Þ

with D0 ¼ 0. We can then express the optimal execution problem (20) in terms of Xt and Dt:

min
x2YD

E0

XN

n ¼ 0

½ðFtn
þ s=2Þ þ lðX0�Xtn

Þ þDtn
þ xtn

=ð2qÞ�xtn
, ðA:3Þ

under the dynamics of Dt given by (A.2).
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First, by induction we prove that the value function for (A.3) is quadratic in Xt and Dt.
It has a form implied by (22):

JðXtn
,Dtn

,Ftn
,tnÞ ¼ ðFtn

þ s=2ÞXtn
þ lX0Xtn

þ anX 2
tn
þ bnXtn

Dtn
þ gnD2

tn
: ðA:4Þ

At time t¼ tN ¼ T , the trader has to finish the order and the cost is

JðXT ,DT ,FT ,TÞ ¼ ðFT þ s=2ÞXT þ ½lðX0�XT Þ þDT þ XT=ð2qÞ�XT :

Hence, aN ¼ 1=ð2qÞ�l, bN ¼ 1, gN ¼ 0. Recursively, the Bellman equation yields

Jtn�1
¼min

xn�1

f½ðFtn�1
þ s=2Þ þ lðX0�Xtn�1

Þ þDtn�1
þ xn�1=ð2qÞ�xn�1

þEtn�1
J½Xtn�1

�xn�1,ðDtn�1
þ kxn�1Þe

�rt,Ftn
,tn�g:

Since Ftn
follows a Brownian motion and the value function is linear in Ftn

, it follows that
the optimal trade size xn�1 is a linear function of Xtn�1

and Dtn�1
and the value function is a

quadratic function of Xtn�1
and Dtn�1

, satisfying (A.4), which leads to the recursive equation
(23) for the coefficients.

A.2. Proof of Proposition 2

First, we prove the convergence of the value function. As t¼ T=N-0, the first order
approximation of the system (23) in t leads to the following restrictions on the coefficients:

lþ 2at�btk¼ 0, 1�bt þ 2kgt ¼ 0 ðA:5Þ

and

_at ¼
1

4
krb2t , _bt ¼ rbt�

1

2
rbtðbt�4kgtÞ, _gt ¼ 2rgt þ

1

4k
rðbt�4kgtÞ

2: ðA:6Þ

It is easy to verify that at, bt, and gt given in (26) provide the solution of (A.6), satisfying
(A.5) and (24). Thus, as t-0, the coefficients of the value function (23) converges to (26).
Second, we prove the convergence result for the optimal execution policy fxtg.

Substituting at, bt, and gt into (21), we can show that as t-0, the execution policy
converges to

xt ¼ Xt

1

rðT�tÞ þ 2
�Dt

1þ rðT�tÞ

k½rðT�tÞ þ 2�

� �
1�

1

2
r2ðT�tÞt

� �
þ

1

2
ðr=kÞDttþ oðtÞ,

ðA:7Þ

where oðtÞ denotes the terms of the higher orders of t. At t¼0, D0 ¼ 0 and we have
limt-0x0 ¼X0=ðrT þ 2Þ. Moreover, after the initial discrete trade x0 at time 0, all trades
will be small (except possibly for the trade at time T) and equal to

xt ¼
1

k
rDttþ oðtÞ, t¼ nt, n¼ 1, . . . ,N�1: ðA:8Þ

We prove this by induction. First, using (A.7), where Xt ¼X0�x0 and Dt ¼ kx0ð1�rtÞ, we
check that (A.8) holds for xt. Second, it we assume that (A.8) holds for some xt, where
t¼ nt, then we can show that xtþt will satisfy this condition as well. In fact, the dynamics
of Xt and Dt is defined by

Xtþt ¼Xt�xt, Dtþt ¼ ðDt þ kxtÞð1�rtÞ, t¼ nt, n¼ 0, . . . ,N�1: ðA:9Þ
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Substituting these equations into (A.7) and using the induction assumption, we get

xtþt ¼ ðr=kÞDtþttþ oðtÞ:

After the discrete trade x0 at time t¼0, the consequent trades will be continuous.
Moreover, (A.8) implies the following form of Xt and Dt dynamics:

Xtþt ¼Xt�
1

k
rDttþ oðtÞ, Dtþt ¼Dt þ oðtÞ: ðA:10Þ

Taking into account the initial condition right after the trade at time 0, we find that

Dt ¼Dt ¼
kX 0

rT þ 2
þ oðtÞ:

From (A.8) as t-0 for any t 2 ð0,TÞ, the trade size xt converges to ðrX0=ðrT þ 2ÞÞt.
Since all shares X0 should be acquired by time T, it is obvious that limt-0xT ¼

X0=ðrT þ 2Þ.

A.3. Proof of Propositions 3 and 4

We give the proof of Proposition 4 along with the proof of Proposition 3 as a special
case. Let us first formulate the problem (33) in terms of variables Xt and Dt ¼At�Vt�s=2
whose dynamics, similar to (A.2), is

dDt ¼�rDt dt�k dX t, ðA:11Þ

with D0 ¼ 0. If we write down the cost of continuous and discrete trading as following:

dCc
t ¼ ðFt þ s=2Þmt dtþ lðX0�XtÞmt dtþDtmt dt, ðA:12Þ

DCd
t ¼ 1

ft2T̂ g½ðFt þ s=2Þxt þ lðX0�XtÞxt þDtxt þ x2
t =ð2qÞ�, ðA:13Þ

then (33) is equivalent to

min
fm½0,T �,fxt2T̂ gg2YC

Et

Z t

0

dCc
t þ

X
t2T̂

DCd
t � þ ða=2Þ

Z T

t

s2X 2
s ds,

"
ðA:14Þ

with (A.11)–(A.13).
This is the optimal control problem with a single control variable Xt. We can apply

standard methods to find its solution. In particular, the solution will be characterized
by three regions, where it will be optimal to trade discretely, continuously, and do not
trade at all. We can specify the necessary conditions for each region that any value
function should satisfy. Under some regularity conditions on the value function, we can
use Ito’s lemma together with the dynamic programming principle to derive the Bellman
equation associated with (A.14). For this problem, the Bellman equation is a variational
inequality involving the first-order partial differential equation with the gradient constraints.
Moreover, the value function should also satisfy the boundary conditions. Below, we
heuristically derive the variational inequalities and show the candidate function that
satisfies them. To prove that this function is the solution, we have to check the sufficient
conditions for optimality using the verification principle.

We proceed with the proof of Proposition 4 in three steps. First, we define the
variational inequalities (VIs) and the boundary conditions for the optimization problem
(A.14). Second, we show that the solution to the VIs exists and implies the candidate value
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function and the candidate optimal strategy. Third, we verify that our candidate value
function and optimal strategy are indeed solutions to the optimization problem. Finally,
we discuss the properties of the optimal strategies.

A.4. Variational inequalities

Let JðXt,Dt,Ft,tÞ be the value function for our problem. Under some regularity conditions,
it has to satisfy the necessary conditions for the optimality or the Bellman equation associated
with (A.14). For this problem, the Bellman equation is the variational inequality involving the
first-order partial differential equation with the gradient constraints, i.e.,

minfJt�rDtJD þ
1

2
s2JFF þ as2X 2

t ,ðFt þ s=2Þ þ lðX0�XtÞ þDt�JX þ kJDg ¼ 0:

Thus, the space can be divided into three regions. In the discrete trade (DT) region, the value
function J has to satisfy

Jt�rDtJD þ
1

2
s2JFF þ as2X 2

t 40,ðFt þ s=2Þ þ lðX0�XtÞ þDt�JX þ kJD ¼ 0:

ðA:15Þ

In the no-trade (NT) region, the value function J satisfies

Jt�rDtJD þ
1

2
s2JFF þ as2X 2

t ¼ 0,ðFt þ s=2Þ þ lðX0�XtÞ þDt�JX þ kJD40:

ðA:16Þ

In the continuous-trade (CT) region, the value function J has to satisfy

Jt�rDtJD þ
1

2
s2JFF þ as2X 2

t ¼ 0,ðFt þ s=2Þ þ lðX0�XtÞ þDt�JX þ kJD ¼ 0:

ðA:17Þ

In addition, we have the boundary condition at the terminal point:

JðXT ,DT ,FT ,TÞ ¼ ðFT þ s=2ÞXT þ lðX0�XT ÞXT þDT XT þ X 2
T=ð2qÞ: ðA:18Þ

The inequalities (A.15)–(A.18) are the variational inequalities (VIs), which are the necessary
conditions for any solutions to the problem (A.14).

A.5. Candidate value function

Using the intuition from the discrete-time case, we can derive the candidate value
function that will satisfy the variational inequalities (A.15)–(A.18). We will be searching
for the solution in a class of functions quadratic in Xt and Dt. Note that it is always
optimal to trade at time 0. Moreover, the nature of the problem implies that there is no NT
region. In fact, if we assume that there exists a strategy with no trading at period ðt1,t2Þ,
then it will be always suboptimal relative to a similar strategy except for the trade at time t1
being reduced by a sufficiently small amount E that is instead continuously executed over
the period ðt1,t2Þ. Thus, the candidate value function has to satisfy (A.17) in the CT region
and (A.15) in any other region. Since there is no NT region, ðFt þ s=2Þ þ lðX0�XtÞ þ

Dt�JX þ kJD ¼ 0 holds for any point ðXt,Dt,Ft,tÞ. This implies a particular form for the
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quadratic candidate value function:

JðXt,Dt,Ft,tÞ ¼ ðFt þ s=2ÞXt þ lX0Xt þ ½kf ðtÞ�lÞ�X 2
t =2þ f ðtÞXtDt þ ½f ðtÞ�1�D

2
t =ð2kÞ,

ðA:19Þ

where f(t) is a function that depends only on t. Substituting (A.19) into Jt�rDtJDþ
1
2
s2JFF þ as2X 2

t Z0, we have

ðkf 0 þ as2ÞX 2
t =2þ ðf

0�rf ÞXtDt þ ðf
0 þ 2r�2f ÞD2

t =ð2kÞZ0, ðA:20Þ

which holds with an equality for any point of the CT region.
Minimizing with respect to Xt, we show that the CT region is specified by

Xt ¼�
f 0�rf

kf 0 þ as2
Dt: ðA:21Þ

For ðXt,DtÞ in the CT region, (A.20) holds with the equality. The function f(t) can be found
from the Riccati equation:

f 0ðtÞð2rkþ as2Þ�kr2f 2ðtÞ�2as2rf ðtÞ þ 2as2r¼ 0: ðA:22Þ

This equation guarantees that Jt�rDtJD þ
1
2
s2JFF þ as2X 2

t is equal to zero for each point
in the CT region and greater than zero for any other points. Taking into account the
terminal condition f ðTÞ ¼ 1, we can solve for f(t). As a result, if the trader is risk neutral
and a¼0, then

f ðtÞ ¼
2

rðT�tÞ þ 2
:

Substituting the expression for f(t) into (A.19), we get the candidate value function of
Proposition 3. If the trader is risk averse and aa0, then

f ðtÞ ¼
1

kr
ðv�as2Þ�

kr
2v
þ

kr
v�as2�k

�
kr
2v

	 

eð2rv=ð2rkþas2ÞÞðT�tÞ

h i�1
,

where v is the constant defined in Proposition 4. From (A.19), this results in the candidate
value function specified in Proposition 4.
A.6. Verification principle

Now we verify that the candidate value function JðX0,D0,F0,0Þ obtained above is greater
or equal to the value achieved by any other trading policy. Let X½0,T � be an arbitrary feasible
policy from YC and let V ðXt,Dt,Ft,tÞ be the corresponding value function. We have

X ðtÞ ¼X ð0Þ�

Z t

0

mt dt�
X

s2T̂ ,sot

xs,

where mtZ0 and xtZ0 for t 2 T̂ . For any t and X0, we consider a hybrid policy that follows
the policy Xt on the interval ½0,t� and the candidate optimal policy on the interval ½t,T �.
The value function for this modified policy is

VtðX0,D0,F0,0Þ ¼E0

Z t

0

½ðFt þ s=2Þ þ lðX0�XtÞ þDt�mt dt

�
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þ
X

tiot,ti2T̂

½ðFti
þ s=2Þxti

þ lðX0�Xti
Þxti

þDti
xti
þ x2

ti
=ð2qÞ� þ JðXt,Dt,Ft,tÞ

i
: ðA:23Þ

For any function, e.g., JðXt,Dt,Ft,tÞ and any ðXt,Dt,Ft,tÞ, we have

JðXt,Dt,Ft,tÞ ¼ JðX0,D0,F0,0Þ þ

Z t

0

Js dsþ

Z t

0

JX dX þ

Z t

0

JD dD

þ

Z t

0

JF dF þ

Z t

0

1

2
JFF ðdFÞ2 þ as2

Z t

0

X 2
s dsþ

X
tiot,ti2T̂

DJ: ðA:24Þ

Using dDt ¼�rDt dt�k dXt and substituting (A.24) for JðXt,Dt,Ft,tÞ into (A.23), we have

VtðX0,D0,F0,0Þ ¼ JðX0,D0,F0,0Þ þ E0

Z t

0

Ft þ
s

2
þ lðX0�XtÞ þDt�JX þ kJD

h i
mt dt

þE0

Z t

0

Jt�rDtJD þ
1

2
s2JFF þ as2X 2

t

� �
dt

þE0

X
tiot,ti2T̂

DJ þ ðFt þ
s

2
þ lðX0�XtÞ þDt þ xti

=ð2qÞÞxti

h i
¼ JðX0,D0,F0,0Þ þ I1 þ I2 þ I3: ðA:25Þ

We can show that for any arbitrary strategy Xt and for any moment t,

VtðX0,D0,F0,0ÞZJðX0,D0,F0,0Þ: ðA:26Þ

It is clear that the VIs (A.15)–(A.17) imply the non-negativity of I1 and I2 in (A.25).
Moreover, if we write DJðXti

,Dti
,Fti

,tiÞ as JðXti
�xti

,Dti
þ kxti

,Fti
þ sZti

,tiÞ� JðXti
,Dti

,
Fti

,tiÞ, we can show that I3Z0. This completes the proof of (A.26).
Applying it for t¼ 0, we see that JðX0,D0,F0,0ÞrV ðX0,D0,F0,0Þ. Moreover, there is a

strict equality for our candidate optimal strategy. This completes the proof of
Proposition 3.

A.7. Properties of the optimal execution policy

We now analyze the properties of optimal execution strategies. First, let us consider the
risk-neutral trader with a¼0. Substituting the expression for f(t) into (A.21), we find that
the CT region is given by

Xt ¼
rðT�tÞ þ 1

k
Dt:

This implies that after the initial trade x0 ¼X0=ðrT þ 2Þ, which pushes the system from its
initial state X0 and D0 ¼ 0 into the CT region, the trader trades continuously at the rate
mt ¼ rX0=ðrT þ 2Þ staying in the CT region, and executes the rest xT ¼X0=ðrT þ 2Þ at the
end of the trading horizon. In fact, this is the same solution as we had for the continuous-
time limit of problem (20).
If the trader is risk averse, then the CT region is given by

Xt ¼ gðtÞDt where gðtÞ ¼ �
f 0ðtÞ�rf ðtÞ

f 0ðtÞkþ as2
:
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This implies that after discrete trade x0 ¼X0ðkf 0ð0Þ þ as2Þ=ðrkf ð0Þ þ as2Þ at the beginning,
which pushes the system from its initial state into the CT region, the trader will trade
continuously at the rate,

mt ¼ kx0
rgðtÞ�g0ðtÞ

1þ kgðtÞ
e
�
R t

0
ððkg0ðsÞþrÞ=ð1þkgðsÞÞÞ ds:

This can be shown taking into account the dynamics of Dt in (A.2) and the specification of
the CT region. At the end, the trader finishes off the order.
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